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Abstract: Time delays in control systems are often present due to inherent delays of the
instrumentation and signal processing computations. Among the proposed solutions for time-
delay compensation in linear control systems, an important role is played by the Smith Predictor
scheme, as it allows the design of the controller for reference tracking without considering
time delay. However, the Smith Predictor presents poor disturbance rejection capabilities, in
particular when the system to be controlled has an integral action, e.g. as typical of motion
control systems. This paper illustrates the ineffectiveness of the Smith Predictor when applied
on an linear time-delay system with integral action and provides an analytical expression of the
steady-state error when a step disturbance acts on the control signal.

1. INTRODUCTION

Many industrial control systems present time delays due to
different reasons, i.e. data acquisition/analysis processes
or sensors and actuators inherent operating times (Eller
et al., 1969). It is well known that time delays in con-
trol systems cause controllability and potential instability
problems (Zhong, 2006). In order to improve the control
performance in time-delay systems, dead time compen-
sators have been studied, starting from the introduction of
the Smith Predictor (SP) scheme (Smith, 1957). The SP
is a well-known dead time compensator for asymptotically
stable linear systems: assuming a known time delay and
system model, the SP can predict the output of the system,
allowing the design of the controller without considering
the time delay, see Figure 1 for a classical control block
diagram employing the SP.

Nevertheless, the SP presents poor disturbance rejection
capabilities (Torrico et al., 2013; Torrico and Normey-
Rico, 2005). Consequently, several modified versions of the
SP have been studied to improve its disturbance rejection
performance (Zhang et al., 2004). Among others, in (Wu,
2010) a modified SP is developed for disturbance rejection
of a single sinusoidal signal. However, such SP does not
perform satisfactorily when employed with systems having
an integral action (Sreevalli et al., 2023).

In the context of motion control, in addition to possible
time delays, it is also common to have one stage of
integration from the system excitation signal to the sensed
feedback one (Ellis, 2004). As an archetypal example, the
transfer function of a SISO LTI two-mass drive system
with elastic coupling presents an integral action (Sonzogni
et al., 2023), and even when it is necessary to control the
motion system in position, the open-loop transfer function
presents an integrator.

Although the poor disturbance rejection capabilities of
the SP scheme are known in literature (Gu, 2008), and
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Fig. 1. Block scheme of a SISO LTI system under linear
feedback control with the insertion of the Smith
Predictor, where G(s) is the transfer function of the
system under control, R(s) is the transfer function
of the controller and P (s) is the transfer function of
the Smith Predictor, w(t) is the reference signal, e(t)
is the error signal, u(t) is the control action signal,
du(t) is the disturbance signal on the control action,
y(t) is the output signal, z(t) is the feedback control
signal and d is the delay time value.

modified SP schemes exist to deal with integrative systems
(Zhang and Sun, 1996), the reason why the insertion of
a traditional SP in a feedback control loop with time-
delay systems with an integral action causes problems
of tracking and disturbance rejection has not been fully
studied yet. Specifically, the main contribution of this
article is to demonstrate the cancellation of the integral
action of the controller R(s) due to the presence of SP
in the control loop when G(s) has an integral action. This
results in a constant error e(∞) at steady-state when a step
disturbance du(t) acts on the control action. Moreover,
an explicit analytical expression of the steady-state error
e(∞) is provided in such case.

The structure of the paper is as follows. Section 2 presents
the problem statement. Section 3 describes the steady-
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stable linear systems: assuming a known time delay and
system model, the SP can predict the output of the system,
allowing the design of the controller without considering
the time delay, see Figure 1 for a classical control block
diagram employing the SP.

Nevertheless, the SP presents poor disturbance rejection
capabilities (Torrico et al., 2013; Torrico and Normey-
Rico, 2005). Consequently, several modified versions of the
SP have been studied to improve its disturbance rejection
performance (Zhang et al., 2004). Among others, in (Wu,
2010) a modified SP is developed for disturbance rejection
of a single sinusoidal signal. However, such SP does not
perform satisfactorily when employed with systems having
an integral action (Sreevalli et al., 2023).

In the context of motion control, in addition to possible
time delays, it is also common to have one stage of
integration from the system excitation signal to the sensed
feedback one (Ellis, 2004). As an archetypal example, the
transfer function of a SISO LTI two-mass drive system
with elastic coupling presents an integral action (Sonzogni
et al., 2023), and even when it is necessary to control the
motion system in position, the open-loop transfer function
presents an integrator.

