
International Journal of Computational Intelligence Systems (2023) 16:163
https://doi.org/10.1007/s44196-023-00325-3

RESEARCH ART ICLE

Soft Querying Features in GeoJSON Documents: The GeoSoft Proposal

Paolo Fosci1 · Giuseppe Psaila1

Received: 11 November 2022 / Accepted: 22 August 2023
© The Author(s) 2023

Abstract
Since the advent of JSON as a popular format for exchanging large amounts of data, a novel category of NoSQL database
systems, named JSONdocument stores, has emerged for storing JSON data sets; in fact, these novel databases are able to
natively manage collections of JSON documents. To help analysts and data engineers query and integrate JSON data sets
persistently saved in JSON document stores, the J-CO Framework has been developed (at the University of Bergamo, Italy):
it is built around a novel query language, named J-CO-QL+, that provides sophisticated features, including soft-querying
capabilities. However, J-CO-QL+ (as the other languages for querying JSON data sets) is designed to be general purpose;
consequently, it can be cumbersome for users to apply it on specific data formats. This is the case of GeoJSON, a specific
and popular JSON data format that is designed to represent geographical information layers. This paper presents the latest
evolution of GeoSoft, a novel high-level “domain-specific language” that is specifically designed to express complex queries
on the GeoJSON documents, including soft-queries. GeoSoft is inspired to the classical SQL language, so as to reduce the
learning curve of potential users. GeoSoft queries are translated into J-CO-QL+ scripts, to be actually executed.

Keywords J-CO framework · GeoSoft · JSON document stores · GeoJSON · Soft querying

1 Introduction

JSON (JavaScript Object Notation [1]) has become the stan-
dard format for representing any kind of data published and
shared on the Internet. Indeed, in spite of the original aim
to rely on XML (eXtensible Mark-up Language [2]) as the
universal format for the Internet, JSON has become very pop-
ular; probably, JSON is now more popular than XML.

However, JSON (as XML) is a generic format. To rep-
resent specific data or documents, it is necessary to define
specific document structures: GeoJSON [3] is one of the
most famous examples of a well structured format that relies
on the JSON syntax. GeoJSON was designed by the GIS
(Geographical InformationSystems) community to represent
“information layers”, i.e., a pool of spatial entities that, all

Giuseppe Psaila and Paolo Fosci have equally contribuited to this work.

B Giuseppe Psaila
giuseppe.psaila@unibg.it

Paolo Fosci
paolo.fosci@unibg.it

1 Department of Management, Information and Production
Engineering, University of Bergamo, Viale Marconi 5, 24044
Dalmine, BG, Italy

together, provide homogeneous spatial information. Exam-
ples are roads, green areas, municipalities, and so on. The
key aspect of GeoJSON information layers is that all the
contained entities are “geo-tagged”, i.e., they are provided
with their spatial description, also said “geometry”, which
relies on a coordinate system such as WGS-84 [4].

After this brief presentation, the reader could think that
collecting and managingGeoJSON documents is easy, since
the advent of NoSQL (Not-only SQL) database technology
[5] to store JSON data sets should provide a significant help.
Specifically, we are thinking about the category of “JSON
document stores” (i.e., databases whose data model is not
the classical relational data model), which are able to store
and query “collections of JSON documents”. Among them,
MongoDB [6] is nowadays widely popular.

Unfortunately, things are not so easy, for various reasons.
(i) A GeoJSON information layer is a single, possibly giant,
JSON document; consequently, querying it is not immediate,
since spatial entitiesmust be previously unnested fromwithin
this unique giant document. (ii) JSON document stores are
usually designed to deal with a large number of small JSON
documents. The result is that, often, large GeoJSON doc-
uments cannot be even stored within the JSON document
store. (iii) Spatial querying in JSON document stores, when

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s44196-023-00325-3&domain=pdf
http://orcid.org/0000-0001-9050-7873
http://orcid.org/0000-0002-9228-560X

 163 Page 2 of 40 International Journal of Computational Intelligence Systems (2023) 16:163

supported, can be performed only if JSONdocuments are spa-
tially indexed in advance, thus strongly limiting the flexibility
of querying documents on the fly.

The previous considerations are, more or less, the same
considerations that inspired the idea of developing a novel
framework to easilymanage collections of JSON documents,
possibly stored within JSON document stores. The J-CO
Framework (see [7]) relies on a query language (named
J-CO-QL+) that provides high-level and declarative state-
ments, which are specifically designed to perform complex
transformations on collections of JSON documents. The
language is undergoing the extension with soft-querying
capabilities (see [8]), by means of the evaluation of member-
ship degrees of documents to fuzzy sets. So, the J-CO-QL+
language, when applied toGeoJSON documents, would pro-
vide analysts with the capability of soft querying entities in
GeoJSON information layers, but due to their intrinsically-
complex structure, queries would result long and tedious to
write.

In [9, 10], we argued that a Domain-Specific Language
(DSL), specifically designed to query GeoJSON documents
as a whole, based on a SQL-like syntax and natively deal-
ing with soft querying, could significantly help analysts to
perform complex soft queries on GeoJSON documents. In
[9], we showed that a first version of this language could be
easily translated into J-CO-QL+ queries, but it was limited
to work on one single GeoJSON document. After that pre-
liminary investigation, we decided to name the language as
GeoSoft [10], we extended it to support the join operation on
GeoJSON documents and carefully redesigned it; we also
implemented a translator ofGeoSoft queries into J-CO-QL+
scripts.

The contribution of this paper is to provide a compre-
hensive presentation ofGeoSoft. The first contribution is the
semanticmodel onwhichGeoSoft is built. The second contri-
bution is theGeoSoft language itself: specifically, we present
its syntax and clauses, through a couple of information layers
downloaded from a real Open-Data portal. The third contri-
bution is to show that executing GeoSoft queries is possible;
in particular, we show how to translate them into J-CO-QL+
scripts, that can be actually executed. The final contribution is
evaluating the GeoSoft proposal under three different points
of view such as “flexibility”, “accessibility” and “efficiency”;
in particular, as far as this last point is concerned,we present a
comparison with the classical PostgreSQL/PostGIS solution.

The paper is organized as follows. Section2 reports rele-
vant related work. Section3 presents the background of this
work, i.e., NoSQL databases for storing JSON documents
(Sect. 3.1) and the J-CO Framework (Sect. 3.2). Section4
introduces the GeoJSON format, by showing its adoption
for representing two Geographical Information Layers that
will be exploited throughout the paper. Section5 presents
the GeoSoft language, by discussing syntax and semantics

through several examples. Section6 addresses the problem
of executingGeoSoft queries, by translating them into J-CO-
QL+ scripts; thus, Sect. 6.1 briefly introduces J-CO-QL+
scripts, while Sect. 6.2 shows the translation strategy and the
translation algorithm from GeoSoft to J-CO-QL+. Section7
evaluates theGeoSoft proposal from several points of view; i
particular, Sect. 7.1 evaluates “flexibility”, Sect. 7.2 evaluates
“accessibility” and Sect. 7.3 evaluates “Efficiency”. Finally,
Sect. 8 draws the conclusions and highlights possible future
works.

The Appendix completes the paper, for the interested
readers, with detailed presentations of specific topics. In par-
ticular, Appendix A presents the JSON format, Appendix B
presents theGeoJSON format andAppendixCbriefly reports
basic concepts about fuzzy sets; Appendix D reports details
about the JOIN operator in theGeoSoft language; Appendix
E extensively discusses the J-CO-QL+ script obtained by
translating the more complex GeoSoft query presented in
this paper.

2 RelatedWork

In Sect. 4, we will show that a GeoJSON document is a par-
ticular case of JSON document, with a specific structure:
indeed, apart from the JSON syntax, a GeoJSON document
actually represents a set of spatial features. Consequently,
it is reasonable to figure out a query language specifically
designed to queryGeoJSON features; however, to the best of
our knowledge, in the literature there are no other proposals,
apart from the preliminary version ofGeoSoft (see [9]). Con-
sequently, we had to refer to proposals designed for working
on standard JSON documents. A distinctive characteristic of
GeoSoft is soft querying, as well as another distinctive char-
acteristic is geographical querying. The above considerations
motivate the three different sub-topics addressed in this sec-
tion: (i) languages for expressing soft queries; (ii) languages
for querying JSON data; (iii) languages for querying geo-
graphical data.

This paper assumes that readers are familiar with basic
concepts concerning fuzzy sets. For those that are not famil-
iar, Appendix C reports a brief introduction to fuzzy sets.

2.1 Languages for Expressing Soft Queries

Soft querying relies on Fuzzy-Set Theory, an extension of
the classical Set Theory that was introduced by Zadeh in
[11]: the idea is that items can belong to a set only par-
tially (see Appendix C). As an effect, vague concepts can
be expressed as fuzzy sets; thus, “soft selection conditions”
can be expressed as fuzzy selection conditions [12], because
themembership degree to a fuzzy set quantifies the closeness
of the information carried by the x item with respect to the

123

International Journal of Computational Intelligence Systems (2023) 16:163 Page 3 of 40 163

condition. Possibility Theory [11, 13], together with the con-
cept of linguistic variable defined within Fuzzy-Set Theory
[14], provides a valuable formal framework for managing
imprecise, vague and uncertain information [15].

Historically, the first attempts to develop languages for
soft querying in databases were developed in the context of
relational databases. Specifically, two main approaches were
followed: (i) preserving the classical relational data model;
(ii) extending the data model towards “fuzzy-relational data
models”.

The rationale behind the first approachwas to provide soft-
querying capabilities on top of already-existing relational
databases,which are stillwidely usedwithin information sys-
tems. Thus, many extensions of SQL towards soft querying
were proposed, which provide capabilities of soft querying
table rows through Fuzzy-Set Theory. Here, wemention only
a few of them, in particular SQLf (see [16, 17]) and the
attempt to implement it (in [18]); the second proposal we
mention is FQUERY for Access (see [19, 20]), which was
designed to work within Microsoft Access; finally, we men-
tion the proposal named SoftSQL (see [21–23]), which also
covers the definition of user-defined “linguistic predicates”
through a dedicated statement, to be used in soft selection
conditions within the SELECT statement.

The second approach was to define a “fuzzy-relational
data model” (refer to [24, 25]), i.e., an extension of the
classical relational data model that was able to natively rep-
resent uncertain values and data within the database. Here,
we mention FSQL, presented in [26, 27], which is the most
remarkable proposal, in our opinion.

To the best of our knowledge, the most recent paper on
this topic is [28]. In this work, the authors briefly present a
library for PostgreSQL, namedPostgreSQLf, which provides
capabilities for dealingwith fuzzyvalueswithinPostgreSQL.
Although the description is synthetic, the library is still avail-
able for download. In our opinion, its point of strength is also
its weakness, i.e., it does not extend the query language, but
provide functions to call within the classical SQL queries.

2.2 Languages for Querying JSONData

The advent of many systems specifically designed to store
JSONdocuments is amatter of fact; they are database systems
that does not rely on the classical relational data model, but
manage collections of JSON documents, independently of
their structure. Among them, themost popular isMongoDB,1

which is used for storing and querying large collections of

1 MongoDB. Available online: https://www.mongodb.com/, accessed
on 01/07/2023.

small JSON documents. Another important representative is
CouchDB2 [29].

The advent of these kind of database systems has caused
the definition of many query languages for JSON data sets.
Popular representatives are Jaql [30], SQL++ [31] (which
is, the query language of CouchDB), JSONiq [32] and the
query language provided by MongoDB [5], which is gener-
ally calledMQL. Certainly, we can say that the most used of
them isMQL, due to the popularity ofMongoDB.

In recent works, we are observing the attempt to resume
the ideas explored in the area of soft querying on top of
relational databases (topic (i) in 2.1), by adapting them to the
new context of JSON document stores.

For example, the work [33] proposed fMQL, an exten-
sion of MQL (the MongoDB Query Language). The authors
worked under the hypothesis that JSON documents are pre-
viously labeled with “fuzzy labels”.

Another recent work [34] proposed an extension of the
MongoDB datamodel towards a fuzzy JSON document store,
supporting fuzzy values in single fields.

In our extension of the J-CO-QL+ language towards soft
querying [35, 36], we are substantially following the first
approach, i.e., the query language is built on top of the
standard JSON data model (the reader will see more in the
remainder of the paper).

2.3 Languages for Querying Geographical Data

GeoJSON is a standard format proposed by the community
workingon “Geographical InformationSystems” (GIS); con-
sequently, it is necessary to give a look at this research area
as well. In this domain, many research works have been
done, in particular addressing issues concerned with data
storage, indexing and query optimization [37]; indeed, a GIS
is supposed to store huge amounts of complex data, so as to
graphically represent them. As a consequence, many exten-
sions of the relational data model and of the SQL language
have been proposed [38, 39]: the goal is to make Data Base
Management Systems (DBMSs) able to store and retrieve
spatial information, i.e., geo-referenced geometries that rep-
resent the spatial shape of entities described by data. Clearly,
extensions of SQL are appreciated by users that are famil-
iar with writing SQL queries, while they are not good for
analysts who do not have such a skill. Consequently, other
proposals were made: tabular approaches [40] (that extend
QBE, Query By Example), graphical languages [41, 42],
visual languages [43], and “hypermaps” [44] (integrated into
hypermedia techniques [45]) provides users with powerful
graphical approaches to specify queries by directly operat-
ing on maps. An interesting and recent survey the reader can

2 CouchDB. Available online: https://couchdb.apache.org/, accessed
on 01/07/2023.

123

https://www.mongodb.com/
https://couchdb.apache.org/

 163 Page 4 of 40 International Journal of Computational Intelligence Systems (2023) 16:163

refer to is [46], in which it is possible to find a comprehen-
sive literature review about the approaches concerned with
spatial-data management in non-relational databases.

However, JSON and GeoJSON in particular are chang-
ing the panorama. In fact, if the geographical information is
stored as GeoJSON documents, most systems provide low
(or none) capability to query them in a geographical way.
Indeed, very few query languages are specifically targeted to
GeoJSON. We can cite GeoPQLJ [47]: it is a pictorial query
language,which provides drawing facilities (which rely on an
underlying algebra) to formulate complex queries; this way,
it should be possible to remove semantic ambiguity. How-
ever, although it works on GeoJSON documents, it does not
explicitly rely on peculiarities of GeoJSON documents, as
GeoSoft does.

An early work that somehow anticipates GeoSoft is [48].
The authors proposed an extension of SQL for soft querying
geographical data; the idea inspired the SoftSQL proposal
[22] and, many years later, the J-CO-QL+ language [7, 8, 49]
and, finally, the GeoSoft proposal presented in this paper.

3 Background

The goal of this section is to present the background onwhich
GeoSoft relies. First of all, we present basic notions about
NoSQL databases for natively storing JSON data sets; then,
we will introduce the J-CO Framework.

3.1 JSON and NoSQLDatabases

JSON is the acronym for JavaScript Object Notation [1]. It
was born in the context of the JavaScript object-oriented pro-
gramming language, so as to define constant objects. How-
ever, its simplicity and immediacy has made it autonomous
from the JavaScript language, as a powerful format to
represent data with complex structures in a simple and easy-
to-process way. Currently, JSON is used in a multitude of
applications and has become very popular.

In this paper, we assume that the reader is familiar with the
JSON format and the related terminology. The reader that is
not familiar, can find a brief introduction to the JSON format
in Appendix A.

The term NoSQL stands for “Not only SQL” [50]. It
denotes a variety of approaches to database systems that do
not rely on the classical relational model (thus, they do not
provide the SQL query language).

Among allNoSQL approaches, the category of “document
database” is relevant for our work. A database system that
falls into this category is able to store and retrieve “structured
documents” (i.e., not plain text) whose structure is not fixed
but can freely vary. Typically, such systems adopt JSON as

Fig. 1 Organization of the J-CO Framework

the format to represent documents, so they are named “JSON
document stores” (or simply “JSON stores”).

The most popular JSON store in the world is MongoDB
[51],3 but other JSON stores have become popular too, such
as CouchDB [29] (which has been adopted as the database
system for the HyperLedger Fabric permissioned block-
chain platform [52]). Similarly, a tool that is not exactly a
database system but an information-retrieval system is Elas-
ticsearch [53]; however, it receives and provides data as
JSONdocuments, so it can be somehowconsidered as a JSON
store.

SinceMongoDB is very popular, its data model is popular
too and is considered the reference data model for JSON
stores.

• A“collection” is an unorderedmulti-set of heterogeneous
documents, i.e., it can containmultiple copies of the same
document.No limitations about the structure of contained
documents is posed: heterogeneous documents can be
contained within the same collection.

• A “database” is a “set of collections”. Each collection
has a unique name within the database.

3.2 The J-CO Framework

Currently there is not an official standard for JSON stores;
as a results, datamodels are not perfectly compatible and, pri-
marily, query languages are very different each other (when
provided). Consequently, analysts and data engineers have
to face a very difficult scenario, when they have to deal with
multiple JSON stores based on different technologies and
query languages, to integrate data sets.

These considerations inspired us to develop the J-CO
Framework [49, 54, 55]. It is a pool of software tools designed

3 See https://db-engines.com/en/ranking for a ranking updated in 2022.

123

https://db-engines.com/en/ranking

International Journal of Computational Intelligence Systems (2023) 16:163 Page 5 of 40 163

to provide analysts with a powerful support for gathering,
integrating, transforming and querying collections of JSON
data sets. The core of the framework is its query language,
named J-CO-QL+, which has been extensively presented in
[8, 56–58]. The organization of the framework is depicted in
Fig. 1; hereafter, we illustrate it.

• J-CO-QL+ Engine. This component executes J-CO-QL+
queries (or scripts). It retrieves data from JSON stores
(for example, managed by MongoDB or Elasticsearch)
and saves results into them; it also retrieves data sets from
Web sources.

• J-CO-UI. This is the user interface, by means of which J-
CO-QL+ scripts are interactively written and submitted
to the J-CO-QL+ Engine.

• J-CO-DS. This component is a JSON document store
specifically designed to store large single documents
[59], so as to overcome limitations of other JSON
stores (such as MongoDB, which does not accept doc-
uments that are larger than 16 MB in its BSON internal
binary format). J-CO-DS does not provide computational
capabilities such as a query language, because it is a com-
ponent of the J-CO Framework, whose query language
is J-CO-QL+. J-CO-DS has been recently upgraded [60]
with new functionalities, to manage three different types
of collections. (i) “Static collections” are persistently
stored in the database. (ii) “Virtual Collections” are not
materialized within the database; they are defined by
means of a pool of URLs that provide the data sets; when
the collection is accessed, its content is dynamically built
by calling the associated URLs. (iii) “Dynamic collec-
tions” are persistently stored in the database, but their
content is dynamically acquired; a pool of URLs is asso-
ciated with the collection, so as the engine periodically
acquires new versions of the data (so, data sets are acces-
sible for a user, even when the framework is temporarily
off-line). As amajor result, J-CO-DS provides a database
view of Web sources, which is a unique feature in com-
parison with other JSON stores.

• J-CO-BATCH has been recently added to the J-CO
Framework [60]. Its goal is to provide “batch execution”
of J-CO-QL+ scripts. By means of this tool, it is possi-
ble to create parametric templates of J-CO-QL+ scripts,
whose execution cam be scheduled, either one-shot or
repeatedly in time.

