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A simple model of spacetime foam, made by two different types of wormholes in a semiclassical
approximation, is taken under examination: one type is a collection of Nw Schwarzschild wormholes,
while the other one is made by Schwarzschild-Anti-de Sitter wormholes. The area quantization
related to the entropy via the Bekenstein-Hawking formula hints a possible selection between the
two configurations. Application to the charged black hole are discussed.

I. INTRODUCTION

The area-entropy relation, concerning black holes, has been proposed by J. Bekenstein [1] in the early seventies.
Despite of its simple expression, it is still a central point of research in understanding the connection between General
Relativity and Quantum Mechanics. In natural units one finds that the area-entropy becomes

S =
A

4G
=

A

4l2p
, (1)

where A is the area of the event horizon, G = l2p is the gravitational constant. From one side, we have a statistical
mechanics problem and from the other side we have a pure geometrical problem. This is another aspect of Einstein’s
equations relating geometry and dynamics. However, the problem of understanding which kind of dynamics can give
such a simple result has yet to come. One progress has been made in terms of string theory, where the entropy of a zero
temperature black hole (extreme) has been calculated and shown to be identical to the Bekenstein-Hawking formula
for the thermodynamical entropy [2]. This means that a count of states of the black holes in terms of string states
reflects the quantum nature of a black hole. Another approach comes from the application of the Cardy’s formula [3]
in conformal field theory [4,5] without invoking the string theory framework. Therefore a further investigation from
other points of view is as important as the string theory approach. Having in mind the Bekenstein’s proposal

an = αl2p (n+ η) η > −1 n = 1, 2, . . . , (2)

describing the quantization of the area for nonextremal black holes, in Refs. [6–8], we have proposed a model made by
Nw wormholes, based on Wheeler’s ideas of a foamy space-time [9]. In those papers, we have quantized the entropy of
a Schwarzschild black hole assuming the validity of the area-entropy relation. The area quantization induced by the
underlying foam background, whose quanta can be identified with wormholes of Planckian size, has immediately led
to the quantization of the Schwarzschild black hole mass and of the cosmological constant. In this paper we wish to
generalize the results obtained in Refs. [6–8] by looking at a foamy space composed by Schwarzschild-Anti-de Sitter
wormholes (S-AdS). A selection of the different foamy constituents is suggested in terms of level spacings related to
the Hawking radiation. An application to a Reissner-Nordström (RN) black hole is also given. The rest of the paper
is structured as follows, in section II we briefly recall the results reported in Refs. [7,10] for the Schwarzschild and
S-AdS wormholes respectively, in section III we compute the area spectrum for both foam configurations, in section
IV the area quantization is applied to the RN black hole. We summarize and conclude in section V. Units in which
~ = c = k = 1 are used throughout the paper.

II. SPACE-TIME FOAM: SCHWARZSCHILD OR SCHWARZSCHILD-ANTI-DE SITTER WORMHOLES?

We consider a complete manifold M, divided in two wedgesM+ and M− by a bifurcation two-surface S0, located in
the right and left sectors of a Kruskal diagram. We consider a constant time hypersurface Σ crossing S0, representing
an Einstein-Rosen bridge with wormhole topology S2×R1such that Σ = Σ+ ∪ Σ−. The line element we will consider
is

ds2 = −N2 (r) dt2 +
dr2

1− b(r)
r

+ r2
(

dθ2 + sin2 θdφ2
)

, (3)
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where N (r) is the lapse function and b (r) is the shape function such that

b (r) =

{

2MG Schwarzschild

2MG− r3

b2
AdS

S −AdS
. (4)

M is the wormhole mass, while b2AdS = −3/ΛAdS and ΛAdS is the negative cosmological constant. Note that the
throat is located at rh = 2MG in the Schwarzschild case, while for the S-AdS case we get

1− 2MG

rh
+

r2h
b2AdS

= 0, (5)

where we have implicitly defined rh in terms of M and bAdS. The physical Hamiltonian defined on Σ assumes the
form

HP = HΣ +H∂Σ, (6)

where

HΣ =
1

16πG

∫

Σ

d3x
(

NH+NiHi
)

