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A B S T R A C T

Local delay predictions are crucial for optimizing airport capacity management, enhancing
overall resilience, efficiency, and effectiveness of airport operations. This paper delves into the
development and comparison of state-of-the-art predictive analytics techniques—spanning rule-
based simulations, queuing models, and data-driven approaches—and demonstrates how they
can empower informed decision-making toward mitigating the impact of potential delays across
the whole spectrum of capacity management initiatives—from long-term strategic capacity
planning to near real-time air traffic flow management. Using real-world data for four major
airports in Southeast Asia, we comprehensively assess the performance of different methods
and highlight the improved predictive capabilities achievable through data-driven methods and
the incorporation of sophisticated features. Results show that (i) embedding queuing model
features into machine learning models effectively captures congestion dynamics and nonlinear
patterns, resulting in an improvement in predictive accuracy; (ii) incorporating advanced day-of
features – lightning strikes, wind conditions, and propagated delays from prior hours – further
enhances prediction accuracy, yielding 𝑀 𝐴𝐸 gains ranging from 15% to 30%, contingent on
the specific airport; (iii) in cases where limited information is available (years to months
in advance of operations), conventional simulation and queuing models emerge as robust
alternatives. Ultimately, we conceptualize and validate a delay prediction framework for airport
capacity management, characterizing the different planning phases based on their specific delay
prediction requirements and identifying appropriate methods accordingly. This framework offers
practical guidance to airport authorities, enabling them to effectively leverage delay predictions
into their airport capacity management practices.

1. Introduction

Over the past decades, commercial aircraft movements worldwide have experienced significant growth, with a compound annual
growth rate of 3.2% between 2010 and 2019 (ACI, 2010, 2019). This trend was abruptly interrupted by the COVID pandemic;
however, clear signs of recovery are now evident, with demand rebounding at a faster pace than anticipated (IATA, 2019). As a
result, the resurgence of air travel has reignited the challenges of air traffic congestion and flight delays, once again emphasizing
the necessity for effective airport capacity management.

Airport capacity management (ACM) aims to address air traffic congestion and its associated issues by effectively aligning
supply and demand through a combination of supply-side and demand-side interventions. Different ACM interventions are typically
employed: (i) years in advance, capacity planning decisions address investments in airport infrastructure through the development
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of airport master plans; (ii) months in advance, strategic scheduling decisions are made to determine the number of flights to
accommodate and their schedule at the airport through the implementation of slot allocation mechanisms; (iii) months to days in
dvance, strategic flow management decisions are made to prepare initial flight plans before the actual operating conditions are
nown; (iv) day-ahead to hours in advance, pre-tactical flow management decisions are made to adjust the initial flight plans based
n additional information concerning the availability of airport resources, weather forecasts, and other relevant factors; and (v)
ear-real time, tactical flow management decisions are made, involving the dynamic management and adjustments of landing and
akeoff operations, as well as real-time reassessment of flight plans.

Regardless of the particular intervention’s scope, airport capacity management boils down to addressing a fundamental trade-off:
accommodating as much flight demand as possible while ensuring seamless and safe air traffic operations. In practice, this translates
into developing and managing airport capacity to optimize efficiency metrics and economics targets – e.g., capital investments at
the strategic level, flight rescheduling and cancellations at the tactical level, air traffic flow management at the operational level
– while mitigating flight delays. Predicting flight delays is therefore pervasive across the whole spectrum of capacity management
interventions and crucial to adequately inform these decisions.

Nonetheless, anticipating flight delays remains an exceptionally challenging task due to their intrinsic and largely unavoidable
uncertainty. This uncertainty stems from a variety of factors, including contingent/exogenous elements (e.g., weather conditions,
emporal features, aircraft defects, etc.), congestion-related factors, and network cascading dynamics (i.e., the portion of delay
hat ripples through complex networks of interconnected flights) (Birolini and Jacquillat, 2023). Various methodologies have been

developed to model and anticipate the occurrence and propagation of flight delays. In the airport capacity management domain,
these range from high-fidelity simulation models that accurately replicate aircraft operations (Odoni, 1997) to more aggregate and
approximate analytical models such as queueing models (Shone et al., 2021). More recently, the increased availability of data and
omputing technologies have fostered the development and use of machine learning, either independently or in conjunction with
ther methods (Carvalho et al., 2021).

In addition to the intrinsic complexities of predicting flight delays, different levels of airport capacity management entail
distinct decisions, time scopes, and levels of aggregation. This renders a one-fits-all solution impractical. Instead, the diversity
and heterogeneity of control variables, data availability, and delay drivers throughout the planning horizon necessitate tailored
methodologies that effectively capture the specific characteristics of each planning stage.

This paper sets out to conceptualize a unified framework to provide guidance on how to predict delays and leverage them toward
esilient airport capacity management. In addition to exploring state-of-the-art simulation and analytical methods, we thoroughly
emonstrate the benefits of stand-alone and hybrid data-driven methods. We also assess the impact of various features, ranging from
ggregate aircraft movements, to weather-related on-time information, which become available at the different ACM stages. Using
eadily available trajectory-level Automatic Dependent Surveillance-Broadcast (ADS-B) data from four major airports in South-East
sia, we validate the proposed framework and methods through comprehensive experimentation and analysis.

Specifically, this paper makes the following contributions:

1. Provide a comprehensive unified framework to predict flight delays across the whole spectrum of airport capacity management
interventions. We first review the existing literature on flight delay prediction – 200+ papers reviewed – and identify the
main airport capacity management phases along with their associated requirements for flight delay predictions. We propose
a framework that takes into account the varying requirements for flight delay prediction at different phases. The framework
encompasses methods and features, tailored to the level of granularity and scope of each phase, providing practical insights
to enhance airport operations and optimize resource allocation toward resilient capacity management.

2. Propose a data-driven approach for extrapolating airport local delays through the use of readily available surveillance datasets. A
primary challenge to managing delays for airport capacity management – even before getting into the prediction task – is to
characterize local delays, i.e., delays occurring in a close neighborhood of the terminal airspace. This is not straightforward
as such delays are not directly observed from real-world data. We design and deploy a data-driven pipeline – including
unsupervised machine learning (clustering), anomaly detection, and dimensionality reduction techniques – to engineer data
features and compute airport local delays from fine-grained trajectory-level Automatic Dependent Surveillance-Broadcast
(ADS-B) data. The resulting methodology adheres to the ICAO standard definition for characterizing local delays (ICAO,
2023), ensuring consistency with industry best practices and accuracy in our analysis. Moreover, it benefits from scalability
and generalizability, making it applicable to other airports with minimal customization. By enabling airport operators and
planners to extract meaningful insights from ADS-B data, our methodology provides a valuable capability for characterizing
and managing local delays on a large scale.

3. Develop innovative methods and engineer features to predict airport local delays. We first assemble a set of strong and novel
predictors of local delays—spanning congestion-, temporal-, route-, and weather-related factors (e.g. wind, convective weather
conditions). We then apply a variety of predictive analytics techniques – such as rule-based simulations, queueing models, and
machine learning (linear regression, GBM, random forest, neural networks, and vector machines) – and evaluate and compare
their effectiveness in various application settings. Similar to Birolini and Jacquillat (2023) we propose a hybrid queuing-based
machine learning model for local delays that combines the advantage of queuing models (in capturing congestion dynamics)
and machine-learning (in accounting for contingent factors and complex nonlinear patterns). The results obtained demonstrate
the benefits of advanced predictive analytics and feature engineering to support the different types of interventions and
decisions across the ACM spectrum.
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4. Comprehensively validate the proposed framework using real-world data for four major airports in South East Asia, namely
Singapore (SIN), Hong Kong (HKG), Kuala Lumpur (KUL), and Bangkok (BKK). Through extensive experimentation using real-
world data for whole year of 2019, we first evaluate the predictive capabilities of the proposed models. As we moved
from simpler models that use only a limited set of features to more advanced modeling approaches that leverage ML
and queuing methods while incorporating all the available features, we observed significant improvements in predictive
accuracy achieving 𝑅2 ranging from 0.45 to 0.67 and 𝑀 𝐴𝐸 values spanning 1.2 to 2.7 min across airports. We then provide
practical recommendations for their adoption in the real-world environment. Specifically, we investigate the use of delay
predictive models in conjunction with prescriptive analytics to support slot allocation, ground delay programs, and air traffic
flow management. Our findings demonstrate that ACM prescriptive methods contribute to alleviate congestion, and can be
strengthen by explicitly endogenizing delay predictive analytics. Ultimately, this empirical assessment represent an important
stand-alone contribution as one of the largest empirical studies in airport capacity management using real-world data from
the fast-growing region of South-East Asia.

In the remainder of this paper, we first conduct a comprehensive literature review on different methods for flight delay prediction
(Section 2). In Section 3, we present the proposed data-driven approach for computing local delays using real-world ASD-B datasets.
In Section 4, we introduce the empirical setting, develop different predictive methods, and systematically compare their prediction
performance. In Section 5, we put forth and validate a comprehensive framework for flight delay assessment in ACM. Ultimately,
in Section 6, we conclude the paper and provide directions for future research.

2. Flight delay prediction

Flight delays have significant adverse impacts and detrimental consequences, affecting not only passengers and airlines but
also the broader economy and the environment. They lead to inefficient operations, increased carbon emissions, and passenger
disaffection, resulting in significant monetary losses for airlines and airports, as well as demand detriment and a reduction in overall
societal welfare (Ball et al., 2010).

Depending on the unit and scope of analysis, flight delays can be classified into local delays (at the segment level), schedule-
elays (at the flight level), and network delays (at the network level).

– Local delays. Local delays measure the difference between the ‘‘unimpeded’’ time required to complete a specific flight segment
(e.g., from an entry fix of the terminal airspace to a runway) and the actual time taken to complete that segment, accounting
for localized factors like congestion, weather, and other operational factors. Local delays represent the portion of delays that
stem exclusively from inefficiencies within the airport or a specific controlled airspace segment. Accordingly, these delays are
highly relevant to devise effective capacity management interventions at individual airports.

– Schedule delays. Schedule delays (or total flight delays) measure the difference between the scheduled time of a flight and its
actual time of operation. Schedule delays consider the whole flight and encompass all delay drivers along its duration, including
during departure, en-route, and at the arrival airport. Airports can use this information to identify recurrent deviations from
schedules and create more resilient flight plans that account for the uncertainty in flight schedules. Nonetheless, flight schedule
delays are not under control of a single airport.1

– Network delays. Studies focused on network delays investigate the propagation dynamics and interdependencies among airports
within an airspace system. Their focus lies in analyzing the cascading effects of disruptive events, such as adverse weather
conditions or airport closures, in order to pinpoint the most critical nodes in the network. By analyzing network delays, air
traffic managers can gain valuable insights into the operational impacts of disruptions and use this information to support
their decision-making at the network level (e.g., by employing ground delay programs).

Fig. 1 shows the differences between scheduled delays (in orange) and local delays (in blue) — estimated using the procedure to
be introduced in Section 3. Scheduled delays tend to increase systematically throughout the day due to network delays. In contrast,
local delays more closely correlate with the number of movements (in green). Local delays are more closely tied to the actual causes
of congestion, whereas scheduled delays are influenced by delays originating in other parts of the air transport network.

Predictive methods for flight delay prediction can be broadly categorized into three categories: (i) rule-based simulation models
(Section 2.1), (ii) queuing models (Section 2.2), and (iii) data-driven models (Section 2.3). The main difference between these

odels lies in the methodologies they use to predict delays. Rule-based simulation models can estimate delays using a bottom-
p approach, replicating the system’s functioning based on predefined operational rules and assumptions, typically implemented
hrough traditional simulation techniques such as discrete event simulation or agent-based modeling. Queuing models, on the other

hand, are analytical approaches that use mathematical equations to represent and analyze queueing systems, like those found
in airport operations. Data-driven models depend on the data itself to identify and learn patterns, ranging from basic statistical
egression techniques to sophisticated machine learning and neural network algorithms.

Next, we systematically review the state-of-the-art of flight delay modeling with a greater emphasis on local delays. Local delays
ake center stage in our study, as they are the most pertinent delays to appraise and consider when evaluating airport capacity

management decisions.

1 On the other hand, schedule delays are crucial for robust airline planning. By effectively anticipating flight delays and incorporating such information into
heir planning, airlines can proactively build robust aircraft and crew rotations by allocating buffer times after critical flights, i.e., those more prone to incurring
arge delays, and thus mitigate severe downstream impacts—a well-documented practice in the literature (see,e.g., Lan et al., 2006; Brueckner et al., 2021;

Birolini and Jacquillat, 2023).
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Fig. 1. Schedule delays vs. Local delays. The plot displays the average hourly delays along with the 25th and 75th percentiles for one year at Kuala Lumpur
International Airport (KUL), for arrivals (left) and departures (right).

2.1. Simulation models

Simulation techniques are widely used in industries such as logistics and manufacturing (Terzi and Cavalieri, 2004), and have also
found extensive applications in air traffic performance evaluation and capacity management (Odoni, 1997). Microscopic simulations,
which model individual aircraft movements in detail across the airport and airspace network replicating with high fidelity the
physical layout of the airport and surrounding airspace, are particularly useful for design and operational decision-making. They
enable the evaluation of the benefits of physical or procedural modifications and investigate the impact of increased traffic. Over
the years, various commercial simulation software has been developed and is currently in widespread use at airports worldwide.
The most prominent ones are: SIMMOD (Advanced Simulation Tool for Analyses), TAAM (Total Airspace and Airport Modeller),
AirTOP (Airport and Airspace Fast-Time Simulation), and CAST (Scalable and Modular Aviation Software).

SIMMOD was developed by ATAC in the late 1980’s while funded by FAA (FAA, 1989). It uses discrete-event simulation to mimic
aircraft movements across an airspace network, adopting a node-link based structure in which the airspace network is represented as
a series of links connecting nodes. SIMMOD has found applications in numerous research studies and projects worldwide, primarily
focused on analyzing the trade-off between airfield capacity and local delays when assessing the impact of capacity expansions
and/or changes in air traffic control procedures (Trani et al., 1992; Martel, 2001; Santana and Mueller, 2003; Erzberger et al.,
2004; Chao et al., 2008; Wei and Siyuan, 2010; Bubalo and Daduna, 2011; Lee and Balakrishnan, 2012; Cetek et al., 2014; Li et al.,
2015, 2017; LI et al., 2017; Aydoğan and Çetek, 2018; Krstić Simić and Babić, 2020).

TAAM followed SIMMOD in the early 1990s, developed by The Preston Aviation Solutions group, which is currently owned
by Jeppesen. Unlike SIMMOD, TAAM adopts a 3D structure that allows for a better investigation of 4D aircraft trajectory
performance (Munoz Hernandez and Soler, 2017). Over the past three decades, TAAM has been extensively used by civil aviation
authorities, airlines, and airports worldwide (Boesel et al., 2001). Similar to SIMMOD, TAAM has been applied in various research
studies related to airfield capacity and local delays (Offerman, 2001; Bazargan et al., 2002). Additionally, TAAM has been used for
computing sector capacities and workload (Alipio et al., 2003; Yousefi and Donohue, 2004; Harris et al., 2006; Parambath, 2020)
and to conduct safety assessments of UAS integration within a non-segregated airspace (Neto et al., 2017).

Another prevalent simulation tool is AirTOP, which was developed in the late 2000s by Transoft Solutions Inc based in Canada.
Since then, it has been used to assess and improve the operations of over 100 major airports around the world (Transoft, 2023).
Similar to TAAM, it simulates aircraft trajectories using a 3D structure. The literature features various applications of AirTOP
in airfield capacity estimation and local delay prediction, as well as investigating the propagation of delays across airspace
networks (Günther et al., 2015; Kreuz et al., 2016; Li et al., 2016; Sidiropoulos et al., 2018; Di Mascio et al., 2021; Sekine et al.,
2021; Hirabayashi et al., 2022). Furthermore, AirTOP has been instrumental in validating and calibrating lower-fidelity models of
aircraft trajectory optimization, such as TOMATO (Rosenow et al., 2017, 2019).

Ultimately, CAST stands as a widely-adopted simulation software currently in use by over 50 airports and civil aviation authorities
worldwide (ARC, 2023). Developed in the early 2000s, its primary strength lies in accurately modeling passenger flow within airport
terminals (which is beyond the scope of this paper). CAST also includes airside modules (CAST aircraft and CAST airspace), which
enable simulations of air traffic operations in a similar fashion as TAAM and Airtop (Šabić et al., 2021).

Other simulation software have been utilized in various studies over the years – such as RAMS (Reorganized ATC Mathematical
Simulator) developed by Eurocontrol (Czech and Crook, 1994); HERMES (Heuristic Runway Movement Event) developed by
CAA/NATS (Richards and Hobbs, 2003); the Airport Machine, developed by Airport Simulation International (Yazdani and
Scarborough, 2001); and Total AirportSim, developed by LeTech for IATA (Tung, 2002) – but their outreach and application
have been more localized. Please refer to Appendix E, Table E.9 for a summary of simulation studies and applications in airport
management.