The J-CO Framework has originated from our participa-
tion to the Urban Nexus project [61], whose goal was to
integrate Big Data coming from various sources, such as
Open-Data portals and social media, so as to study citizens
mobility. In that project, we developed several tools for inte-
grating and analyzing data [62–65]. During that project, it
was clear that the support provided by JSON stores for man-

aging JSON data setswas too raw for analysts; indeed, we felt
that higher-level tools were necessary. These are the origins
of the J-CO Framework.

4 Geographical Information Layers as
GeoJSON Documents

GeoJSON,4 is an interchange format for spatial data. It is
designed to represent geographical spatial entities (called
“features”) and their non-spatial properties. GeoJSON is
based on JSON as host syntactic format: this character-
istic allows for processing GeoJSON documents as any
other JSON document. Specifically, it is suitable for encod-
ing “geographical information layers”, i.e., aggregations of
spatial entities that are somehow homogeneous or strongly
correlated (e.g., roads, buildings, rivers, and so on). GeoJ-
SON is independent of any geographical Coordinate Refer-
ence System (CRS); however, most ofGeoJSON documents
implicitly adopt theWorld Geodetic System 1984 (WGS-84)
and decimal-degree units.

Another advantage is that GeoJSON is a human-readable
format, since it is a plain-text format; however, this charac-
teristic makes it verbose. As an effect, GeoJSON documents
can become much larger than other formats for representing
spatial data, such as Shapefile5 or GeoPackage.6

For readers that are not familiarwith theGeoJSON format,
Appendix B provides a brief introduction to it. Essentially,
a GeoJSON document, in its complete form, can be seen as
a “collection of features”, where a “feature” has “registry
properties” and a “geometry” (that is the spatial footprint of
the feature). Figure2 reports an excerpt of a GeoJSON doc-
ument: the features field is an array that contains JSON
documents, one for each feature; each nested document con-
tains the properties field and the geometry field.

In order to provide a case study for presenting GeoSoft,
we now present two information layers described by two
GeoJSON documents, that will be exploited in the remainder
of the paper.

Information Layer 1 The GeoJSON document reported in
Fig. 2 was downloaded from Regione Lombardia Open Data
portal.7 It represents the information layer of the 1506munic-
ipalities (or towns) in Lombardy, the Italian region that
includes Milan and Bergamo. Consequently, each feature

4 GeoJson: https://geojson.org/, accessed on 01/07/2023.
5 Shapefile: https://www.statsilk.com/maps/convert-esri-shapefile-
map-geojson-format, accessed on 01/07/2023.
6 GeoPackage: https://www.geopackage.org/guidance/modeling.html,
accessed on 01/07/2023.
7 End point of the towns data set at Regione Lombardia Open
Data portal: https://www.dati.lombardia.it/api/geospatial/wtqz-z7j6?
method=export&format=GeoJSON, accessed on 01/07/2023.

123

https://geojson.org/
https://www.statsilk.com/maps/convert-esri-shapefile-map-geojson-format
https://www.statsilk.com/maps/convert-esri-shapefile-map-geojson-format
https://www.geopackage.org/guidance/modeling.html
https://www.dati.lombardia.it/api/geospatial/wtqz-z7j6?method=export&format=GeoJSON
https://www.dati.lombardia.it/api/geospatial/wtqz-z7j6?method=export&format=GeoJSON

 163 Page 6 of 40 International Journal of Computational Intelligence Systems (2023) 16:163

Fig. 2 Excerpt of GeoJSON
document representing
municipalities (towns)

represents a municipality. Notice the root-level features
field, which is an array of documents describing features;
each feature contains properties (the properties field)
and the geometry (the geometry field). To facilitate the
reader in recognizing the structure of the GeoJSON docu-
ment, we enclosed each feature into blue-border boxes, as
well as, inside each feature, we enclosed the properties
andgeometryfields into red-dashed-border boxes.An ana-
logue highlighting strategy is used in the rest of the paper for
the subsequent examples.

The reader can notice that each geometry field repre-
sents a MultiPolygon (see Appendix B), since, in the

general case, the territory of a municipality may be non-
continuous; implicitly, the WGS-84 Coordinate Reference
System is adopted in GeoJSON.

Eachpropertiesfield contains awide variety of fields,
including the name of the municipality (the nome_com
field), the name of the region (the nome_reg field) and
the name of the province (the nome_pro field) to which
the municipality belongs; other fields report the length of
the borders (the shape_len field, expressed in meters)
and the area of the municipality (the shape_area field,
expressed in square meters). For the sake of simplicity, we
do not describe the other fields.

123

International Journal of Computational Intelligence Systems (2023) 16:163 Page 7 of 40 163

Fig. 3 Towns in Lombardy Region. The thick lines denote the region borders. The medium-thick lines denote borders of provinces. The thin lines
denote borders of cities. The black box, on the left, reports the properties contained in the GeoJSON feature representing the city of Milan (whose
name is in red)

Finally, notice how the names of the properties are quite
unclear: parts in Italian and parts in English; often, contracted
forms are used. Notice also that all numerical field values are
expressed as strings: this fact denotes poor data design and
makes it hard to exploit them.

Figure3 shows the content of the GeoJSON document
drawn on a map. The reader can notice the multitude of poly-
gons that actually constitute municipalities.

Information Layer 2 The GeoJSON document reported in
Fig. 4 describes highways in Lombardy (Italy); it was down-
loaded from Regione Lombardia Open Data portal8 as a
Shapefile, and then converted into a GeoJSON document
by means of the QGIS tool.9 The document describes 94
highway sections, each for one single direction, including
also highway junctions. Differently from theGeoJSON doc-
ument that describes municipalities (in Fig. 2), at root-level
we find the name and the crs fields as well (see Appendix

8 End point of the highways data set at Regione Lombar-
dia Open Data portal (for the sake of brevity we report a
short tiny URL): https://www.geoportale.regione.lombardia.it/
metadati?p_p_id=detailSheetMetadata_WAR_gptmetadataportlet&
p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&
_detailSheetMetadata_WAR_gptmetadataportlet_identifier=r_lombar
%3A3417cfea-5192-467e-a388-947bdd7a85f2&
_jsfBridgeRedirect=true, accessed on 01/07/2023.
9 QGis web site: https://www.qgis.org/en/site/, accessed on
01/07/2023.

B): the goal is to give a name to the information layer and to
explicitly set the Coordinate Reference System to WGS-84.

Each feature describes a highway; more precisely, it
describes the section of the highway that traverses
Lombardy. Notice that the geometry field represents a
MultiLineString geometry (see Appendix B), since,
in the general case, the path of a highway may be non-
continuous (the same highway could exit and enter the same
region multiple times). The properties field provides
registry data about highways, such as identifier (the COD_PE
field), name (the NOME_PERCO field) and total length in
Lombardy (the SHAPE_LEN field, expressed in meters) of
the highway section. Again, for the sake of simplicity, we do
not describe the other fields.

From Fig. 4, the reader can notice that field names are
badly designed again: parts of them are in Italian and parts
of them are in English, as well as contracted forms are used;
we also remark that, this time, the SHAPE_LEN field has a
numerical value.

Figure5 depicts the content of the presented GeoJSON
document by drawing, in green color, all the highway seg-
ments on amap. The reader can notice the purple-highlighted
highway in center-bottom of the map, whose properties are
reported in the black-box in the left-upper corner of the fig-
ure: this is the section of the highway named "A1" that
traverses Lombardy, whose final ending isNaples; notice that
the reported total length, in the SHAPE_LEN field, is about

123

https://www.geoportale.regione.lombardia.it/metadati?p_p_id=detailSheetMetadata_WAR_gptmetadataportlet&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&_detailSheetMetadata_WAR_gptmetadataportlet_identifier=r_lombar%3A3417cfea-5192-467e-a388-947bdd7a85f2&_jsfBridgeRedirect=true
https://www.geoportale.regione.lombardia.it/metadati?p_p_id=detailSheetMetadata_WAR_gptmetadataportlet&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&_detailSheetMetadata_WAR_gptmetadataportlet_identifier=r_lombar%3A3417cfea-5192-467e-a388-947bdd7a85f2&_jsfBridgeRedirect=true
https://www.geoportale.regione.lombardia.it/metadati?p_p_id=detailSheetMetadata_WAR_gptmetadataportlet&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&_detailSheetMetadata_WAR_gptmetadataportlet_identifier=r_lombar%3A3417cfea-5192-467e-a388-947bdd7a85f2&_jsfBridgeRedirect=true
https://www.geoportale.regione.lombardia.it/metadati?p_p_id=detailSheetMetadata_WAR_gptmetadataportlet&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&_detailSheetMetadata_WAR_gptmetadataportlet_identifier=r_lombar%3A3417cfea-5192-467e-a388-947bdd7a85f2&_jsfBridgeRedirect=true
https://www.geoportale.regione.lombardia.it/metadati?p_p_id=detailSheetMetadata_WAR_gptmetadataportlet&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&_detailSheetMetadata_WAR_gptmetadataportlet_identifier=r_lombar%3A3417cfea-5192-467e-a388-947bdd7a85f2&_jsfBridgeRedirect=true
https://www.geoportale.regione.lombardia.it/metadati?p_p_id=detailSheetMetadata_WAR_gptmetadataportlet&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&_detailSheetMetadata_WAR_gptmetadataportlet_identifier=r_lombar%3A3417cfea-5192-467e-a388-947bdd7a85f2&_jsfBridgeRedirect=true
https://www.qgis.org/en/site/

 163 Page 8 of 40 International Journal of Computational Intelligence Systems (2023) 16:163

Fig. 4 Excerpt of GeoJSON
document representing
highways

56 km, while the actual total length of the "A1" highway is
about 760 km.10

10 "A1" highway: https://en.wikipedia.org/wiki/Autostrada_A1_
(Italy) accessed on 01/07/2023.

5 GeoSoft

The language we propose is namedGeoSoft. To make it easy
for analysts to use it, we exploited the well known syntax
of the SQL SELECT statement, but it works on features
withinGeoJSON documents. In Sect. 5.1, we first present the
semantic model which the language relies on. Then, in the

123

https://en.wikipedia.org/wiki/Autostrada_A1_(Italy)
https://en.wikipedia.org/wiki/Autostrada_A1_(Italy)

International Journal of Computational Intelligence Systems (2023) 16:163 Page 9 of 40 163

Fig. 5 Highways in Lombardy Region. The black-box in the left-upper corner reports the properties contained in theGeoJSON feature representing
the highway highlighted in purple in the center-bottom of the map

remainder of this section, we present the GeoSoft language
by exploiting the information layers introduced in Sect. 4.

5.1 Semantic Model

We present the first contribution of the paper, i.e., the
semantic model which the GeoSoft language relies on is
presented. Specifically, we distinguish between “external
semantic model” (i.e., how a query behaves on GeoJSON
documents, independently of their storage or provenance)
and “internal semantic model” (i.e., how the query behaves
internally); then, we have to consider the application scope of
the language, sowe complete the semanticmodel by defining
its relation with databases managed by JSON stores.

5.1.1 External Semantic Model

Westart by considering the external semanticmodel, i.e., how
aGeoSoft query gsq is expected to behave, independently of
how it is internally structured.

Definition 1 GeoJSON Feature.A(crisp)GeoJSON feature
is a tuple

f = 〈properties,geometry〉
where properties and geometry (see Sect. 4 and
Appendix B) are JSON documents describing, respectively,
the properties and the geometry of the spatial entity described
by the feature.

A feature is the elementary item a GeoSoft query is
expected to work on.

Definition 2 GeoJSON Document. A (crisp) GeoJSON
document gd is modeled as a possibly-empty set of features,
i.e., gd = { f1, . . . , fn}. The domain ofGeoJSON documents
is denoted as GJ .

Figure6a shows an example of (crisp) GeoJSON docu-
ment, as it is intended in our semantic model. Notice that
features are represented as tuples; the overall document is
represented as a set of tuples.

Based on these definitions, it is possible to define the
“external semantics” of a GeoSoft query, i.e., how the query
is expected to behave outside the query itself.

123

 163 Page 10 of 40 International Journal of Computational Intelligence Systems (2023) 16:163

Fig. 6 Internal model of crisp and soft GeoJSON documents, with generic features, as they are managed by GeoSoft queries

Definition 3 External Query. Consider the domain GJ of
GeoJSON documents. An external GeoSoft query gsq is a
function

gsq : GJn → GJ

where GJn = GJ ×· · ·×GJ is the n-ary Cartesian product
(with n > 0) on the GJ domain.

In the simplest form, i.e., with n = 1, the gsq query
takes one singleGeoJSON document as input; in the complex
form, i.e., n > 1, the gsq query works on multiple input

GeoJSON documents. The gsq query always generates one
single GeoJSON document as output.

5.1.2 Internal Semantic Model

We now define the semantic model that is internally followed
by GeoSoft queries. Clearly, this semantic model takes soft
querying into account.

123

International Journal of Computational Intelligence Systems (2023) 16:163 Page 11 of 40 163

Definition 4 Soft Feature. A soft feature f is a feature for
which membership degrees to some fuzzy sets are consid-
ered. A soft feature is defined as a tuple

f = 〈properties,geometry,fuzzysets〉
where properties and geometry are defined as in Def-
inition 1. Each feature can belong to several fuzzy sets with a
specific membership degree (the membership degree to each
fuzzy set denotes the degree with which the feature belongs
to the fuzzy set). In the f tuple, the fuzzysets member
is a key/value map, that associates a fuzzy set name fsn (the
key) to the membership degree (the value) of the f feature
to the fuzzy set fsn.

The reader can notice that the universe of fuzzy sets is the
domain of spatial features; in other words, we consider the
membership of a spatial feature to a fuzzy set as a whole.

Introducing the concept of soft feature allows us to evolve
the concept of GeoJSON document into the concept of “soft
GeoJSON document”.

Definition 5 Soft GeoJSON Document. A soft GeoJSON
document gd is modeled as a possibly-empty set of soft fea-
tures, i.e., gd = { f 1, . . . , f n}. The domain of softGeoJSON
documents is denoted as GJ .

As an example, Fig. 6b–d show different instances of soft
GeoJSON document, as intended in the semantic model.
Notice that the generic feature in Fig. 6b has no member-
ship degree (the fuzzysets map is empty); the generic
feature in Fig. 6c has one membership degree (one entry in
the fuzzysetsmap); finally, the generic feature in Fig. 6d
has twomembership degrees (two entries in thefuzzysets
map)-

Consequently, we argue that aGeoSoft query should work
on soft GeoJSON documents internally, while externally it
must work on crisp GeoJSON documents (as defined by
Definition 3). Hereafter, the formal semantic framework is
extended.

Definition 6 Internal Query. Consider the domain GJ of
soft GeoJSON documents. An internal GeoSoft query gsq
is a function

gsq : GJ
n → GJ

where GJ
n = GJ ×· · ·×GJ is the n-ary Cartesian product

(with n > 0) of the GJ domain.

Thus, it is necessary to create a bridge between the exter-
nal and the internal semantics, in that crisp input GeoJSON
documents gd must be transformed into input softGeoJSON
documents gd for the internal query, while the output soft
GeoJSON document from the internal query must be trans-
lated into a crisp GeoJSON document. This is done by the
following definition.

Definition 7 Consider the domain GJ of crisp GeoJSON
documents gd ∈ GJ and the domain GJ of soft Geo-
JSON documents gd ∈ GJ . An external GeoSoft query
gsq : GJn → GJ (with n > 0) is defined as

gsq (gd1, . . . , gdn) = toCrisp(gsq(toSof t (gd1) ,
. . . , toSof t (gdn)).

We make use of toCrips : GJ → GJ , which is a function
that removes the fuzzysets member from soft features,
thus obtaining crisp features.

We also make use of toSof t : GJ → GJ , which is a
function that extends features with an empty fuzzysets
member.

The reader can notice that inputGeoJSON documents are
automatically “fuzzified”, i.e., translated to the domainGJ of
softGeoJSON documents; in contrast, output softGeoJSON
documents are automatically “de-fuzzified”, i.e., translated
to the domain GJ of crisp GeoJSON documents.

Figure6b shows an example of soft GeoJSON document
immediately after “fuzzification”: the generic feature has the
empty fuzzysets map.

5.1.3 Queries and Database

To complete the semantic model, it is necessary to consider
the database. Indeed, we consider a scope in which input
GeoJSON documents are stored within a JSON document
store and outputGeoJSON documents are saved into a JSON
document store. Thus, first of all we define the notion of
database.

Definition 8 Consider a JSON document store. A “collec-
tion” c is a multi-set c = {d1, . . . , dn}, where multiple
instances of the same document are possible. A collection
c has a property c.name.

A “database” db is a set of collections db = {c1, . . . , ch},
such that the name ci .name (for a collection ci ∈ db)
uniquely identifies ci (in other words, there cannot be two
collections ci , c j ∈ db such that ci .name = c j .name).

The external GeoSoft query gsq was defined (see Defi-
nition 3) to operate on the domain GJ of (crisp) GeoJSON
documents. However, the GeoSoft language must be defined
in such away it takesGeoJSON documents from one ormore
databases and saves the output GeoJSON document into a
database. The following definition defines the final concept
of “database query” dbq.

Definition 9 Database Query. Consider a “collection
descriptor” cd = 〈cname, dbname, docname〉, where
cname is the name of a collection and dbname is the name
of a database; if docname has a non-null value, it denotes
the name of a GeoJSON document. A “database query” is
defined as

123

 163 Page 12 of 40 International Journal of Computational Intelligence Systems (2023) 16:163

dbq (to, f rom1, . . . , f romn) =
= save (to, gsq(get (f rom1) , . . . , (f romn)))

where to and f rom1, . . . , f romn are collection descriptors.
dbq is a procedure that receives n+1 (with n > 0) collection
descriptors: to denotes the collection which the output Geo-
JSON document must be saved into, while f rom1 to f romn

denote the collections from which the input GeoJSON doc-
uments must be acquired.

We make use of get(f romi) (with 0 < i ≤ n), which is a
function that actually accesses the f romi .dbname database
and gets all GeoJSON documents from the f romi .cname
collection. Specifically, non-GeoJSON documents (possi-
bly contained in the collection) are not considered, while
all GeoJSON documents actually present in f romi .cname
are fused into one single GeoJSON document. Furthermore,
if the f romi .docname has a non-null value, only GeoJ-
SON documents whose name field (see Appendix B) equals
f romi .docname are considered.
We also make use of save(to, gd), which is a proce-

dure that actually saves the gd GeoJSON document into the
to.cname collection in the to.dbname database (by dropping
the previous instance of the collection, if present). Further-
more, if to.docname has a non-null value, the name field
of the saved GeoJSON document (see Appendix B) is set to
to.docname.

Through the above definition of database query dbq,
we fully define the application scope of the GeoSoft lan-
guage. Notice that the fact that source GeoJSON documents
are contained in collections of JSON documents is solved
by applying Definition 2. The set-oriented view of a Geo-
JSON document provides the way to solve the issue of
multiple GeoJSON documents stored within the same input
collection: features within them are united into one single
GeoJSON document.

5.2 Simple Queries

We can now introduce the second main contribution of the
paper, i.e., the GeoSoft language. Here, we present simple
queries, i.e., queries that take one singleGeoJSON document
as input and produce a new GeoJSON document, without
nested queries or joins.