(7)

and

H∂Σ =
1

8πG

∫

S+

d2x
√
σ
(

k − k0
)

− 1

8πG

∫

S−

d2x
√
σ
(

k − k0
)

. (8)

The volume term HΣ contains two constraints

{

H = Gijklπ
ijπkl

(

16πG√
g

)

−
( √

g

16πG

)(

R(3) + 6
b2
AdS

)

= 0

Hi = −2πij

|j = 0
, (9)

both satisfied by the Schwarzschild and flat metric respectively when ΛAdS = 0 (bAdS → ∞) and satisfied by the
S-AdS and AdS metric when bAdS < ∞. The supermetric is defined as Gijkl =

1
2 (gikgjl + gilgjk − gijgkl) and R(3)

denotes the scalar curvature of the surface Σ. The boundary term H∂Σ (quasilocal energy [11,12]) is defined by means
of a subtraction procedure whose purpose is the elimination of the asymptotic divergence, i.e. r → +∞ coming from
the curvature change [13]. In the present case, the Schwarzschild metric asymptotically tends to the flat metric,
which naturally defines the reference space. The same happens for the S-AdS and the AdS spaces. In Refs. [10,15],
we have shown that H∂Σ = 0 provided that the boundary condition be symmetric with respect to the bifurcation
surface1. Thus the Hamiltonian contribution comes from the off-shell volume term. Nevertheless the form of H is
not satisfying, because the subtraction procedure appears only at the boundary level. However to be consistent with
such a procedure, we extend the subtraction even at the volume term. Thus the final physical Hamiltonian will be of
the form

∆HP = Hwormhole −HNo−wormhole (10)

and the change in energy can be computed with

∆E =

〈

Ψ
∣

∣Hwormhole −HNo−wormhole
∣

∣Ψ
〉

〈Ψ|Ψ〉 , (11)

by means of a variational approach, where the WKB functionals are substituted with trial wave functionals. This
quantity is the natural extension to the volume term of the subtraction procedure for boundary terms and it is
interpreted as the Casimir energy related to vacuum fluctuations. In practice, we consider perturbations at Σ of the
type

1See also Ref. [12].
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gij = ḡij + hij , (12)

where ḡij is the spatial part of the Schwarzschild, Flat, S-AdS and AdS background in a WKB approximation. By
restricting our attention to the graviton sector of the Hamiltonian approximated to second order, hereafter referred
to as H|2, we define

E|2 =

〈

Ψ⊥ ∣
∣H|2

∣

∣Ψ⊥〉

〈Ψ⊥|Ψ⊥〉 , (13)

where

Ψ⊥ = Ψ
[

h⊥
ij

]

= N exp

{

−1

4

[

〈

(g − ḡ)K−1 (g − ḡ)
〉⊥
x,y

]

}

. (14)

After having functionally integrated H|2, we get

E|2 =
1

4

∫

Σ

d3x
√
gGijkl

[

(16πG)K−1⊥ (x, x)ijkl + (16πG)
−1

(△2)
a

j K
⊥ (x, x)iakl

]

. (15)

Thus Eq.(11) becomes

∆E|2 =

〈

Ψ⊥
∣

∣

∣
Hwormhole

|2

∣

∣

∣
Ψ⊥
〉

〈Ψ⊥|Ψ⊥〉 −

〈

Ψ⊥
∣

∣

∣
HNo−wormhole

|2

∣

∣

∣
Ψ⊥
〉

〈Ψ⊥|Ψ⊥〉 . (16)

The propagator K⊥ (x, x)iakl can be represented as

K⊥ (−→x ,−→y )iakl :=
∑

N

h⊥
ia (

−→x )h⊥
kl (

−→y )

2λN (p)
, (17)

where h⊥
ia (

−→x ) are the eigenfunctions of

(△2)
a

j := −△δaj + 2V a
j . (18)

This is the Lichnerowicz operator projected on Σ acting on traceless transverse quantum fluctuations and λN (p) are
variational parameters. △ is the Laplacian in curved space

△ =
1√
g
∂i
(√

ggij∂j
)

(19)

and V a
j is a mixed tensor containing the mixed Ricci tensor whose components are:

V a
j =

{

−2MG

r3
,
MG

r3
,
MG

r3

}

(20)

for the Schwarzschild case and

V a
j =

{

−2MG

r3
+

1

b2AdS

,
MG

r3
+

1

b2AdS

,
MG

r3
+

1

b2AdS

}

(21)

for the S-AdS case. The minimization with respect to λ and the introduction of a high energy cut-off Λ give to Eq.(16)
the following form

∆E (M, bAdS) = ∆E (M) = − V

32π2

(

3MG

r30

)2

ln

(

r30Λ
2

3MG

)

, (22)

where r0 > rh and V is the volume strictly localized to the wormhole throat. Eq.(22) is valid even when bAdS → ∞.

The minimum of ∆E (M) is located at x2 = e−
1
2 , where x = 3MG/

(

r30Λ
2
)

and

∆E (x2) = − V

64π2

Λ4

e
. (23)
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∆E (x2) shows a shift of the minimum away from the expected one, namely x1 = 0 corresponding to flat space and
the AdS space. The discrete spectrum contains exactly one mode. This gives the energy an imaginary contribution,
namely we have discovered an unstable mode [7,10]. This system can be stabilized if we consider Nw wormholes in a

semiclassical approximation and assume that there exists a covering of Σ such that Σ =
Nw
⋃

i=1

Σi, with Σi∩Σj = ∅ when

i 6= j. Each Σi has topology S2 ×R1 with boundaries ∂Σ±
i with respect to each bifurcation surface. The boundary is

located at R± and it is reduced by a factor Nw, i.e. R± → R±/Nw. On each surface Σi, the boundary Hamiltonian is

H∂Σ±

i
=

1

8πG

∫

Si+

d2x
√
σ
(

k − k0
)

− 1

8πG

∫

Si−

d2x
√
σ
(

k − k0
)

. (24)

Note that E∂Σ±

i
is zero for boundary conditions symmetric with respect to each bifurcation surface S0,i. We are

interested in a large number of wormholes, each of them contributing with a term of the type (11). The total
semiclassical hamiltonian is

HNw

tot = H1 +H2 + . . .+HNw (25)

and the total trial wave functional is the product of Nw trial wave functionals

Ψ⊥
tot = Ψ⊥

1 ⊗Ψ⊥
2 ⊗ . . . . . .Ψ⊥

Nw
= N expNw

{

−1

4

[

〈

(g − ḡ)K−1 (g − ḡ)
〉⊥
x,y

]

}

. (26)

By repeating the same steps of the single wormhole, one gets

∆ENw
(x,Λ) = Nw

V

32π2
Λ4x2 lnx, (27)

where we have defined the usual scale variable x = 3MG/
(

r30Λ
2
)

. Then at one loop the cooperative effects of
wormholes behave as one macroscopic single field multiplied by Nw, but without the unstable mode. At the minimum,
x̄ = e−

1
2

∆ENw
(x̄) = −Nw

V

64π2

Λ4

e
(28)

valid in presence or in absence of ΛAdS .

III. AREA SPECTRUM AND ENTROPY

Here we briefly recall how the area quantization process of a black hole is obtained by means of the foam model.
The area is measured by the quantity

A (S) =

∫

S

d2x
√
σ. (29)

σ is the two-dimensional determinant coming from the induced metric σab on the boundary S. The evaluation of the
mean value of the area

A (S) =

〈

ΨF

∣

∣

∣
Â
∣

∣

∣
ΨF

〉

〈ΨF |ΨF 〉
=

〈

ΨF

∣

∣

∣

̂
∫

S
d2x

√
σ
∣

∣

∣
ΨF

〉

〈ΨF |ΨF 〉
, (30)

is computed on the following state

|ΨF 〉 = Ψ⊥
1 ⊗Ψ⊥

2 ⊗ . . . . . .Ψ⊥
Nw

. (31)