Overall, simulation models are highly valuable tools for airports to evaluate the potential impact of infrastructure or operational
changes. They provide unique capabilities to simulate future scenarios, allowing airport operators to make informed decisions based
on accurate predictions. Despite the numerous benefits, the utilization of simulation models comes with certain challenges. First, the
4 
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development of large-scale simulations of airport operations is notoriously computationally expensive, which may limit the ability
to test numerous scenarios and systematically scan the solution space. Additionally, the calibration and validation of these models
can be complex and time-consuming, requiring access to extensive data sets and meticulous attention to detail.

2.2. Analytical models

Analytical models use mathematical expressions to model queuing dynamics, allowing for the estimation of capacity and
delays. These expressions can be solved either in closed form or numerically. Unlike simulation, analytical models are generally
computationally fast and do not require detailed datasets for calibration. They are also less labor-intensive and simpler to use.
Analytical models have found wide applications in airport and air traffic management. An extensive review of existing analytical
models for predicting flight delays is provided by Shone et al. (2021).

Most of the analytical models of airport congestion are based on queuing theory. The resemblance to a queuing system is clear:
runways can be viewed as ‘‘servers’’ that process aircraft (customers) in the form of landing or takeoff permissions.

Deterministic queueing models are within the first type of queueing models used to model airfield operations (Hubbard, 1978;
Newell, 1979; Shumsky, 1995). These models rely on a set of flow-balance equations with fixed demand and service rates. Despite
heir simplicity, these models possess limitations attributable to their inability to account for variability in both airport demand
nd service rates — on the demand side, variability arises from factors such as aircraft mechanical problems, slow processing of
assengers in terminals, or propagated delays from other airports. On the service side, this variability stems from factors like weather
onditions, air traffic management performance, and aircraft type.

Stochastic queueing models therefore emerge as an alternative — i.e., queuing models in which demand and service rates are
characterized by probability distributions.

Stationary stochastic queueing models are the simplest form of stochastic queueing models and offer the advantage of
mathematical tractability, as exact expressions can often be derived. Stationary queueing models have been applied to flight delay
prediction in various studies (e.g., Rue and Rosenshine, 1985; Marianov and Serra, 2003; Bäuerle et al., 2007; Grunewald, 2016).
However, stationary queueing models assume steady-state conditions, where changes in demand rates are considered negligible and
nly occurring over long periods of time. This assumption is typically not valid in air transportation, as demand is highly influenced

by flight schedules that vary throughout the day (Odoni and Roth, 1983).
Non-stationary queueing models relax the steady-state assumption and thus reasonably represent the core of existing analytical

models for flight delay prediction. The first attempt of modeling local delays using non-stationary queueing models can be attributed
to Galliher and Wheeler (1958), who modeled aircraft landings as a M(t)/D(t)/c(t) queueing system (Kendall, 1953)—i.e. the
demand for landings is modeled as a Poisson process, and the airport service is modeled as a deterministic process. Following
this work, Koopman (1972) investigated the queueing dynamics of an airport operating both landings and take-offs while sharing a
ommon runway. It concluded that delays could be bounded by the results of two independent queueing systems – M(t)/D(t)/s and
(t)/M(t)/s – the former modeling the service times as a deterministic process, while the latter modeling it as a Poisson process.

Koopmans’ work was extended by Hengsbach and Odoni (1975) to consider the case of multiple-runway airports. Later, Kivestu
(1976) generalized Koopmans’ work by proposing the use of M(t)/Ek(t)/s queuing systems, where service times are modeled using
an Erlang distribution. Additionally, Kivestu (1976) developed a fast, practical numerical approximation to solve the M(t)/Ek(t)/s,
which became known as the DELAYS algorithm. Computational experiments performed by Malone (1995) demonstrated the accuracy
f the DELAYS algorithm to approximate the exact solution of M(t)/Ek(t)/1. To date, the DELAYS algorithm remains one of the most
rominent analytical approaches used in flight delay prediction (Stamatopoulos et al., 2004; Mukherjee et al., 2005; Lovell et al.,

2007; Churchill et al., 2008; Hansen et al., 2009; Pyrgiotis et al., 2013; Vaze and Barnhart, 2012; Jacquillat and Odoni, 2015b;
Pyrgiotis and Odoni, 2016; Jacquillat et al., 2017). In parallel, numerous other queueing models have been developed using different
pproximations and/or queueing settings (Bäuerle et al., 2007; Stolletz, 2008; Nikoleris and Hansen, 2012; Caccavale et al., 2014;

Gwiggner and Nagaoka, 2014; Simaiakis and Balakrishnan, 2009; Shone et al., 2019; Itoh and Mitici, 2019).
The literature on applications of queueing models to airport capacity management is vast. Bookbinder (1986) analyzed the impact

of capacity expansions on local delays at several US airports. Stamatopoulos et al. (2004) developed MACAD (MANTEA Airfield
Capacity And Delays model), a decision-support tool that integrates various analytical models, including DELAYS, to estimate the
capacity and delays associated with every element of the airfield system. Several authors have investigated the use of congestion
management schemes, such as slot allocation and congestion pricing, in managing the evolution of airport local delays (Daniel,
1995; Mukherjee et al., 2005; Vaze and Barnhart, 2012; Jacquillat and Odoni, 2015b; Pyrgiotis and Odoni, 2016; Jacquillat and

aze, 2018). Queueing models have proved to be also valuable tools for simulating airport departure processes and optimize control
procedures, such as optimal push-back times, selecting the most efficient taxiway routes, and executing of gate holdings (Pujet et al.,
1999; Simaiakis and Balakrishnan, 2009; Simaiakis et al., 2013; McFarlane and Balakrishnan, 2016; Badrinath and Balakrishnan,
2017; Badrinath et al., 2020; Itoh et al., 2022; Hebert and Dietz, 1997). Similarly, studies have focused on various aspects of the
arrival process, such as arrival sequencing and metering, runway assignment, and ground delay program strategies (Bolender and
later, 2000; Itoh and Mitici, 2019; Anderson et al., 2000; Shone et al., 2019; Jacquillat and Odoni, 2015a; Jacquillat et al., 2017).

Different trajectory management concepts, such as trajectory-based operations, have also been investigated (Nikoleris and Hansen,
2012; Hansen et al., 2009).

In addition to their primary application for local delay prediction, queuing models have also been used to investigate delay
propagation across airport networks. Examples of such models include AND and LMINET (Pyrgiotis et al., 2013; Long et al., 1999,
respectively). These models have been widely applied to study delay propagation in various regions, such as the airspace network
5 
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of the United States (Shortle et al., 2003; Tien et al., 2011; Wan et al., 2013; Zhou et al., 2011; Wanke et al., 2012; Taylor et al.,
2012; Taylor and Wanke, 2013; Tandale et al., 2008; Wang et al., 2018a), Europe (Baspinar et al., 2016), and China (Lin et al.,
2021). Please refer to Appendix E, Table E.10 for a summary of applications of queueing models in airport management.

In summary, queuing models provide a valuable approach for assessing and dissecting airport capacity management procedures
t a macroscopic level. Compared to simulation counterparts, these models require less detailed inputs and can be run rapidly.

However queuing models may oversimplify airport operations by representing airports as basic queuing systems at a high level of
bstraction. This can limit the reliability of the predictions, particularly when it comes to supporting more detailed operational
ecisions. Airport managers and researchers should therefore approach the use of queuing models with caution and complement
hem with other methods and real-world data for greater accuracy and reliability.

2.3. Data-driven models

Data-driven models harness the power of empirical historic data to analyze patterns and forecast flight delays. Their primary
dvantage lies in their ability to leverage vast amounts of information to identify key influencing factors and capture intricate
atterns responsible for flight delays. This is especially beneficial for modeling dynamics that are difficult to express mathematically
r understanding complex interactions that are challenging to anticipate, such as the impact of weather conditions, seasonal effects,
nd unique features specific to airlines or airports. Unlike simulation and analytical models, which adopt a bottom-up approach by
elying on assumptions and principles to model airport operations, data-driven models take a top-down approach by empirically
apturing the effects of various factors on flight delays without explicit assumptions or pre-defined equations regarding airport and
ir traffic operations.

In the existing current literature, the majority of data-driven models focus on schedule delays — i.e. about two-thirds of the
research papers reviewed, see Appendix E, Table E.11. Many of these studies apply conventional statistical methods to investigate
the occurrence of schedule delays, either at the airport-level (Mueller and Chatterji, 2002; Aljubairy et al., 2016; Sternberg et al.,
2016), or at the network-level (Jetzki, 2009; Du et al., 2018; Rodríguez-Sanz et al., 2018). Other studies have employed conventional
regression methods to predict the extent of flight delays and explore their underlying factors (Mazzeo, 2003; Abdel-Aty et al.,
2007; Pejovic et al., 2009; Klein et al., 2010; Deshpande and Arıkan, 2012). The advent of advanced predictive analytics has
led to a significant upsurge in the use of machine learning techniques for schedule delay prediction, particularly since 2014.
Specifically, Rebollo and Balakrishnan (2014) applied random forest methods to predict schedule delays and investigate the impact
of their propagation across the US airspace network. Choi et al. (2016) employed various machine learning techniques, including
decision trees, random forests, and K-Nearest Neighbors to predict arrival on-time performance at US airports, while Kim et al.
(2016) applied neural networks. Karakostas (2016) used Bayesian networks to analyzed the propagation of delays. Since 2017, a
total of 41 papers deploying data-driven methods for predicting schedule delays (or their propagation) have been identified (see
Appendix E for a complete list of these contributions and brief description of each).

The literature on using data-driven models for predicting local delays is however relatively scarce. Related work can be found
n two adjacent streams focusing on: (i) the prediction of aircraft arrival trajectories, and (ii) the prediction of taxiway operations.

In the field of aircraft trajectory prediction, researchers have made significant progress in leveraging trajectory information – such
as the entry fix of a flight, its heading direction, speed, altitude and prior position – to predict an aircraft’s future position, speed, and
altitude (De Leege et al., 2013; Wang et al., 2018b, 2020; Lee et al., 2016b). Simultaneously, another approach involved clustering
techniques to analyze historical aircraft trajectory patterns, facilitating predictions about the cluster to which each upcoming flight
will be assigned (Hong and Lee, 2015; Murça and de Oliveira, 2020; Xuhao et al., 2021). Finally, others have taken a broader
perspective, focusing on predicting estimated arrival times based on the TMA entry time while considering higher-level factors like
congestion and sequencing pressures (Basturk and Cetek, 2021; Zhang et al., 2022).

In the context of taxi predictions, the primary focus has been on the prediction of taxi routes and speeds by leveraging data such
as gate departure times, aircraft types, weather conditions, and runway configurations. Reinforcement learning techniques have been
applied for this specific purpose, as evident in the works of Balakrishna et al. (2008), and Balakrishna et al. (2010). Additionally,
a wide array of methods has been explored in this domain, including conventional regression approaches (Jordan et al., 2010;
Srivastava, 2011; Ravizza et al., 2013) and various machine learning algorithms (Ravizza et al., 2014; Lee et al., 2016a; Diana,
2018; Yin et al., 2018; Herrema et al., 2018; Tran et al., 2020; Li et al., 2020; Wang et al., 2021; Lim et al., 2021).

Current data-driven models are primarily designed to predict flight path features such as aircraft trajectories, speeds, and altitude
profiles. While these models can indirectly estimate local delays through trajectory predictions, they are not specific for that purpose.
urthermore, they fall short in supporting strategic or tactical airport capacity decision-making, which requires long-term planning
nd higher levels of data aggregation — i.e. simulating individual aircraft trajectories over extended periods, such as a year, season,
r month, can be excessively complex, time-consuming, and error-prone. Thus, there is a critical need for alternative approaches that
alance accuracy and computational efficiency to support decision-making processes at higher levels of airport capacity management.

This paper contributes to the existing literature in two major ways. Firstly, it extrapolates local delays from historical data
and employs supervised data-driven methods to directly predict these delays. Secondly, the paper develops a set of incremental
models, ranging from simpler models utilizing aggregate features to more complex specifications leveraging near real-time finer-
grained predictors. This comprehensive exploration aims to elucidate the accuracy-complexity trade-off and highlight the potential
of employing machine learning techniques across the entire spectrum of capacity management interventions.
6 
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Fig. 2. Estimation of local delays. This figure depicts the terminal airspace region of an airport. The takeoff phase is represented by the flight path from the
runway to the circle, while the landing phase is represented by the reverse path. The unimpeded flight path is shown in blue, while the actual flight path is
shown in orange. In addition to delays that occur during the landing and takeoff phases of a flight, local delays also include any additional time spent by aircraft
in the taxiways.

3. Data-driven approach to quantify airport local delays

Local delays are calculated as the difference between the actual time taken to complete a flight segment and the corresponding
unimpeded time (see Fig. 2 for an illustration). While the former is directly observed from data, the latter is not and, therefore,
needs to be accurately inferred.

In this section, we outline a procedure comprising six steps for extrapolating local delays, as illustrated in Fig. 2. This procedure
adheres to the ICAO definition of local delays (ICAO, 2023) and ensures scalability to other airports with minimal customization.
It is designed to use trajectory-based Automatic Dependent Surveillance–Broadcast (ADS-B) datasets, which are readily available
for purchase from various online sources globally. Numerous providers offer ADS-B data; in this paper, we use Radarbox (2023).
Generally, with minor differences depending on the source, ADS-B datasets contain detailed information on flight trajectories,
including coordinates, altitude, and speed at different waypoints along flight paths. They may also include general flight information,
such as flight ID, airline operator, aircraft type, and both scheduled and actual arrival and departure gate times (see Fig. 3). We
now summarize the main steps of the proposed procedure:

1. Identifying Entry and Exit Fixes. To accurately calculate local delays, first we need to identify the route taken by each flight. The
first step in identifying these routes is to determine the waypoint fixes that each flight have used to enter/exit the terminal
airspace. We utilize clustering methods for this purpose. First, we identify the closest observation recorded to the boundary
of the terminal airspace region (set at 100 NM) within a buffer of 20 NM.2 We then perform a k-means clustering analysis
on these data points to identify common patterns and group flights accordingly (see Fig. 4 - left).

2. Determining Assigned Runway and Operational Direction. After identifying the entry and exit fixes utilized by each flight, the
next step is to determine the operational direction and runway used. To achieve this, we analyze the location of the nearest
recorded data point to the airport centerpoint and measure the distance from it to each of the runways edges. To ensure
the accuracy of this process, we obtain the nearest point to the runway considering a buffer of 2.5 NM to 10 NM from the
runway.3 The minimum distance obtained establishes the runway used by each flight and its operational direction.

3. Grouping Flights by Standard Landing/Takeoff Routes. Once we have identified the entry/exit fixes, runway utilized, and
operational direction, we can identify the routes utilized and group flights accordingly. Fig. 4 illustrates the results of this
process for arrivals at Singapore airport during the first week of May in 2019. In total, we have identified 14 routes (7 entry
fixes × 2 operational directions), represented in different colors.

4. Estimating Landing/Takeoff and Entry/Exit times. Before comparing times within each group and obtain an estimate of
unimpeded time by route, an important additional step is needed to geographically standardize the observations. This is
due to the uneven distribution of data points in space.4 To address this issue, we employ a tailored extrapolation method. For
each movement, we identify the data point closest to a reference buffer—set at 100 NM for computing entry/exit times, and

2 Some flights may lack recorded information near to the TMA boundaries. To mitigate this issue, we only include flights with data points within 20 NM of
the TMA boundary. This threshold enables us to keep a high percentage of flights in our dataset while ensuring accurate delay estimations. After applying this
threshold, we observe that 91% to 94% of the flights remain in our dataset.

3 To ensure the accuracy of this process, we obtain the nearest point to the runway considering a buffer of 2.5 NM to 10 NM from the runway. This buffer
range serves two purposes. Firstly, data points closer than 2.5 NM from the airport typically represent the taxiways or aircraft stands. Including them in the
analysis would cause discrepancies in identifying the runway used and operational direction. Secondly, data points located beyond the 10 NM buffer range are
significantly further away from the airport and may not accurately represent the aircraft’s position during landing or takeoff. Overall, we observed that only 2%
to 4% of the flights lacked datapoints conforming to these conditions.

4 As evident from the cloud of entry/exit points not being fully aligned along the 100 NM buffer in Fig. 4 (left).
7 
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Fig. 3. Steps for local delays estimation.

at 2.5 NM for computing landing/take-off times. We then extract information on the aircraft’s heading direction and average
acceleration, and then extrapolate accordingly to obtain estimates of Entry/Exit times and Landing/Takeoff times (see Fig. 2
(Step 4), where the dots are precisely located along the buffer circle).