5.2.1 Selection and Projection

Suppose that a user wants to query the GeoJSON document
that describes highways (see Information Layer 2), which
is depicted in Fig. 4. The goal of the user is: generating a
newGeoJSON document that contains only highways whose
length is greater than 3 km. Listing 1 reports the (simple)
GeoSoft query. We present it hereafter.

Listing 1 Simple Selection-Projection query in GeoSoft.
GET CONTEXT "jcoContextDb.jco";

SELECT .COD_PE AS .highwayId,
 .SHAPE_LEN AS .highwayTotalLength

FROM highways@geosoftDb
WITH NAME "highways"

WHERE .SHAPE_LEN > 3000
SAVE AS ProperHighways@geosoftDb

SETTING NAME "Proper Highways";

Listing 2 Content of the jcoContextDb.jco file.

USE DB geosoftDb
ON SERVER jcods 'http://127.0.0.1:17017';

First of all, notice theGET CONTEXT directive, bymeans
of which it is possible to load the specified file, whose con-
tent is the “execution context”. This is a preamble written
in J-CO-QL+; this is due to the fact that GeoSoft query is
translated into a J-CO-QL+ script and then executed by the
J-CO-QL+ Engine; the notion of execution context allows us
to exploit fragments of scripts written in J-CO-QL+, without
replicating constructs in GeoSoft.

Specifically, the GET CONTEXT directive in Listing 1
loads the jcoContextDb.jco file, whose content is
reported in Listing 2: it declares the connection to the
database (notice that the database is managed by J-CO-DS,
the JSON document store provided by the J-CO Framework,
remember from Sect. 3.2).

The SELECT statement actually performs the query, as
explained hereafter. Remember that the goal of the query is
“generating a novel GeoJSON document that contains only
features describing highways whose length is greater than 3
km”.

• The FROM clause specifies the collection in the database
where the document is stored. Specifically, in the query
we refer to the highways collection, which is con-
tained in the geosoftDb database. Notice the WITH
NAME option: when specified, it allows us to focus the
acquisition only on GeoJSON documents whose root-
levelname field (seeAppendix B) has the specified value
(discarding the other documents that are possibly present
in the same collection).

• The WHERE clause selects features in theGeoJSON doc-
ument, bymeans of a classicalBoolean condition. Specif-
ically, features having the value for the SHAPE_LEN
property greater than 3 km (the length is in meters) are
selected.

• The list that follows the SELECT keyword (in the fol-
lowing, we will refer to it as “the SELECT clause”)

123

International Journal of Computational Intelligence Systems (2023) 16:163 Page 13 of 40 163

specifies the list of properties of interest; we can say that
“features are projected on a subset of properties”. Specif-
ically, the list of properties is projected on the COD_PE
property (which is renamed as highwayId by the sub-
sequent alias) and on the SHAPE_LEN property (which
is renamed as highwayTotalLength).

• Finally, the SAVE AS clause saves the resulting GeoJ-
SON document into a database collection. Specifically,
the document is saved into the ProperHighways col-
lection in the geosoftDb database. Notice the optional
SETTING NAME specification: if present, it adds the
root-level name field to the output GeoJSON document
(see Appendix B), with the specified value.

The reader can notice that properties are referred through
the dot notation, e.g., “.SAMPLE_LEN”. Remember that
properties arewithin thenestedproperties sub-document;
properties can be, in turn, nested sub-documents. Conse-
quently, the first dot is rooted within the properties
sub-document (member of the feature, see Definition 4).

As a final remark, the choice for relying on the basic SQL
syntax is towards users: indeed, they do not have to learn a
completely new language.

5.2.2 Soft Querying

The query reported in Listing 1 does not exploit soft-
querying, while this is done by the query in Listing 3. As
the reader can see, the basic structure of the query is the
same; clearly, novel clauses are used, to deal with fuzzy sets.

Suppose that a user wants to query the GeoJSON docu-
ment describing highways (Information Layer 2), with the
following goal: generating a novel GeoJSON document that
contains features describing highways that are more or less
medium-length highways; both the degree with which they
satisfy the requirement and the degreewithwhich they do not
satisfy the requirement are of interest. Hereafter, we show
how the GeoSoft query reported in Listing 3 expresses this
soft query.

• The FROM clause specifies again the highways col-
lection in the geosoftDb database. Remember from
Definition 7 that features in the source GeoJSON docu-
ment are converted into soft features (Definitions 4 and
5) by adding the fuzzysets key-value map.

• The WHERE clause selects those features whose value of
the SHAPE_LEN property is greater than 3000 meters.

• The subsequent USING clause works on the set of fea-
tures selected by the WHERE clause and evaluates a “soft
condition”, so as to evaluate the membership degree
of features to a specific fuzzy set. The general syn-
tax of this clause is as follows:USING softCondition

FOR FUZZY SET fuzzySetName (, softCondition FOR
FUZZY SET fuzzySetName)* i.e., the clause can spec-
ify several branches. In each branch, softCondition is a
condition whose terms are fuzzy-set names and “fuzzy
operators” (a user-defined tool that evaluatesmembership
degrees from properties; they will be presented here-
after); the resulting membership degree is referred to
the fuzzySetName specified after the FOR FUZZY SET
keywords.
Specifically, two soft conditions are specified in List-
ing 3: the first one evaluates the membership degree to
the MediumLengthHighways fuzzy set, to obtain the
positive satisfaction degree to the request; the second one
evaluates the membership degree to the NotMedium
LengthHighway, to obtain the degree of non satis-
faction; notice that both the soft conditions exploit the
J-CO-QL+ MediumLengthHighwayOp fuzzy oper-
ator, that is defined in the jcoContextOp1.jco file
(reported in Listing 4 and discussed hereafter).
Referring to Definition 4, the key fuzzySetName is added
to the fuzzysets map; the value is the one obtained
by evaluating the softCondition.
Figure 6b, c show such an evolution of the fuzzysets
map.

• The ALPHACUT clause specifies a minimum threshold
for the given fuzzy-set name(s), so as to select only those
features whose membership degree is no less than the
specified threshold(s). Specifically, only features whose
membership degree to the MediumLengthHighways
fuzzy set is no less than 0.8 are selected. This way, high-
ways that are evaluated as not-completelymedium-length
highways, but at a sufficiently high degree, are selected.

• The SELECT clause projects properties of features only
on properties of interest, by renaming them. Notice
the wanted property, whose value is the membership
degree to the MediumLengthHighways fuzzy set;
the value is obtained through the MEMBERSHIP_TO
built-in function; in the sameway, thenotWantedprop-
erty is derived by taking the membership degree to the
NotMediumLengthHighway fuzzy sets, to denote
the degree of non satisfaction to the request. In fact, when
the outputGeoJSON document is generated, features are
“de-fuzzified”; however, the membership degree is use-
ful to know the relevance of the feature with respect to
the query, thus the only way is to add a property with that
value.

• Finally (remember Definition 7), the GeoJSON docu-
ment is “de-fuzzified” (i.e., the fuzzysets map is
removed from features) and the resulting crispGeoJSON
document is saved into theMediumLengthHighways
collection in the geosoftDb database. Again, the
SETTING NAME option defines the value for the root-
level name field in the output GeoJSON document.

123

 163 Page 14 of 40 International Journal of Computational Intelligence Systems (2023) 16:163

Listing 3 Soft Selection-Projection query in GeoSoft.

GET CONTEXT "jcoContextDb.jco";
GET CONTEXT "jcoContextOp1.jco";

SELECT .COD_PE AS .highwayId,
 .SHAPE_LEN AS .highwayTotalLength,
 (MEMBERSHIP_TO (MediumLengthHighways)) AS .wanted,
 (MEMBERSHIP_TO (NotMediumLengthHighways)) AS .notWanted,
 FROM highways@geosoftDb
 WITH NAME "Highways"
 WHERE .SHAPE_LEN > 3000
 USING

MediumLengthHighwayOp (.SHAPE_LEN)
 FOR FUZZY SET MediumLengthHighways,

NOT MediumLengthHighways
FOR FUZZY SET NotMediumLengthHighways,

 ALPHACUT MediumLengthHighways : 0.80
 SAVE AS MediumLengthHighways@geosoftDb

SETTING NAME "Medium Highways";

The novel USING and ALPHACUT clauses are optional,
as the WHERE clause: if they are present, they operate on the
soft GeoJSON document generated by the previous clause
(if present, it is the WHERE clause, otherwise it is the FROM
clause). In particular, notice the clear distinction between
crisp conditions (in the WHERE clause) and soft conditions
(in the USING clause): this way, there is no semantic ambi-
guity, because crisp conditions keeps their well known crisp
behavior; furthermore, soft conditions are not extensions of
crisp conditions but are specified by a novel construct, clearly
distinct from crisp conditions.

Thus, through basic queries it is possible to specify com-
plex soft queries onGeoJSON documents, even based on the
evaluation of multiple membership degrees to fuzzy sets.

Defining Fuzzy Operators. In J-CO-QL+, the key to eval-
uate membership degrees of JSON documents from their
fields is the concept of “fuzzy operator”: it is a user-defined
operator whose goal is to compute a membership degree, on
the basis of the needs of the users. In GeoSoft, we decided to
rely on fuzzy operators as they are provided by J-CO-QL+:
this way, we avoid to introduce a construct that would repli-
cate the J-CO-QL+ construct to define fuzzy operators in an
exact way. Clearly, this decision is justified by the fact that
a GeoSoft query is translated into a J-CO-QL+ script, to be
executed.

As far as the GeoSoft query is concerned, the definition
of a fuzzy operator constitutes its execution context, as for
connections to databases. Consequently, a file specified in the
GET CONTEXT directive can contain J-CO-QL+ definitions
of fuzzy operators. In Listing 3, the second GET CONTEXT
directive loads the jcoContextOp1.jco file, which con-
tains the definition of the MediumLengthHighwayOp

fuzzy operator, as reported in Listing 4. Hereafter, we present
it in details.

The operator is named MediumLengthHighwayOp,
because it will be used to evaluate if and how much a docu-
ment (feature) describes a medium-length highway.

• The PARAMETER clause defines input formal parame-
ters; their actual value will be provided by expressions
on document fields.

• The PRECONDITION clause expresses a condition to
be met before evaluating the membership degree; if the
condition is not met, the evaluation is stopped. Specifi-
cally, the precondition is met if the length parameter
is greater than 0.

• The EVALUATE clause evaluates a mathematical expres-
sion on parameters; the resulting value will constitute
the basis for obtaining the actual membership degree. In
line 2, the expression is very simple: it just contains the
length parameter as it is.

• The last clause is the POLYLINE clause: it defines a
membership functionwhose co-domain is [0, 1]. Figure7
depicts the polyline, for the sake of clarity: provided the
x-axis value by theEVALUATE clause, the corresponding
y-axis value will be returned as membership degree. In
case of x-axis value less than (respectively, greater than)
the minimum (respectively, maximum) value, the y-axis
value corresponding to the minimum (respectively, max-
imum) x-axis value is returned.

GeoSoft has inherited fuzzy operators from J-CO-QL+.
In our previous works [8, 36, 56, 60], we presented several
examples of fuzzy operators that rely on complex poly-

123

International Journal of Computational Intelligence Systems (2023) 16:163 Page 15 of 40 163

Listing 4 Content of the jcoContextOp1.jco file.

CREATE FUZZY OPERATOR MediumLengthHighwayOp
 PARAMETERS length TYPE Float // in meters
 PRECONDITION length > 0.0
 EVALUATE length
 POLYLINE
 [(0, 0.0), (10000, 0.0), (15000, 0.3),

(20000, 1.0), (40000, 1.0), (50000, 0.3),
(60000, 0.0)];

Fig. 7 Membership function of the list:ContextOp1 fuzzy oper-
ator (in Listing 4)

lines. Traditionally, in the literature triangular and trapezoidal
functions are considered, because they are intuitive to use;
however, we argued that providing users with the possibility
to define more complex (and not necessarily convex) shapes
could increase the degree of flexibility for power users. As
an example, in [56], we exploited this feature to compensate
anomalous behaviours of the Jaro–Winkler string-similarity
metric. Clearly, users that are familiar with trapezoidal func-
tions can define them.

5.3 Nested Queries

When queries become more and more complex, “nested
queries” could significantly help either keep complexity
under control or specify sophisticated transformations (as
in the classical SQL). GeoSoft allows nested queries to be
specified only in the FROM clause.

The query reported in Listing 5 derives from the one pre-
sented in Listing 3; consequently, the addressed problem is
the same.

The query relies on two nested queries. The inner-most
query is a crisp query, since no membership degree is eval-
uated for features; in contrast, the intermediate one is a soft

query. This difference is only apparent, since the semantic
model is the same: when loaded, features become soft fea-
tures, so they have the fuzzysetsmap; however, this map
remains empty when no membership degree is evaluated.
The FROM clause of the outer query receives a soft GeoJ-
SON document from the nested query, independently of the
fact that the nested query is crisp or not.

Hereafter, we explain the query reported in Listing 5.

• The innermost query retrieves the highwaysGeoJSON
document from the database; features are projected on the
highwayIdfield and on thehighwayTotalLength
(obtained by renaming the SHAPE_LEN property). The
fuzzysets map of features in the output GeoJSON
document is empty.

• The intermediate query evaluates themembershipdegrees
to the MediumLengthHighways and to the Not
MediumLengthHighways fuzzy sets; the resulting
softGeoJSON document contains all the features selected
by the WHERE clause; as a result, the fuzzysets map
has two entries, for each feature.

• The outermost query receives the soft features produced
by the intermediate query and selects those of interest,
i.e., those having a membership value no less than 0.8,
and generates the output crisp GeoJSON document.

Again, the semantic model is still the same. We can
understand that the internal semantic gsq corresponds to
the GeoSoft clauses from SELECT to ALPHACUT. When a
collection name is specified in the FROM clause, the input
crisp GeoJSON document is implicitly transformed into
a soft GeoJSON document. Finally, the SAVE AS clause
is allowed only in the dbq database query, because (i) it
transforms the output soft GeoJSON document into a crisp
GeoJSON document and (ii) it saves the output crisp GeoJ-
SON document into the database.

We can show that composition is encompassed by the
semanticmodel. Indeed, if we denote the innermost, interme-
diate and outermost internal queries as gsqi , gsqm and gsqo,
respectively, the external query can be written as (moving
from Definition 7):

123

 163 Page 16 of 40 International Journal of Computational Intelligence Systems (2023) 16:163

Listing 5 Nested soft query in GeoSoft.

GET CONTEXT "jcoContextDb.jco";
GET CONTEXT "jcoContextOp1.jco";

SELECT .highwayId, .highwayTotalLength,
 (MEMBERSHIP_TO (MediumLengthHighways)) AS .wanted,
 (MEMBERSHIP_TO (NotMediumLengthHighways)) AS .notWanted

FROM (SELECT .highwayId, .highwayTotalLength
 FROM (SELECT .COD_PE AS .highwayId,

.SHAPE_LEN AS .highwayTotalLength
FROM highways@geosoftDb

WITH NAME "Highways")
WHERE .SHAPE_LEN > 3000
USING
MediumLengthHighwayOp (.highwayTotalLength)

 FOR FUZZY SET MediumLengthHighways,
NOT MediumLengthHighwayOp

 FOR NotMediumLengthHighways)
ALPHACUT MediumLengthHighways : 0.80
SAVE AS MediumLengthHighways@geosoftDb
SETTING NAME "Medium Highways";

gsq(gd) = toCrisp(gsqo(gsqm(gsqi (toSof t(gd))))).

Considering the overall database query (Definition 9), the
full semantic expression is the following one:

dbq(to, f rom) =
= save(to, toCrisp(gsqo(gsqm(gsqi
(toSof t(get(f rom))))))).

5.4 JOIN Queries

A key success factor for a query language onGeoJSON doc-
uments is certainly the capability to integrate them. The
construct we introduced to this end is the JOIN operator.
This operator is a completely novel contribution, in compar-
ison to our previous works on GeoSoft (see [9, 10]).

Syntax The JOIN operator is allowed in the FROM clause
(as in the classical SQL). The syntax is as follows:

source1 AS n1JOIN source2 AS n2
ON [GEOMETRY spatialCond]
[PROPERTIES propertyCond]

SET GEOMETRY
[SET FUZZY SETS fuzzySetSpec]

that we explain hereafter.

• With source1 and source2 we denote either a collection
name or a nested query. A collection name can be aliased
by specifying a name after the AS keyword; a nested
query must be aliased, necessarily.

• The ON keyword is followed by two distinct join con-
ditions: the first one is introduced by the GEOMETRY
keyword and specifies a join condition on geometries of

features (it is denoted as spatialCond); the second one is
introduced by the PROPERTIES keyword and specifies
the join condition on properties of features (it is denoted
as propertyCond). One of the two conditions can be omit-
ted, but at least one of them must be specified.

• The SET GEOMETRY clause specifies how to determine
the geometry of the output features (denoted as geome-
trySpec). We will say more in Appendix D.2.

• The SET FUZZY SETS clause is optional; if present,
it provides a way to choose what membership degrees
to choose from the ones of the source features. Since
it is quite complex, it is not fully described hereafter;
Appendix D.2 presents it in details.

The semantics of crisp JOIN operator is presented in
details in Appendix D. The interested reader can refer to
it for a fully understanding it.

Example Listing 6 reports a simple GeoSoft query that
illustrates how to exploit soft spatial functions. The query
looks for pairs of municipalities that share a significant part
of their border. The query is explained hereafter.

• The FROM clause joins the GeoJSON document stored
within the towns collection (see Information Layer 1)
with itself. The resulting features pair two municipalities
if their borders touch. The condition on properties that is
specified after the PROPERTIES keyword is necessary
to avoid coupling of a municipality with itself.

• The membership degrees to two fuzzy sets are evalu-
ated by the SET FUZZY SETS clause. They make use
of the HOW_MEET function, to obtain the degrees with

123

International Journal of Computational Intelligence Systems (2023) 16:163 Page 17 of 40 163

Listing 6 GeoSoft query with soft JOIN.

GET CONTEXT "jcoContextDb.jco";

SELECT .t1.nome_com AS .name1, .t2.nome_com AS .name2,
 (MEMBERSHIP_TO (BorderingLeft)) AS .SharedBorder1,
 (MEMBERSHIP_TO (BorderingRight)) AS .SharedBorder2
 FROM towns@geosoftDb AS t1
 JOIN towns@geosoftDb AS t2
 ON
 GEOMETRY MEET
 PROPERTIES .t1.nome_com != .t2.nome_com
 SET GEOMETRY INTERSECTION
 SET FUZZY SETS
 HOW_MEET (LEFT) AS BorderingLeft,
 HOW_MEET (RIGHT) AS BorderingRight
 ALPHACUT BorderingLeft : 0.4
 SAVE AS BorderingTowns@geosoftDb;

which the left (respectively, right) border meets the right
(respectively, left) border. These fuzzy sets cannot be
evaluated later, because the HOW_MEET function works
on the source geometries, which will be lost after the
FROM clause. Notice that HOW_MEET is an example of
fuzzy spatial relationship between geometries.

• Neither the WHERE clause nor the USING clause are
present in the query; indeed, the ALPHACUT clause suf-
fices to select the features of interest, i.e., those features
whose membership degree to the BorderingLeft
fuzzy set is no less than 0.4.