Although the poor disturbance rejection capabilities of
the SP scheme are known in literature (Gu, 2008), and
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Fig. 1. Block scheme of a SISO LTI system under linear
feedback control with the insertion of the Smith
Predictor, where G(s) is the transfer function of the
system under control, R(s) is the transfer function
of the controller and P (s) is the transfer function of
the Smith Predictor, w(t) is the reference signal, e(t)
is the error signal, u(t) is the control action signal,
du(t) is the disturbance signal on the control action,
y(t) is the output signal, z(t) is the feedback control
signal and d is the delay time value.

modified SP schemes exist to deal with integrative systems
(Zhang and Sun, 1996), the reason why the insertion of
a traditional SP in a feedback control loop with time-
delay systems with an integral action causes problems
of tracking and disturbance rejection has not been fully
studied yet. Specifically, the main contribution of this
article is to demonstrate the cancellation of the integral
action of the controller R(s) due to the presence of SP
in the control loop when G(s) has an integral action. This
results in a constant error e(∞) at steady-state when a step
disturbance du(t) acts on the control action. Moreover,
an explicit analytical expression of the steady-state error
e(∞) is provided in such case.

The structure of the paper is as follows. Section 2 presents
the problem statement. Section 3 describes the steady-
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state behaviour of the closed-loop system composed by
the open-loop system with time delay, integral action and
the SP. Simulation results validating the theoretical ones
are given in Section 4 and in Section 5 some concluding
remarks are outlined.

2. PROBLEM STATEMENT

2.1 Review of Smith Predictor theory for linear systems

The applicability of the SP assumes an asymptotically
stable SISO LTI system under control G(s) as follows

G(s) := G′(s)e−sd, (1)

where G′(s) is defined as the transfer function of the
system without the time delay and d is the value of
the time delay. The SP is a type of predictive control
implemented as in Figure 1, where the SP transfer function
is defined as follows

P (s) := (1− e−sd)G′(s). (2)

As a result, the z(t) variable, in Figure 1, is the prediction
of the system output y(t) at time t+ d, as shown in (3)

Z(s) = [G(s) + P (s)]U(s) = G′(s)U(s)

= esdG(s)U(s) = esdY (s).
(3)

The open loop transfer function results in

L(s) := (G(s) + P (s))R(s) = G′(s)R(s). (4)

So that, the controller R(s) can be designed neglecting the
delay issues.
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Fig. 2. Smith predictor model equivalent block diagram.

Figure 2 shows an equivalent control diagram of the SP,
where the equivalent controller Req(s) is highlighted and
reads as

Req(s) :=
R(s)

1 +R(s)P (s)
. (5)

Defining F ′(s) as the closed-loop transfer function without
the delay d and the predictor P (s)

F ′(s) :=
R(s)G′(s)

1 +R(s)G′(s)
, (6)

it is possible to verify that the transfer function of the
closed-loop system between the reference w(t) and the
output y(t) is

F (s) :=
R(s)G(s)

1 +R(s)G(s) +R(s)P (s)
= F ′(s)e−sd. (7)

Notice that the time delay is still present on the output
signal but it does not interfere with the control dynamics.

If the system G(s) is asymptotically stable, the static gain
of the Smith Predictor transfer function P (s) is null, i.e.

P (0) = 0. (8)

On the assumption of asymptotic stability of the closed-
loop control system F ′(s), the equivalent controller Req(s)
is asymptotically equivalent to the controller R(s). There-
fore, the steady-state performance of the closed-loop sys-
tem F (s) (i.e. the steady-state error in response to ref-
erences or disturbances on the control action) depends
exclusively on the structure of the controller R(s). It is
relevant to point out that the SP model is highly sensitive
to modelling errors. In particular the equation (3), (4), (7)
and the SP model theory are only valid if the model of the
system under control is exactly G(s).

2.2 Applicative context

Mechatronic systems are often time-delay systems with
integral action, due to the system structure, controllability
decisions and the available sensors used for their motion
control (Sonzogni et al., 2023). The following assumption
defines an archetypal system and controller transfer func-
tions for mechatronic motion control systems. However,
the outlined results are generally applicable to systems
with structure defined in the following.