5. Computing Unimpeded Times. To compute unimpeded times three steps are required (as illustrated in Fig. 5): (i) We first
identify the reference flight among the flights operating the same route. In accordance with ICAO recommendations (ICAO,
2023), we utilize the 20th percentile of sorted transit times from historic data to determine the reference flight; (ii) We then
backtrack the reference flight to identify the coordinate point representing the segment distance located at 100 NM from the
airport (following the route’s path rather than a straight line). This accounts for the fact that routes have different lengths;
(iii) Finally, we calculate the unimpeded time for each route flown by each aircraft type as the time taken by the reference
flight to cover the 100 NM segment distance.

6. Computing local delays. Once we have identified the reference flight and its corresponding entry/exit coordinate, we draw a
circle with a radius equal to the distance between the airport and the reference coordinate. By applying the extrapolation
method described in Step 4, we determine the new corrected entry/exit times of each flight (i.e. the time that a flight is
at exactly 100 NM segment distance from the airport — see Fig. 2). To determine the local delays, we then subtract the
time taken by each flight to travel from/to the reference radius to/from the runway, with the unimpeded time calculated in
Step 5.

4. Models development and comparison

In this section, we first introduce the empirical setup (Section 4.1). We then present the formulation and development of the
predictive models for flight delay prediction and systematically evaluate their accuracy.

In accordance with the methodological review conducted in Section 2, we consider a simulation model (Section 4.2), a queuing
model (Section 4.3), and a set of incremental data-driven methods (Section 4.4).

4.1. Experimental setup and performance metrics

We analyze four major airports in Southeast Asia: Singapore (SIN), Hong Kong (HKG), Kuala Lumpur (KUL), and Bangkok
(BKK). Using actual ADS-B flight data from Radarbox (2023), we first extrapolate local delays for all flights in 2019 employing
the methodology outlined in Section 3.5 Next, we calculate the rolling average hourly delays at 15-min intervals. Summary statistics

5 We omitted some days due to insufficient data; nevertheless, more than 95% of the days in 2019 were retained for analysis.
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Fig. 4. Grouping flights by standard landing/takeoff routes using Singapore airport data (1st week of May in 2019).

Fig. 5. Steps for computing the unimpeded time of a route: After assigning each aircraft to a specific route, it becomes clear that the time taken to travel
between routes can vary significantly due to differences in route length. For example, the orange route is considerably longer than the blue route. To calculate
the unimpeded time accurately, we cannot rely solely on the point at which a flight crosses the TMA boundary as the entry/exit time. Doing so would be
influenced by the variability in travel times and create a bias toward flights that take longer routes. To overcome this issue, we suggest fixing a segment distance
(100 NM in this paper). With this distance established, we can calculate a flexible radius for each route. The intersection of each flight route and this flexible
radius determines the reference entry/exit times for computation of local delays.

Table 1
Summary statistics of local delays in 2019 by airport.

Type Airport Observ. Avg.
(s)

Std.Dev.
(s)

Min.
(s)

Q05
(s)

Q25
(s)

Q50
(s)

Q75
(s)

Q95
(s)

Max.
(s)

Arrivals

SIN 28,640 256 209 0 58 120 193 322 666 1792
HKG 27,600 293 243 0 46 115 215 401 794 1777
BKK 28,720 387 295 0 50 172 317 520 984 1799
KUL 28,480 244 134 0 82 158 224 301 473 1619

Departures

SIN 28,640 488 321 0 116 275 428 626 1065 4136
HKG 27,600 462 299 0 83 235 397 626 1044 3638
BKK 28,720 465 278 0 102 256 393 577 1026 3444
KUL 28,480 383 250 0 80 200 313 480 940 2974

for departure and arrival local delays segmented by airport are presented in Table 1. We can observe a notable difference between
departure delays and arrival delays, with departure delays being more significant. This is reasonable, considering that it is generally
easier to delay flights on the ground than in the air.6

6 We also observe that KUL experienced comparatively smaller delays. This may be potentially attributed to the recent opening of a third runway, thereby
increasing its operational capacity compared to the other three airports that operate with two runways for similar levels of traffic.
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Fig. 6. Spatial location of the flights and lightning observations (left); Estimated average hourly delays (right): Three periods of intense lightning events were
observed — specifically from 10 am to 11 am, 5 pm to 6 pm, and 7 pm to 9 pm. We plotted two hours of this day, from 10 am to 11 am (top left), corresponding
to a period with lightning observations, and from 2 pm to 3 pm (bottom left), corresponding to a period without lightning observations.

We augment the resulting dataset by integrating weather-related information from two distinct sources: (i) convective weather
data from Vaisala Inc (Vaisala, 2023) – a leading global weather measurement company – including the coordinates of all lightning
observations in 2019 within a 200 km radius from the studied airports; (ii) detailed weather conditions for each airport from
openly available Meteorological Aerodrome Reports (METARs) (IEM, 2023), encompassing comprehensive data on wind conditions
(characterized by speed and altitude), visibility, temperature, precipitation and relative humidity.

Fig. 6 illustrates the level of granularity inherent in the compiled dataset, considering a sample day at Singapore Airport. The
left side of the figure presents the coordinates of all arrival and departure flights within specific hours, as well as the lightning
observations (in purple). On the right side of Fig. 6, we plot the estimated average hourly delays for arrivals and departures. We
observe from the plot that the peaks of local delays occur precisely during periods with lightning observations, while no significant
delays occur during periods with no lightning observations.

Following customary procedure, we randomly partition our data into two distinct samples: a training (70%) and a testing (30%)
set. Each model is first calibrated, fine-tuning its parameters using the training data. Then, we gauge its predictive performance
out-of-sample, that is, on the unseen instances contained in the testing set.

In the following, we employ a range of performance metrics, including the Mean Average Error (𝑀 𝐴𝐸), the Root Mean
Square (𝑅𝑀 𝑆 𝐸), and the coefficient of determination (𝑅2). Moreover, we consider two different degrees of granularity, which
are representative of the levels of detail of different airport capacity management applications:

1. Hourly Delays: We assess the models’ predictive performance in directly forecasting delays for each specific hour (e.g., the
average local flight delays between 8–9 a.m. of any given day in 2019). Given the high variability and multitude of
contingent factors influencing flight delays, this prediction task is particularly challenging. By investigating hourly-specific
delay predictions, we seek to explore the influence and variability of contingent factors on the formation of flight delays, and
the model capabilities to predict them.

2. Aggregate Hourly Delays: We assess the models’ predictive performance in predicting average hourly delays throughout the
entire year. These are obtained by taking the mean of day-specific estimates to come up with a consolidated estimate proxying
the delay intensity within each time interval of one hour (e.g., the average delay between 8–9 a.m. in 2019). The consideration
of aggregated metrics allows us to filter out the influence of day-specific fluctuations, directing our attention toward delays
that manifest under typical/nominal conditions. This enables the examination of overarching patterns and trends in flight
delays at each airport, which is key in informing strategic airport planning (as noted in Jacquillat and Odoni, 2015a).

Throughout the rest of this paper, we use the notation 𝑅2, 𝑀 𝐴𝐸, and 𝑅𝑀 𝑆 𝐸 to refer to the performance metrics calculated on
an hourly basis. Conversely, we denote the aggregate performance metrics as 𝑅2

𝑎𝑔 𝑔 , 𝑀 𝐴𝐸𝑎𝑔 𝑔 , and 𝑅𝑀 𝑆 𝐸𝑎𝑔 𝑔 .

4.2. Simulation model

To construct our simulation model, we used CAST (ARC, 2023) — a state-of-the-art software for airport micro simulation (refer to
Section 2.1, for details). Fig. 7 illustrates the output of our design process. These models demand a thorough gathering of the airport’s
layout data, encompassing runways, taxiways, and stands, in addition to the precise formulation of operational rules applicable to
each specific area of the airport. Owing to the extensive development time and the requirement for detailed information to build
10 
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Fig. 7. CAST simulation representation for Singapore Airport.

such complex models, we limited our development to a simulation model for Singapore Airport (SIN). This contrasts with the other
methods described in subsequent sections, where we developed models for all the airports considered in this paper, underscoring
a fundamental limitation of simulation models: their reliance on close collaborations with airports and access to proprietary data,
thereby hindering their generalizability.

To calibrate our simulation model, we experimented with various design parameters, focusing particularly on changing three key
operational rules: (i) separation requirement rules, in which we applied ICAO separations, but played with safety buffers to search
for more accurate results; (ii) runway utilization rules, where we tested rules for runway assignment. We initially assumed dedicated
runways (one runway used only for arrivals, and the other runway used only for departures). We then introduced the possibility of
some runway sharing based on congestion levels, which more closely resemble the actual practices observed at Singapore Airport;
(iii) off-block approval rules to control the number of aircraft queuing in the taxiways and departure positions, effectively simulating
the impact of taxi operations on ground controllers’ workload — further details on the design and calibration process are presented
in Appendix A.

Our results demonstrate that the simulation model effectively predicts local delays under nominal conditions, as indicated by
an 𝑅2

𝑎𝑔 𝑔 value of 0.83 for arrivals and 0.72 for departures (refer to Tables 6 and 7, 1st column). On the other hand, the 𝑅2 value is
relatively low—0.28 for arrivals and 0.16 for departures. This result is expected, considering that average hourly delays on a daily
basis are strongly influenced by various specific daily operational conditions, which are challenging to accurately capture through
simulation without resorting to ad-hoc calibrations tailored to each specific day.

4.3. Queueing model

To construct our queuing model, we used the DELAYS algorithm developed by Kivestu (1976)—a state-of-the-art queuing model
for airport operations (refer to Section 2.2, for details).

We modeled each airport using two dynamic and stochastic 𝑀(𝑡)∕𝐸𝑘(𝑡)∕1 queuing models, one for predicting arrival local delays
and the other for predicting departure local delays. The state-transition diagram is presented in Appendix B.

Similar to prior studies (e.g., Pyrgiotis et al., 2013; Jacquillat and Odoni, 2015b), we calibrate the model by fine-tuning its
parameters – the service rates and the Erlang coefficient – using a randomized grid-search approach. After many iterations, the
model with the highest performance on the training dataset was selected, and its accuracy was gauged on the testing dataset.

The results show that the queueing model performs well when predicting average hourly delays under nominal conditions (𝑅2
𝑎𝑣𝑔

ranging from 0.54 to 0.86), but it struggles to predict delays on a daily basis (𝑅2 ranging from 0.12 to 0.37)—performing slightly
worse than the simulation (refer to Tables 6 and 7, 1st and 2nd columns). This discrepancy is expected due to the inherent simplicity
of queueing models compared to simulations, which can better capture airport layout-specific intricacies. Additionally, both queueing
models and simulations share a common challenge in accurately incorporating and generalizing time-specific considerations for delay
predictions, unless addressed through ad-hoc calibration.
11 
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4.4. Machine learning models

We now turn to the development of data-driven models of flight delays. The first step involved the engineering of pertinent
features. We classified these features into five categories:

(i) Congestion-related features: These features are tailored to proxy the systemic drivers of air traffic congestion. They are functions
of the number of movements simultaneously handled in any given time period, or during adjacent periods, as sources of
demand-supply imbalances.

(ii) Temporal-related features: These features capture latent time-dependent data patterns: Monthly dummies account for seasonal
variations (in weather or demand patterns), while Hour dummies may capture trends in ATC performance variability
throughout the day.

(iii) Route-related features: These features describe how flights are distributed across the various routes within the terminal
maneuvering area (TMA) toward characterizing patterns and potential congestion in the air.

(iv) Weather-related features: These features describe the weather conditions in the proximity of the airport at any given time
toward better comprehending how atmospheric conditions affect local flight delays.

(v) Near real-time features: The purpose of these features is to predict delays by extrapolating information from previous periods
(essentially utilizing lagged data) toward capturing the temporal lingering effects of previous delays or disruptions.

The next step involved defining the model specifications. To address the varying data availability in airport capacity management
pplications, we employed an incremental model-building approach. Specifically, we explored six distinct model specifications, each
ased on a specific set of features under consideration, as outlined in Table 3. The range of feature settings span from a basic
odel specification (M2), considering only two predictors (i.e., the number of arrivals and departures), to an advanced model (M8),

ncompassing all the features mentioned in Table 2, including near real-time delay information up to one hour preceding each flight
operation.

Finally, turning to the methods, we explored conventional statistical regression methods and various supervised machine
learning techniques, encompassing Linear Regression (LR), Gradient Boosting (GBM), Random Forest (RF), Neural Networks (NN),
nd Support Vector Machines (SVM). We conducted several validation steps to improve the models’ performance, including
yperparameter tuning, cross-validation, and feature selection7—some less influential features were tested but ultimately omitted

from the final model specifications to maintain sparsity, as indicated in Table 2. Additionally, we have also compared against
lassification models to demonstrate the superiority of regression (i.e., continuous response) models, and highlighted the enhanced
apabilities of data-driven approaches compared to linear models, not only in inferring accurate (mean) delay point estimates but
lso in modeling their probabilistic distributions.

We now summarize the main insights from the results obtained.
First, we compare the performance of various model specifications in predicting the average outcome, specifically the mean

expected delay — for simplicity, we measure the accuracy by aggregating all observations of airports and types of movements. Our
analysis, detailed in Table 4, highlights the benefits of incremental model specifications, ranging from Model M2, which includes only
two predictors, to Model M7 that incorporates the full spectrum of available features. The results show a substantial improvement
in the 𝑅2 values, increasing from a range of 0.23 to 0.29 in Model M2 to between 0.60 and 0.64 in Model M7. Additionally, there
is a noticeable reduction in the percentage of absolute errors across observations. For example, in analyzing the 50th percentile
observation, we observe a reduction in the percentage absolute error ranging from −9 p.p. to −13 p.p. depending on the method
used. Concerning the methods, we find that ensemble methods (specifically, GBM and RF) along with NN slightly outperform simpler
methods such as LR or SVM, as presented in Table 4. Nevertheless, even the simpler LR performs commendably in average terms.
This effectiveness is partly due to the inclusion of queuing delays as predictors, which helps to capture the nonlinear aspects of
elays. For instance, the percentage of absolute errors recorded by LR is only marginally higher than that of GBM with differences
anging from +1 p.p. to +2 p.p. when analyzing the 50th percentile observation.

Next, we compare the performance of regression methods against classification methods — for simplicity, we restrict our
iscussion to GBM (i.e. the machine learning model with generally superior performance, see Table 5); and consider a delay

classification threshold of 5 min (resulting in approximately one-third of the observations being classified as delayed).8 Table 5
reports the usual confusion matrix KPIs in a tabular form for the different model specifications. Alongside the True Positive (TP),
alse Positive (FP), False Negative (FN) and True Negative (TN) ratios, it reports the Recall, or True Positive rate, underscoring the
bility of the model to correctly identify positive instances out of all actual positive instances, and the Precision metric, measuring
he proportion of true positive predictions out of all positive predictions made by the model, which are key to properly evaluate
nd select the best approach for our predictive task. Not surprisingly and consistently with above, we find that moving from M2 to
7 significantly increases the model’s performance. More interestingly, we observe that both regression and classification models

ield similar overall results. However, when the default cut-off threshold of 0.5 is applied in classification models, the regression
pproach yields higher true positives and significantly lower false negatives, leading to higher recall values, ranging from +19

percentage points (p.p.) in M2 to +7 p.p. in M7. On the other hand, the classification approach results in fewer false positives,
indicating higher precision. In absolute terms, the regression GBM accurately identifies a significant portion (78%–80%) of true

7 The development of machine learning models was done in Python, using the scikit-learn and keras libraries.
8 We performed additional testing using other methods and different thresholds and the insights proved robust.
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Table 2
Definition and aim of predictive features.