• The SELECT clause projects on the names of the
two municipalities, as well as on the membership
degrees to the two evaluated fuzzy sets, renamed as
SharedBorder1 and SharedBorder2. Finally, the
output crisp GeoJSON document is saved into the
BorderingTowns collection.

Semantics The semantics of the JOIN operator is as fol-
lows.

• Consider two soft GeoJSON documents gd1 and gd2.
The JOIN operator generates a new soft GeoJSON doc-
ument, here denoted as gd3. Then, consider two features
f 1 ∈ gd1 and f 2 ∈ gd2. A new f 3 feature is generated.

• f 3.properties contains two properties: the n1 (alias
of the first source GeoJSON document) property has
the value f 1.properties; the n2 (alias of the sec-
ond source GeoJSON document) property has the value
f 2.properties.

• If spatialCond is specified (after the GEOMETRY key-
word), the spatial condition is evaluated on the two
source geometries f 1.geometry (i.e., left geometry)
and f 2.geometry (i.e., right geometry). Several pred-

icates are admitted, such as INTERSECT, MEET, and so
on. A detailed introduction is reported in Appendix D.

• If propertyCond is specified (after the PROPERTIES
keyword), it is evaluated on the properties of the novel f 3
feature, i.e., on f 3.properties. Classical comparison
predicates and mathematical expressions are admitted.

• f 3.geometry assumes the value specified by geome-
trySpec after the SET GEOMETRY keywords, such as
INTERSECTION, UNION, and so on (see Appendix D
for a detailed introduction).

• f 3.fuzzysets is populated as specified by the SET
FUZZY SETS clause. The presence of membership
degrees associated with features in the input soft Geo-
JSON documents to the JOIN operator is explicitly
addressed by GeoSoft. Specifically, the JOIN operator
has to deal with the following issues.

– Dealing with joined features both belonging to the
same fuzzy set.When the joined features belong to the
same fuzzy set (possibly with different membership
degree), it is necessary to manage this situation, so as
to assign the output feature with the proper member-
ship degree.

– Selecting the fuzzy sets of interest. Not necessarily
all the fuzzy sets for which membership degrees of
the joined features are known are of interest for the
output features. In other words, only a subset of them
should be selected.

– Deriving membership degree to novel fuzzy sets.
Fuzzy spatial relationships that concern coupling of
two features must be evaluated when they are paired.
For example, the degree of inclusion of a geometry
within the other geometry cannot be evaluated later,
because the source geometries are lost.

123

 163 Page 18 of 40 International Journal of Computational Intelligence Systems (2023) 16:163

Appendix D.2 presents details about the soft part of the
JOIN operator; the interested reader can refer to it for a
full understanding.

• The novel f 3 feature is inserted into the output gd3 soft
GeoJSON document if all the specified conditions (i.e.,
either spatialCond orpropertyCond or both) are satisfied.
If at least one of spatialCond and propertyCond is false,
f 3 is not inserted into gd3.

Notice that the semantics of theJOIN operator is perfectly
integrated with the semantic model introduced in Sect. 5.1.
Indeed, independently of the fact that the FROM clause con-
tains one single source or a JOIN of sources, its output
is always a soft GeoJSON document, on which subsequent
clauses are evaluated.

5.5 A Complete Example

To conclude the introduction to GeoSoft, we show a com-
plete example that exploits the main characteristics of the
language.

Suppose that the user wants to find out those municipali-
ties in the province ofMilan that can be considered “medium
towns”, whose territory is crossed by “medium-length high-
ways”, such that the segment that traverses the municipality
is a significant part of the overall highway. TheGeoSoft query
that solves this problem is reported in Listing 7.

As usual, the beginning of Listing 7 includes the GET
CONTEXT directives. Notice that now all previous con-
text files are specified, together with two novel files,
named jcoContextOp2.jco (reported in Listing 8) and
jcoContextOp3.jco (reported in Listing 9).

Listing8defines theRelevantPortionOp fuzzyoper-
ator. It receives two formal parameters, which are named
lengthInTown and totalLength: the former is the
length of the highway fragment that traverses a given munic-
ipality, the latter is the total length of the highway in the
region. Once the precodition is satisfied, the EVALUATE
clause computes the percentage of lengthInTown on
totalLength; this value is the x-axis value used to get
the final membership degree from the membership function
defined by the POLYLINE clause. The membership func-
tion is depicted in Fig. 8: notice that it is 0 up to 1%, then it
starts increasing, reaching 1 for 5% (meaning that we con-
sider a highway fragment as fully interesting if its length in
a municipality is at least the 5% of the overall length in the
region).

Listing 9 reports the content of the jcoContext
Op3.jco file. It contains the definition of a third fuzzy
operator, named MediumTownOp. It is possible to see that
it is a simple fuzzy operator, which receives the area of a
municipality to evaluate if and how much a municipality is a

Fig. 8 Membership function for the fuzzy operator named
RelevantPortionOp (in Listing 8)

Fig. 9 Membership function for the fuzzy operator named
MediumTownOp (in Listing 9)

“medium town”; Fig. 9 depicts the polyline defined as mem-
bership function. Again, remember that the GET CONTEXT
directives exploit J-CO-QL+ scripts as “execution context’,
in particular database connections and declarations of fuzzy
operators; clearly, the content of this files is not part of the
GeoSoft language, butwill be inserted into the script obtained
by translating the query into a J-CO-QL+ script (see Sect. 6
and Appendix E.1).

Now, we are ready to explain the GeoSoft query.

• The blue box highlights the first nested query. Its goal is to
work on features in the GeoJSON document describing
towns (presented in Information Layer 1 and depicted
in Fig. 2), stored within the town collection in the
geosoftDb database.

123

International Journal of Computational Intelligence Systems (2023) 16:163 Page 19 of 40 163

Listing 7 Complex GeoSoft query based on soft JOIN.

GET CONTEXT "jcoContextDb.jco";
GET CONTEXT "jcoContextOp1.jco";
GET CONTEXT "jcoContextOp2.jco";
GET CONTEXT "jcoContextOp3.jco";

SELECT .t.town AS .town,

.t.province AS .province,
 .h.highwayId AS .highwayId,

.h.highwayName AS .highwayName,
 .h.highwayTotalLength AS .highwayTotalLength,
 (GEOMETRY_LENGTH ("M")) AS .highwayLengthInTown,
 (MEMBERSHIP_TO (Wanted)) AS .wanted

 FROM (SELECT .nome_com AS .town,
.nome_pro AS .province

 FROM towns@geosoftDb
 WHERE .nome_pro = "MILANO"
 USING MediumTownOp (TO_FLOAT(.shape_area))
 FOR FUZZY SET MediumTowns
) AS t

 JOIN (SELECT .COD_PE AS .highwayId,
.NOME_PERCO AS .highwayName,
.SHAPE_LEN AS .highwayTotalLength

 FROM highways@geosoftDb
WITH NAME "Highways"

 USING
 MediumLengthHighwayOp(.SHAPE_LEN)
 FOR FUZZY SET MediumLengthHighways,
 NOT (MediumLengthHighways)
 FOR FUZZY SET NotMediumLengthHighways
) AS h

 ON GEOMETRY INTERSECT
 SET GEOMETRY INTERSECTION
 SET FUZZY SETS
 RIGHT MediumLengthHighways,
 LEFT MediumTowns,
 RIGHT NotMediumLengthHighways
 WHERE .h.highwayTotalLength > 3000
 USING
 RelevantPortionOp(GEOMETRY_LENGTH ("M"), .h.highwayTotalLength)

FOR FUZZY SET RelevantSegments,
 MediumTowns AND MediumLengthHighways AND RelevantSegments

FOR FUZZY SET Wanted
 ALPHACUT Wanted : 0.80
 SAVE AS highwayTowns@geosoftDb
 SETTING NAME "Highway Towns";

FROM

JOIN

ON GEOMETRY INTERSECT
SET GEOMETRY INTERSECTION
SET FUZZY SETS
RIGHT MediumLengthHighways,
LEFT MediumTowns,
RIGHT NotMediumLengthHighways

(SELECT .nome_com AS .town,
.nome_pro AS .province

FROM towns@geosoftDb
WHERE .nome_pro = "MILANO"
USING MediumTownOp (TO_FLOAT(.shape_area))
FOR FUZZY SET MediumTowns

) AS t

(SELECT .COD_PE AS .highwayId,
.NOME_PERCO AS .highwayName,
.SHAPE_LEN AS .highwayTotalLength

FROM highways@geosoftDb
WITH NAME "Highways"

USING
MediumLengthHighwayOp(.SHAPE_LEN)
FOR FUZZY SET MediumLengthHighways,

NOT (MediumLengthHighways)
FOR FUZZY SET NotMediumLengthHighways

) AS h

The fuzzy operator named MediumTownOp is called in
the USING clause, to evaluate the membership degree to
the fuzzy set named MediumTowns.
Definitely, the goal of the nested query is to establish if
municipalities, in the province of Milan, are likely to be
considered medium towns.

Thus, the output soft features have the fuzzysetsmap
with one single entry, i.e., the membership degree to the
MediumTowns fuzzy set. The output soft GeoJSON
document is aliased as t.

• The green box highlights the second nested query. It
moves from the GeoJSON document describing high-

123

 163 Page 20 of 40 International Journal of Computational Intelligence Systems (2023) 16:163

Listing 8 Content of the jcoContextOp2.jco file.

CREATE FUZZY OPERATOR RelevantPortionOp
 PARAMETERS
 lengthInTown TYPE Float, // in meters
 totalLength TYPE Float // in meters
 PRECONDITION lengthInTown > 0.0
 AND totalLength > 0.0
 EVALUATE 100 * lengthInTown / totalLength
 POLYLINE
 [(0, 0.0), (1, 0.0),
 (3, 0.3), (5, 1.0)];

Listing 9 Content of the jcoContextOp3.jco file.

CREATE FUZZY OPERATOR MediumTownOp
 PARAMETERS area TYPE Float // in square meters
 PRECONDITION area > 0
 EVALUATE area / 1000000 // to square kilometers
 POLYLINE
 [(0, 0.0), (5, 0.0), (10, 0.3),

(15, 1.0), (70, 1.0), (110, 0.3),
 (111, 0.0)];

ways (presented in Information Layer 2 and depicted in
Fig. 4), which is stored within the highways collection
in the geosoftDb database. The nested query evaluates
if and how much a feature describes a medium-length
highway or not (see the two evaluated fuzzy sets, i.e.,
MediumLengthHighways and NotMedium
LengthHighways). Consequently, soft features in the
output soft GeoJSON document have two entries in the
fuzzysets member.
The output soft GeoJSON document is aliased as h.

• The red dashed box highlights the JOIN expression.
First of all (see the ON GEOMETRY clause), features in
the two softGeoJSON documents (aliased ast and h) are
joined based on geometries: features are paired if their
geometries intersect.
If pairing succeeds, the intersection of source geometries
becomes the geometry of the novel feature (as specified
by the SET GEOMETRY clause). Remember that prop-
erties in the novel feature are t (containing all properties
coming from the left feature) and h (containing all prop-
erties coming from the right feature).
Finally, the SET FUZZY SETS clause specifies which
membership degrees to fuzzy sets the novel feature
must have. Specifically, the membership degree to the
MediumLength
Highways is taken from the right feature (the h soft
GeoJSON document), the membership degree to the
MediumTowns fuzzy set is taken from the left feature
(the t soft GeoJSON document), while the membership

degree to the NotMediumLengthHighways fuzzy
set is taken from the right feature (see Appendix D for
details about the SET FUZZY SETS clause).
This way, the pool of soft features to evaluate in the fol-
lowing root-level clauses has been computed.

• The WHERE clause selects those composite features that
describe municipalities (from the first nested query, in
the province of Milan) that are crossed by a true high-
way, i.e., whose length is greater than 3000 m (to discard
connections, whose length is a few hundredmeters). This
selection can be performed only in a crisp mode, thus it
is specified in the WHERE clause.

• The USING clause actually performs the soft query.
Specifically, we have two branches, because the mem-
bership degrees to two distinct fuzzy sets are evaluated.
The first fuzzy set that is evaluated by the USING clause
is named RelevantSegments. Evaluated through the
RelevantPortionOp fuzzy operator (reported in
Listing 8), the resulting membership degree denotes if a
significant portion of the highway crosses the municipal-
ity.
The second branch evaluates the membership degree to
the Wanted fuzzy set: given a feature, its membership
degree denotes the degree with which it satisfies the
request. The soft condition is a fuzzy AND among three
previously computed fuzzy sets, i.e., MediumTowns,
MediumLengthHighways and Relevant
Segments: this way, the soft condition linguistically
expresses what the user is looking for, i.e., features that

123

International Journal of Computational Intelligence Systems (2023) 16:163 Page 21 of 40 163

Fig. 10 Excerpt of the
GeoJSON document produced
by the GeoSoft query reported in
Listing 7

represent a medium town crossed by a medium-length
highway, such that a significant portion of the high-
way crosses the town territory (the resulting membership
degree is the minimum among the three mentioned fuzzy
sets).

• The ALPHACUT clause selects only those features whose
satisfaction degree is no less than 0.8, so as to keep only
those features with a very-high satisfaction degree.

• Finally, the SELECT clause flattens the structure of prop-
erties. Furthermore, it adds two extra properties: the first
one is named highwayLengthInTown, whose value
is provided by the GEOMETRY_LENGTH built-in func-
tion (it provides the length, in meters, of the geometry);
the second property is named wanted, whose value is
the membership degree to the Wanted fuzzy set, by
exploiting the MEMBERSHIP_TO built-n function.

• The SAVE AS clause transforms the final softGeoJSON
document into a crisp one and saves it into the collec-
tion named highwayTowns, within the geosoftDb
database.

The reader can notice that, although the query is not trivial,
it is not so complicated: in particular, the choice to rely on the
well known syntax of the SQL SELECT statement, as well
as the key semantic choice of viewing aGeoJSON document
as a set of features, greatly simplify thinking and writing the
query for analysts that are used to write SQL queries.

Figure10 reports an excerpt of the GeoJSON document
produced by theGeoSoft query in Listing 7, when applied on
the same data sets described in Information Layer 1 and in
Information Layer 2, while Fig. 11 shows the sameGeoJSON
document drawn on a map. In Fig. 11, the reader can notice
that the highlighted (in purple) feature is a non-continuous
line. This is the effect of the intersection of a line representing
a highway with the area of a town, which can have a convex
shape. The GeoJSON format supports these cases by means
of the MultiLineString geometry type (see Appendix
B).

6 From GeoSoft to J-CO-QL+

GeoSoft works on a specific type of JSON documents, i.e.,
GeoJSON documents. J-CO-QL+ (the query language of
the J-CO Framework) is actually able to manage Geo-
JSON documents, since it is designed for manipulating
any kind of JSON document; however, it is quite complex
to do and we conceived the idea of developing GeoSoft.
Indeed, the advantage provided by GeoSoft is that it is
explicitly designed to query features within GeoJSON doc-
uments; consequently, queries are much easier to write than
the corresponding J-CO-QL+ scripts. Consequently, the J-
CO Framework becomes the engine that performs GeoSoft
queries, provided that these are translated into J-CO-QL+
scripts.

123

 163 Page 22 of 40 International Journal of Computational Intelligence Systems (2023) 16:163

Fig. 11 GeoJSON document produced by the GeoSoft query reported in Listing 7 drawn on a map. The black-box in the left-upper corner reports
the properties contained in the GeoJSON feature representing the highway segment that is highlighted in purple in the left-upper corner of the map

In this section, we present the translation technique we
implement into the GeoSoft compiler, to translate GeoSoft
queries into J-CO-QL+ scripts. To this end, it is necessary
to introduce the data and execution models of J-CO-QL+.

6.1 Brief Introduction to J-CO-QL+

In order to fully understand how a J-CO-QL+ script works, it
isworth briefly introducing the underlying data and execution
models.

6.1.1 Data Model

J-CO-QL+ works on collections of standard JSON docu-
ments (seeAppendixA).However, a specialmeaning is given
to fields whose name begins with the “˜” character: such
field names are fully compliant with JSONnaming rules, so
documents with such fields can be saved into JSONstores
without any problem. Currently, two special root-level fields
are managed by J-CO-QL+: they are named ˜fuzzysets
and ˜geometry.

• The ˜fuzzysets field works as a map fsn→ md,
where fsn is a fuzzy-set nameandmd is the corresponding
membership degree; this way, the degrees ofmembership
to multiple fuzzy sets of a document can be simultane-
ously represented.

• The ˜geometry field represents geometries of spatial
entities possibly represented by JSON documents [7, 55].
We chose to rely on the same format for geometries of
GeoJSON, whichwas described in Sect. 4. The advantage
of this choice is straightforward: it is a standard format,
which is world-wide adopted and can be easily managed.
As far as this paper is concerned, it is the same format
to deal with when querying GeoJSON features and their
geometry fields.

6.1.2 Execution Model

We now briefly introduce the execution model of J-CO-QL+
scripts.

A query q = (i1, . . . , in) is a sequence of n (with n > 0)
instructions i j (with 1 ≤ j ≤ n). Each instruction i j takes

123

International Journal of Computational Intelligence Systems (2023) 16:163 Page 23 of 40 163

a query-process state s(j−1) as input and generates a query-
process state s j as output.

A query-process state is a tuple

s = 〈tc, I R, DBS, FO,UDF〉.
Hereafter, we explain each member.

• The tc member is named temporary collection and
contains the current collection of JSON documents to
process.

• The I R member is a local and volatile database, where
the query can temporarily save Intermediate Results.

• The DBS member is the set of database descriptors, so
as to connect to databases to retrieve/store collections of
JSON documents.

• The FO member is the pool of fuzzy operators defined
throughout the query,which are used to evaluatemember-
ship degrees of documents to fuzzy sets (see Sect. 5.2.2).

• TheUDF member is the set of user-defined user-defined
functions (written either in JavaScript or Java), defined to
empower the query with additional computational capa-
bilities (see [58]).

This executionmodel allows for writing complex and long
queries, in a way that preserves the natural order with which
transformations on collections are thought by human beings.

6.1.3 Brief Description of the J-CO-QL+ Script

The J-CO-QL+ script reported in Listings from 10 to 14 are
obtained by translating theGeoSoft query reported in Listing
7. In principle, it could be written by hand directly as a J-
CO-QL+ script, but clearly using GeoSoft is much simpler.
Hereafter, we provide a brief description, by shortly intro-
ducing the statements. This brief description is necessary to
allow the reader to understand the translation strategy and
algorithm; the reader that is interested in understanding in
depth how the J-CO-QL+ script works can find a complete
description in Appendix E.

Databases and Fuzzy Operators Listing 4 reports the pre-
liminary part of the script, i.e., the definition of connections
to databases and the definitions of the fuzzy operators used
later in the script. They are the same previously shown in the
execution contexts of GeoSoft queries.

Loading a GeoJSON Document Listing 11 corresponds
to the first nested query in Listing 7.

• The first three instructions (lines from 5 to 7) are nec-
essary to acquire the GeoJSON document and adapt
it to the J-CO-QL+ data model. Specifically, the GET
COLLECTION instruction retrieves the content of the
specified database collection and makes it the current
temporary collection.

• Then, the EXPAND instruction unnests JSON documents
fromwithin the features array, so as to obtain a single
JSON document for each feature.