Assumption 1: G(s) is a SISO LTI system with integral
action and time delay d, as in (9), that presents m zeros
with time constants Ti1 with i1 = {1, . . . ,m}, n poles with
time constants τi2 with i2 = {1, . . . , n} and system gain µ1.
The time constants Ti1 and τi2 may be real or conjugated
complexes.

G(s) =
µ1

s

∏m
i1
(1 + sTi1)∏n

i2
(1 + sτi2)

e−sd = G′(s)e−sd (9)

The transfer function of the controller R(s) is referred to
as

R(s) =
µ2

sg

∏l
j1
(1 + sRj1)∏h

j2
(1 + srj2)

, (10)

where µ2 is the controller’s gain, g is the number of poles
in zero, Rj1 are the time constants of the l zeros with
j1 = {1, . . . , l}, and rj2 are the time constants of the h
poles with j2 = {1, . . . , h}. The time constants Rj1 and
rj2 may be real or conjugated complexes.

The system G(s) may be stable, if the time constants have
positive real part Re(τi) > 0, but it is not asymptotically
stable, due to the pole in zero provided by the integral
action. So, the theoretical analyses presented in Section
2.1 are not fully applicable. In this paper, a SP is applied
on G(s) in (9) as shown in Figure 1, with transfer function
P (s) as in (2). The SP equivalent scheme shown in Figure 2
is still considered with an equivalent controller Req(s) as in
(5). The transfer functions of the closed-loop system F ′(s)
and F (s) are computed as in (6) and (7), respectively.

3. STATIC PERFORMANCE OF SMITH PREDICTOR
SCHEMES ON SYSTEMS WITH INTEGRAL ACTION

The aim of this paper is to analyse the effect of the Smith
Predictor (SP) when applied to the control of time-delay
systems with integral action (9)-(10).
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Figure 2 shows an equivalent control diagram of the SP,
where the equivalent controller Req(s) is highlighted and
reads as

Req(s) :=
R(s)

1 +R(s)P (s)
. (5)

Defining F ′(s) as the closed-loop transfer function without
the delay d and the predictor P (s)

F ′(s) :=
R(s)G′(s)

1 +R(s)G′(s)
, (6)

it is possible to verify that the transfer function of the
closed-loop system between the reference w(t) and the
output y(t) is

F (s) :=
R(s)G(s)

1 +R(s)G(s) +R(s)P (s)
= F ′(s)e−sd. (7)

Notice that the time delay is still present on the output
signal but it does not interfere with the control dynamics.

If the system G(s) is asymptotically stable, the static gain
of the Smith Predictor transfer function P (s) is null, i.e.

P (0) = 0. (8)

On the assumption of asymptotic stability of the closed-
loop control system F ′(s), the equivalent controller Req(s)
is asymptotically equivalent to the controller R(s). There-
fore, the steady-state performance of the closed-loop sys-
tem F (s) (i.e. the steady-state error in response to ref-
erences or disturbances on the control action) depends
exclusively on the structure of the controller R(s). It is
relevant to point out that the SP model is highly sensitive
to modelling errors. In particular the equation (3), (4), (7)
and the SP model theory are only valid if the model of the
system under control is exactly G(s).

2.2 Applicative context

Mechatronic systems are often time-delay systems with
integral action, due to the system structure, controllability
decisions and the available sensors used for their motion
control (Sonzogni et al., 2023). The following assumption
defines an archetypal system and controller transfer func-
tions for mechatronic motion control systems. However,
the outlined results are generally applicable to systems
with structure defined in the following.

Assumption 1: G(s) is a SISO LTI system with integral
action and time delay d, as in (9), that presents m zeros
with time constants Ti1 with i1 = {1, . . . ,m}, n poles with
time constants τi2 with i2 = {1, . . . , n} and system gain µ1.
The time constants Ti1 and τi2 may be real or conjugated
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The transfer function of the controller R(s) is referred to
as

R(s) =
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sg
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where µ2 is the controller’s gain, g is the number of poles
in zero, Rj1 are the time constants of the l zeros with
j1 = {1, . . . , l}, and rj2 are the time constants of the h
poles with j2 = {1, . . . , h}. The time constants Rj1 and
rj2 may be real or conjugated complexes.