Feature Description Aim

Congestion related

Features included nr_arr_1hr Number of arrivals in previous hour To measure the number of aircraft
operating in the terminal airspace

nr_dep_1hr Number of departures in previous hour
Qdelays_arr Arrival delays predicted from the queueing

model
To measure the dynamic and non-linear
behavior of queues

Qdelays_dep Departure delays predicted from the queueing
model

Other features tested nr_arr_Xmin Number of arrivals in previous X minutes To measure the number of aircraft
operating in the terminal airspace under
different temporal scales

nr_dep_Xmin Number of departures in previous X minutes

Temporal related

Features included month_X Month dummy variable To capture monthly hidden effects, such as
typical weather and demand patterns

hour_X Hour dummy variable To capture hour hidden effects, such as
typical demand patterns or ATC
performance

Other features tested week_x Week dummy variable To capture week-day hidden effects, such as
typical demand patterns or ATC
performance

Route related

Features selected nr_arr_1hr_rX Number of arrivals in previous hour using
route X

To measure the number of aircraft operating
in specific routes of the terminal airspace

nr_dep_1hr_rX Number of departures in previous hour using
route X

avg_min_sep_1hr Average minimum separation between aircraft
in the final approach

To measure the average separation between
aircraft of different type due to separation
requirements

op_change Dummy variable indicating a change in runway
operational direction

To capture the impact of changes in runway
operational direction

Other features tested nr_arr_Xmin_rX Number of arrivals in previous X mins using
route X

To measure the number of aircraft
operating in specific routes under different
temporal scales

nr_dep_Xmin_rX Number of departures in previous X mins using
route X

share_arr_1h_rx Percentage share of aircraft using route X in
previous hour

To measure the share of aircraft operating
in specific routes of the terminal airspace

share_dep_1h_rx Percentage share of aircraft using route X in
previous hour

share_arr_1h_acftX percentage share of arrival flights operated by
aircraft type X

To measure the share of aircraft types in
the terminal airspace

share_arr_1h_acftx percentage share of departure flights operated
by aircraft type X

Weather related

Features selected nr_lighting_X_Ynm_1hr Number of lightnings observed in a hour
within a range of X to Y NM from the airport

To measure the number of lightning
occurrences and their impact

wind_speed_1hr Average wind speed (knots) in the previous
hour

To capture the impact of wind speed in
aircraft operations

wind_drct_1hr Wind direction recorded in degrees from true
north in the previous hour

To capture the impact of the wind direction
in aircraft operations

vsby_1hr Average visibility in miles observed in the
previous hour

To capture the impact of poor visibility in
aircraft operations

(continued on next page)

positives, with occasional overlabeling. Conversely, the classification GBM correctly identifies 61%–71% of true positives, with a
relatively minor overestimation of delays.

In summary, we opted for a regression approach for two main reasons. First, predicting continuous values offers additional
nsights without the need for setting threshold criteria, facilitating a more seamless integration with prescriptive analytics that rely on
otal delay metrics derived from individual observations. Second, the evidence shows that the regression approach tends to identify a

higher proportion of critical delays with a degree of conservatism, which aligns with our prediction task. While classification models
can be calibrated to prioritize false negatives, such calibration would need to be tailored to each airport, introducing additional
complexity.
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Table 2 (continued).
Other features tested nr_lighting_X_Ynm_Zmin Number of lightning observed in previous Z

mins within a range of X to Y NM from the
airport

To measure the number of lightning
occurrences and their impact under
different temporal scales

tmpf_1hr Average temperature (celsius) in the previous
hour

To capture the impact of the
temperature in aircraft operations

prcpt_1hr Average precipitation (mm) in the previous
hour

To capture the impact of precipitation in
aircraft operations

relh_1hr Average relative humidity (%) in the previous
hour

To capture the impact of humidity in
aircraft operations

alti_1hr Average pressure altimeter (inches) in the
previous hour

To capture the impact of pressure in
aircraft operations

Near-real time related

Features selected delay_avg_1hr_Xmin Lagged variable that measure the average
hourly delays in the previous X periods

To capture the impact of propagated
delays from previous periods

Table 3
Model specifications.

Model ID Features

nr_arr_1hr
nr_dep_1hr

nr_arr_1hr
nr_dep_1hr
Qdelays_arr
Qdelays_dep

All congested
related features

All route
related features

All weather
related features

Near real-time
related features

M2 Yes No No No No No
M3 Yes Yes No No No No
M4 Yes Yes Yes No No No
M5 Yes Yes Yes Yes No No
M6 Yes Yes Yes Yes Yes No
M7 Yes Yes Yes Yes Yes Yes (1-h ahead)

Table 4
Model performance comparison.

GBM LR RF NN SVM

𝑅2 % Abs.Errora 𝑅2 % Abs.Errora 𝑅2 % Abs.Errora 𝑅2 % Abs.Errora 𝑅2 % Abs.Errora

M2 0.29 [16,35,63] 0.29 [17,37,68] 0.27 [16,35,63] 0.29 [16,36,65] 0.23 [23,42,62]
M3 0.34 [15,33,60] 0.33 [16,34,63] 0.30 [15,34,61] 0.34 [16,34,61] 0.28 [22,41,60]
M4 0.42 [14,30,56] 0.41 [15,32,59] 0.41 [14,30,56] 0.42 [14,30,56] 0.38 [16,33,53]
M5 0.44 [14,30,55] 0.42 [14,32,58] 0.44 [14,30,55] 0.43 [14,30,55] 0.38 [15,33,54]
M6 0.48 [13,29,54] 0.45 [14,31,58] 0.48 [13,29,54] 0.48 [14,29,54] 0.42 [15,32,55]
M7 0.64 [12,26,47] 0.62 [13,27,50] 0.61 [12,26,48] 0.64 [12,26,47] 0.60 [14,29,51]

a % absolute errors of the [25th, 50th, 75th] percentile observations.

Table 5
Model features.

Methods Model True Positive False Positive False Negative True Negative Recall Precision
TP FP FN TN TP/(TP+FN) TP/(TP+FP)

Classif. GBM M2 21.27% 10.15% 13.34% 55.24% 61% 68%
Classif. GBM M3 21.26% 8.83% 13.35% 56.57% 61% 71%
Classif GBM M4 22.89% 8.50% 11.72% 56.90% 66% 73%
Classif. GBM M5 22.98% 8.27% 11.62% 57.12% 66% 74%
Classif. GBM M6 23.44% 8.22% 11.17% 57.17% 68% 74%
Classif. GBM M7 24.64% 6.85% 9.97% 58.54% 71% 78%

Reg. GBM M2 27.57% 20.79% 7.04% 44.60% 80% 57%
Reg. GBM M3 26.53% 16.98% 8.08% 48.41% 77% 61%
Reg. GBM M4 26.87% 14.53% 7.74% 50.86% 78% 65%
Reg. GBM M5 26.89% 14.36% 7.72% 51.03% 78% 65%
Reg. GBM M6 27.10% 14.37% 7.51% 51.03% 78% 65%
Reg. GBM M7 27.00% 11.65% 7.61% 53.74% 78% 70%

Ultimately, we analyze the benefits of data-driven approaches against linear regression in deriving meaningful delay prediction
intervals. Note that this is a critical aspect of advanced airport capacity management, as it allows for a more comprehensive
ssessment of robustness that goes beyond solely relying on deterministic average delay outcomes but also incorporates the inherent

and residual (yet still significant) uncertainty of delay estimates. Fig. 8 illustrates the estimated prediction intervals around the
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Fig. 8. Prediction intervals. Figure representing the actual observations (black dots) and the estimated prediction intervals (estimated as the average over
30-second intervals) using model specification M6, with solid lines for the GBM method and dashed lines for the LR method.

actual observations, represented by the black dots sorted by delay in ascending order, obtained by training our gradient boosting
and linear regressions with a quantile loss function.9 Fig. 8 reports the estimated 10th–90th (Fig. 8(a)) and 25th–75th (Fig. 8(b))
quantile intervals. First, both GBM and linear approach returned satisfactory out-of-sample performance, returning a fraction of
testing observations that fall between the predictions very close to the expected coverage—49%–50% for the 25th–75th case and
78% and 80% for the 10–90th case for GBM and the linear model, respectively. Examining the patterns, the superiority of GBM
becomes evident. The linear model yields wider and flatter bounds, resembling a horizontal strip that shows little sensitivity to the
data. In contrast, the prediction intervals generated by GBM are narrower (on average, −18% – -34% compared to the LR ones)
and their width increases with the delay length. This is expected, as extended delays are the most challenging to predict and less
prevalent in the data—as evidenced by the decreasing density of actual data points (greater transparency of the black curve) as
delay values increase. Furthermore, the prediction intervals generated by GBM more closely align with the observed data pattern,
underscoring stronger predictive capabilities. Nonetheless, it is important to note that the range of variability remains significant.
This is a widely acknowledged issue regarding delay forecasting models – as observed, for example, in recent papers leveraging
big data and advanced data-driven models (e.g., Birolini and Jacquillat, 2023) – highlighting the importance of accounting for the
distribution of delay estimates when integrating them into prescriptive analytics solutions.

4.5. Summary of model comparisons

We now summarize the evidence gathered from the comparison of the various models tested. Tables 6 and 7 report the
performance metrics for the different approaches considered — simulation model (M0), queueing model (M1) and machine learning
models (M2–M7). Next, we summarize the key takeaways:

1. In general, the performance of machine learning models is superior to that of simulation and queueing models, with a
remarkable decrease in the 𝑀 𝐴𝐸 ranging between 15% to 30%, contingent on the airport and type of movement (i.e. arrival
or departure). Machine learning has an advantage over other methods in that it can leverage historical data to learn and
adapt to different scenarios, allowing it to factor in the impact of various operational considerations on local delays.

2. Despite these strengths, the most rudimentary machine learning model, M2, which incorporates only two features (number
of arrivals and number of departures), underperforms when compared to its simulation/queueing counterparts. This suggests
that, particularly in strategic applications requiring the appraisal of future scenarios of increased demand and capacity, the
benefits of simple ML compared to conventional methods are limited.

3. By incorporating the predictions from the queuing model (M1) into the machine learning model (M2), accuracy can be
improved by up to 8% for the 𝑀 𝐴𝐸 (M3), contingent on the airport and type of movement (i.e. arrival or departure). This
is corroborated by the SHAP plot (Fig. 9), emphasizing the significance of combining both machine learning and queuing
models to capture the non-linear dynamics inherent in queueing behavior.

9 We use a Pinball loss function as implemented in Python’s scikit-learn package. More details can be found in Koenker (2005).
15 



N.A. Ribeiro et al.

m
p
n

l
e

o

Transportation Research Part C 171 (2025) 104947 
Table 6
Model results for arrivals: M0 — simulation model; M1 — queueing model; M2 to M7 — GBM model.

Airport Metric Model Metric Model

M0 M1 M2 M3 M4 M5 M6 M7 M0 M1 M2 M3 M4 M5 M6 M7

SIN 𝑅2 0.28 0.26 0.24 0.28 0.35 0.38 0.44 0.63 𝑅2𝑎𝑔 𝑔 0.83 0.85 0.69 0.84 0.97 0.97 0.96 0.97
𝑀 𝐴𝐸 (s) 111 110 117 113 106 104 102 89 𝑀 𝐴𝐸𝑎𝑔 𝑔 (s) 33 31 41 31 16 17 17 17
𝑅𝑀 𝑆 𝐸 (s) 189 189 192 188 178 174 166 135 𝑅𝑀 𝑆 𝐸𝑎𝑔 𝑔 (s) 43 41 57 42 20 21 22 21

HKG 𝑅2 – 0.31 0.27 0.31 0.38 0.40 0.45 0.66 𝑅2𝑎𝑔 𝑔 – 0.81 0.78 0.85 0.96 0.97 0.96 0.97
𝑀 𝐴𝐸 (s) – 139 142 137 129 127 124 97 𝑀 𝐴𝐸𝑎𝑔 𝑔 (s) – 36 39 34 22 19 20 19
𝑅𝑀 𝑆 𝐸 (s) – 215 200 194 184 181 174 138 𝑅𝑀 𝑆 𝐸𝑎𝑔 𝑔 (s) – 52 54 47 29 23 26 24

BKK 𝑅2 – 0.37 0.35 0.42 0.53 0.51 0.54 0.67 𝑅2𝑎𝑔 𝑔 – 0.73 0.53 0.80 0.98 0.98 0.98 0.98
𝑀 𝐴𝐸 (s) – 152 159 146 131 133 131 114 𝑀 𝐴𝐸𝑎𝑔 𝑔 (s) – 58 76 53 20 20 19 19
𝑅𝑀 𝑆 𝐸 (s) – 220 226 214 193 195 190 161 𝑅𝑀 𝑆 𝐸𝑎𝑔 𝑔 (s) – 75 102 72 28 28 28 27

KUL 𝑅2 – 0.19 0.25 0.26 0.32 0.34 0.43 0.50 𝑅2𝑎𝑔 𝑔 – 0.86 0.86 0.89 0.96 0.96 0.98 0.98
𝑀 𝐴𝐸 (s) – 81 78 77 74 72 70 67 𝑀 𝐴𝐸𝑎𝑔 𝑔 (s) – 22 17 15 10 10 8 7
𝑅𝑀 𝑆 𝐸 (s) – 117 122 121 116 114 106 101 𝑅𝑀 𝑆 𝐸𝑎𝑔 𝑔 (s) – 28 23 21 13 13 10 10

Table 7
Model results for departures: M0 — simulation model; M1 — queueing model; M2 to M7 — GBM model.

Airport Metric Model Metric Model

M0 M1 M2 M3 M4 M5 M6 M7 M0 M1 M2 M3 M4 M5 M6 M7

SIN 𝑅2 0.16 0.13 0.19 0.22 0.29 0.31 0.35 0.46 𝑅2
𝑎𝑔 𝑔 0.72 0.64 0.58 0.68 0.82 0.85 0.86 0.86

𝑀 𝐴𝐸 (s) 152 154 152 149 142 140 138 131 𝑀 𝐴𝐸𝑎𝑔 𝑔 (s) 39 37 42 36 22 20 20 20
𝑅𝑀 𝑆 𝐸 (s) 202 202 201 198 189 187 182 172 𝑅𝑀 𝑆 𝐸𝑎𝑔 𝑔 (s) 51 47 54 47 30 27 26 26

HKG 𝑅2 – 0.12 0.24 0.26 0.31 0.30 0.36 0.57 𝑅2
𝑎𝑔 𝑔 – 0.66 0.68 0.72 0.85 0.87 0.83 0.88

𝑀 𝐴𝐸 (s) – 177 176 173 167 167 160 135 𝑀 𝐴𝐸𝑎𝑔 𝑔 (s) – 39 40 36 26 24 25 23
𝑅𝑀 𝑆 𝐸 (s) – 233 229 227 220 221 213 178 𝑅𝑀 𝑆 𝐸𝑎𝑔 𝑔 (s) – 56 56 53 41 38 42 33

BKK 𝑅2 – 0.12 0.16 0.18 0.38 0.38 0.39 0.45 𝑅2
𝑎𝑔 𝑔 – 0.71 0.69 0.76 0.85 0.86 0.86 0.85

𝑀 𝐴𝐸 (s) – 170 168 166 144 143 143 139 𝑀 𝐴𝐸𝑎𝑔 𝑔 (s) – 57 60 55 30 28 29 29
𝑅𝑀 𝑆 𝐸 (s) – 227 225 223 197 197 196 191 𝑅𝑀 𝑆 𝐸𝑎𝑔 𝑔 (s) – 75 77 71 40 36 36 37

KUL 𝑅2 – 0.13 0.18 0.19 0.41 0.41 0.51 0.60 𝑅2
𝑎𝑔 𝑔 – 0.54 0.55 0.57 0.79 0.83 0.84 0.84

𝑀 𝐴𝐸 (s) – 159 157 156 132 131 124 114 𝑀 𝐴𝐸𝑎𝑔 𝑔 (s) – 41 44 41 30 30 28 28
𝑅𝑀 𝑆 𝐸 (s) – 222 220 220 192 191 177 161 𝑅𝑀 𝑆 𝐸𝑎𝑔 𝑔 (s) – 51 56 51 37 35 35 34

4. The availability of more information that become available closer to actual operations has the potential to improve
predictive accuracy significantly. For instance, incorporating delay data from the preceding 15 min yields refined predictions,
consistently achieving an 𝑅2 exceeding 0.8 across all instances. This outcome is not surprising, given that delays are
predominantly influenced by propagation dynamics. Fig. 10 illustrates the progression of 𝑅2 accuracy at various levels of
near real-time delay information (i.e., delay information for 15-, 60-, 180-, etc. minutes prior to operations).

5. The impact of convective weather on airport operations is significant. Fig. 9 demonstrates that incorporating the number of
lightning occurrences in the vicinity of the airport (within a range of 0 to 50 NM) has a substantial influence on improving
the accuracy of our models, particularly in Singapore, Bangkok, and Hong Kong. Furthermore, this effect is more pronounced
when we focus exclusively on periods with lightning events. Fig. 11 compares the 𝑅2 values obtained by M5 and M6 for
Singapore and Kuala Lumpur, considering different thresholds of the number of lightning observations — e.g. when the
threshold is set at 0, there is a decrease in 𝑅2 from M5 to M6 by 15% and 25% for Singapore and Kuala Lumpu, respectively;
as the threshold is adjusted, for example to a minimum of 600 lightning occurrences, M6 shows a significant improvement
in 𝑅2, with increases of 60% and 80% for Singapore and Kuala Lumpur, respectively.