• Finally, the FILTER instruction adds the special ˜
geometry field, using the former geometry field
from features. Notice how theCASE WHERE crisp selec-
tion condition is used to specifywhichdocuments towork
on, while the GENERATE clause contains all transforma-
tions performed on the selected documents, to generate
the output ones (SETTING GEOMETRY specifies the
geometry of the document, while BUILD restructure the
output documents).

This is the general sequence to perform to load GeoJSON
documents; indeed, the first three lines of Listing 9 (which
corresponds to the second nested query in Listing 7) are iden-
tical.

Crisp and Soft conditionsWe now consider how J-CO-QL+
deals with crisp and soft conditions on JSON documents.

• The FILTER instruction on line 8 of Listing 8 actually
selects the features of interest and evaluates (through the
CHECK FOR clause) the membership degrees to fuzzy
sets (by adding the special ˜fuzzysets

• The SAVE instruction on line 9 saves the temporary
collection into the database of Intermediate Results, to
exploit it later.

Clearly, in Listing 9, which corresponds to the second
nested query in Listing 7, lines 13 and 14 are identical, apart
from the fact that the membership degrees to two fuzzy sets
are evaluated.

Joining Documents In Listing 7, line 15 actually joins doc-
uments generated by Listings 8 and 9.

• The ON GEOMETRY clause specifies the spatial condi-
tion, while the SET GEOMETRY clause specifies how
to derive the geometries of resulting documents. Specifi-
cally, given a document l in the left source collection and
a document r in the source right collection, the output o
document contains twofields named as the source aliases,
whose value is the source l (respectively, r) document.

• The ADD clause adds extra fields to the o document: in
this case, the properties field is added, so as to be
coherent with the semantic model of features inGeoSoft.

• The SET FUZZY SETS clause evaluates membership
degrees to fuzzy sets by exploiting both membership
degrees already evaluated for source documents and spa-
tial fuzzy relationships.

• Finally, the CASE WHERE clause selects documents of
interest and the CHECK FOR clause evaluates member-

123

 163 Page 24 of 40 International Journal of Computational Intelligence Systems (2023) 16:163

Listing 10 J-CO-QL+ translation of the GeoSoft query in Listing 7: Execution context.

1. USE DB geosoftDb

ON SERVER jcods 'http://127.0.0.1:17017';

2. CREATE FUZZY OPERATOR MediumLengthHighwayOp
 PARAMETERS length TYPE Float // in meters
 PRECONDITION length > 0.0
 EVALUATE length
 POLYLINE
 [(0, 0.0), (10000, 0.0), (15000, 0.3),

(20000, 1.0), (40000, 1.0), (50000, 0.3),
(60000, 0.0)];

3. CREATE FUZZY OPERATOR RelevantPortionOp
 PARAMETERS
 lengthInTown TYPE Float, // in meters
 totalLength TYPE Float // in meters
 PRECONDITION lengthInTown > 0.0
 AND totalLength > 0.0
 EVALUATE 100 * lengthInTown / totalLength
 POLYLINE
 [(0, 0.0), (1, 0.0),
 (3, 0.3), (5, 1.0)];

4. CREATE FUZZY OPERATOR MediumTownOp
 PARAMETERS area TYPE Float // in square meters
 PRECONDITION area > 0
 EVALUATE area / 1000000 // to square kilometers
 POLYLINE
 [(0, 0.0), (5, 0.0), (10, 0.3),

(15, 1.0), (70, 1.0), (110, 0.3),
 (111, 0.0)];

USE DB geosoftDb
ON SERVER jcods 'http://127.0.0.1:17017';

CREATE FUZZY OPERATOR MediumTownOp
PARAMETERS area TYPE Float // in square meters
PRECONDITION area > 0
EVALUATE area / 1000000 // to square kilometers
POLYLINE
[(0, 0.0), (5, 0.0), (10, 0.3),
(15, 1.0), (70, 1.0), (110, 0.3),
(111, 0.0)];

CREATE FUZZY OPERATOR MediumLengthHighwayOp
PARAMETERS length TYPE Float // in meters
PRECONDITION length > 0.0
EVALUATE length
POLYLINE
[(0, 0.0), (10000, 0.0), (15000, 0.3),
(20000, 1.0), (40000, 1.0), (50000, 0.3),
(60000, 0.0)];

1.

2.

3.

4.

CREATE FUZZY OPERATOR RelevantPortionOp
PARAMETERS
lengthInTown TYPE Float, // in meters
totalLength TYPE Float // in meters

PRECONDITION lengthInTown > 0.0
AND totalLength > 0.0

EVALUATE 100 * lengthInTown / totalLength
POLYLINE
[(0, 0.0), (1, 0.0),
(3, 0.3), (5, 1.0)];

ship degrees to fuzzy sets, as in the previous FILTER
instructions.
TheALPHACUT clause selects documents having amem-
bership degree for the specified fuzzy set no less than the
specified threshold.

• Finally, output documents are restructured (by theBUILD
action).

The temporary collection generated by Listing 7 contains
documents that correspond to the features to put into the
finalGeoJSON document. This is generated by the tail of the
script.

Generating the Output GeoJSONDocument
The final task to perform is to build he output GeoJSON

document. This is done by the tail of the script, reported in
Listing 14.

• Line 16 in Listing 7 prepares the documents to comply
with the structure of features in the GeoJSON standard
(see Appendix B). Documents are also “de-fuzzified”,
i.e., the ˜fuzzysets field is dropped, thus removing
any reference to fuzzy sets.

• The GROUP instruction on line 17 groups together all
documents, so as to obtain a unique document with the
features array field.

• The SAVE instruction on line 18 actually saves the output
GeoJSON document into a database.

6.2 Translation Strategy and Algorithm

We can now present how a GeoSoft query can be trans-
lated into a J-CO-QL+ script. Hereafter, we first present the

123

International Journal of Computational Intelligence Systems (2023) 16:163 Page 25 of 40 163

Listing 11 J-CO-QL+ translation of the GeoSoft query in Listing 7: First nested query.

5. GET COLLECTION towns@geosoftDb;

6. EXPAND
 UNPACK WITH ARRAY .features
 ARRAY .features TO .feature;

7. FILTER
 CASE WHERE WITH .feature.item
 GENERATE
 SETTING GEOMETRY .feature.item.geometry
 BUILD {
 .type : .feature.item.type,
 .properties : .feature.item.properties };

8. FILTER
 CASE WHERE WITH .type, .properties
 AND (WITH .properties.nome_com, .properties.nome_pro)
 AND (.properties.nome_pro = "MILANO")
 GENERATE
 CHECK FOR FUZZY SET MediumTowns

USING MediumTownOp(TO_FLOAT(.properties.shape_area))
 BUILD {
 .type : "Feature",
 .properties.town : .properties.nome_com,
 .properties.province : .properties.nome_pro };

9. SAVE AS GeoSoftIntermediate_0_t;

SELECT …
 FROM (SELECT .nome_com AS .town,
 .nome_pro AS .province
 FROM towns@geosoftDb
 WHERE .nome_pro = "MILANO"
 USING MediumTownOp(TO_FLOAT(.shape_area))
 FOR FUZZY SET MediumTowns
) AS t
…;

5.

6.

7.

8.

9.

translation strategy, that provides the rational behind the algo-
rithm.

6.2.1 Translation Strategy

The translation algorithm is presented in Sect. 6.2.2. Before
presenting it, we illustrate the rationale behind the translation
strategy.

1. Source collections storedwithin the database are retrieved
by J-CO-QL+ through a GET COLLECTION instruc-
tion; then, featureswithin thefeatures array fieldmust
be unnested, so as to transform the sourceGeoJSON doc-
ument into a collection of JSON documents, one for each
feature. This is the general pattern to follow to acquire
GeoJSON documents from the database.

2. Soft features are natively represented by JSON docu-
ments, enriched by means of the ˜fuzzysets field (see
Sect. 6.1.1); furthermore, the original geometry mem-
ber in features is translated into the ˜geometry field
(see Sect. 6.1.1), which represents geometries in the data
model of J-CO-QL+.

3. A nested query is translated into a sequence of J-CO-QL+
instructions.Theoutput temporary collectionbecomes the

input of the instructions that correspond to the clauses that
follow the FROM clause in the outer query.

4. In the case of a FROM clause that contains the JOIN oper-
ator, the operands are preliminarily processed; since there
is only one temporary collection in the query-process state
of a J-CO-QL+ script (see Sect. 6.1.2), it is necessary to
save the temporary collection that contains the soft fea-
tures provided by an operand into the Intermediate Results
(IR) database. The J-CO-QL+ instruction that actually
performs the join (named JOIN OF COLLECTIONS,
see Sect. 1) will later refer to this collection saved into the
I R database.

Consequently, the general translation model is the follow-
ing.

1. First of all, the “execution context” contained in the files
specified by the GET CONTEXT directives is load as a
general preamble. Remember that the execution context
defines database connections and fuzzyoperators, through
J-CO-QL+ instructions.

2. Input GeoJSON documents are acquired and features are
unnested; indeed, a GeoJSON document is a collection
of features; this collocation is represented as a collec-

123

 163 Page 26 of 40 International Journal of Computational Intelligence Systems (2023) 16:163

Listing 12 J-CO-QL+ translation of the GeoSoft query in Listing 7: Second nested query.

10. GET COLLECTION highways@geosoftDb;

11. EXPAND
 UNPACK WITH ARRAY .features
 AND .name = "Highways"
 ARRAY .features TO .feature;

12. FILTER
 CASE WHERE WITH .feature.item
 GENERATE
 SETTING GEOMETRY .feature.item.geometry
 BUILD {
 .type : .feature.item.type,
 .properties : .feature.item.properties };

13. FILTER
 CASE WHERE WITH .type, .properties
 AND (WITH .properties.NOME_PERCO,

.properties.SHAPE_LEN,
 .properties.COD_PE)
 GENERATE
 CHECK FOR
 FUZZY SET MediumLengthHighways

USING MediumLengthHighwayOp(.properties.SHAPE_LEN),
 FUZZY SET NotMediumLenghtHighways

USING NOT (MediumLengthHighways)
 BUILD {
 .type : "Feature",
 .properties.highwayId : .properties.COD_PE,
 .properties.highwayName : .properties.NOME_PERCO,
 .properties.highwayTotalLength : .properties.SHAPE_LEN };

14. SAVE AS GeoSoftIntermediate_1_h;

SELECT …
 FROM (…) AS t
 JOIN (SELECT .COD_PE AS .highwayId,
 .NOME_PERCO AS .highwayName,
 .SHAPE_LEN AS .highwayTotalLength
 FROM highways@geosoftDb
 WITH NAME "Highways"
 USING
 MediumLengthHighwayOp(.SHAPE_LEN)
 FOR FUZZY SET MediumLengthHighways,
 NOT (MediumLengthHighways)
 FOR FUZZY SET NotMediumHighways
) AS h
…;

10.

11.

12.

13.

14.

tion of JSON documents that have the properties,
˜geometry and ˜fuzzysets fields; in particular,
˜fuzzysets is automatically added when the first
membership degree to a fuzzy set is evaluated.

3. NestedGeoSoft queries are translated into a sequence of J-
CO-QL+ instructions, whose output temporary collection
represents a collection of soft features.

4. The outermost GeoSoft query has to generate again a
GeoJSON document; consequently, documents in the
temporary collection that represent the output soft features
are de-fuzzified and aggregated into one singleGeoJSON
document (this is the tail of the J-CO-QL+ script).

6.2.2 Translation Algorithm

The translation algorithm is reported in Algorithm 1. We
adopted a pseudo-code inspired to the Pascal programming
language as far as the general syntax is concerned. Hereafter,
we present it.

• The RewriteDBQuery function is the entry point of the
algorithm. As denoted by its name, it actually deals with
the full database query dbq. It is organized as explained
hereafter.

– The function receives one single parameter named
dbq; it is a structured object that represents the
database query (see Definition 9) to translate. The
function returns the string containing the output J-
CO-QL+ script.

– Line D.1 calls the RewriteInternalQuery function,
which actually translates the outermost internal query
(from the SELECT clause to the ALPHACUT clause),
by generating a string with the corresponding J-CO-
QL+ script. The string is assigned to the T variable.

– Line D.2 calls the GenTail function, whose goal is
to generate the last part of the J-CO-QL+ script. An
example of tail is reported in Listing 14 (we dis-
cussed it in Section E.4). The string containing the

123

International Journal of Computational Intelligence Systems (2023) 16:163 Page 27 of 40 163

Listing 13 J-CO-QL+ translation of the GeoSoft query in Listing 7: Outermost query.

15. JOIN OF COLLECTIONS
GeoSoftIntermediate_0_t AS t,
GeoSoftIntermediate_1_h AS h

 ON GEOMETRY INTERSECT
 SET GEOMETRY INTERSECTION
 ADD FIELDS {
 .properties.t : .t.properties,
 .properties.h : .h.properties }
 SET FUZZY SETS
 RIGHT MediumLengthHighways,
 LEFT MediumTowns,
 RIGHT NotMediumLenghtHighways
 CASE WHERE WITH .properties
 AND (WITH .properties.h.highwayTotalLength,

.properties.t.province,

.properties.t.town,

.properties.h.highwayName,

.properties.h.highwayId)
 AND (.properties.h.highwayTotalLength > 3000)
 GENERATE
 CHECK FOR
 FUZZY SET RelevantSegments

USING RelevantPortionOp(GEOMETRY_LENGTH ("M"),
.properties.h.highwayTotalLength),

 FUZZY SET Wanted
USING MediumTowns AND MediumLengthHighways AND RelevantSegments

 ALPHACUT 0.80 ON Wanted
 BUILD {
 .type : "Feature",
 .properties.town : .properties.t.town,
 .properties.province : .properties.t.province,
 .properties.highwayId : .properties.h.highwayId,
 .properties.highwayName : .properties.h.highwayName,
 .properties.highwayTotalLength : .properties.h.highwayTotalLength,
 .properties.highwayLengthInTown : (GEOMETRY_LENGTH ("M")),
 .properties.wanted : (MEMBERSHIP_TO(Wanted)) };

SELECT .t.town AS .town, …, …AS .wanted
 FROM (…) AS t
 JOIN (…) AS h
 ON GEOMETRY INTERSECT
 SET GEOMETRY INTERSECTION
 SET FUZZY SETS
 RIGHT MediumLengthHighways,
 LEFT MediumTowns,
 RIGHT NotMediumHighways
 WHERE .h.highwayTotalLength > 3000
 USING
 RelevantPortionOp (GEOMETRY_LENGTH ("M"),
 .h.highwayTotalLength)
 FOR FUZZY SET RelevantSegments,
 MediumTowns AND MediumLengthHighways
 AND RelevantSegments
 FOR FUZZY SET Wanted
 ALPHACUT Wanted : 0.80

;

15.

tail is concatenated with the content of the T variable
and assigned to the new R variable, whose value is
returned by line D.3.
Since the work performed by theGenTail function is
straightforward, we do not report it in Algorithm 1.

• The RewriteInternalQuery function is responsible for
translating an internal query, independently of its nesting
level. We explain it hereafter.

– The function receives one single parameter, named
iq: this is a structured object that describes the struc-
ture of the internal query. The function returns a string
with the corresponding J-CO-QL+ script.

– The If instruction on line I .1 discriminates whether
the FROM clause of the iq internal query contains

a JOIN expression, because the translation strategy
changes.

• If the FROM clause of the iq internal query does
not contain a JOIN expression, then J-CO-QL+
instructions corresponding to the translation of
the FROM clause generate a temporary collec-
tion that can be processed by a J-CO-QL+
FILTER instruction (see, for example, Sect. 1
and Section E.2, with Listing 11 and Listing
12). Consequently, line I .2 calls the Rewrite-
Source function to obtain the translation of
the source (either collection or nested internal
query), to which the "FILTER" constant string
is appended; its CASE WHERE block will be
generated by line I .4.

123

 163 Page 28 of 40 International Journal of Computational Intelligence Systems (2023) 16:163

Listing 14 J-CO-QL+ translation of the GeoSoft query in Listing 7: Tail.

16. FILTER
 CASE WHERE WITH .type, .properties
 GENERATE
 BUILD {
 .key : 1,
 .type : "Feature",
 .properties : .properties,
 .geometry : GEOMETRY_FIELD() }
 DEFUZZIFY
 DROPPING GEOMETRY;

17. GROUP
 PARTITION WITH .key
 BY .key INTO .features
 DROP GROUPING FIELDS
 GENERATE
 BUILD {
 .type : "FeatureCollection",
 .name : "Highway Towns",
 .features : .features };

18. SAVE AS highwayTowns@geosoftDb;

SELECT …
…
 SAVE AS highwayTowns@geosoftDb
 SETTING NAME "Highway Towns";

16.

17.

18.

• If the FROM clause contains a JOIN expres-
sion, its translation must save temporary collec-
tions into the IR database and must exploit the
J-CO-QL+ JOIN OF COLLECTIONS state-
ment (see Sect. 1 and Listing 13). The corre-
sponding translation is generated by calling the
RewriteJoinExpression on line I .3.

The RewriteSource function and the RewriteJoin-
Expression function will be explained later.

– Independently of the specific case dealt with by
lines from I .1 to I .3, the translation of clauses from
WHERE to ALPHHACUT is the same, as illustrated
in Sect. 1 and Sect. 1, with Listing 11 and Listing
13: a CASE WHERE block must be generated and
appended to the translation so far obtained. This is
obtained by calling the GenCaseWhere function on
line I .4.

– Finally, line I .5 returns the translation.

Since the work performed by the GenCaseWhere func-
tion is straightforward (although it is not trivial), we do
not report it in Algorithm 1.

• TheRewriteSource function generates the translation of
an s source specification in a FROM clause. It returns the
string containing the generated translation. The function
is explained hereafter.

– If the source is not a nested internal query, i.e., it
is a collection name, line S.2 calls the GenAcquisi-
tion function. It generates a sequence of J-CO-QL+

instructions that acquire the content of the collection
and expand nested documents (see Sect. 1 and Listing
11).

– If the s source is a nested internal query, the
RewriteInternalQuery function is recursively called
by line S.3 to generate the translation of the nested
internal query.

Since the work performed by the GenAcquisition func-
tion is straightforward (although it is not trivial), we do
not report it in Algorithm 1.

• The RewriteJoinExpression function translates a je
JOIN expression and returns the corresponding string.
It is explained hereafter.

– Line J .1 generates two temporary names, which are
assigned to the Name1 and the Name2 variables.
Remember from Section E.2 that, in case of JOIN
expression, it is necessary to save temporary collec-
tions describing soft GeoJSON documents into the
IR database; the two temporary names will be used
for this purpose.

– In line J .2, by calling the RewriteSource function,
the left operand of the JOIN expression is translated;
the resulting J-CO-QL+ script is concatenated with
the SAVE AS instruction that saves the temporary
collection into the IR database.
Line J .3 performs the same task on the right operand
of the je JOIN expression.

123

International Journal of Computational Intelligence Systems (2023) 16:163 Page 29 of 40 163

Algorithm 1 Translation ofGeoSoft queries into J-CO-QL+
scripts.