The system G(s) may be stable, if the time constants have
positive real part Re(τi) > 0, but it is not asymptotically
stable, due to the pole in zero provided by the integral
action. So, the theoretical analyses presented in Section
2.1 are not fully applicable. In this paper, a SP is applied
on G(s) in (9) as shown in Figure 1, with transfer function
P (s) as in (2). The SP equivalent scheme shown in Figure 2
is still considered with an equivalent controller Req(s) as in
(5). The transfer functions of the closed-loop system F ′(s)
and F (s) are computed as in (6) and (7), respectively.

3. STATIC PERFORMANCE OF SMITH PREDICTOR
SCHEMES ON SYSTEMS WITH INTEGRAL ACTION

The aim of this paper is to analyse the effect of the Smith
Predictor (SP) when applied to the control of time-delay
systems with integral action (9)-(10).

Assumption 2: The time constants of the poles of G(s) in
(9) have positive real part Re(τi) > 0. The controller R(s)
in (10) asymptotically stabilises the closed-loop system
without time delay F ′(s) as in (6).

Considering that the output y(t) is affected by the refer-
ence w(t) and the disturbances du(t), in the following yw(t)
is defined as the component of the output y(t) affected by
the reference w(t) and yd(t) is defined as the component
of the output y(t) affected by the disturbances du(t), as
follow

y(t) = yd(t) + yw(t). (11)

In (Gu, 2008) it has been proved that when the system
G(s) in (9) presents an integral action, the static gain
of the SP transfer function P (s) is not null and so it is
no longer guaranteed that the steady-state performance of
Req(s) in (5) is equal to the steady-state performance of
R(s) in (10).

Nevertheless, it is possible to test and verify that, with-
out disturbances, the closed-loop system F (s) is able to
correctly track a step reference due to the presence of an
integrator in G(s).

Proposition 1. When a step reference w(t) = A · step(t) is
applied to the closed-loop system F (s), in (7), the steady-
state value of the output response yw(t) converges to

yw(∞) = A. (12)

Proof. The proof is in the appendix.

However, for other types of reference w(t), the closed-loop
system F (s) does not exhibit the same static performance
of F ′(s), where the SP and the time delay are not present,
as expected from standard linear control theory.

When the Smith Predictor is applied to systems with
integral action, the negative feedback loop involving P (s)
on the controller R(s), as in Figure 2, erases the integral
actions of the controller R(s). In conclusion, the equivalent
controller Req(s) has no integral action and the steady-
state tracking and disturbance rejection performance of
the feedback system F (s) depends also on the static gain
of the SP.

Proposition 2. When the Smith Predictor P (s) is applied
to a time-delay system with an integrator as in (9), the
equivalent controller Req(s) in (5) has no integral actions,
even if the controller R(s) has one or more poles in zero.

Proof. The proof is in the appendix.

It is important to clarify that the closed-loop system is
able to track a step signal reference just because the
system G(s) presents an integrator and not because of
the integral action of the controller R(s). So, for instance,
even if the open-loop transfer function L(s) in (4) has two
integrators, the closed-loop system is not able to obtain
a zero tracking error when the reference is a ramp signal
w(t) = A · ramp(t).

Regarding the disturbance rejection capabilities, the SP
applied on a time-delay system with integral actions does
not present good performance as shown in the following
proposition.

Proposition 3. When a step disturbance du(t) = A·step(t)
acts on the control action of a system G(s) in (9) with

integral action as shown in Figure 1, and the controller
R(s) in (10) is designed without poles in zero (i.e. g = 0),
the steady-state output response yd(t) converges to

yd(∞) = A · 1 + µ1µ2 · d
µ2

. (13)

Proof. The proof is in the appendix.

Proposition 4. When a step disturbance du(t) = A·step(t)
acts on the control action of a system G(s) in (9) with
integral action as shown in Figure 1, and the controller
R(s) in (10) is designed with poles in zero (i.e. g ≥ 1), the
steady-state output response yd(t) converges to

yd(∞) = A · µ2µ
2
1 · d

µ2µ1
= µ1dA. (14)

Proof. The proof is in the appendix.

Propositions 3-4 show that, when the system G(s) presents
an integral action, and the closed-loop system F ′(s) is
asymptotically stable thanks to the controller R(s), the
steady-state output in response to step disturbances du(t)
acting on the control action converges to a non-zero
constant value, that is proportional to the delay d and
the system gain µ1, and does not depend on the values of
the controller parameters.