5. Flight delay prediction evaluation framework

In this section, we introduce a comprehensive framework for flight delay prediction that integrates various levels of decision-
aking in airport capacity management (ACM). This framework is intended to serve as a new benchmark for researchers and
ractitioners, assisting them in identifying the most appropriate models and data inputs for their specific research or operational
eeds within the broader context of airport capacity management.

We have expanded the traditional three-level classification of ATFM instruments (strategic, pre-tactical, and tactical) as outlined
by ICAO (2007) to encompass five levels of ACM instruments. This broader framework includes both short-term (ICAO, 2007) and
ong-term (Gillen et al., 2016) ACM instruments. Table 8 provides an overview of this framework, summarizing the key aims of
ach ACM instrument, the critical role of flight delay predictions, and the relevant features and methods associated with each level.

Following this, we provide a detailed discussion of each ACM instrument, examining the applicability and deployment of the
delay prediction methods outlined in this paper. We also demonstrate how these methods can enhance the efficiency of airport
perations through various application examples.
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Fig. 9. SHAP plot illustrating the top 5 features with more importance in predicting local delays at each airport and type of movement.

Fig. 10. Impact of near real-time delay information on model accuracy, ranging from M6 (where no delay information is considered) to a model where average
hourly delays observed in the preceding 15-min window are incorporated as predictors.

5.1. Capacity planning (years before)

Capacity planning is the process of carefully analyzing and predicting an airport’s future needs and creating plans to meet
those requirements. To do this, airports develop master plans that outline a roadmap for future investments, such as new runways,
taxiways, gates, and other infrastructure.

Simulation models are valuable tools for conducting capacity planning studies. They possess the unique ability to meticulously
replicate changes in airport layouts and evaluate their repercussions across diverse scenarios, such as changes in both demand
patterns and air traffic control procedures. Simulations require considerable computational power and time to run (e.g. approxi-
mately 15 min to simulate a single day of operations at Singapore Airport using our CAST model). However, this is not a significant
concern during the capacity planning phase, as decisions are made years before actual implementation. As noted in Section 2.1, it
is important to recognize that the development of accurate simulations requires setting very precise rules. This means that a deep
understanding of airport operations and close collaboration with airport experts are critical to ensure the accuracy of the what-if
scenarios to be evaluated in this phase. Significant errors can occur if the models are not properly calibrated and validated.
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Fig. 11. Model accuracy (𝑅2) across different threshold levels for the total number of lightning occurrences within a 1-h timeframe and a 50 NM radius for
SIN airport (left) and KUL airport (right): Dotted red and blue lines represent 𝑅2 values for M5 (without weather features) and M6 (with weather features)
using all observations. Solid red and blue lines show varied 𝑅2 values at different threshold levels of lightning occurrences. The green line depicts the number
of observations retained for each threshold. Notably, M6 maintains consistent 𝑅2 regardless of the threshold, highlighting the advantage of incorporating
weather-related features in predicting delays during periods with significant lightning occurrences in contrast to M5.

Analytical models can be an alternative for quick assessment of capacity planning alternatives. However, the DELAYS model (M1)
discussed in this paper may not provide the level of detail required for this purpose. This is because the model employs a simplified
approach to represent airport capacity by means of using a single service rate distribution. Nonetheless more complex methods
leveraging advanced network of queue models to represent the different phases of airport operations (Simaiakis and Balakrishnan,
2009; Simaiakis et al., 2013; Itoh and Mitici, 2019), or Simulation-based queuing models (such as MACAD (Stamatopoulos et al.,
2004)), can partly overcome this limitation and contribute to evaluate changes in airport layout and operating procedures at a
quicker and more aggregate level.

Machine learning models (M2 to M7) may not be the most suitable choice for capacity planning. First, sophisticated models
(M4–M7) with advanced features are often ill-suited for this purpose. The advantages of using more detailed models that account
for contingent factors are outweighed by the challenges associated with predicting these variables given the substantial time gap and
uncertainty. Second, simpler and more generalized ML models (M2–M3) encounter similar limitations to queuing models. Overall,
ML models struggle to effectively capture emerging factors or events that were not present in historical data. This is especially
pertinent in cases involving new layouts and procedures, which are, in fact, central considerations in the realm of capacity planning.

5.2. Strategic slot allocation (years to 6 months before)

The allocation of airport slots is a critical process that aims to prevent over-scheduling and ensure the efficient use of airport
resources. Slot coordinators are responsible for assigning slots to airline slot requests in an unbiased, transparent, and non-
discriminatory manner (WWACG et al., 2022). The number of slots made available per hour is determined by airport authorities –
referred to as declared capacity – based on a comprehensive assessment of airport maximum throughput capacity and its reliability
under different operating conditions. The slot allocation process occurs twice every year, six months in advance of operations.
Although this process occurs biannually, the decisions made during this phase can carry significant and enduring consequences.
Airlines stand to receive historical benefits when they are assigned slots, and these valuable allocations can be retained for many
years into the future.

In this context, leveraging delay predictions assume a vital role. It empowers slot coordinators to delicately balance accom-
modating the maximum number of flights during preferred times while proactively anticipating peaks in demand and schedule
patterns that might otherwise lead to substantial delays. While simulation models may serve this purpose, their lengthy execution
and development time can become a limitation when testing various slot allocation solutions. To overcome this concern, the adoption
of lower-fidelity models, noted for their faster execution, offers a more suitable avenue. A promising option lies in utilizing queueing
models such as DELAYS (M1), which are inherently well-suited for studying demand-supply interactions. Queueing models offer the
advantage of straightforward calibration, thereby further enhancing their practicality and efficiency in this context.

As discussed in Section 4, the incorporation of queuing models into data-driven models can deliver even superior performance
while retaining scalability and computation efficiency. Given the predictive needs and data availability at the time of slot allocation,
semi-aggregate models, such as M3/M4, appear promising alternative, which complement queuing delays with temporal features
and support a more refined capturing of congestion dynamics and inherent delay patterns.

Fig. 12 illustrates the potential benefits of employing semi-aggregate data-driven models, such as model M4, in assessing and
optimizing declared capacity and slot allocation decisions. The example provides a visualization of predicted delays before and after
slot allocation is performed—a slot allocation algorithm has been developed, which redistributes slot requests subject to user-defined
airport’s declared capacities.(see Appendix C - Algorithm 1).10 The results show that, prior to slot allocation, there is a noticeable peak

10 The algorithm effectively ensures that the total number of slots allocated matches the number of slots requested (i.e., no rejection) by efficiently redistributing
them to neighboring hours with lower demand.
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Table 8
Airport capacity management — Levels of intervention.

ACM instruments Capacity planning Strategic slot
allocation

Strategic flow
management

Pre-Tactical flow
management

Tactical flow
management

ACM
description

Time frame Years before Years to 6 months
before

Months to days
before

A day to hours
before

Real time

Aim Determine airport
capacity
requirements for
future capacity
expansion

Prevent airport
over-scheduling by
controlling the
number of slots
allocated to airline
flight requests

Develop flight
plans to ensure
orderly
distribution of air
traffic flows across
the airspace
network, and
efficient utilization
of airport capacity

Revise flight plans
to cope with day
to day factors
originated from
disruptive events
(e.g. severe
weather
conditions) or
from delay
propagation from
other airports

Execution of the
previously agreed
flight plans,
monitoring of the
situation and
update of flight
plans if required

Input
information

Existing
infrastructure
conditions and
alternatives

Existing
infrastructure
conditions

Existing
infrastructure
conditions

Existing
infrastructure
conditions

Existing
infrastructure
conditions

Demand
Projections

Slot Requests Flight schedules Revised flight
plans

Real-time flight
position

ATC general rules ATC general rules ATC general rules
and ad-hoc
constraints

ATC general rules
and ad-hoc
constraints

ATC general rules
and ad-hoc
constraints

– – – Weather forecasts Real-time weather

Output
Analysis

Botleneck
identification

Airport capacity
declaration

Develop flight
plans

Revise flight plans Real-time air
traffic instructions

Airport master
planning

Slot allocation ATM resource
planning

Ground delay
programs

Delay
prediction

Need for delay
prediction

Analyze the
trade-off between
capacity and
projected demand
of different
infrastructure
expansion
alternatives

Analyze the
trade-off between
declared capacity
and demand for
slots

Analyze the
trade-off between
demand across
different airspace
routes and the
capacity of the
airport/airspace

Analyze the
trade-off between
demand across
different airspace
routes and the
capacity of the
airport/airspace
while accounting
for weather
forecasts

Analyze the
trade-off between
real-time demand
across different
airspace routes
and the capacity
of the
airport/airspace
while accounting
for weather
conditions

Congestion-related
features

Yes Yes Yes Yes Yes

Temporal-related
features

No Yes Yes Yes Yes

Route-related
features

Partly Partly Yes Yes Yes

Weather-related
features

No No No Yes Yes

Near real-time
features

No No No No Yes

in delays occurring between 6 pm and 7 pm, amounting to approximately 24 min of delays. After slot allocation, and considering
 declared capacity limit set at 33 movements per hour, this peak is reduced to around 14 min (a reduction of 42%). Additionally,
o periods are expected to experience average hourly delays exceeding 15 min, and the duration of periods with delays surpassing
0 min has been significantly cut from approximately 4 h to just 2 h.

This example clearly illustrates the advantages of slot allocation and emphasizes the crucial role that delay predictive analytics
can play in aiding airport slot coordinators. To fully leverage the benefits of delay predictive analytics, it is important to complement
its application with prescriptive tools that aid in making slot allocation decisions aligned with the interests of both airlines and
irports. Large slot displacements can lead airlines to abandon their requested slots and cancel the corresponding flights. For
xample, Pouget et al., 2023 observed at CDG airport that the likelihood of a flight displaced by 30 minutes being scheduled was
nly about 60% compared to a flight with no displacement.

Several tools are currently available and have been utilized by slot coordinators for many years to support slot allocation
decisions, such as PDC SCORE, T-Systems SAMS, SLOTIX, or GESLOT (refer to WWACG, 2023). State-of-art optimization models
for slot allocation primarily focus on minimization of displacements (Zografos et al., 2012; Ribeiro et al., 2018, 2019), with
recent contributions accounting for additional objectives such as passenger connections (Birolini et al., 2023), airline fairness
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Fig. 12. Impact of slot allocation on flight delays.

and equity (Fairbrother et al., 2020) and type of service/market preferences (Jorge et al., 2021). In line with the focus of the
paper, Jacquillat and Odoni (2015b) incorporated the DELAYS model into a slot allocation algorithm that focuses on interventions
based on delay limits instead of fixed declared capacities. Similarly, Katsigiannis and Zografos (2023) used the DELAYS queueing
model to compare alternative schedules from a multi-objective slot allocation model. To the best of our knowledge, no study has
yet incorporated and validated the use data-driven delay predictions into slot allocation optimization algorithms.

5.3. Strategic flow management (months to days before)

The slot allocation process provides crucial information, such as flight schedules and aircraft fleets, which are used to construct
preliminary flight plans for each aircraft operation. This involves planning the route structure of flights to ensure a smooth and
orderly distribution of air traffic flows across the airspace network. At the same time, resource planning is carried out to ensure the
safe provision of services with adequate allocation of air traffic controllers to airspace sectors. While the strategic flow management is
a network problem typically solved by centralized entity (FAA, Eurocontrol), it also requires detailed considerations within individual
airports and terminal airspaces (TMA). The proposed local delay prediction approaches are targeted to support these assessments.

As we approach the day of operations, the utilization of simulation models poses challenges due to the significant run times. At
this stage, there is a need to develop models that can effectively evaluate various airfield and air traffic flow management strategies,
delivering both rapid and accurate outcomes. While queuing models like DELAYS (M2) offer speed, they are too simplistic for this
purpose, as they fail to capture crucial features related to the varying air traffic flow across different routes. Model M5, as presented
in this paper, offers a potential solution by incorporating route-related features into queueing models through machine learning.

We have simulated the impact of different distribution settings of air traffic flows around Singapore airport using M5.
Interestingly, we observed that estimated delays only vary by up to 1% depending on the setting of flows considered. This slight
variation can be attributed to the fact that most of the routes utilizing the same runway tend to share the same final approach
segment, making the runway the main bottleneck and therefore main source of delays. Yet other bottlenecks may occur in the
terminal airspace. Because M5 only incompasses a queueing model, it may not be able to capture the non-linear behavior of queues
across these bottlenecks, exactly for the same reason M3 is better than M3. Therefore more advance queueing network models (such
as Itoh and Mitici, 2019; Simaiakis et al., 2013) may produce better results, and may have the potential to be improved through
integration of machine learning methods (as done for M2 to create M3).

We conducted simulations to assess the impact of different distribution settings on air traffic flows around Singapore airport using
the M5 model. Our findings highlight that the estimated delays exhibit minimal variance, typically up to 1%, across the various flow
20 
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settings we examined. This limited variability in results may be attributed to M5’s reliance on a single queueing model, potentially
acking effectiveness in capturing the non-linear behavior inherent in networks of queues associated with diverse available routes. To

address this limitation, the integration of advanced queueing network models, as proposed in Itoh and Mitici (2019) and Simaiakis
et al. (2013), holds promise for enhancing precision. These models can benefit from further refinement through the integration of
machine learning methods.

As for other ACM intervention levels, the integration of prescriptive models with predictive analytics is key in optimizing the
decision-making processes effectively. In this regard, the topics of aircraft runway sequencing and scheduling have been extensively
studied, with the first optimization model proposed in 1976 by Dear (1976). Numerous researchers have since contributed models
considering various methods, objectives, and constraints (See Ikli et al., 2021 for a review). Recently, runway scheduling has
expanded to encompass the broader terminal airspace, optimizing not only sequencing but also speeds and route distribution.
Prominent studies in this domain include works by (Sama et al., 2017; Ma et al., 2019; Henry et al., 2022; Ng et al., 2024).
Furthermore, addressing fuel consumption and emissions through aircraft sequences to enable continuous descent operations has
gained significant attention (Tian et al., 2018). Lastly, some research has focused on investigating the impact of the number of
flights on ATC workload (Sergeeva et al., 2017; Liu et al., 2018).

Despite the expanding body of research dedicated to optimizing terminal airspace operations with considerations for efficiency,
the environment, and safety, there has been limited analysis of the integration of data-driven methods to address the uncertainty
and non-linear behavior of delays. This gap in research represents an important avenue for further exploration.

5.4. Pre-tactical flow management (a day to hours before)

This phase focuses on implementing measures in the hours leading up to operations, aimed at fine-tuning the strategic flight plans
mplemented earlier. In this phase, day-to-day factors such as weather forecasts become critical and more accurate. The pre-tactical

instruments involve the imposition of flow control restrictions to limit the number of aircraft arriving at a specific sector or airport.
Examples of these measures include (i) rescheduling flights to later periods of the day, (ii) rerouting traffic flows to less congested
routes and/or airspace sectors, and (iii) implementing ground delay programs (GDP), which involve assigning departure delays at
he origin airport, ensuring that aircraft arrive later than their originally scheduled arrival time at the destination.

A key challenge lies in determining the optimal airport acceptance rate — a limit on incoming air traffic approaching the airport.
his parameter plays a crucial role in ensuring the effective implementation of Ground Delay Programs (GDP) and proactive air traffic

management, ultimately minimizing the risk of airborne holding. Given the dynamic nature of factors such as adverse weather or
ncreased congestion due to delay propagation, there is a frequent need to recalibrate airport acceptance rates. Utilizing data-

driven methods that can accurately capture the effects of these contingent factors becomes essential in supporting the calibration of
irport acceptance rates. For example, Model M6 offers a rapid assessment of the impact on airborne delays under current weather
onditions, providing valuable insights for optimizing airport acceptance rates.

Fig. 13 depicts a simulation of a day with heavy lightning events between 6PM to 10 PM, along with the corresponding predicted
verage hourly delays before and after GDP implementation — a GDP algorithm has been developed (see Appendix 2).11 The flight

schedule used for analysis (Fig. 13 - left) is based on the scheduled obtained after slot allocation (Section 5.2, Fig. 12 - right). Due to
the anticipated onset of convective weather, substantial delays are now expected. Specifically, there is a noticeable spike in hourly
delays exceeding 15 min, lasting for a duration of one hour. By adjusting the airport acceptance rate to 30 movements per hour
during the forecasted convective weather period (as opposed to the standard 33 used for slot allocation), significant reductions in
delays can be achieved. Specifically, we observe that by making this adjustment, delays consistently remain below 15 min.

GDPs are widely implemented in both Europe and the United States, where Collaborative Decision-Making (CDM) practices have
een in use for several years. To aid airport and air traffic managers in this endeavor, a combination of prescriptive and predictive
ools is being utilized. The development of optimization models to support GDP implementation is not recent (Odoni, 1987). Since

then, numerous other researchers, such as Richetta and Odoni (1993), Ball et al. (2003), and Mukherjee et al. (2012) have proposed
various models that take into account uncertainties and the dynamic nature of the process. In recent years, there has been a shift
toward exploring more data-driven approaches in GDP research. The focus is on capturing the influence of contingent factors, such
as weather, on airport acceptance rates while supporting GDP implementation (Murça and Hansman, 2018; Liu et al., 2020).