Each single wormhole contributes with the quantity

A (S) =

〈

ΨF

∣

∣

∣
Â
∣

∣

∣
ΨF

〉

〈ΨF |ΨF 〉
= 4πr̄2. (32)
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Suppose to consider the mean value of the area A computed on a given macroscopic fixed radius R. On the basis of

our foam model, we obtain A =
N
⋃

i=1

Ai, with Ai ∩ Aj = ∅ when i 6= j. Thus

A = 4πR2 =

N
∑

i=1

Ai = 4πl2p

N
∑

i=1

x2
i = 4πl2pNx2 = 4πl2pNα, (33)

where a new scale xi = r̄i/lp has been introduced. α represents how each single wormhole area is distributed with
respect to the black hole area. Comparing Eq.(33) with the Bekenstein area spectrum proposal, we have

4πl2pNα = 4l2pN ln 2 (34)

and α is fixed to

ln 2

π
= α. (35)

The entropy is simply

S =
A

4l2p
= N ln 2 (36)

and for the Schwarzschild geometry we get

S =
4π (2MG)

2

4G
= 4πM2G = 4πM2l2p = N ln 2. (37)

It is immediate to see that

M =

√
N

2lp

√

ln 2

π
, (38)

namely the Schwarzschild black hole mass is quantized in terms of lp which is in agreement with the results presented
in Refs. [16–22]. This implies also that the level spacing of the transition frequencies is

ω0 = ∆M =
(

8πMl2p
)−1

ln 2. (39)

When we use Eq. (36) for the de Sitter geometry, we get

S = N ln 2 =
3π

l2pΛc

=
A

4l2p
=

N4πl2p
4l2p

= Nπ, (40)

that is

3π

l2pN ln 2
= Λc. (41)

An interesting aspect appears when we put numbers in Eq.(41). When N = 1, the foam system is highly unstable
and the cosmological constant assumes the value, in order of magnitude, of Λc ∼ 1038GeV 2. However the system
becomes stable when the whole universe has been filled with wormholes of Planckian size and this leads to the huge
number N = 10122 corresponding to the value of Λc ∼ 10−84GeV 2 which is the order of magnitude of the cosmological
constant of the space in which we now live.

A. S-AdS Space-Time Foam

In Section II, we have briefly reported how a model of space-time foam formed can be realized by S-AdS wormholes.
Even if the computation has been done for a single wormhole, the procedure of a large Nw S-AdS wormhole approach
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can be realized straightforwardly in analogy with the Schwarzschild case2. To consider a large Nw approach to
space-time foam even with S-AdS wormholes, one has to consider the following rescaling







R± → R±/Nw

l2p → Nwl
2
p

ΛAdS → ΛAdS/N
2
w

, (42)

where R± are the boundaries related to a single wormhole. This rescaling is a consequence of the boundary reduction
related to the semiclassical superposition of wormholes wave functionals leading to a stable system. From Eq.(28), we
see that both representations of the foam, i.e. S-AdS and Schwarzschild wormholes, have the same energy contribution.
Thus we need one more information to select which representation seems to be the correct one. This information
comes exactly from the area-entropy quantization applied to a S-AdS black hole. The procedure is simply a repetition
of what has been done in the Schwarzschild case but with S-AdS wormholes. Let us consider a S-AdS black hole
whose horizon is located at rh. Then from Eq.(5), we write

MS−AdS =
rh
2l2p

(

1 +
r2h

b2AdS

)

(43)

which tends to the Schwarzschild mass M when bAdS → ∞. The application of Eq.(33) to the area of the horizon
gives

rh = lp
√

NαAdS. (44)

αAdS represents the size of each S-AdS wormhole inside the black hole horizon. However Eq.(43) does not uniquely

define a black hole. To this purpose, we consider the value rh,m = bAdS/
√
3 obtained by minimizing the surface gravity

with respect to the horizon radius. Note that in the terminology of the black hole thermodynamics rh,m corresponds

to the unique black hole solution whose temperature reaches its minimum. Thus bAdS =
√
3lp

√
NαAdS and

MAdS =
2
√
αAdSN

3lp
−→

b2
AdS

→∞
MS =

√
N

2lp

√

ln 2

π
. (45)

This fixes αAdS to

αAdS =
9 ln 2

16π
. (46)