It is important to note that, considering the control dia-
gram of Figure 2 and under Assumption 1 and Assumption
2, the transfer function from the disturbances on the con-
trol action du(t) to the output yd(t)

Se(s) :=
Y (s)

Du(s)
:=

G(s)

1 +G(s)Req(s)
, (15)

and the transfer function from the disturbances du(t) to
the tracking error e(t), defined as

E(s)

Du(s)
:=

−G(s)

1 +G(s)Req(s)
= −Se(s) (16)

are equal, neglecting the sign. So, the absolute value of the
steady-state error e(∞) in response to step disturbances
du(t) is equal to the absolute value of the steady-state
output response yd(t), that is

|e(∞)| = |yd(∞)|. (17)

4. SIMULATIONS AND RESULTS

In order to test the validity of Propositions 1-4, different
tests have been performed in simulation. For all tests the
system G(s) as in (18) is considered. The system G(s)
presents positive gain µ1 = 5, one zero with time constant
T1 = 0.015[s], one pole in zero and two conjugated complex
poles with resonant frequency ωp = 73[ rads ] and damping
coefficient ξp = 0.1, and time delay d = 0.5[s], as follows

G(s) =
µ1

s
· 1 + T1s

1 +
2ξps

ωp
+

s2

ω2
p

e−sd. (18)

For the first test, the controller R(s), as in (19), is chosen.
The controller R(s) has no poles in zero (g = 0), gain
µ2 = 0.5 and a stable real pole with time constant
r1 = 0.05[s]. The transfer function of the controller R(s)
is then

R(s) =
µ2

r1s+ 1
. (19)
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All poles of the closed-loop system F ′(s) without the
time delay in (6) have negative real part and so F ′(s) is
asymptotically stable.

Figure 3 shows the output y(t), the reference w(t), the
error e(t) and the disturbance du(t) of the closed-loop
system F (s) when a step reference with unit amplitude,
as in (20a), is applied at time 1[s] and a step disturbance
with unit amplitude, as in (20b), is applied on the control
action at time 4[s], that is

w(t) = step(t), (20a)

du(t) = step(t− 4). (20b)

As it can be seen, according to Proposition 1 the closed-
loop system tracks correctly the step reference but it is
not able to reject the step disturbance, as argued by
Proposition 2. Moreover, the steady-state error e(∞),
in response to step disturbances du(t), converges to a
constant value computed as in (13), (17) and as claimed
by the Proposition 3, that is

|e(∞)| = yd(∞) = 1 · 1 + 5 · 0.5 · 0.5
0.5

= 4.5. (21)

e( ) = -4.5

Fig. 3. Tracking performance of F (s) using a Smith Pre-
dictor and a controller without integral action.

Then, it is chosen to test the system G(s) in (18) with
a controller that presents a single pole in zero, so that
g = 1. The controller R(s), shown in (22), is a classical
Proportional-Integral (PI) controller, with proportional
gain and integral gain equal to Kp = 0.5 and Ki = 3,
respectively. The controller’s gain results in µ2 = Ki = 3
and R(s) presents one stable real zero with time constant

R1 =
0.5

3
[s]. The controller R(s) has been designed in

order to obtain a closed-loop system that is asymptotically
stable, by setting

R(s) = Kp +
Ki

s
= µ2

1 + sR1

s
. (22)

Figure 4 shows the results of the closed-loop system F (s)
when a step reference signal with unit amplitude, as in
(20a), is applied at time 1[s] and a step disturbance signal
with unit amplitude, as in (20b), is applied on the control
action at time 4[s].

The closed-loop system F (s) can track the step reference,
and it is important to notice that the time delay is still
present in the output signal. However, the feedback system

e( ) = -2.5

Fig. 4. Tracking performance of F (s) using a Smith Pre-
dictor and a controller with integral action.

F (s) can not reject the disturbance on the control action
and the absolute value of the steady-state error e(∞),
in response to step disturbances du(t), converges to a
constant value (23) computed as in (14), (17) and claimed
by Proposition 4:

|e(∞)| = yd(∞) = µ1dA = 5 · 0.5 · 1 = 2.50. (23)

Furthermore, even if the controller R(s) has an integrator
as in (22), the closed-loop system is not able to track a
ramp reference at steady state (as one would expect when
the SP is not necessary, e.g. for a system without time
delay, as two integrators are present in the control loop),
as shown in Figure 5 and as indicated in Proposition 2.