5.5. Tactical flow management (real time)

Tactical flow management refers to the set of actions taken during the actual operation of air traffic to optimize the efficiency
nd safety of flights. It involves taking specific actions during the operation of flights, such as rerouting or adjusting the sequencing

of arrivals and departures, to avoid congestion and ensure smooth operations. Near-real-time information is critical in making these
ecisions, as it enables air traffic controllers to quickly evaluate the situation and determine the best course of action. For example,
f congestion is detected in the terminal airspace area, controllers may need to delay some aircraft to prevent them from flying at
 lower altitude, which would result in increased fuel consumption and emissions.

Currently, advanced ATM systems seamlessly incorporate rule-based algorithms to support ATC in making aircraft sequencing
decisions within the terminal airspace areas. These systems, known as Arrival Manager (AMAN) and Departure Manager (DMAN),

11 The primary distinction from the slot allocation algorithm lies in the fact that, since we are already in the day of operations, flights can only be delayed
o later periods. This is in contrast to the slot allocation algorithm, which permits flights to be rescheduled to earlier times, as it is planned months in advance.
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Fig. 13. Impact of GDPs on flight delays.

have been successfully implemented in various countries — such as TBFM in the USA, and MAESTRO, OSYRIS, or 4D-Planner
in Europe. Leveraging a comprehensive array of data, including flight plans, radar information, weather conditions, local airspace
details, and route information, these systems are designed with the primary goal of aiding ATCs in maintaining minimum separations
and ensuring the efficiency of runway throughput.

Recent research, has focused on enhancing these systems through a combination of optimization and reinforcement learning
methods (Toratani, 2019; Henry et al., 2022) while incorporating machine learning techniques to leverage historical data for
capturing contingent factors (Jun et al., 2022). Notwithstanding, this remains a pivotal challenge to address, given the constraint of
computation time, juxtaposed with the existence of real-time available data, which underscores its promising potential for further
exploration.

6. Conclusions

This paper presents a comprehensive assessment of delay predictive analytics to support effective airport capacity management
(ACM). The study explores the different phases of ACM, emphasizing the need for delay predictive analytics and the input
information required at each phase. A key contribution of this work is the development of a structured framework for flight delay
prediction that integrates various levels of decision-making within ACM. This framework serves as a benchmark for researchers and
practitioners, guiding them in selecting appropriate models and data inputs tailored to their specific operational needs within the
broader context of ACM.

The framework was developed through an extensive review of diverse modeling approaches for flight delay predictions,
including rule-based simulations, queuing models, and data-driven methodologies. These approaches were evaluated across different
definitions of delay (local, scheduled, and network delays) based on insights drawn from over 200 scholarly papers. Recognizing the
specific nature of ACM, we identified local delays as the most critical for prediction within this context. To validate our framework,
we applied the various methods to real-world data from four major Southeast Asian airports – Singapore, Kuala Lumpur, Bangkok,
and Hong Kong – introducing innovative features related to congestion, temporal patterns, routes, and weather conditions. The
accuracy of these methods was assessed using a range of metrics. Finally, we deconstructed airport capacity management into five
key phases, detailing the necessary methods and features tailored to each phase’s granularity and scope. Practical insights were
provided to enhance airport operations, optimize resource allocation for resilient capacity management, and future directions were
discussed.

The key takeaways from the paper are as follows:
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• Our review of over 200 papers reveals that delay predictive analytics in aviation has been extensively explored, but with
significant variability in focus. Studies differ in the types of delays predicted, the applications and purposes of the models, and
the methods employed. This variability underscores the fragmented nature of existing research, which often targets singular
applications without a clear, unified framework. Our work addresses this gap by providing a holistic, structured approach to
delay prediction within the specific context of ACM.

• The study identifies local delays as pivotal for effective airport capacity management. Unlike network-wide delays, which
airlines typically manage, local delays occur within the airport’s immediate environment and can be more directly influenced
by ATCs and Airport Managers. By focusing on local delays, this research aligns predictive analytics with the operational
realities of ACM.

• Local delays are significantly more challenging to quantify than scheduled delays — which are simply calculated as the
difference between scheduled and actual times. Estimating local delays requires the integration of geospatial information and
historical data to identify nominal patterns, adding a layer of complexity to the process. Our research shows that ADS-B data
when processed appropriately as proposed in this paper, can be leveraged to estimate local delays accurately.

• The results show that machine learning models outperform traditional methods in predicting local delays, particularly as more
detailed information becomes available closer to the day of operation. These models achieved strong performance metrics, with
𝑅2 values going up to 0.85–0.95 when near-real time (within 15 min before operations) information is incorporated.

• However, while machine learning excels with abundant, high-quality, near-real time data, its reliance on such data poses
challenges in the earlier stages of ACM, where information is typically sparse (i.e., months to years prior to operations). In
these contexts, simulation and queuing models provide robust alternatives, maintaining high accuracy levels with 𝑅2

𝑎𝑔 𝑔 ranging
from 0.54 to 0.86 even with limited data.

• Results also show that hybrid queuing-based machine learning models can lead to better models by combining the advantage
of queuing models (in capturing congestion dynamics) and machine-learning (in accounting for contingent factors and complex
nonlinear patterns); being suitable alternatives at stages in which some information is already available but not yet very precise.

• Beyond predictive accuracy, this research explores the integration of delay predictive models with prescriptive analytics to
support critical ACM functions such as slot allocation, ground delay programs, and air traffic flow management. The findings
suggest that this integrated approach not only enhances operational efficiency but also strengthens ACM’s ability to proactively
manage and mitigate congestion, thereby improving overall airport performance. Although this area has been explored, it
remains underdeveloped. A key direction for the future of airport capacity management involves augmenting delay predictive
models with prescriptive optimization to support decisions across the various stages of the capacity management process.
Further exploration into robust analytics frameworks that leverage estimated delays and their uncertainties is seen as a
promising direction.
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Appendix A. CAST simulation design and calibration process

This section outlines the procedural steps involved in crafting and fine-tuning the CAST simulation model utilized in our study.
We describe the various objects and rules created, along with the specific CAST commands used to adjust modeling parameters. While
this section is tailored specifically for CAST, we contend that the general procedural framework is adaptable to other simulation
software platforms that may incorporate analogous commands akin to those found in CAST. Fig. A.14 provides an overview of the
main steps and objects involved in developing the simulation model in CAST, which are further elaborated below:

(i) The first step involves designing the airport layout in CAST. For this task, we use AutoCAD, leveraging its ‘‘From Map’’ feature
to enable drawing on top of satellite imagery. The outcome of this step is presented in the left side of Fig. A.14.

(ii) In the second step, we import the AutoCAD file into CAST. The import process may require manual adjustments to ensure
that the network is well connected. Additionally, we must specify the objects in the network corresponding to the runway,
taxiway, and stand sets.
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Fig. A.14. CAST modeling steps.

(iii) The third step involves setting the fundamental objects required to model airport operations in CAST. CAST provides an
extensive set of objects for various purposes; among these, we highlight six particularly relevant for our model: (i) Departure
Holding Position (DHP) - sets the location where aircraft line up before takeoff. Here, we can specify the aircraft separation
requirements for departures; (ii) Arrival Final Approach (AFA) - analogous to DHP, this object sets the holding location for
arriving aircraft where they can wait before landing. In this object, we can define aircraft separation requirements for arrivals;
(iii) Departure End of the Runway (DER) & Arrival Runway Exit (ARE) - establish the runway boundaries. In these objects we
can specify that no other aircraft can utilize the runway while an aircraft is on the runway; (iv) Arrival Threshold Position
(ATP) - marks where an aircraft lands. This object is employed to establish the runway occupancy times (ROC); (v) Sector
Transition Position (STP) - utilized to delineate sectors within the airfield and airspace. In our model, this object is used to
create the runway assignment rules; (vi) Ground Controller Object (GCO) - enables the setting of off-block approval rules for
departing flights, allowing to control the number of aircraft in the taxiways.

(iv) The fourth step involves coding the simulation rules and setting the parameters to accurately model the airport operations
in CAST. This step requires the expert judgment of individuals working at the airport. The rules and parameters are defined
within the objects established in step (iii), employing a system of conditional trees for this purpose. While some rules serve as
hard constraints and thus do not require calibration (e.g., ensuring that only one aircraft can be on the runway at any time),
others may necessitate calibration. We have categorized these rules into four main groups: (i) Separation requirement rules,
which dictate the minimum distances between arriving and departing aircraft; (ii) Runway assignment rules, which set a
limit on the number of aircraft queuing at the DHP before an aircraft can leave its stand; and (iv) Runway usage rules, which
define the expected runway occupancy times based on the chosen runway exit (ARE). Fig. A.15 displays the conditional trees
modeled in CAST for these rules.

Separation requirements are defined at the DHP and AFA for departures and arrivals, respectively. Fig. A.15(a) displays the
condition tree for DHP, indicating that a departure can only take place under three conditions: (i) the runway must be empty
(Sector Empty = True); (ii) the forthcoming arrival must be at a minimum distance from the runway (illustrated as 3 NM in the
figure); and (iii) the preceding departure must have occurred more than a specified number of minutes earlier, as dictated by a time
matrix — the user can adjust these time matrix by specifying safety buffers. Fig. A.15(b) presents a similar decision framework for
arrivals. In this case, the model assesses the number of flights in the DHP queue. Depending on the queue size, various separation
requirements (time matrix) are applied. The logic behind this is to increase the separation between arrivals when there are aircraft
queuing for departure, thereby potentially creating a window to accommodate a departure in between arrivals.

The runway assignment rules are specified in the STP. Note that Singapore Airport operates with a system of two independent
runways: one primarily for arrivals and the other for departures. However, during moments of low traffic on the departure runways,
some arrivals may use the departure runway. This decision is reflected in the conditional tree presented in Fig. A.15(c). If the number
of aircraft approaching the departure runway is less than a certain threshold (illustrated as 3 in the figure), then CAST checks the
number of arrivals already queuing for each of the runways and selects the one with the smallest queue.

The off-block approval rules are set to control the number of aircraft queuing in the departure position. Fig. A.15(d) presents the
condition tree which sets that departing flights can only leave the stand when less than a certain threshold of aircraft are queueing
to depart (illustrated as 4 NM in the figure).

Finally, the runway usage rules determine the probability of using a runway exit, contingent upon the size of the aircraft —
Fig. A.15(e) solely illustrates the case for light aircraft, yet other weight categories were also considered. Additionally, CAST also
allows to input the average runway occupancy time for an aircraft of a specific weight categor from the moment of touchdown until
each runway exit.

The calibration of simulation models such as CAST is inherently airport-specific due to the vast number of parameters and rules
that require fine-tuning. This specificity limits the model’s generalizability across different airport environments. The calibration
process is notably labor-intensive. Each parameter and rule must be manually configured, rigorously tested, and subjected to multiple
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Fig. A.15. CAST tree conditions.
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Fig. B.16. State-transition diagram of the 𝑀(𝑡)∕𝐸3(𝑡)∕1 queuing system.

iterations to ensure accuracy. Moreover, this requires a comprehensive understanding of airport operations management, making
t critical for modelers to work closely with airport managers to capture the operational nuances accurately. Furthermore, running
imulations can be time-consuming. For instance, simulating a single day of airport operations takes around 30 min. This highlights
 significant drawback of using simulation models: their development and execution are both time and labor-intensive. Despite these

challenges, the detailed nature of these models offers a high degree of accuracy. This precision makes them particularly valuable
for testing future scenarios. The core part of the paper elaborates further on this aspect, underscoring the models’ utility in strategic
planning.

Appendix B. DELAYS model state diagram

The system’s state-transition diagram representing DELAYS is depicted in Fig. B.16. It is constructed based on an Erlang process
of order 3 and rate 𝜇, modeled as three Markovian ‘‘stages of work’’ completed at a rate of 3𝜇 each. The state 𝑖 signifies the number
of remaining stages of work. Let 𝑢 denote a continuously varying time index, and 𝑃𝑖(𝑢) represent the probability of being in state 𝑖 at
time 𝑢. Eqs. (B.1)–(B.5) present the Chapman–Kolmogorov first-order differential equations governing the evolution of 𝑃𝑖(𝑢) during
the period 𝑠, where 𝑢 ranges from (𝑠− 1)𝑆 to 𝑠𝑆. The practical queue capacity is denoted by 𝑁 , and the system starts empty at the
beginning of the day.

𝑑 𝑃0(𝑢)
𝑑 𝑢 = −𝜆𝑡𝑃0(𝑢) + 𝑘𝜇𝑡𝑃1(𝑢) (B.1)

𝑑 𝑃𝑖(𝑢)
𝑑 𝑢 = −(𝜆𝑡 + 𝑘𝜇𝑡)𝑃𝑖(𝑢) + 𝑘𝜇𝑡𝑃𝑖+1(𝑢) ∀𝑖 ∈ {1,… , 𝑘} (B.2)

𝑑 𝑃𝑖(𝑢)
𝑑 𝑢 = 𝜆𝑡𝑃𝑖−𝑘(𝑢) − (𝜆𝑡 + 𝑘𝜇𝑡)𝑃𝑖(𝑢) + 𝑘𝜇𝑡𝑃𝑖+1(𝑢) ∀𝑖 ∈ {𝑘 + 1,… , (𝑁 − 1)𝑘} (B.3)

𝑑 𝑃𝑖(𝑢)
𝑑 𝑢 = 𝜆𝑡𝑃𝑖−𝑘(𝑢) − 𝑘𝜇𝑡𝑃𝑖(𝑢) + 𝑘𝜇𝑡𝑃𝑖+1(𝑢) ∀𝑖 ∈ {(𝑁 − 1)𝑘 + 1,… , 𝑘𝑁 − 1} (B.4)

𝑑 𝑃𝑘𝑁 (𝑢)
𝑑 𝑢 = 𝜆𝑡𝑃𝑘(𝑁−1)(𝑢) − 𝑘𝜇𝑡𝑃𝑘𝑁 (𝑢) (B.5)

Appendix C. Slot allocation algorithm

See Algorithm 1.

Appendix D. GDP algorithm

See Algorithm 2.
26 



N.A. Ribeiro et al. Transportation Research Part C 171 (2025) 104947 
Algorithm 1 Slot Allocation Algorithm
1: Inputs: 𝑁𝑡: Number of slot requests per hour; 𝐶𝑡: Declared capacity per hour.
2: Outputs: Updated 𝑁𝑡: Adjusted number of slot requests per hour for each period 𝑡 in 𝑇 .
3: 𝑇 ← 24 ⊳ Number of periods (hours)
4: for 𝑡 ← 1 to 𝑇 do
5: if 𝑁𝑡[𝑡] > 𝐶𝑡[𝑡] then
6: 𝑆 ← 𝑁𝑡 − 𝐶𝑡 ⊳ Calculate the number of slot requests to be displaced 𝑆
7: 𝑒 ← 𝑡 − 1 ⊳ Earlier time slot
8: 𝑙 ← 𝑡 + 1 ⊳ Later time slot
9: while 𝑆 > 0 and (𝑒≥ 1 or l ≤ 𝑇 ) do

10: if 𝑒 ≥ 1 and 𝑁𝑡[𝑒] < 𝐶𝑡[𝑒] then
11: 𝐴 ← min(𝐶𝑡[𝑒] −𝑁𝑡[𝑒], S) ⊳ Number of slots to make available in period 𝑒
12: 𝑁𝑡[𝑒] ← 𝑁𝑡[𝑒] + 𝐴 ⊳ Allocate flights to earlier period.
13: 𝑆 ← 𝑆 − 𝐴
14: end if
15: if 𝑙 ≤ 𝑇 and 𝑁𝑡[𝑙] < 𝐶𝑡[𝑙] then
16: 𝐴 ← min(𝐶𝑡[𝑙] −𝑁𝑡[𝑙], S) ⊳ Number of slots to make available in period 𝑙
17: 𝑁𝑡[𝑙] ← 𝑁𝑡[𝑙] + 𝐴 ⊳ Allocate flights to later period.
18: 𝑆 ← 𝑆 − 𝐴
19: end if
20: e ← e −1
21: l ← l +1
22: end while
23: end if
24: end for
25: return 𝑁𝑡 ⊳ Return the updated 𝑁𝑡 with adjusted number of slot requests per hour.