Function RewriteSource(s: SourceSpecification): String
Begin

S.1 If s Is Not a Nested Query Then
S.2 T := GenAcquisition(s)

Else
S.3 T := RewriteInternalQuery(s);

End If
S.4 Return T ;

End Function

Function RewriteJoinExpression(je: JoinExpression): String
Begin

J .1 Name1 :=GenTempName(); Name2 :=GenTempName();
J .2 T1 :=RewriteSource(je..leftSource)•"SAVE AS "•Name1
•";";
J .3 T2 :=RewriteSource(je.rightSource)•"SAVE AS "•Name2
•";";
J .4 TJ :=GenJoinOfCollections(je, Name1, Name2);
J .5 T := T1 • T2 • TJ ;
J .6 Return T ;

End Function

Function RewriteInternalQuery(iq: InternalQuery): String
Begin

I .1 If iq.FROM Is Not a JOIN Expression Then
I .2 T := RewriteSource(iq.FROM)•"FILTER";

Else
I .3 T :=RewriteJoinExpression(iq.FROM);

End If
I .4 R := T •GenCaseWhere(iq);
I .5 Return R;

End Function

Function RewriteDBQuery(dbq: DBQuery): String
Begin

D.1 T := RewriteInternalQuery(dbq.I nternalQuery);
D.2 R := T • GenTail(dbq.SaveAs);
D.3 Return R;

End

Notice that the translations are assigned to the T1 and
T2 variables.

– Line J .4 calls the GenJoinOfCollections function,
whose goal is to generate the first part of the J-CO-
QL+ JOIN OF COLLECTIONS instruction that
actually performs the soft join (see Sect. 1 and the
part of Listing 13 that precedes the CASE WHERE
clause). The translation is assigned to the TJ vari-
able. Since the work performed by this function is
straightforward (although it is not trivial), its code is
not reported in Algorithm 1.

– Finally, the three translations are concatenated by line
J .5 and returned by line J .6.

Algorithm 1 shows that translating a (possibly complex)
GeoSoft query is possible; the translation process is linear
and well structured.

In order to avoid boring the reader, we do not explain in
details how the GeoSoft query reported in Listing 7 is trans-
lated. The interested reader can find an extensive description
in Appendix E.

7 Evaluation

Before concluding the paper, we summarize the results by
evaluating three critical aspects, i.e., “flexibility”, “accessi-
bility” and “efficiency”.

7.1 Flexibility

First of all, we consider “flexibility”. What kind of flexibility
is provided by GeoSoft?

• Typically, query languages that rely on fuzzy sets and
linguistic predicates are considered as “flexible query
languages”, in the sense that queries expressed by means
of which are tolerant to imprecision and vagueness. From
this point of view, GeoSoft is certainly a flexible query
language.

• The extent of flexibility provided by GeoSoft is focused
at the level of feature: it does not consider single fuzzy
values; in contrast, it considers fuzzy sets defined in the
universe of spatial features. As an effect, a spatial feature
can belong to multiple fuzzy sets (of spatial features).

• Fuzzy operators are used to evaluatemembership degrees
of spatial features to fuzzy sets, on the basis of values of
feature properties. This approach has been inherited from
J-CO-QL+: in particular, a distinctive characteristic is the
adoption of a polyline as membership function, in place
of more traditional triangular and trapezoidal functions
(that can be easily defined by means of polylines). This
choice further increases the level of flexibility, because
complex shapes can be exploited by analysts to deal with
complex situations (as we did in [56]).

• Currently, GeoSoft does not provide “quantifiers”: a
quantifier is an aggregator of severalmembershipdegrees,
whose goal is to express quantification of linguistic pred-
icates. The reason why quantifiers are not considered
in GeoSoft is that they are not provided by J-CO-QL+
either; we are aware of this lack, but we decided to delay
addressing this problem, waiting for the right time in
the development of the language. Indeed, we are cur-
rently addressing the issue of defining user-defined fuzzy
aggregators (and quantifiers can be seen as specific fuzzy
aggregators). When this concept is available in J-CO-
QL+ we will promptly introduce it in GeoSoft, together
with the GROUP BY clause.

• GeoSoft accompanies spatial join with specific functions
to evaluate fuzzy spatial relationships among geometries.

123

 163 Page 30 of 40 International Journal of Computational Intelligence Systems (2023) 16:163

This way, through a spatial join, the membership degrees
to fuzzy sets of resulting features on the basis of spatial
fuzzy relationships can be evaluated at once.

• In our opinion, another issue towards flexibility is the
clear separation between crisp conditions and soft con-
ditions. Indeed, previous proposals usually modify the
semantics of the classical WHERE clause from crisp con-
ditions to soft conditions. In our opinion, this approach
is not the right one, because it is true that crisp predicates
can be seen as soft predicates whose membership degree
is either 0 or 1, but often the crisp and soft world should
not be mixed. This is why GeoSoft provides both the
WHERE clause (crisp selection condition) and the USING
clause (soft conditions that evaluate membership degrees
to fuzzy sets).

Nonetheless, we can consider another meaning of flexibil-
ity, i.e., the ability to simplify data management and analysis
tasks. In this sense, GeoSoft is the most flexible solution for
analyzingGeoJSON information layers storedwithin a JSON
document store, for several reasons.

• It works directly on the sourceGeoJSON documents and
generates GeoJSON documents.

• It does not require to perform tedious transfers of
GeoJSON document into a differentDBMS, such asPost-
greSQL/PostGIS, fighting against import/export tools.

• It is completely independent of the specific database tech-
nology and of its specific query language.

7.2 Accessibility

The second aspectwe consider to evaluateGeoSoft is “Acces-
sibility”, which we can be intended as the capability of the
proposed tool to remove obstacle tomanageGeoJSON infor-
mation layers.

• Section6 presented the translation method we imple-
mented to translate GeoSoft queries into J-CO-QL+
scripts. The length of J-CO-QL+ scripts obtained from
(possibly short) GeoSoft queries clearly show how
GeoSoft greatly improve the accessibility of users to
GeoJSON querying; the choice for adopting a SQL-like
syntax for GeoSoft further improve accessibility.

• In this paper, we did not consider other query languages
for JSON documents, such asMQL (theMongoDBQuery
Language), but we can say a few words. Syntactically,
MQL is a JavaScript method calls, where a query is
specified as a JSON document provided as parameter:
this choice makes quite hard to directly work on docu-
ment nested within array fields, so aGeoJSON document
should be preliminarily split into single JSON documents
that must be saved into the database itself, with the effect

of making the database dirty. Furthermore, users coming
from SQL are not familiar with this approach, as well as
MQL does not support soft querying. Consequently, we
can state that GeoSoft provides users with a significantly
higher degree of accessibility for querying of GeoJSON
documents.

• Would it be possible to perform the same kind of analysis
withMongoDB? The answer is “no”, becauseMongoDB
supports only “range queries” on previously-indexed
JSON documents (not on GeoJSON information layers)
on the basis of their geo-tagging.

• Would it be possible to perform similar querieswith Post-
greSQL/PostGIS? the answer is “yes”, because PostGIS
is quite complete. Nonetheless, queries cannot be per-
formed directly on GeoJSON documents, but on tables;
this means that features within GeoSoft documents must
be preliminarily imported into tables, processed and
exported again as GeoJSON documents. GeoSoft over-
takes all these passages, enabling users to directly work
onGeoJSON information layers storedwithin JSON data
stores.

7.3 Efficiency

The last aspect we consider is “efficiency”. To evaluate this
aspect, we performed experiments with the real data within
the GeoJSON documents presented in Information Layer 2
and information Layer 1. Experiments were conducted on a
common laptop powered by an Intel quad-Core i7-8550-U
Processor, running at 1.80 GHz, equipped with 16 GB RAM
and 250 GB Solid-State Drive. The J-CO-QL+ Engine is
implemented with the Java language.

GeoSoft executed via J-CO-QL+ script The GeoJSON
query reported in Listing 7 is translated into the J-CO-QL+
script reported in Listings from 10 to 14, which was summa-
rized in Sect. 6.1.3 and is extensively presented in Appendix
E.

Specifically, the Highways information layer describes
94 highways; the Towns information layer describes 1506
municipalities. This data set is named Full Data Set, to dis-
tinguish it from the other two data sets that will be discussed
later.

Table 1 reports the result of our experiments. For each data
set, the execution times measured for each single J-CO-QL+
instruction are reported (left column, labeled as Partial) and
the sum of execution times is reported on the right column
(labeled as Total).

The total execution time for the Full Data Set is 26 sec;
looking at the single instruction, it is possible to see that
the JOIN OF COLLECTIONS instruction takes 1.5 sec,
so, there are other instructions that determine the overall exe-
cution time. These instructions are those from 5 to 7: they

123

International Journal of Computational Intelligence Systems (2023) 16:163 Page 31 of 40 163

Table 1 Execution times for each J-CO-QL+instruction reported in Listings from 10 to 14

Full data set Milan data set Medium data set

Instruction Partial (ms) Total (ms) Partial (ms) Total (ms) Partial (ms) Total (ms)

1 USE DB 179 179 167 167 164 164

2 CREATE FUZZY OPERATOR 0 182 0 171 0 168

3 CREATE FUZZY OPERATOR 0 182 0 171 0 168

4 CREATE FUZZY OPERATOR 0 182 0 171 0 168

5 GET COLLECTION 5,165 5,348 525 696 270 439

6 EXPAND 12,138 17,486 935 1,631 398 837

7 FILTER 5,094 22,582 533 2,167 308 1,147

8 FILTER 370 22,953 231 2,398 112 1,259

9 SAVE AS 970 23,924 446 2,845 246 1,506

10 GET COLLECTION 171 24,095 103 2,949 94 1,601

11 EXPAND 217 24,313 139 3,088 204 1,806

12 FILTER 106 24,420 63 3,151 111 1,917

13 FILTER 63 24,484 35 3,187 56 1,973

14 SAVE AS 97 24,582 66 3,253 69 2,043

15 JOIN OF COLLECTIONS 1,562 26,147 1,046 4,301 395 2,440

16 FILTER 6 26,154 6 4,308 3 2,444

17 GROUP 3 26,157 2 4,311 1 2,446

18 SAVE AS 72 26,229 61 4,372 48 2,494

correspond to the acquisition of the TownsGeoJSON docu-
ment and its transformation into single JSON documents: in
particular, the EXPAND instruction is the slowest, because it
has to unnests documents with very complex geometries.

In order to better evaluate this behavior, we built a second
data set, named Milan Data Set; in this data set, we
selected only the 133municipalities in the province ofMilan;
so the input TownsGeoJSON document now contains about
one-tenth of the initial features.

Looking at Table 1possible to see that now the overall
query is executed in 4.3 s; in particular, the critical instruc-
tions (from 5 to 7) now take 2 s, i.e., ten times faster (as
expected).

Finally, we further restricted the municipalities in the
Towns document, considering only the 22, in the province
of Milan, whose area is between 15 km2 and 70 km2 (which
correspond to the area, for amunicipality, to have a full mem-
bership to the MediumTowns fuzzy set, according to the
MediumTownOp fuzzy operator defined in Listing 9). The
Highways document still contains all the initial features.
The data set is named Medium Data Set.

The overall time is now 2.5 sec; in particular, notice that
the JOIN OF COLLECTIONS instruction now takes only
0.4 sec Considering that the implementation of the JOIN
OF COLLECTIONS statement is not optimized by spatial
indexing, it behaves satisfactorily, not being the bottleneck
of the process.

Thus, the bottleneck is the loading of largeGeoJSON doc-
uments in which features have very complex geometries,
such as borders of municipalities.

ComparisonwithPostegreSQL/PostGIS In order to compare
GeoSoft (and its execution through J-CO-QL+) with tradi-
tional solutions, we created an Object-Relational database
managed by PostgreSQL11 and its extension for spatial
data, named PostGIS.12 The two information layers were
uploaded, both in theFullData Set version and in theMedium
Data Set version; two PostGIS tables for each version were
created, having one row for each feature. A join query based
on the spatial intersection of geometries was performed,
so as to spatially intersect towns and highways; this query
is comparable with the work performed by the JOIN OF
COLLECTIONS instruction in the J-CO-QL+ script, even
though the PostGIS join does not evaluate soft conditions (as
in the J-CO-QL+ JOIN OF COLLECTIONS).

Processing the Full Data Set, PostGIS takes 1.2 sec,
against 1.6 sec taken by the J-CO-QL+ JOIN OF
COLLECTIONS.

Processing the Medium Data Set, PostGIS takes 0.2
sec, against 0.4 sec taken by the J-CO-QL+ JOIN OF
COLLECTIONS.

11 PostgreSQL: https://www.postgresql.org/download/, accessed on
01/07/2023.
12 PostGIS: https://postgis.net/documentation/getting_started/,
accessed on 01/07/2023.

123

https://www.postgresql.org/download/
https://postgis.net/documentation/getting_started/

 163 Page 32 of 40 International Journal of Computational Intelligence Systems (2023) 16:163

It is possible to observe that in absolute terms PostGIS is
faster than J-CO-QL+, in particular if the overall script is
considered. However, this experiment does not consider how
to upload information layers to PostGIS tables and how to
export PostGIS tables to GeoJSON documents. To this end,
several tools can be used, but they require the user to execute
them manually, thus resulting in tedious activities that more
or less can take (when things go fine at the first attempt) at
least the same time needed by the overall J-CO-QL+ script on
the Full Data Set, i.e., 26 sec. In contrast, the GeoSoft query
works directly on the information layers stored within JSON
document stores: users do not have to waste time in other
activities, they can concentrate on the analysis they want to
perform.

8 Conclusions and FutureWorks

The contribution of the paper is the GeoSoft proposal: it is
conceived as a domain-specific language forwriting sophisti-
cated queries on features described byGeoJSON documents.
Hereafter, we summarize the major points that characterize
this work.

• The choice for the GeoJSON format is motivated by
its popularity. Furthermore, moving from the high-level
view of a GeoJSON document as a “set of features”, it
is straightforward (for us) to conceive to adopt the same
approach on which SQL relies for querying features of
GeoJSON documents, so as to obtain other GeoJSON
documents.

• The idea of defining GeoSoft originated from the work
we are performing on the J-CO Framework. It is a pool
of software tools built around the J-CO-QL+ language,
designed to operate on JSON data sets at a high level of
abstraction, if compared with other languages for query-
ing JSON documents (see [7] for a detailed comparison).
In particular, native capabilities ofmanaging geo-tagging
and soft querying JSON documents makes J-CO-QL+ a
unique proposal. Furthermore, the independence of any
specific JSON store makes the J-CO Framework particu-
larly indicated to integrate data sets coming frommultiple
JSON document stores.

• However, any general-purpose language (even if it is very
powerful) may fall into situations that can be solved only
by writing long and complex sequences of instructions.
This happens with J-CO-QL+ as well, in particular when
dealing with formats based on many nesting levels, such
as GeoJSON : writing J-CO-QL+ scripts for querying
features inGeoJSON documents is usually cumbersome,
even though such J-CO-QL+ scripts are effective. The
approach followed for GeoSoft, i.e., devising a query
language specifically designed for features in GeoJSON

documents, which exploits the syntax of the classical
SELECT statement in SQL, dramatically reduces the
effort to write complex queries.

• Nevertheless, the distinctive features provided by J-CO-
QL+ are still precious, in particular native management
of geo-tagging and soft querying capabilities: GeoSoft
exploits them. Consequently, the J-CO Framework plays
the role of execution engine of GeoSoft queries, because
they are translated into J-CO-QL+ scripts.

Both the J-CO Framework and the GeoSoft compiler are
publicly available on a GitHub repository.13

As a future work, several research lines could be followed,
which concern the J-CO Framework in general and possibly
affect GeoSoft.

• The J-CO-QL+ language is undergoing a continuous evo-
lution, in particular as far as support for soft querying is
concerned.
Specifically, we are going to address the problem of
defining complex fuzzy aggregators, so as to enable soft
queries that rely on complex soft aggregations. Once
defined, we will address, in GeoSoft, both the defini-
tion of quantifiers and the introduction of the GROUP
BY clause.

• Soft Web Intelligence is the concept we are exploring in
a parallel research work [66]. It can be considered as a
modern interpretation of the 20-year-old notion of Web
Intelligence. Currently, we demonstrated that the J-CO
Framework can play a key role in envisioning theWorld-
WideWeb as a giant data store, supporting its exploitation
by means of soft computing and soft querying. From
GeoSoft a novel language could derive, that could pro-
vide analysts with the abstraction to easily write complex
(fuzzy) aggregations on data set coming from the Web.

• From the point of view of applications, the line of devel-
opingdomain-specific languages for particular formats of
JSON documents can be replicated for other formats. For
example, a possible application context could be “linked
data”: for example, the JSON-LD format [67] is meant to
substitute the Resource Description Framework (RDF)
[68] in the context of semantic web.

• As we said, the J-CO Framework and J-CO-QL+ are
general purpose, thus they could be applied to many dif-
ferent application contexts. We already experimented its
use in the context of geographical-data integration [56].
The result we obtained encourages us to explore novel
application contexts, such as building a product search-
engine based on queries written in natural language over

13 J-CO Project GitHub landing page: https://github.com/
JcoProjectTeam/JcoProjectPage, accessed on 01/07/2023.

123

https://github.com/JcoProjectTeam/JcoProjectPage
https://github.com/JcoProjectTeam/JcoProjectPage

International Journal of Computational Intelligence Systems (2023) 16:163 Page 33 of 40 163

product reviews posted by users and customers (moving
from our past experience [69, 70]).

Author Contributions All authors whose names appear on the submis-
sion declare that: (1)made substantial contributions to the conception or
design of the work; or the acquisition, analysis, or interpretation of data;
or the creation of new software used in the work; (2) drafted the work or
revised it critically for important intellectual content; (3) approved the
version to be published; and (4) agree to be accountable for all aspects
of thework in ensuring that questions related to the accuracy or integrity
of any part of the work are appropriately investigated and resolved.

Funding The authors did not receive support from any organization for
the submitted work.

Data Availability Statement The authors declare that the data sets pre-
sented in this paper are available on theGitHub repository (URL: https://
github.com/JcoProjectTeam/JcoProjectPage). The authors declare that
the tools presented in this paper are available on GitHub repository
(URL: https://github.com/JcoProjectTeam/JcoProjectPage).

Declarations

Conflict of interest The authors declare they have no conflict of interest.

Ethical standard The authors declare that the presented research has no
ethical concerns.

Informed consent All the authors give their consent for publication.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A. Brief Introduction to the JSON Format

To illustrate the JSON format, Fig. 12 reports a JSON docu-
ment.

• A document is represented within a pair of braces “{”
and “}”; it is a sequence of fields separated by commas.
A field is a “name: value” pair, where “name” is the field
name.
The document reported in Fig. 12 has five fields named
Name, FoundationYear, FounderName,Main
Address and Products.

• Elementary values for fields can be eitherBoolean values,
or numbers (either integer or real numbers) or strings.

Fig. 12 Example of JSON document

Considering strings, while the field name is always
enclosed within double quotes, strings can be enclosed
either within double quotes or within single quotes.
In the sample document in Fig. 12, both the Name and
the Founder fields have a string as a value, but the first
string is enclosed within single quotes, while the second
within double quotes.

• A nested sub-document can be the value of a field too.
A sub-document is enclosed within a pair of braces “{”
and “}”, as for the root-level document.
In Fig. 12, the MainAddress field has a sub-document
as a value; specifically, three fields are encompassed
in this nested sub-document, i.e., Street, City and
Country.