A straightforward consequence of Eq.(46)is that the transition frequencies of the emitted radiation of a black hole can
have a different spectrum. Indeed, if the foam is represented by Schwarzschild wormholes, the level spacing observed
is given by Eq.(39) in both cases, i.e. the S-AdS and Schwarzschild black hole. Nevertheless, if the foam is represented
by S-AdS wormholes, the level spacing of a Schwarzschild black hole is given by

ω0 = ∆MAdS
S =

(

8MSl
2
p

)−1
αAdS =

(

8MSl
2
p

)−1 9 ln 2

16π
= ∆M

9

16
(47)

that it means that for a given Schwarzschild black hole of mass M , the S-AdS foam representation gives smaller
frequencies.

IV. THE REISSNER-NORDSTRÖM BLACK HOLE

In this section we would like to apply the foam covering to the case of a black hole with a charge. A charged black
hole is described by

ds2 = −f (r) dt2 + f (r)
−1

dr2 + r2dΩ2, (48)

2See Ref. [10] for details.
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with

f (r) =

(

1− 2MG

r
+

G
(

Q2
e +Q2

m

)

r2

)

=

(

1− 2MG

r
+

Q2

r2

)

. (49)

Qe and Qm are the electric and magnetic charge respectively. When Q = 0 the metric describes the Schwarzschild
metric, while Q = M = 0 describe a flat metric. For Q 6= 0, we can distinguish three different cases:

a) MG > Q. In this case the gravitational potential f (r) admits two real distinct solutions located at







r+ = MG+

√

(MG)2 −Q2

r− = MG−
√

(MG)
2 −Q2

, (50)

with f (r) > 0 for r > r+ and 0 < r < r− . r− is a Cauchy horizon and r+ is an event horizon. For each root
there is a surface gravity defined by

κ± = lim
r→r±

1

2
|g′00 (r)| , (51)

whose values are
{

κ+ = (r+ − r−) /2r2+
κ− = (r− − r+) /2r

2
−

. (52)

The Hawking temperature associated with the surface gravity of the event horizon is

TH =
κ+

2π
. (53)

b) MG = Q. This is the extreme case. The gravitational potential f (r) admits two real coincident solutions

located at r+ = r− = re = MG and its form is f (r) = (1−MG/r)
2
. Here we discover that κ+ = κ− = 0 and

TH = 0.

c) MG < Q. In this case the gravitational potential f (r) admits two complex conjugate solutions located at







r+,i = MG+ i

√

Q2 − (MG)
2

r−,i = MG− i

√

Q2 − (MG)2
, (54)

respectively.

Cases a) and b) imply Q = 0 when M = 0. We will consider the application of the area quantization to cases a)
and b). The constant α, describing the “fine structure”, will be left unspecified for the whole computation. To have a
matching with the Bekenstein proposal we express the mass M of the charged black hole in terms of the area of the
event horizon and its charge Q. This is easily done by invoking the Christodoulou-Ruffini formula [23]

M =

[

A

16πG2

(

1 +
4πQ2

A

)2
]

1
2

(55)

obtained by inverting

A = 4πr2+ = 4π

(

MG+

√

(MG)
2 −Q2

)2

. (56)

We observe that if Q = 0, then we recover the Schwarzschild case, while if A = 4πQ2, we have the extreme one. The
application of Eq.(33) to the area of the RN black hole gives
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A = 4παl2pN2, (57)

where N2 is the wormholes number used for the covering of the RN black hole area. However, from Eq.(56)we obtain
that

Q2 =
√

N2

(

√

N1 −
√

N2

)

αl2p, (58)

where we have used Eq.(38). We immediately see that from the above equation we have N1 ≥ N2, where the equality
corresponds to the vanishing charge. Moreover we choose N1 and N2 in such a way that Q2 = αl2pq, q = 0, 1, 2, . . ..
This means that

√

N2

(

√

N1 −
√

N2

)

= q. (59)

Note that if we put Eq.(58) into Eq.(55), we obtain always the Schwarzschild case. This means that the imposed
condition of Eq.(59) reveals the physics of the charged black hole. By solving with respect to N2, we get