Algorithm 2 GDP Algorithm
1: Inputs: 𝑁𝑡: Number of flights per hour; 𝐶𝑡: Acceptance rate per hour.
2: Outputs: Updated 𝑁𝑡: Adjusted number of flights per hour.
3: 𝑇 ← 24 ⊳ Number of periods (hours)
4: for 𝑡 ← 1 to 𝑇 do
5: if 𝑁𝑡[𝑡] > 𝐶𝑡[𝑡] then
6: 𝑆 ← 𝑁𝑡 − 𝐶𝑡 ⊳ Calculate the number of flights to be displaced 𝑆
7: 𝑙 ← 𝑡 + 1 ⊳ Later time slot
8: while 𝑆 > 0 and (𝑒≥ 1 or l ≤ 𝑇 ) do
9: if 𝑙 ≤ 𝑇 and 𝑁𝑡[𝑙] < 𝐶𝑡[𝑙] then

10: 𝐴 ← min(𝐶𝑡[𝑙] −𝑁𝑡[𝑙], S) ⊳ Number of slots to make available in period 𝑙
11: 𝑁𝑡[𝑙] ← 𝑁𝑡[𝑙] + 𝐴 ⊳ Allocate flights to later period.
12: 𝑆 ← 𝑆 − 𝐴
13: end if
14: l ← l +1
15: end while
16: end if
17: end for
18: return 𝑁𝑡 ⊳ Return the updated 𝑁𝑡 with adjusted number of flights per hour.

Appendix E. Literature review

Simulation models. See Table E.9.

Queuing models. See Table E.10.

Data-driven models. See Table E.11.
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Table E.9
Simulation models.

Article Type of delays Type of
movement

Method Purpose

Trani et al.
(1992)

Local delays Arrivals,
Departures

SIMMOD Investigated the impact of different runway exit designs

Czech and
Crook (1994)

Local delays Arrivals,
Departures,
Enroute

RAMS Presented the Reorganized ATC Mathematical Simulator (RAMS)
developed by Eurocontrol

Kleinman et al.
(1997)

Network delays Arrivals,
Departures,
Enroute

SIMMOD Investigated the benefits of ground holding decisions to reduce network
delay propagation.

Martel (2001) Local delays Arrivals,
Departures

SIMMOD Computed capacity estimations under different runway and apron
configurations in YUL

Offerman
(2001)

Local delays Arrivals,
Departures,
Enroute

TAAM Computed capacity estimates for AMS; Computed airspace sector
capacities

Yazdani and
Scarborough
(2001)

Local delays Arrivals,
Departures

Airport
machine

Computed capacity estimates for BWI using the Airport Machine
simulation model

Bazargan et al.
(2002)

Local delays Arrivals,
Departures

TAAM Computed the capacity of PHL under different proposed expansion
alternatives

Tung (2002) Local delays Arrivals,
Departures,
Enroute

Airport-
Sim

Presented the AirportSim simulation model

Santana and
Mueller (2003)

Local delays Arrivals,
Departures

SIMMOD Conducted an analysis of delays and travel times under different physical
and operational scenarios in GRU

Bodoh and
Wieland
(2003)

Local delays Arrivals,
Departures

TAAM Developed parallel computation algorithms to improve TAAM
computation performance

Alipio et al.
(2003)

Network delays Arrivals,
Departures,
Enroute

TAAM
Arena

Evaluated the impact of the use of dynamic airspace super sectors

Shortle et al.
(2003)

Network delays Arrivals,
Departures,
Enroute

TAAM Tested the impact of using lower-fidelity airspace networks so as to reduce
computational performance of TAAM

Richards and
Hobbs (2003)

Local delays Arrivals,
Departures,
Enroute

NATS Presented the HERMES (Heuristic Runway Movement Event) model

Erzberger et al.
(2004)

Local delays Arrivals,
Departures

SIMMOD Investigated the performance of the automated arrival scheduling
system (Traffic Management Advisor) developed by NASA for FAA.

Yousefi and
Donohue
(2004)

Network delays Arrivals,
Departures,
Enroute

TAAM Estimated the sector workload for the entire US National Airspace
System for a day of operations

Harris et al.
(2006)

Network delays Arrivals,
Departures,
Enroute

TAAM
Arena

Evaluated the impact of the use of dynamic airspace super sectors

Chao et al.
(2008)

Local delays Arrivals,
Departures

SIMMOD Analyzed the trade-off between capacity and delays in XMN

Gao et al.
(2008)

Network delays Arrivals,
Departures,
Enroute

SIMMOD Analyzed the delay propagation in the Pearl River Delta multi-airport
system in China

Wei and
Siyuan (2010)

Local delays Arrivals,
Departures

SIMMOD Investigated the performance of various runway utilization strategies in
CKG

Bubalo and
Daduna (2011)

Local delays Arrivals,
Departures

SIMMOD Developed capacity and delays analysis at BER under different scenarios
of future demand.

Lee and
Balakrishnan
(2012)

Local delays Arrivals,
Departures

SIMMOD Investigated the impacts on ground delays caused by the uncertainty on
pushback times, taxi speeds, and runway separation times in DTW.

Cetek et al.
(2014)

Local delays Arrivals,
Departures

SIMMOD Applied SIMMOD to identify and solve bottlenecks in the airspace
and the airfield network of ISL

(continued on next page)
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Table E.9 (continued).
Li et al. (2015) Local delays Arrivals,

Departures
SIMMOD Investigated the performance of closely spaced parallel runways under

different operational modes of utilization.

Günther et al.
(2015)

Local delays Arrivals,
Departures

Airtop Analyzed the impact of severe weather disruptive events in airport delays

Kreuz et al.
(2016)

Network delays Arrivals,
Departures,
Enroute

Airtop Studied the effect of restricted airspace on the ATM system

Li et al. (2016) Network delays Arrivals,
Departures

Airtop Developed optimization algorithm for flight trajectory planning across
the airspace of China

Li et al. (2017) Local delays Arrivals,
Departures

SIMMOD Investigated the performance of closely independent parallel runways
under different operational modes of utilization.

LI et al. (2017) Local delays Arrivals,
Departures

SIMMOD Investigated the performance of airfield systems with lateral runways under
different operational modes of utilization.

Neto et al.
(2017)

Local delays Arrivals,
Departures,
Enroute

TAAM Conducted a safety assessment analysis of UAS integration within a
non-segregated airspace

Kaltenhäuser
et al. (2017)

Local delays Arrivals,
Departures,
Enroute

Airtop Analyzed the impact of space transportation on air traffic management

Rosenow et al.
(2017)

Network delays Arrivals,
Departures,
Enroute

TOMATO Developed an trajectory optimization algorithm for the free routing
airspace scheme

Munoz Hernan-
dez and Soler
(2017)

Local delays Enroute TAAM Simulated aircraft trajectories using optimization algorithm for conflict
detection and resolution

Aydoğan and
Çetek (2018)

Local delays Enroute SIMMOD Analyzed the use of point merge approach for en route traffic

Sidiropoulos
et al. (2018)

Local delays Arrivals,
Departures

Airtop Developed framework to optimize terminal airspace operations in
multi-airport systems

Rosenow et al.
(2019)

Network delays Arrivals,
Departures
Enroute

Airtop Investigated the impact of the 4D free route concept in the European
airspace network

Krstić Simić
and Babić
(2020)

Local delays Arrivals,
Departures

SIMMOD Investigated various aircraft sequencing strategies under different
runway systems.

Parambath
(2020)

Local delays Arrivals,
Departures

TAAM Computed airport sector capacity in the Chennai airspace region

Di Mascio
et al. (2021)

Local delays Arrivals,
Departures

Airtop Investigated the impact of the Departure and Arrival MANager systems
on airport throughput capacity

Sekine et al.
(2021)

Local delays Arrivals,
Departures

Airtop Investigated the impact of RECAT separations on the airport throughput
capacity of HND

Šabić et al.
(2021)

Local delays Arrivals,
Departures

CAST Simulated the impact of different parameters using CAST, and applied
neural networks to evaluate the correlation between those parameters

Hirabayashi
et al. (2022)

Local delays Enroute Airtop Analyzed the impact of the free route concept over the North Pacific
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Table E.10
Queueing models.

Article Type of delays Type of
movement

Method Purpose

Galliher and
Wheeler (1958)

Local delays Arrivals M(t)/D(t)/c Modeled landing delays using a M(t)/D(t)/c queueing model

Koopman (1972) Local delays Arrivals and
departures

M(t)/M(t)/1 and
M(t)/D(t)/1

Modeled airport local delays in a single runway (landing and take-off)
using a M(t)/M(t)/1 and a M(t)/D(t)/c queueing model

Hengsbach and
Odoni (1975)

Local delays Arrivals and
departures

M(t)/M(t)/c and
M(t)/D(t)/c

Modeled airport congestion in multiple runways (landing and take-off)
using a M(t)/M(t)/1 and a M(t)/D(t)/c queueing model

Kivestu (1976) Local delays Arrivals M/Ek(t)/s Modeled airport local delays using a M/Ek(t)/s queueing system

Bookbinder
(1986)

Local delays Arrivals and
departures

M(t)/M(t)/1/K Modeled airport local delays at various airports in USA

Daniel (1995) Local delays Arrivals and
departures

M(t)/D/s/K Modeled landing delays at Minneapolis airport using a M(t)/D(t)/s/K
queueing model, and investigated the benefits of congestion pricing

Malone (1995) Network delays Arrivals and
departures

Network of
M(t)/Ek(t)/1

Analyzed the accuracy of DELAYS model, and conceptualized AND
(see Pyrgiotis et al., 2013)

Peterson et al.
(1995)

Local delays Arrivals Semi-Markov
model

Modeled airport local delays using a deterministic recursive algorithm

Hebert and Dietz
(1997)

Local delays Departures M(t)/M(t)/1
and M(t)/Ek(t)/1

Modeled take-off delays at LGA airport using M(t)/Ek(t)/1 queueing
model with server absences

Lee et al. (1997) Local delays Arrivals and
departures

M(t)/M(t)/1,
M(t)/D(t)/1 and
M(t)/Ek(t)/1

Modeled local delays at various airports in USA using different
queueing models, and analyzed the benefits of using new ATM
technologies

Long et al.
(1999)

Network delays Arrivals and
departures

Network of
M(t)/Ek(t)/1

Developed queuing network model (LMINET) to study the impact of air
traffic management interventions across the US airspace network

Pujet et al.
(1999)

Local delays Departures M(t)/Ek(t)/1 Develop queueing models to simulate airport departure processes at
Boston Airport, and analyzed the impact of departure control
procedures

Anderson et al.
(2000)

Local delays Arrivals and
departures

M(t)/Ek(t)/1 Modeled local delays at various airports in USA, and investigated
several arrival and departure control strategies (e.g. gate holding)

Bolender and
Slater (2000)

Local delays Arrivals M/M/c and
M/D/c

Modeled landing delays at multiple runways airports, and investigated
runway scheduling strategies

Shortle et al.
(2003)

Network delays Arrivals and
departures

Jackson
Networks

Modeled the airspace network of US using a Jackson network
structure, and investigated methods to reduce network complexity by
removing low utilization nodes

Stamatopoulos
et al. (2004)

Local delays Arrivals and
departures

M(t)/Ek(t)/1 Developed decision support system for airport strategic planning
(MACAD), which integrates the DELAYS model

Mukherjee et al.
(2005)

Local delays Arrivals and
departures

M(t)/Ek(t)/1 Applied DELAYS to analyzed the effects of several congestion
management schemes

Lovell et al.
(2007)

Local delays Arrivals and
departures

M(t)/Ek(t)/1 Applied DELAYS algorithm and investigated methods for calibrating it
using real data

Churchill et al.
(2008)

Local delays Arrivals and
departures

M(t)/Ek(t)/1 Applied DELAYS algorithm and investigated methods for calibrating it
using real data

Tandale et al.
(2008)

Network delays Arrivals and
departures

Jackson
networks with
M/M/c nodes

Modeled the airspace network of US using a Jackson network structure,
and investigated the impact of uncertainties on traffic flow efficiency

Stolletz (2008) Local delays Arrivals and
departures

M(t)/G2(t)/1 Modeled landing and take-off delays using a M9t) G2(t) queueing
systems approximated as a Stationary backlog-carryover (SBC)

Hansen et al.
(2009)

Local delays Arrivals M(t)/Ek(t)/1 Applied DELAYS algorithm to investigate the potential benefits of
trajectory-based operations

Long and Hasan
(2009)

Network delays Arrivals and
departures

Network of
M(t)/Ek(t)/1

Expanded LMINET (see Long et al., 1999)

Simaiakis and
Balakrishnan
(2009)

Local delays Departures Monte Carlo Develop queueing models to simulate airport departure processes at
Boston Airport, and analyzed the impact of taxi operations on fuel
burn and emissions

Tien et al.
(2011)

Network delays Arrivals and
departures

Stochastic
network
flow model

Developed queueing network model of the US National Airspace
Systems

(continued on next page)
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Table E.10 (continued).
Zhou et al.
(2011)

Network delays Arrivals and
departures

Stochastic
network
flow model

Developed queueing network model of the US National Airspace
Systems

Nikoleris and
Hansen (2012)

Local delays Arrivals PSRD/D/1 Modeled landing delays using a PSRD/D/1 queueing model, and
analyzed different trajectory management concepts

Taylor et al.
(2012)

Network delays Arrivals and
departures

Stochastic
network
flow model

Developed queueing network model of the US National Airspace
Systems

Vaze and
Barnhart (2012)

Network delays Arrivals and
departures

Network of
M(t)/Ek(t)/1

Applies AND model to analyzed the impact of demand management
strategies in the US airport network

Wanke et al.
(2012)

Network delays Arrivals and
departures

Stochastic
network
flow model

Development of strategic airspace network tool to strategic air traffic
flow management

Wan et al.
(2013)

Network delays Arrivals and
departures

Stochastic
network
flow model

Developed queueing network model of the US National Airspace
Systems

Lovell et al.
(2013)

Local delays Arrivals and
departures

M(t)/M(t)/1 and
M(t)/Ek(t)/1

Developed approximated method to solve M(t)/Ek(t)/1 queueing
systems that can be extended to airport networks

Pyrgiotis et al.
(2013)

Network delays Arrivals and
departures

Network of
M(t)/Ek(t)/1

Developed AND algorithm that applies DELAYS in a network of airports

Taylor and
Wanke (2013)

Network delays Arrivals and
departures

Stochastic
network
flow model

Development of strategic airspace network tool to strategic air traffic
flow management

Caccavale et al.
(2014)

Local delays Arrivals PSRD/D/1 Modeled landing delays at Heathrow airport using a PSRD/D/1
queueing model

Gwiggner and
Nagaoka (2014)

Local delays Arrivals M/G/1 and
PSRD/G/1

Modeled air traffic flows in Japanese airspace using PSRD/G/1

Simaiakis et al.
(2013)

Local delays Departures M(t)/Ek/1 Develop queueing models to simulate airport departure processes at
Boston Airport, and analyzed departure control policies

Jacquillat and
Odoni (2015b)

Local delays Arrivals and
departures

M(t)/Ek/1 Applies the DELAYS model to optimize airport scheduling decisions
and runway utilization at JFK airport

Jacquillat and
Odoni (2015a)

Local delays Arrivals and
departures

M(t)/Ek/1 Applies the DELAYS model to optimize the control of airport service
rates at New York’s airports

Nikoleris and
Hansen (2016)

Local delays Arrivals PSRD/G/1 Analyzed the effect of trajectory prediction on runway occupancy times

Baspinar et al.
(2016)

Network delays Arrivals and
departures

Network of
M(t)/Ek(t)/1

Analyzed the effect of local disturbances on European airports using a
network queueing model

McFarlane and
Balakrishnan
(2016)

Local delays Departures D(t)/Ek(t)/1 Develop queueing models to simulate airport departure processes at
LGA Airport, and analyzed departure control policies

Pyrgiotis and
Odoni (2016)

Network delays Arrivals and
departures

Network of
M(t)/Ek(t)/1

Applies the DELAYS model to analyze the impact of scheduling limits
in Newark airport

Badrinath and
Balakrishnan
(2017)

Local delays Departures M(t)/G(t)/1 Develop queueing models to simulate airport departure processes at
LGA Airport, and analyze departure control policies

Jacquillat et al.
(2017)

Local delays Arrivals and
departures

M(t)/Ek/1 Applies the DELAYS model to analyze the dynamic control of runway
configurations

Jacquillat and
Vaze (2018)

Local delays Arrivals and
departures

M(t)/Ek/1 Applies the DELAYS model to optimize scheduling interventions
with airline equity

Wang et al.
(2018a)

Network delays Arrivals and
departures

M(t)/M(t)/s/s and
Cm(t)/Ck/s/s

Developed a coxian queueing model to simulate traffic flow in the US
airspace

Shone et al.
(2019)

Local delays Arrivals and
departures

M(t)/Ek(t)/1 and
PSRD/Ek(t)/1

Modeled landing delays using a PSRD/D/1 queueing model, and
developed a dynamic optimization algorithm to tactical control of
scarce resources at busy airports

Itoh and Mitici
(2019)

Local delays Arrivals G/G/c Developed a multi-server queuing model (G/G/c) to predict arrival
delays in an extended area of the destination airport

Itoh and Mitici
(2020)

Local delays Arrivals G/G/c Develop queueing models to simulate airport arrival processes
at Tokyo airport

(continued on next page)
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Table E.10 (continued).
Badrinath et al.
(2020)

Local delays Arrivals and
departures

Various
Queueing
Models

Developed network of queueing models to simulate airport surface
operations and investigate the impact of uncertainty on Off-Block time

Lin et al. (2021) Network delays Arrivals and
departures

M(t)/Ek/1 Develop network queueing model to simulate delay propagation across
the China airspace network

Zhao et al.
(2022)

Local delays Arrivals and
departures

M/G/1 Developed queueing network model using point-wise stationary
approximation to predict delays of a multi-airport system
(Macao, Hong Kong and Guangdong)

Table E.11
Data-driven models.