Fig. 5. Inability to track the reference ramp signal by
the closed-loop system using a Smith Predictor and a
controller with integral action.

5. CONCLUSION

This article presented how the Smith Predictor control
scheme behaves when it is applied to time-delay systems
with an integral action. As shown in Section 3, the closed-
loop system is unable to correctly track all types of
reference signals, for example w(t) = ramp(t). In addition,
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as in (22), the closed-loop system is not able to track a
ramp reference at steady state (as one would expect when
the SP is not necessary, e.g. for a system without time
delay, as two integrators are present in the control loop),
as shown in Figure 5 and as indicated in Proposition 2.

Fig. 5. Inability to track the reference ramp signal by
the closed-loop system using a Smith Predictor and a
controller with integral action.

5. CONCLUSION

This article presented how the Smith Predictor control
scheme behaves when it is applied to time-delay systems
with an integral action. As shown in Section 3, the closed-
loop system is unable to correctly track all types of
reference signals, for example w(t) = ramp(t). In addition,

it is also ineffective in rejecting disturbances on the control
action. Moreover, it has been proved that the reason is due
to the cancellation of the poles in zero of the controller
R(s) by the negative feedback loop on the controller made
by the Smith Predictor P (s). Additionally, it has been
demonstrated that the steady-state error in response to
a step disturbance is proportional to the delay d of the
system G(s) and it is described by a particular equation
presented in (13) and (14). Modified SP schemes able
to deal with systems with an integral action are already
present in the literature. The aim of the paper was not to
devise one such scheme, but rather to analytically study
the consequences of applying standard SP schemes to
integrative systems, thus providing insights on tracking
and disturbance rejection errors. The goal of future works
is to study new modifications of the the structure of
the Smith Predictor in order to be applicable also on
integrative systems.

Appendix A. PROOFS

A.1 Proof of Proposition 1

Consider the transfer function G(s) of the system under
control with an integrator as in (9) and the transfer
function of a generic controller R(s) as in (10). The
transfer function F (s) from the reference w(t) to the
output y(t) is shown in (7). The steady-state output
yw(∞) of the closed-loop system, when a step reference
with amplitude A is applied, i.e. w(t) = A · step(t), is
obtained by solving the following limit:

yw(∞) = lim
s→0

s · A
s
· F (s),

= A · lim
s→0

R(s)G′(s)

1 +R(s)G′(s)
e−sd,

= A · lim
s→0

µ2µ1

sg+1

1 +
µ2µ1

sg+1

,

= A · lim
s→0

µ2µ1

sg+1 + µ2µ1
= A.

(A.1)

So, at steady state the closed-loop system F ′(s) can follow
the value of the step reference signal.

A.2 Proof of Proposition 2

Consider the transfer function G(s) of the system under
control with an integrator as in (9), the transfer function
of a generic controller R(s) as in (10) and the transfer
function of the equivalent controller Req(s) as in (5) of the
Smith Predictor shown in Figure 1. It is possible to prove
that at steady state the equivalent controller Req(s) does
not present the integral action even if R(s) has one or more
integrators g ≥ 1. Consider the limit:

lim
s→0

Req(s) = lim
s→0

R(s)

1 +R(s)P (s)
,

lim
s→0

Req(s) = lim
s→0

µ2

sg

1 +
µ2

sg
· (1− e−sd)

µ1

s

(A.2)

lim
s→0

Req(s) = lim
s→0

µ2

sg

1 +
µ2µ1

sg+1
−

µ2µ1

sg+1
e−sd

,

= lim
s→0

µ2s

sg+1 + µ2µ1 − µ2µ1e−sd
.

(A.3)

The limit presents an undetermined form [00 ]; it can be
solved by applying the de l’Hôpital theorem as follows:

lim
s→0

Req(s) = lim
s→0

µ2

(g + 1)sg + µ2µ1de−sd
,

=
µ2

µ2µ1d
,

=
1

µ1d
.

(A.4)

So, since at steady state the equivalent controller Req(s)
assumes a finite real value, it does not present an integral
action.