• Finally, the value of a field can be an array (enclosed
within square brackets “[” and “]”), whose items can be
any kind of JSON value, separated by commas.
For example, the Products field in the sample docu-
ment in Fig. 12 is an array of documents. Specifically,
two documents describe products that are sold by the
company described by the document.

B. Details of the GeoJSON Format

According to its official specification,14 a GeoJSON docu-
ment can represent three types of documents (which, at the
end, are JSON documents based on a precise structure).

• Geometry. This is the simplest type of spatial informa-
tion that it is possible to represent. Such a document

14 GeoJSON specification: https://www.rfc-editor.org/rfc/rfc7946,
accessed on 01/07/2023.

123

https://github.com/JcoProjectTeam/JcoProjectPage
https://github.com/JcoProjectTeam/JcoProjectPage
https://github.com/JcoProjectTeam/JcoProjectPage
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.rfc-editor.org/rfc/rfc7946

 163 Page 34 of 40 International Journal of Computational Intelligence Systems (2023) 16:163

contains a mandatory type field, which denotes the type
of described geometry. The type field can assume one
of the following values: "Point", "LineString",
"Polygon", "MultiPoint", "MultiLine
String" and "MultiPolygon"; in these cases, the
coordinates field is an array of two coordinates (for
"Point"), an array of points (for "LineString",
"Polygon" and "MultiPoint"), an array of line
strings (for "MultiLineString") and an array of
polygons (for "MultiPolygon").
Finally, the type field can also have the "Geometry
Collection" value; in this case, the geometries
field (that replaces the coordinates field) is an array
of documents describing geometries (so as to describe
very complex and heterogeneous geometries).

• Feature. This type of document represents a spatial
entity, in terms of geometry and properties (i.e., registry
data about the entity).
It contains three mandatory fields. The first one is
type, whose value is set to "Feature" to denote
that the document describes a feature. The second field
is geometry, whose value is a GeoJSON Geome-
try document (as specified before); the third field is
properties, whose value is a common JSON doc-
ument that describes properties (i.e., registry data) of the
described spatial entity.

• Feature Collection. This type of document represents
a set of Feature documents. In its minimal form, it
encompasses two mandatory fields: the type field has
the fixed "FeatureCollection" value, to denote
that the document describes a feature collection; the
features field is an array of Feature documents (as
specified above).
Additionally, a Feature Collection document can hold
an optional name field, whose value gives a name to
the collection; furthermore, an optional crs field is a
nested JSON document representing the Coordinate Ref-
erence System used for geometries in the features that
are described within the main document.

C. Brief Introduction to Fuzzy Sets

Fuzzy-Set Theory was introduced in 1965 by Zadeh in [11];
here, we sketch basic concepts.

Let us suppose thatU denotes a non-emptyuniverse, either
finite or infinite.

Definition 10 A fuzzy set A in U is defined through a map-
ping µA : U → [0, 1]. The value µA(x) is referred to as the
membership degree of the item x ∈ U to the A fuzzy set.

We can say that a fuzzy set A in U is characterized by a
membership functionµA(x) that associates each item x ∈ U

with a real number in the range [0, 1]; this value denotes the
degree with which x is a member of A, also called “mem-
bership degree”. Specifically, if µA(x) = 0, then x does not
belong at all to A; if 0 < µA(x) < 1, then x belongs to A
only partially; if µA(x) = 1, then x fully belongs to A.

As an example, consider the universe U of places in
a given neighborhood. The fuzzy set named NicePlaces
denotes those places that are nice for a citizen named Julia.
She judges a place x , based on her preferences, by means
of membership degrees; clearly, µNicePlaces(x) = 1 means
that x is one of Julia’s favourite places; given two places
x1 and x2, if µNicePlaces(x1) = 0.8 and µNicePlaces(x1) >
µNicePlaces(x2), this means that x1 has more favour than x2
by Julia, even though x1 is not fully favorite (its membership
degree is 0.8).

Definition 11 Consider two fuzzy sets A and B in U .
Considering an item x ∈ U and the intersection I =

A ∩ B, the membership degree of x to I is µI (x) =
min(µA(x), µB(x)).

Considering an item x ∈ U and the union S =
A ∪ B, the membership degree of x to S is µS(x) =
max(µA(x), µB(x)).

Considering an item x ∈ U and the complement of A,
i.e., CA = U − A, the membership degree of x to CA is
µCA (x) = 1 − µA(x).

A “Soft Condition” linguistically expresses the fact that
an item x belongs to a specific fuzzy set. Consequently, the
AND operator is mapped to the fuzzy intersection, the OR
operator is mapped to the fuzzy union, the NOT operator is
mapped to the fuzzy complement.

For example, considering again Julia’s interests, we could
think about a second fuzzy set named CrowdedPlaces,
which denotes if a place is usually crowded; so, Julia could
look for I nterestingPlaces, such that
I nterestingPlaces = CrowdedPlaces AND NicePlaces,
which is an example of soft condition. The resultingmember-
ship degree, that isµI nterestingPlaces = min(µCrowdedPlaces

(x), µNicePlaces(x)) denotes the relevance of a place x with
respect to the soft condition; places could be ranked in reverse
order of membership degree.

In J-CO-QL+, the representational units are JSON docu-
ments, so the universe U contains JSON documents: con-
sequently, J-CO-QL+ provides constructs to evaluate the
membership degrees of JSON documents to fuzzy sets, so as
to express “soft selection conditions” on JSON documents.

D. Details about JOIN inGeoSoft

Referring to Sect. 5.4, in this appendixwe report details about
spatial-join conditions and the SET FUZZY SETS clause.

123

International Journal of Computational Intelligence Systems (2023) 16:163 Page 35 of 40 163

D.1 Spatial JOIN

The GEOMETRY keyword in the ON clause of the JOIN oper-
ator is followed by the spatialCond spatial-join condition.
Hereafter, we describe

• The spatial condition is evaluated on the two source
geometries f 1.geometry (i.e., left geometry) and
f 2.geometry (i.e., right geometry). The admitted
predicates are: INTERSECT, which is true when the
two geometries intersect; MEET, which is true when
the two geometries share part of their boundaries;
INCLUDE(LEFT) (respectively,INCLUDE(RIGHT)),
which is true when the right (respectively, left) geometry
contains the left (respectively, right) geometry. Another
admitted predicate is “DISTANCE (unit) comp num-
ber”; it is true when the condition about the distance
between the center of gravity of the two geometries is
satisfied; unit can be M, KM or ML in order to evaluate
the distance in meters, kilometers or miles, respectively);
comp can be one of the usual comparison operators, i.e.,
=, !=, <, < =, >, >=; finally, number can be any real
number.

• The SET GEOMETRY keyword is followed by geome-
trySpec, which specifies how to generate the geometry
f 3.geometry of the output f 3. feature.
Specifically, geometrySpec can be: INTERSECTION,
to obtain the intersection of the source geometries
f 1.geometry and f 2.geometry; UNION, to obtain
the union of the source geometries; LEFT (respectively,
RIGHT), to obtain the geometry f 1.geometry of the
left feature (respectively, the geometry f 2.geometry
of the right feature).

D.2. Setting Fuzzy Sets

The SET FUZZY SETS keywords are followed by the
fuzzySetSpec specification, by which it is possible to specify
the fuzzy sets of interest or derive new ones.

The fuzzySetSpec specification can be expressed in two
different forms.

• The synthetic form is introduced by the KEEP keyword
followed by three alternative keywords: they are LEFT,
RIGHT or ALL. The semantics is the following:

– with KEEP LEFT, the fuzzysets map of the left
feature provides all membership degrees for f 3, i.e.,
f 3.fuzzysets = f 1.fuzzysets;

– with KEEP RIGHT, the fuzzysets map of the
right feature provides all membership degrees for f 3,
i.e., f 3.fuzzysets = f 2.fuzzysets;

– with KEEP ALL, both the fuzzysets maps of
the left and right features provide the member-
ship degrees for f 3, i.e., f 3.fuzzysets = f 1.
fuzzysets ∪ f 2.fuzzysets.

In the KEEP ALL case, the default behavior in the
case the same fuzzy-set name fsn appears as a key
in both f 1.fuzzysets and f 2.fuzzysets maps is
to take the minimum membership degree, i.e., f 3.
fuzzysets(fsn) = min(f 1.fuzzysets(fsn), f 2.
fuzzysets(fsn)). However, it is possible to add the
RESOLVING WITH option, to specify the behavior:

– KEEP ALL RESOLVING WITH AND takes the
minimum membership degree (this is the default
behavior);

– KEEP ALL RESOLVING WITH OR takes the
maximummembership degree, i.e., f 3.fuzzysets
(fsn) = max(f 1.fuzzysets(fsn), f 2.fuzzysets
(fsn));

– KEEP ALL RESOLVING WITH FIRST takes the
membership degree from the left feature, i.e., f 3.
fuzzysets(fsn) = f 1.fuzzysets(fsn);

– KEEP ALL RESOLVING WITH LAST takes the
membership degree from the right features, i.e.,
f 3.fuzzysets(fsn) = f 2.fuzzysets(fsn).

• By means of the detailed form, it is possible to provide
a comma-separated list that specifies, one by one, which
membership degrees to hold in the f 3.fuzzysetsmap.
Each item in the list can be expressed in three different
versions.

– The first version of an item in the detailed form
is side ALL, where side can be either LEFT or
RIGHT. In this case, all membership degrees in
f 1.fuzzysets (respectively, in f 2.fuzzysets)
are added to f 3.fuzzysets.

– The second version of an item in the detailed
form is side fsn, where side is either LEFT or
RIGHT and fsn is a fuzzy-set name. If side is
LEFT (respectively, RIGHT) the membership degree
of fsn is taken from f 1.fuzzysets (respectively,
f 2.fuzzysets) and inserted into f 3.fuzzysets.
Optionally, it is possible to specify a novel name for
the fuzzy set to insert into f 3.fuzzysets; in this
case, the shape becomes side fsn AS newFsn, where
newFsn is the name of the final fuzzy set.

– The third version of an item in the detailed form is
spatialFunc AS newFsn, where spatialFunc denotes
a fuzzy spatial function that operates on the source
geometries, while newFsn is the name of the new
fuzzy set inserted into f 3.fuzzysets. Fuzzy spa-
tial functions provide a membership degree in the

123

 163 Page 36 of 40 International Journal of Computational Intelligence Systems (2023) 16:163

range [0, 1] as a result, which becomes the member-
ship degree of the novel newFsn fuzzy set.
Currently, the language provides the following fuzzy
spatial functions:

• HOW_INTERSECT() provides the intersection
degree (in the [0, 1] range) of the two input
geometries;

• HOW_INCLUDE(LEFT) (respectively, HOW_
INCLUDE(RIGHT)) provides the inclusion
degree of f 1.geometry (respectively,
f 2.geometry) within f 2.geometry (respec-
tively, f 1.geometry);

• HOW_MEET(LEFT) (respectively, HOW_MEET
(RIGHT)), provides the degree with which
the border of the f 2.geometry (respectively,
f 1.geometry) is shared with the border of the
f 1.geometry (respectively, f 2.geometry).

In case of ambiguity (i.e., multiple membership degrees
for the same fuzzy set) the minimummembership degree
is considered; however, it is possible to exploit the
RESOLVING specification at the end of the detailed
form:

– RESOLVING WITH AND considers the minimum
membership degree;

– RESOLVING WITH OR considers the maximum
membership degree;

– RESOLVING WITH FIRST considers the first
membership degree inserted into f 3.fuzzysets;

– RESOLVING WITH LAST considers the last mem-
bership degree inserted into f 3.fuzzysets.

Notice that both the synthetic form and the detailed form
allows for dealing with complex situations, as far as mem-
bership degrees of joined features are concerned.

E. Example of Translation

To explain the translation strategy, it is worth presenting the
translation of the GeoSoft query reported in Listing 7. For
the sake of clarity, it is divided in several listings, each one
corresponding to one specific section of the source query.

E.1. Execution Context

Listing 10 reports the execution context of the query. It is
obtained by reading the content of the files specified in the
GET CONTEXT directives.

Specifically, Listing 10 highlights the provenance of each
single piece of the script.

• Line 1 comes from the "jcoContextDb.jco" file,
whose content was shown in Listing 2; it defines the
database to connect with.

• Line 2 comes from the "jcoContextOp1.jco" file,
whose content was shown in Listing 4; it defines the
MediumLengthHighwayOp fuzzy operator.

• Line 3 comes from the "jcoContextOp2.jco" file,
whose content was shown in Listing 8; it defines the
RelevantPortionOp fuzzy operator.

• Finally, line 3 comes from the "jcoContext
Op3.jco" file, whose content was shown in Listing
9; it defines the MediumTownOp fuzzy operator.

First Nested Query

Listing 11 reports the fragment of the J-CO-QL+ script corre-
sponding to the translation of the first nested query in Listing
7 (enclosed in the blue box). In the right-hand side, Listing 11
reports the nested query fromwhich it derives; colored arrows
show the correspondence between GeoSoft clauses and J-
CO-QL+ instructions. Hereafter, we describe the script.

• The FROM clause in the nested query refers to the towns
collection stored within the geosoftDb database. Con-
sequently, the J-CO-QL+ script must retrieve documents
from this collection and extract features from within
them, so as to obtain a collection of documents that rep-
resent soft features. Line 5 actually gets the content of
the collection from the database.

• Line 6 actually extracts features from within the
features array field in the GeoJSON document pre-
viously obtained from the database. The novel collection
contains one JSON document for each feature, such that
all root-level fields (except the features array) are
preserved.
In place of thefeatures arrayfield, thefeaturefield
is present: it is a nested document with two fields, i.e.,
the item field (which contains the original item) and the
position field (which denotes the position occupied
by the item in the source array).

• Line 7makes geo-tagging compliant with the J-CO-QL+
data model (see Sect. 6.1.1) and simplifies the structure
of documents.
Specifically, the SETTING GEOMETRY option says that
the former geometry becomes the novel ˜geometry
field. Then, the BUILD block simplifies the structure.

• While lines from 5 to 7 are necessary to acquire and pre-
pare data, Line 8 actually corresponds to the remainder
of the first nested query. Specifically, the WHERE clause
of theGeoSoft query is added to the WHERE clause in the
J-CO-QL+ FILTER instruction. Similarly, the USING
clause of the GeoSoft query becomes the (similar but
not identical) USING clause in the J-CO-QL+ FILTER

123

International Journal of Computational Intelligence Systems (2023) 16:163 Page 37 of 40 163

instruction. The result is that JSON documents now have
the ˜fuzzysets field with the membership degree to
the MediumTown fuzzy set.
The SELECT clause in the first nestedGeoSoft query has
a twofold effect: firstly, it generates an extra condition in
the WHERE clause in the J-CO-QL+ FILTER instruction
(to select documents having the properties that are listed
in the SELECT clause), and then is translated into the
BUILD block in the J-CO-QL+ FILTER instruction, so
as to project on properties of interest (notice the path
expression with the “.properties” prefix).

• Finally, since the nested query is involved in a JOIN
operation, line 9 saves the temporary collection into the
Intermediate Results IR database, with name (automati-
cally generated) GeoSoftIntermediate_0_t.

E.2 Second Nested Query

Listing 12 reports the translation of the second nested query
(depicted within the green box) in Listing 7. Again, in the
right-hand side the nested query from which it derives is
reported, with arrows that show the correspondence between
GeoSoft clauses and J-CO-QL+ instructions. In the follow-
ing, we shortly explain it.

• Since the second nested GeoSoft query still operates on
a database collection, its translation is similar to what we
showed for the first nested GeoSoft query in Sect. 1.
Specifically, lines 10–12 acquire the content of the
highways database collection (line 10), unnest features
into single JSON documents (line 11) and align geome-
tries to the J-CO-QL+ data model (line 12).

• The FILTER instruction on line 13 performs the same
workmadeby line 8 (Listing11), i.e., translates the nested
GeoSoft query.
Specifically, the USING clause in the second nested
GeoSoft query corresponds to the USING clause in line
13. Notice that the membership degrees to two fuzzy
sets are evaluated, i.e.,MediumLengthHighways and
NotMediumLengthHighways.
Finally, the SELECT clause in the second nestedGeoSoft
query affects the J-CO-QL+ WHERE clause and then it is
translated into the BUILD block.

• Line 14 saves the temporary collection (that contains fea-
tures selected by the second nested GeoSoft query) into
the IR database, because the query is nested within a
JOIN expression.

Main Query

Listing 13 reports the translation of the main (outermost)
GeoSoft query reported in Listing 7. Again, the right-hand
side reports the source GeoSoft query and arrows denotes

the correspondence betweenGeoSoft clauses and J-CO-QL+
instructions. Hereafter, we explain the script.

• Soft features to be joined are stored within the IR
database: two collections named GeoSoftInter
mediate_0_t and GeoSoftIntermediate_1_h
were saved by the two scripts in Listing 11 and in Listing
12, respectively; they contain documents corresponding
to features processed by the two nested GeoSoft queries.

• The JOIN OF COLLECTIONS instruction on line 15
joins documents in the two source collections, respec-
tively aliased as t and h (these are the same aliases used
in the source GeoSoft query in Listing 7).
The instruction makes a pair d of two documents t (from
the t collection) and h (from the h collection). The novel
d JSON document is generated, with two fields: the t
field contains the source t document, while the h field
contains the source h document.

• The ON GEOMETRY clause in the source GeoSoft query
(Listing 7) is reported in the corresponding ON
GEOMETRY clause in line 15. Here, it specifies that a pair
of documents is considered if their geometries satisfy the
spatial condition it defines; specifically, the spatial con-
dition asks for a pair of documents whose geometries
intersect.
The SET GEOMETRY clause from the GeoSoft query
in Listing 7 is reported in line 15 too. Here, it specifies
how to generate the ˜geometry field of the output d
document. Specifically, the clause specifies that the inter-
section of the source ˜geometry fields becomes the
value of the ˜geometry field in d.

• The ADD FIELDS clause adds novel fields to the d doc-
ument, so as they can be used later.
Specifically, a novel properties field is generated,
which in turn contains the t and the h fields: they contain
the nested properties field coming from the source
documents. This way, path expressions that are present
in the GeoSoft query can be directly used, without any
translation, by simply adding the “.properties” pre-
fix.

• The SET FUZZY SETS clause in the GeoSoft JOIN
expression (seeListing 7) exploits the same syntax as in J-
CO-QL+. This way, it can be copied as it is into the JOIN
OF COLLECTIONS instruction. In line 15 (Listing 13),
the SET FUZZY SETS sub-clause is located before the
CASE WHERE clause, because it ends the generation of
d documents after paring source documents coming from
the source collections.
Specifically, the clause adds the membership degrees
to the MediumLengthHighways fuzzy set (from the
h, i.e., right, source document), to the MediumTowns
fuzzy set (from the t , i.e., left, source document) and

123

 163 Page 38 of 40 International Journal of Computational Intelligence Systems (2023) 16:163

to the NotMediumLengthHighways fuzzy set (from
the h, i.e., right, source document).

Documents d that are internally generated by the JOIN
OF COLLECTIONS instruction before the CASE WHERE
clause represent joined features, as specified by the GeoSoft
JOIN expression. The remaining clauses in the outer-
most GeoSoft query are translated into the correspond-
ing CASE WHERE clause of the J-CO-QL+ JOIN OF
COLLECTIONS instruction, as described hereafter.