Article Type of delays Type of
movement

Method Purpose

Mueller and
Chatterji
(2002)

Schedule delays Both Statistical analysis Applied statistical analysis to assess the origin of schedule
delays at major US airports

Mazzeo (2003) Schedule delays Arrival Regression methods
gradient boosting
machines

Applied regression methods to investigate the causes of
schedule delays in US, and investigate their impact on airline
competition

Xu et al.
(2005)

Scheduled delays Both Regression methods
Bayesian networks

Applied Bayesian Network methods to investigate the impact
of the propagation of scheduled arrival delays on scheduled
departure delays..

Bratu and
Barnhart
(2005)

Schedule delays Both Statistical analysis Investigated the impact of scheduled delays on passengers’
propagated delays

Abdel-Aty
et al. (2007)

Schedule delays Arrival Regression methods Applied regression methods to investigate the causes of
arrival delays at Orlando Airport

Levy and
Rappaport
(2007)

Local delays Arrival Regression methods Applied regression methods to predict taxi-in times at
Detroit airport

Balakrishna
et al. (2008)

Local delays Departure Reinforcement
learning

Applied reinforcement learning methods to predict
taxi-out times at JFK

Xu et al.
(2008)

Network delays Both Regression methods Applied linear regression methods to investigate delay
propagation in the US airspace

Tu et al.
(2008)

Schedule delays Departure EM algorithm Developed statistical methods to predict departure scheduled
delays and delay propagation of flights operated by United
Airlines in Denver Airport

Pejovic et al.
(2009)

Schedule delays Both Regression methods Applied regression methods to analyze the impact of weather
on departure on-time performance.

Jetzki (2009) Network delays Both Statistical analysis Applied statistical analysis to investigate the propagation of
network delays in Europe

Sridhar and
Chen (2009)

Schedule delays Both Regression methods Applied regression methods to predict schedule delays at
US airports considering the impact of weather

Klein et al.
(2010)

Schedule delays Both Regression methods Applied regression methods and queueing models to predict
schedule delays at US airports considering the impact of weather

Balakrishna
et al. (2010)

Local delays Departure Reinforcement
learning

Applied reinforcement learning methods to predict taxi-out
times at TPA airport

Jordan et al.
(2010)

Local delays Departure Regression methods Applied regression methods to predict taxi times at Dallas
(DFW) airport

Nayak and
Zhang (2011)

Network delays Arrival Regression methods Applied regression methods to evaluate the impact of delays at
a single airport on the US airspace network.

Srivastava
(2011)

Local delays Departure Regression methods Applied regression methods to predict taxi-times at JFK airport

Deshpande and
Arıkan (2012)

Schedule delays Arrival Regression methods Applied regression methods to investigate how airline scheduled
block times affect on-time performance

Fleurquin et al.
(2013)

Network delays Both Agent-based models Applied data-driven agent based model to analyze the delay
propagation in the US airspace network

Liu and
Willsky (2013)

Network delays Both Gaussian Graphical
model

Developed Gaussian Graphical models to study the propagation
of schedule delays in the US airspace network

Ravizza et al.
(2013)

Local delays Both Regression methods Applied regression methods to predict taxi-times at Stockholm
and Zurich Airports

(continued on next page)
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Table E.11 (continued).
Rebollo and
Balakrishnan
(2014)

Schedule delays
Network delays

Departure Random forest Applied random forest algorithms to predict schedule delays
and their propagation across the US airspace network

Ravizza et al.
(2014)

Local delays Both Regression methods
Support vector
machines
Decision trees
Fuzzy Rule-Based
Systems

Applied various machine learning methods to predict taxi times
at Stockholm and Zurich Airports

Hong and Lee
(2015)

Local delays Arrival Regression methods
Clustering

Applied regression and clustering methods to predict aircraft
arrival times by incorporating probabilistic information about
trajectory patterns

De Leege et al.
(2013)

Local delays Arrival Regression methods
Neural networks

Applied machine learning methods to trajectory prediction for
sequencing and merging of traffic following fixed arrival routes
in the TMA

Aljubairy et al.
(2016)

Schedule delays Both Statistical analysis Analyzed schedule delays at major airports in China and their
correlation with weather conditions.

Belcastro et al.
(2016)

Schedule delays Arrival Random forest Applied random forest to predict arrival on-time performance of
US flights considering weather conditions.

Campanelli
et al. (2016)

Network delays Both Agent-based Models Compared the results of two different models for predicting
delay propagation across US and European airports.

Choi et al.
(2016)

Schedule delays Arrival Decision trees
Random forest
AdaBoost
k-Nearest-Neighbors

Applied various machine learning methods to predict arrival
on-time performance of US flights considering weather
conditions.

Karakostas
(2016)

Schedule delays Departure Bayesian networks Applied Bayesian network models to analyze the propagation of
schedule arrival delays on departure schedule delays

Kim et al.
(2016)

Schedule delays Both Neural networks Applied neural network methods to predict the on-time
performance of flights at various airports in the US.

Sternberg et al.
(2016)

Schedule delays Both Statistical analysis Applied statistical analysis to investigate the causes of delays
in Brazilian airports

Lordan et al.
(2016)

Local delays Both Regression methods Applied regression methods to predict taxi-times at
Barcelona Airport

Lee et al.
(2016a)

Local delays Departure Regression methods
Random forest

Applied machine learning methods to predict taxi-out times
at CLT airport

Lee et al.
(2016b)

Local delays Arrival Stochastic models Developed a stochastic model to predict descent aircraft
trajectories and predict the estimated time of arrival (ETA)
of flights at SDF

Chung et al.
(2017)

Schedule delays Both Neural networks Applied neural network methods to predict arrival delays
and optimize airline block times and crew scheduling

Ding (2017) Schedule delays Arrival Regression methods
Decision trees
Naïve Bayes

Applied regression methods to predict arrival
on-time performance

Thiagarajan
et al. (2017)

Schedule delays Both Decision trees
Random forest
AdaBoost
Gradient Boosting
Machines
Neural networks

Applied machine learning methods to predict
on-time performance of US domestic flights

Horiguchi
et al. (2017)

Schedule delays Departure Random forests,
XGBoost,
Neural networks

Applied machine learning methods to predict delays and
fuel consumption of specific airline routes

Manna et al.
(2017)

Schedule delays Both Gradient Boosting
Machines
Decision tree

Applied gradient boosted decision trees to predict schedule
delays of US domestic flights

Du et al.
(2018)

Network delays Both Causality Networks Developed a delay causality network model to understand
the propagation of flight delays at Chinese airports

Rodríguez-Sanz
et al. (2018)

Network delays Both Causality Networks Statistical analysis of different types of delays:
local delays; schedule delays; and propagation of arrival delays
into departure delays

(continued on next page)
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Table E.11 (continued).
Moreira et al.
(2018)

Schedule delays Both Neural networks
Vector Machines
Random forest
Naives Bayes

Applied various machine learning methods to predict different
classes of on-time performance of Brazilian flights

Wang et al.
(2018b)

Local delays Arrival Neural Network
Clustering

Applied Neural networks and Clustering methods to
predict airborne trajectories

Zhu et al.
(2018)

Local delays Arrival Gradient Boosting
Machines
XGBoost
Random forest

Applied various machine learning methods to predict
en-route local delays for flights traveling between
DEN, ORD and IAH

Diana (2018) Local delays Departure Regression Methods
Support Vector
Machines
Random forest
Gradient Boosting
Machines
Decision trees

Applied various machine learning methods to predict taxi-out
times at SEA airport

Yin et al.
(2018)

Local delays Departure Regression Methods
Support Vector
Machines
Random forest

Applied various machine learning methods to predict taxi-out
times at Shanghai Airport

Herrema et al.
(2018)

Local delays Departure Neural networks
Decision trees
Reinforcement
Learning

Applied various machine learning methods to predict taxi-out
\times at CDG airport

Chakrabarty
et al. (2019)

Schedule delays Arrival Support Vector
Machines
Random forest,
k-Nearest-Neighbors
Gradient Boosting
Machines

Applied various machine learning methods to predict arrival
on-time performance of flights operated by American Airlines

Qin et al.
(2019)

Network delays Both Agent-based Models Applied agent based simulation to investigated network
delay propagation across Chinese airports

Etani (2019) Schedule delays Arrival Support Vector
Machines
Gradient Boosting
Machines
Random forest
Decision trees

Applied various machine learning methods to predict arrival
on-time performance of flights operated by
Peach Aviation (Japanese Low cost airline)

Rodríguez-Sanz
et al. (2019)

Schedule delays Arrival Bayesian Networks Applied Bayesian Networks to predict schedule arrival delays
and investigate the contribution of local delays, to these delays

Yu et al.
(2019)

Schedule delays Departure Neural networks
Support Vector
Machines
k-Nearest-Neighbors
Regression Methods

Applies Neural networks integrated with Support Vector
Regression methods to predict schedule delays of
various flights in China

Gui et al.
(2019)

Schedule delays Arrival Neural Network Applied different Neural Networks architectures to predict
arrival schedule delays across several routes and airports

Wu et al.
(2019)

Schedule delays Departure Support Vector
Machines
k-Nearest-Neighbors
Random forest

Applied an improved SVM to predict departure schedule
delays at Beijing Airport

Shao et al.
(2019)

Schedule delays Departure Gradient Boosting
Machines
Linear Regression
Neural Networks
Support Vector
Machines

Applied various Machine Learning Methods to predict
Schedule delays of US flights

Ai et al. (2019) Network delays Both Neural networks Applied Neural networks to predict network delays across
China Airspace

(continued on next page)
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Table E.11 (continued).
Chen and Li
(2019)

Schedule delays Both Random forest Applied Random forest to predict schedule delays of US
flights while considering propagation of delays from
previous operations

Fernandes
et al. (2020)

Schedule delays Departure Random forest
Support vector
machines
Neural networks

Applied various machine learning methods to identify the
factors influencing schedule delays of charter flights in
Europe

Lambelho
et al. (2020)

Schedule delays Both Gradient Boosting
Machines
Random forest
Neural networks

Applied various machine learning methods to predict
on-time performance and cancellations of flights at London
Heathrow

Yazdi et al.
(2020)

Schedule delays Arrival Random forest
Neural networks
Gradient Boosting
Machines

Applied Neural networks to predict arrival on-time
performance on US flights

Esmaeilzadeh
and Mokhtari-
mousavi
(2020)

Local delays Departure Support Vector
Machines

Applied SVM to predict departure delays at three major
New York Airports, and investigate the source of those delays
(weather, gate delays, taxi delays, etc.)

Qu et al.
(2020)

Schedule delays Arrival Neural networks
Random forest
Decision trees
Support vector
machines

Applied Neural networks to predict arrival on-time
performance of US flights, considering the impact of weather

Jiang et al.
(2020)

Schedule delays Arrival Support vector
machines
Decision trees
Random forest
Neural networks

Applied various machine learning methods to predict arrival
on-time performance of US flights, considering the
impact of weather

Murça and de
Oliveira (2020)

Local delays Arrival Gaussian mixture
model
Clustering

Applied clustering and GMM methods to predict aircraft
arrival trajectories in the TMA of Guarulhos Airport

Wang et al.
(2020)

Local delays Arrival Regression Methods
Gaussian mixture
model
k-Nearest Neighbors
Neural networks
Decision trees

Applied Neural networks and Clustering methods to predict
airborne trajectories

Tran et al.
(2020)

Local delays Both Random forest Applied Random forest to predict aircraft tax-times and
speeds at Singapore airport

Li et al. (2020) Local delays Both Neural networks
Support vector
machines
Random forest
Regression Methods

Applied Neural networks to predict taxi-times at
Hong Kong airport

Dou (2020) Schedule delays Arrival Regression Methods
Support vector
machines
Gaussian mixture
model

Applied GBM and Essemble Methods to predict arrival
on-time performance of US flights

Zhang and Ma
(2020)

Schedule delays Departure Gaussian mixture
model

Applied GBM to predict departure on-time performance
at EWR

Guo et al.
(2020)

Schedule delays Departure Neural networks Applied Neural networks to predict departure
on-time performance

Huo et al.
(2020)

Schedule delays Arrival Random forest
Regression Methods
k-Nearest-Neighbors
Naives Bayes

Applied various Machine Learning Methods to predict
arrival on-time performance at Hong Kong airport

Zhang et al.
(2020)

Network delays Both Epidemiologic
models

Applied epidemological models to predict network
delay propagation

(continued on next page)
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Table E.11 (continued).
Truong (2021) Schedule delays Arrival Bayesian networks Applied Bayesian methods to predict the probability of

arrival delays in US flights.

Cai et al.
(2021)

Network delays Departure Regression
methods
Support vector
machines
Neural networks

Applied Neural networks to predict delay propagation
across the Chinese airspace network

Basturk and
Cetek (2021)

Local delays Arrival Random forest
Neural networks

Applied Random forest and Neural Networks to predict the
estimated time of arrival (ETA) at ISL, given the time of
departure from the origin airport, or the time entering the
arrival TMA.

Rodríguez-Sanz
et al. (2021)

Schedule delays Arrival Bayesian networks Applied Bayesian Networks to investigate the impact of
weather on on-time performance of Brazilian flights

Wang et al.
(2021)

Local delays Both Gradient Boosting
Machines
Random forest
Neural networks

Applied various machine learning methods to predict
taxi-times at Hong Kong, Manchester and Zurich Airports

Lim et al.
(2021)

Local delays Departure Neural networks Applied Neural networks to predict taxi-out times at
Atlanta Airport

Xuhao et al.
(2021)

Local delays Arrival Random forest
Clustering

Applied clustering methods to identify historical arrival
trajectory patterns at Shanghai Airport, and then applies random
forest to predict the trajectory pattern of each flight

Bao et al.
(2021)

Network delays Both Neural networks Applied Neural networks and Clustering to predict
network-wide delays across US

Yi et al. (2021) Schedule delays Both Random forest
k-Nearest-
Neighbors
Regression
Methods
Naïve Bayes

Applied various Machine Learning methods to predict
on-time performance of flights at Boston Airport

Li and Jing
(2021)

Network delays Both Random forest Applied Random forest to investigate network delays
across US airports

Guo et al.
(2021)

Schedule delays Departure Random forest
Neural networks
Regression
Methods

Applied Random forest to predict departure on-time
performance at Beijing Airport

(Alla et al.,
2021) (Check
literature)

Schedule delays Arrival Neural Network
Decision trees
Gradient Boosting
Machines

Applied Neural networks to predict arrival on-time
performance of flights in US

Lu et al.
(2021)

Schedule delays Arrival Gradient Boosting
Machines

Applied GBM to predict arrival on-time performance of
Chinese Flights

Li and Jing
(2022)

Network delays Arrival Random forest
k-Nearest-
Neighbors
Regression
Methods
Neural networks

Applied Random forest to investigate network delays
across Chinese Airports

Bisandu et al.
(2022)

Schedule delays Arrival Neural networks
Gradient Boosting
Machines
Support vector
machines

Applied Neural networks to predict the number of flights
delayed in US

Zhang et al.
(2022)

Local delays Arrival Regression
methods
Random forest
Support Vector
Machines
k-Nearest-
Neighbors

Applied Machine Learning methods to predict the Estimated
Time of Arrival of flights in Guangzhou airport, given the time
they enter in the TMA.

(continued on next page)
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Table E.11 (continued).
Wang et al.
(2022)

Schedule delays Arrival Neural networks
Random forest
k-Nearest-
Neighbors

Applied various Machine Learning methods to predict the
distribution of delays (i.e. average and standard deviation),
across different flight routes at Guangzhou airports

Birolini and
Jacquillat
(2023)

Schedule delays Arrival Regression
methods
Random forest
XGBoost

Applied machine learning + queueing models to predict
schedule delays in support to optimization of day-ahead
aircraft routings
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