A.3 Proof of Proposition 3

Consider the transfer function G(s) of the system under
control with an integrator as in (9) and the transfer
function of a generic controller R(s) without poles at zero
(g = 0) so that

R(s) = µ2

∏l
j1
(1 + sRj1)∏h

j2
(1 + srj2)

. (A.5)

The steady-state output yd(∞) of the closed-loop system
F (s) in (7), when a step disturbance signal du(t) with
amplitude A is applied on the control action, i.e. du(t) =
A · step(t), is obtained by solving the following limit:

yd(∞) = lim
s→0

s · A
s
· Y (s)

Du(s)

= lim
s→0

s · A
s
· G(s)

1 +
R(s)

1 +R(s)P (s)
G(s)

,

= A lim
s→0

µ1

s

1 +
µ2

1 + µ2
µ1

s (1− e−sd)

µ1

s

,

= A lim
s→0

µ1

s

1 +
µ2µ1

s

1 + µ2µ1

s (1− e−sd)

,

= A lim
s→0

µ1

s
+

µ2
1µ2

s2
(1− e−sd)

1 +
µ1µ2

s
(1− e−sd) +

µ1µ2

s

,

= A lim
s→0

1

s2
(
µ1s+ µ2

1µ2(1− e−sd)
)

1

s
(s+ µ1µ2 − µ1µ2e−sd + µ1µ2)

,

= A lim
s→0

µ1s+ µ2
1µ2(1− e−sd)

s2 + 2µ1µ2s− µ1µ2se−sd
,

= A lim
s→0

µ1s+ µ2
1µ2 − µ2

1µ2e
−sd

s2 + 2µ1µ2s− µ1µ2se−sd
.

(A.6)
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The limit presents an undetermined form [00 ]; it can be
solved by applying the de l’Hôpital theorem as follows:

yd(∞) = A lim
s→0

µ1 + µ2
1µ2de

−sd

2s+ 2µ1µ2 − µ1µ2e−sd + µ1µ2sd · e−sd
,

= A
µ1 + µ2

1µ2d

µ1µ2
,

= A
1 + µ1µ2d

µ2
.

(A.7)

A.4 Proof of Proposition 4

Consider the transfer function G(s) of the system under
control with an integrator as in (9) and the transfer
function of a generic controller R(s) with poles at zero
(g ≥ 1) as in (10). The steady-state output yd(∞) of the
closed-loop system, when a step signal disturbance du(t)
with amplitude A is applied on the control action, i.e.
du(t) = A · step(t), is obtained by solving the following
limit:

yd(∞) = lim
s→0

s · A
s
·

G(s)

1 +
R(s)

1 +R(s)P (s)
G(s)

,

= A lim
s→0

µ1

s

1 +

µ2

sg

1 +
µ2

sg
µ1

s
(1− e−sd)

µ1

s

,

= A lim
s→0

µ1

s

(
1 +

µ2µ1

sg+1
(1− e−sd)

)

1 +
µ2µ1

sg+1
(1− e−sd) +

µ2µ1

sg+1

,

= A lim
s→0

µ1

s
+

µ2µ
2
1

sg+2
(1− e−sd)

1 +
µ2µ1

sg+1
−

µ2µ1

sg+1
e−sd +

µ2µ1

sg+1

,

= A lim
s→0

µ1

s
+

µ2µ
2
1

sg+2
−

µ2µ
2
1

sg+2
e−sd

1 +
2µ2µ1

sg+1
−

µ2µ1

sg+1
e−sd

,

= A lim
s→0

1

sg+2
(µ1s

g+1 + µ2µ
2
1 − µ2µ

2
1e

−sd)

1

sg+1
(sg+1 + 2µ2µ1 − µ2µ1e−sd)

,

= A lim
s→0

µ1s
g+1 + µ2µ

2
1 − µ2µ

2
1e

−sd

sg+2 + 2µ2µ1s− µ2µ1se−sd
.

(A.8)

The limit presents an undetermined form [00 ]; it can be
solved by applying the de l’Hôpital theorem as follows:

yd(∞) = lim
s→0

H(s), (A.9)

H(s) =
(g + 1)µ1s

g + µ2µ
2
1de

−sd

(g + 2)sg+1 + 2µ2µ1 − µ2µ1e−sd + µ2µ1sde−sd

(A.10)

yd(∞) = A
µ2µ

2
1d

µ2µ1
= µ1dA. (A.11)

Whether the controller presents one or more poles at zero,
the steady-state error is proportional to the delay d, to the
amplitude of the step disturbance A and the gain of the
system µ1 and so it is controller-independent.
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