N2 = −q +
N1

2
±

√
N1

√
N1 − 4q

2
. (60)

with N1 ≥ 4q. When q = 0, we recover the Schwarzschild case, namely N2 = N1 which implies the plus choice in
Eq.(60)3. On the other hand, when we consider N1 = 4q, we get N2 = q corresponding to the extreme case. Inserting
Eqs.(57) and (59) into Eq.(55) we get

M =

√
α

2lp

√

N2

(

1 +
q

N2

)

. (61)

It is interesting to see what happens on the level spacing when we consider a transition in mass with a fixed charge4.
From Eq.(56) we get

ω0 = ∆M =
∂M

∂r+

dr+
dN

∆N =
π

A
(r+ − r−)α (62)

with ∆N = 1, which vanishes in the extreme limit [24,25]. It is also interesting to see that the wormhole model
perfectly agrees with the fourth postulate of Ref. [27], asserting that:
If Ei and Ef are the initial and the final energies which may be extracted from the horizon, and niA0 and nfA0 are

the corresponding horizon areas, then

∫ Ef

Ei

dE

κ (E)
=

ln 2

2π
(nf − ni) , (63)

where κ (E) is the surface gravity of the horizon. Let us apply Eq.(63) to the RN black hole. The left hand side
becomes

∫ Mf

Mi

dM

κ (M,Q)
=

∫ Mf

Mi

r2+dM
√

(MG)
2 −Q2

=

[

M2G+M

√

(MG)
2 −Q2

]Mf

Mi

= [Mr+]
Mf

Mi
. (64)

We now use Eqs.(56, 61) and Eq.(64) becomes

[

αN2

2

(

1 +
q

N2

)]Nf

Ni

=
α

2
(N2,f −N2,i) , (65)

which is the right hand side of fourth postulate. Note that the value of α which matches with the postulate is given
by the Schwarzschild foam model. Indeed if the foam model is represented by the S-AdS wormholes we have a factor
9/16 that changes the postulate.

3This is only Eq.(56) written in terms of quantum numbers.
4See also Refs. [24,26]
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V. CONCLUSIONS

In this paper we have applied the model presented in Refs. [6–8] to a larger types of black holes including the
negative cosmological constant and a charge. Even in this case, assuming the validity of the Bekenstein-Hawking
relation, the entropy has been “quantized”. Precisely, it is the area that it has been quantized; this is the effect
of a space-time filled by a given integer number of disjoint non-interacting wormholes. Nevertheless, we have two
possibility of reproducing a foamy space-time:

1. A foamy space-time made by Schwarzschild wormholes.

2. A foamy space-time made by Schwarzschild-Anti-de Sitter wormholes.

This means that we need a selection mechanism. This is given exactly by a possible observation of the spectrum
of the Hawking radiation and in particular from the level spacings of the black hole under examination. We recall
that the level spacings appear because the black hole mass has been quantized in terms of wormholes. Note that this
quantization procedure is in agreement with the quantized area proposed heuristically by Bekenstein and reproduced
by different authors [16–22]. The degeneracy factor (ln 2) is here interpreted as an effect of the invariance of the
orientation of the wormhole with respect to the black hole area, erroneously interpreted in Ref. [6] as an effect of
having a model of an “ideal Boltzmann gas” of wormholes. The statistics of the foam wave function has never been
introduced, but however the logarithmic factor appears due to the average distribution of the different radius sizes: it
is a pure geometrical effect, that in the General Relativity language means dynamical effect. The covering procedure
applied to the RN black hole introduces a second quantum number related to the charge. Nevertheless this number
comes in because a different horizon with different forces has been considered. This means that even the charge
quantum number could be related to a geometrical/dynamical effect [28]. Note that also the extreme case can be
easily considered. Concerning this point there exists an open problem about the validity of the area-entropy relation5.
Indeed, there exist well known indications that in the extreme RN black hole, the entropy is zero due to the strict
relation between entropy and topology [30–33]. This conclusion comes from the following equation

S = χ
A

4G
, (66)

where χ is the Euler characteristic6. Since the value of χ is zero for the extreme RN, the entropy is zero too. How
the foam can approach this problem will be the subject of a future investigation.
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