• The GeoSoft WHERE clause is translated into the J-CO-
QL+ WHERE condition. The approach is identical to what
is done for nested GeoSoft queries.

• The GeoSoft USING clause is translated into the J-CO-
QL+ CHECK FOR clause, as for nestedGeoSoft queries.
The same holds for the APHACUT clause.

• The GeoSoft SELECT clause affects the WHERE clause
and, then, it is translated into the BUILD block.

The reader can see that the translation schema is the same
as the one adopted for nestedGeoSoft queries without JOIN
expression in the FROM clause. Indeed, both the FILTER
and the JOIN OF COLLECTIONS statements relies on the
CASE WHERE clause, with identical semantics. This way, a
uniform translation pattern can be adopted.

E.4. Tail

Finally, it is necessary to rebuild the crisp GeoJSON doc-
ument to generate and save it into a database collection, as
specified by the GeoSoft SAVE AS clause. The J-CO-QL+
script reported in Listing 14 performs this task. It is shortly
illustrated hereafter.

• The goal of line 16 is to generate crisp features which
comply with theGeoJSON specification. To achieve this,
theBUILD block adds the geometry field, whose value
is extracted from within the ˜geometry field by means
of the GEOMETRY_FIELD built-in function. Notice the
key field, whose goal is to provide a grouping key to the
next instruction.
Then, the DEFUZZIFY option drops the ˜fuzzysets
field, while the DROPPING GEOMETRY option drops
the ˜geometry field.

• Line 17 groups documents into one single GeoJSON
document, by exploiting the key field (which is auto-
matically dropped by the instruction). The BUILD block
provides the final structure to the document.

• Finally, line 18 saves the GeoJSON document into
the highwayTowns collection in the geosoftDb
database.

Notice that the tail is substantially constant: the only thing
that could change is the presence of the name field within
the BUILD block in line 17, in the case the SETTING NAME
option is specified in the GeoSoft SAVE AS clause (as in
Listing 7).

References

1. Bray, T.: The javascript object notation (json) data interchange
format. URL https://www.rfc-editor.org/rfc/rfc7159.txt (2014).
Accessed 11 Sep 2023

2. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau,
F.: Extensiblemarkup language (XML) 1.0.W3C recommendation
October (2000)

3. Butler, H., Daly, M., Doyle, A., Gillies, S., Hagen, S., Schaub,
T., et al.: The geojson format. In: Internet Engineering Task Force
(IETF) (2016)

4. Slater, J.A.,Malys, S.:Wgs 84-past, present and future. In:Brunner,
F.K. (eds.)Advances in Positioning andReference Frames, pp. 1–7.
Springer, Berlin, Germany (1998)

5. Cattell, R.: Scalable sql and nosql data stores. ACMSIGMODRec.
39(4), 12–27 (2011)

6. Arora, R., Aggarwal, R.R.: Modeling and querying data in mon-
godb. Int. J. Sci. Eng. Res. 4(7), 141–144 (2013)

7. Psaila, G., Fosci, P.: J-CO: a platform-independent framework for
managing geo-referenced json data sets. Electronics 10(5), 621
(2021)

8. Fosci, P., Psaila,G.: Towards flexible retrieval, integration and anal-
ysis of json data sets through fuzzy sets: a case study. Information
12(7), 258 (2021)

9. Fosci, P., Marrara, S., Psaila, G.: Soft querying geojson documents
within the J-CO Framework. In: 16th International Conference on
Web Information Systems and Technologies (WEBIST 2020), pp.
253–265 (2020). SCITEPRESS–Science and Technology Publica-
tions, Lda

10. Fosci, P., Marrara, S., Psaila, G.: Geosoft: A language for soft
querying features within geojson information layers. In: Interna-
tional Conference onWeb Information Systems and Technologies.
Springer International Publishing Cham, pp. 196–219 (2020)

11. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
12. Blair, D.C.: Information retrieval, 2nd ed. c.j. van rijsbergen. Lon-

don: Butterworths; 1979: 208 pp. price: $ 3250. J. Am. Soc.
Inform. Sci. 30(6), 374–375 (1979). https://doi.org/10.1002/asi.
4630300621

13. Fuhr, N.: Models for retrieval with probabilistic indexing. Inform.
Process. Manag. 25(1), 55–72 (1989)

14. Zadeh, L.A.: The concept of a linguistic variable and its application
to approximate reasoning-i. Inf. Sci. 8(3), 199–249 (1975)

15. Buell, D.A.: A problem in information retrieval with fuzzy sets. J.
Am. Soc. Inform. Sci. (pre-1986) 36(6), 398 (1985)

16. Bosc, P., Pivert, O.: Sqlf: a relational database language for fuzzy
querying. IEEE Trans. Fuzzy Syst. 3(1), 1–17 (1995)

17. Bosc, P., Pivert, O.: Sqlf query functionality on top of a regular rela-
tional database management system. In: Pons, Olga., Vila, M.A.,
Kacprzyk, J. (eds.) Knowledge Management in Fuzzy Databases.
Springer, Berlin, Germany, pp. 171–190 (2000)

18. Galindo, J., Medina, J.M., Pons, O., Cubero, J.C.: A server for
fuzzy sql queries. In: International Conference on Flexible Query
Answering Systems, pp. 164–174 (1998). Springer

19. Kacprzyk, J., Zadrożny, S.: Fquery for access: fuzzy querying for
a windows-based dbms. Bosc P., Kacprzyk J. (eds), Fuzziness in
database management systems. Stud. Fuzz. 5 (1995)

123

https://www.rfc-editor.org/rfc/rfc7159.txt
https://doi.org/10.1002/asi.4630300621
https://doi.org/10.1002/asi.4630300621

International Journal of Computational Intelligence Systems (2023) 16:163 Page 39 of 40 163

20. Zadrozny, S., Kacprzyk, J.: Fquery for access: towards human con-
sistent querying user interface. In: Proceedings of the 1996 ACM
Symposium on Applied Computing, pp. 532–536 (1996)

21. Bordogna, G., Psaila, G.: Modeling soft conditions with unequal
importance in fuzzy databases based on the vector p-norm. In:
Proceedings of the IPMU, Malaga (2008)

22. Bordogna, G., Psaila, G.: Soft aggregation in flexible databases
querying based on the vector p-norm. Internat. J. Uncertain. Fuzz.
Knowl.-Based Syst. 17(supp01), 25–40 (2009)

23. Bordogna, G., Psaila, G.: Chap. 8. Customizable flexible querying
in classical relational databases. In: Galindo, J. (eds.) Handbook
of Research on Fuzzy Information Processing in Databases. IGI
Global, Hershey, pp. 191–217 (2008)

24. Bosc, P., Prade, H.: An introduction to the fuzzy set and possibility
theory-based treatment of flexible queries and uncertain or impre-
cise databases. In: Motro, A. (eds.) Uncertainty Management in
Information Systems. Springer, Berlin, pp. 285–324 (1997)

25. Medina, J.M., Pons, O., Vila,M.A.: Gefred: a generalizedmodel of
fuzzy relational databases. Inf. Sci. 76(1), 87–109 (1994). https://
doi.org/10.1016/0020-0255(94)90069-8

26. Galindo, J., Urrutia, A., Piattini, M.: Fuzzy Databases: Modeling,
Design, and Implementation. IGI Global, Hershey (2006)

27. Galindo, J.: New characteristics in fsql, a fuzzy sql for fuzzy
databases. WSEAS Trans. Inf. Sci. Appl. 2(2), 161–169 (2005)

28. Smits, G., Pivert, O., Girault, T.: Reqflex: fuzzy queries for every-
one. Proc. VLDB Endow. 6(12), 1206–1209 (2013)

29. Chris Anderson, J., Jan Lehnardt, N.S.: CouchDB: The Definitive
Guide. O’Reilly Media, Inc., Sebastopol (2010)

30. Nayak, A., Poriya, A., Poojary, D.: Article: Type of nosql databases
and its comparison with relational databases. Int. J. Appl. Inform.
Syst. 5(4), 16–19 (2013)

31. Ong, K.W., Papakonstantinou, Y., Vernoux, R.: The sql++
unifying semi-structured query language, and an expressive-
ness benchmark of sql-on-hadoop, nosql and newsql databases.
arXiv:abs/1405.3631 [CoRR] (2014)

32. Florescu, D., Fourny, G.: Jsoniq: the history of a query language.
IEEE Internet Comput. 17(5), 86–90 (2013)

33. Abir, B.K., Amel, G.T.: Towards fuzzy querying of nosql
document-oriented databases. DBKDA 2015, 163 (2015)

34. Medina, J.M., Blanco, I.J., Pons, O.: A fuzzy database engine for
mongodb. Int. J. Intell. Syst. 37, 5691–5724 (2022)

35. Fosci, P., Psaila, G.: Powering soft querying in J-CO-QL with
javascript functions. In: International Workshop on Soft Comput-
ingModels in Industrial andEnvironmentalApplications. Springer,
Cham, pp. 207–221 (2021)

36. Fosci, P., Psaila, G.: J-CO, a framework for fuzzy querying collec-
tions of json documents. In: International Conference on Flexible
Query Answering Systems. Springer, Cham, pp. 142–153 (2021)

37. Aufaure, M.-A., Trépied, C.: Workshops in Computing. In:
Kennedy, J. B., Barclay, P. J. (eds.) A Survey of Query Languages
for Geographic Information Systems, 3. Springer (1996). https://
dblp.org/rec/conf/ids/Aufaure-PortierT96.bib

38. Costagliola, G., Tortora, G., Tucci, M., Busillo, M.: Querying by
Content. In: Spaccapietra, S., Jain, R. (eds.) Visual Database Sys-
tems 3: Visual information management. Springer, Boston, pp.
275–286 (1995)

39. Egenhofer, M.J.: Spatial sql: a query and presentation language.
IEEE Trans. Knowl. Data Eng. 6(1), 86–95 (1994)

40. Jacobs, B.E.,Walczak, C.A.: A generalized query-by-example data
manipulation language based on database logic. IEEETrans. Softw.
Eng. 1, 40–57 (1983)

41. Staes, F., Tarantino, L., Tiems, A.: A graphical query language for
object oriented databases. In: Proceedings 1991 IEEE Workshop
on Visual Languages, pp. 205–210 (1991)

42. Kim,H.-J., Korth, H.F., Silberschatz, A.: Picasso: a graphical query
language. Softw. Pract. Exp. 18(3), 169–203 (1988)

43. Mayer, B.: Beyond icons : Towards newmetaphors for visual query
languages for spatial information systems. In: Proceedings of the
First InternationalWorkshop on Interfaces to Database Systems. R.
Cooper, Springer-Verlag, Glasgow, UK,Workshops in Computing,
pp. 113–135 (1992). ISBN 978-3-540-19802-4

44. Cai, G.: Geovsm: An integrated retrieval model for geographic
information. In: International Conference on Geographic Informa-
tion Science. Springer, pp. 65–79 (2002)

45. Bieber, M., Kacmar, C.: Designing hypertext support for compu-
tational applications. Commun. ACM 38(8), 99–107 (1995)

46. Guo, D., Onstein, E.: State-of-the-art geospatial information pro-
cessing in nosql databases. ISPRS Int. J. Geo Inf. 9(5), 331 (2020)

47. Formica, A., Mazzei, M., Pourabbas, E., Rafanelli, M.: Querying
Distributed GIS with GeoPQLJ based on GeoJSON. In: Pro-
ceedings of the 5th International Conference on Geographical
Information Systems Theory, Applications andManagement, GIS-
TAM 2019, Heraklion, Crete, Greece, May 3–5, 2019. SciTePress,
pp. 175–182 (2019). https://doi.org/10.5220/0007657201750182

48. Bordogna, G., Psaila, G.: Fuzzy-spatial sql. In: International Con-
ference on Flexible Query Answering Systems. Springer, Berlin,
Heidelberg, pp. 307–319 (2004)

49. Bordogna, G., Capelli, S., Ciriello, D.E., Psaila, G.: A cross-
analysis framework for multi-source volunteered, crowdsourced,
and authoritative geographic information: The case study of vol-
unteered personal traces analysis against transport network data.
Geo-spatial Inform. Sci. 21(3), 257–271 (2018)

50. George, S.: Nosql–not only sql. Int. J. Enterp. Comput. Bus.
Syst. 2(2) (2013). https://ijecbs.com/manuscripts/index.php/vol-
3-issue-2-july-2013

51. Chodorow, K.: MongoDB: The Definitive Guide: Powerful and
Scalable Data Storage. O’Reilly Media, Inc., Sebastopol (2013)

52. Bringas, P.G., Pastor, I., Psaila, G.: Can blockchain technology
provide information systems with trusted database? the case of
hyperledger fabric. In: International Conference on Flexible Query
Answering Systems. Springer, Cham, pp. 265–277 (2019)

53. Gormley, C., Tong, Z.: Elasticsearch: The Definitive Guide: a Dis-
tributed Real-time Search and Analytics Engine. O’Reilly Media,
Inc., Sebastopol (2015)

54. Bordogna, G., Capelli, S., Psaila, G.: A big geo data query frame-
work to correlate open data with social network geotagged posts.
In: The Annual International Conference on Geographic Informa-
tion Science. Springer, pp. 185–203 (2017)

55. Bordogna, G., Ciriello, D.E., Psaila, G.: A flexible framework to
cross-analyze heterogeneous multi-source geo-referenced infor-
mation: the J-CO-QLproposal and its implementation. In: Proceed-
ings of the International Conference on Web Intelligence. ACM,
pp. 499–508 (2017)

56. Fosci, P., Psaila, G.: Soft integration of geo-tagged data sets in
J-CO-QL+. ISPRS Int. J. Geo Inf. 11(9), 484 (2022)

57. Fosci, P., Psaila, G.: Soft spatial querying on json data sets. In:
European Conference on Advances in Databases and Information
Systems. Springer International Publishing Cham, pp. 223–237
(2022)

58. Fosci, P., Psaila, G.: Soft querying powered by user-defined func-
tions in j-co-ql+. Neurocomputing 546, 126311 (2023)

59. Psaila, G., Fosci, P.: Toward an anayist-oriented polystore frame-
work for processing json geo-data. In: International Conferences
on WWW/Internet, ICWI 2018 and Applied Computing 2018,
Budapest; Hungary, 21-23 October 2018. IADIS (International
Association for Development of the Information Society), pp. 213–
222 (2018)

60. Fosci, P., Marrara, S., Psaila, G.: Towards soft web intelligence by
collecting and. In: 18th International Conference onWeb Informa-
tion Systems and Technologies (WEBIST 2022), pp. 0–0 (2022).
SCITEPRESS–Science and Technology Publications, Lda

123

https://doi.org/10.1016/0020-0255(94)90069-8
https://doi.org/10.1016/0020-0255(94)90069-8
http://arxiv.org/1405.3631
https://dblp.org/rec/conf/ids/Aufaure-PortierT96.bib
https://dblp.org/rec/conf/ids/Aufaure-PortierT96.bib
https://doi.org/10.5220/0007657201750182
https://ijecbs.com/manuscripts/index.php/vol-3-issue-2-july-2013
https://ijecbs.com/manuscripts/index.php/vol-3-issue-2-july-2013

 163 Page 40 of 40 International Journal of Computational Intelligence Systems (2023) 16:163

61. Burini, F., Cortesi, N., Gotti, K., Psaila, G.: The Urban Nexus
approach for analyzingmobility in the smart city: towards the iden-
tification of city users networking. Mob. Inform. Syst. (2018)

62. Cuzzocrea, A., Psaila, G., Toccu, M.: Knowledge discovery from
geo-located tweets for supporting advanced big data analytics: a
real-life experience. In: Model and Data Engineering. Springer,
Lecture Notes in Computer Science, 9344, pp. 285–294 (2015)

63. Cuzzocrea, A., Psaila, G., Toccu, M.: An innovative framework
for effectively and efficiently supporting big data analytics over
geo-located mobile social media. In: Proceedings of the 20th Inter-
national Database Engineering &Applications Symposium. ACM,
pp. 62–69 (2016)

64. Bordogna, G., Frigerio, L., Cuzzocrea, A., Psaila, G.: Clustering
geo-tagged tweets for advanced big data analytics. In: 2016 IEEE
International Congress on Big Data (BigData Congress). IEEE, pp.
42–51 (2016)

65. Bordogna,G.,Cuzzocrea,A., Frigerio, L., Psaila,G., Toccu,M.:An
interoperable open data framework for discovering popular tours
based on geo-tagged tweets. Int. J. Intell. Inf. Database Syst. 10(3–
4), 246–268 (2017)

66. Fosci, P., Psaila, G.: Towards soft web intelligence by collecting
and processing json data sets from web sources. In: Proceedings
of the 18th International Conference on Web Information Systems
and Technologies (2022)

67. Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., Lindström,
N.: Json-ld 1.0.W3C recommendation 16, 41 (2014). https://www.
w3.org/TR/2014/REC-json-ld-20140116/. Accessed 11 Sep 2023

68. Manola, F., Miller, E., McBride, B.: Rdf primer. w3c recommenda-
tion (2004). http://www.w3.org/TR/rdf-primer (2004). Accessed
11 Sep 2023

69. Fosci, P., Psaila, G.: Finding the best source of information
by means of a socially-enabled search engine. In: KES 2012-
Conference on in Knowledge-Based and Intelligent Information
and Engineering Systems, vol. 243. IOS Press, pp. 1253–1262
(2012)

70. Fosci, P., Psaila, G.: Toward a product search engine based on user
reviews. In: DATA, pp. 223–228 (2012)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://www.w3.org/TR/2014/REC-json-ld-20140116/
https://www.w3.org/TR/2014/REC-json-ld-20140116/
http://www.w3.org/TR/rdf-primer

	Soft Querying Features in GeoJSON Documents: The GeoSoft Proposal
	Abstract
	1 Introduction
	2 Related Work
	2.1 Languages for Expressing Soft Queries
	2.2 Languages for Querying JSON Data
	2.3 Languages for Querying Geographical Data

	3 Background
	3.1 JSON and NoSQL Databases
	3.2 The J-CO Framework

	4 Geographical Information Layers as GeoJSON Documents
	5 GeoSoft
	5.1 Semantic Model
	5.1.1 External Semantic Model
	5.1.2 Internal Semantic Model
	5.1.3 Queries and Database

	5.2 Simple Queries
	5.2.1 Selection and Projection
	5.2.2 Soft Querying

	5.3 Nested Queries
	5.4 JOIN Queries
	5.5 A Complete Example

	6 From GeoSoft to J-CO-QL+
	6.1 Brief Introduction to J-CO-QL+
	6.1.1 Data Model
	6.1.2 Execution Model
	6.1.3 Brief Description of the J-CO-QL+ Script

	6.2 Translation Strategy and Algorithm
	6.2.1 Translation Strategy
	6.2.2 Translation Algorithm

	7 Evaluation
	7.1 Flexibility
	7.2 Accessibility
	7.3 Efficiency

	8 Conclusions and Future Works
	A. Brief Introduction to the JSON Format
	B. Details of the GeoJSON Format
	C. Brief Introduction to Fuzzy Sets
	D. Details about JOIN in GeoSoft
	D.1 Spatial JOIN
	D.2. Setting Fuzzy Sets

	E. Example of Translation
	E.1. Execution Context
	First Nested Query

	E.2 Second Nested Query
	Main Query
	E.4. Tail

	References

