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A B S T R A C T

The advent of Industry 5.0 envisages production systems that are more resilient, embrace human–machine
collaboration and promote sustainability driven by technological research. The development of supervision so-
lutions for industrial equipment fills in this picture as a basis for more proactive Condition-Based Maintenance
strategies. The goal of this paper is to provide a self-contained set of guidelines to design such supervision
solutions. With respect to existing literature on the topic, we provide a design process with a strong focus on
experimental data collection and failure reproduction activities. Moreover, the connections between the steps
of the proposed process are clearly highlighted to guide the user. First, the paper provides a set of tools to
select the critical items and the methodological approaches for supervision. Then, these tools are used and
referenced in the proposed design process. Finally, the proposed process is exemplified on two industrial case
studies to show its effectiveness. Considerations, hints, and a user guidelines are given at the end of most
sections.
1. Introduction

Unplanned downtimes of industrial equipment cause huge produc-
tion losses and high maintenance costs in manufacturing industries [1,
2]. Supervision solutions are algorithms that target the diagnosis, moni-
toring or prognostics of specific failure modes of the equipment items,
relying both on collected event data and continuous physical measure-
ments from the equipment [2–4]. Based on the supervision outputs of
such technical solutions, Condition-Based Maintenance (CBM) actions
can be performed [5, Chapter 9.3], eventually supported by Prognostics
and Health Management (PHM) tools [6]. The CBM/PHM combination
is considered by several authors to be the basis for the development
of more proactive e-maintenance strategies [3,7], able to deal with the
increase in complexity and uncertainty of industrial systems making
them resilient and engineering immune [6,8].

Manufacturers of industrial equipment are nowadays leveraging the
opportunities offered by supervision solutions as technical pillar for
CBM/PHM. This was somewhat predicted: in a survey conducted by the
IFAC industry committee to their members in 2018 to determine the
current and future impact of several control technologies, intelligent
control and fault diagnosis placed in the two top positions, with an
increment of +30% from ‘‘high current impact’’ to ‘‘high future impact’’
responses [9].

In addition to the fundamental economic, managerial and opera-
tional aspects involved in the development of a CBM/PHM strategy
[3,6,10], the design and development of an algorithmic supervision
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solution is ultimately a technical problem. Still, each solution strongly
depends on the equipment configuration and the nature of the spe-
cific failure modes [11]. While some literature envisage ‘‘general’’
methodological approaches for supervision, the authors of this work are
firmly convinced that considering the specificities of each equipment is
essential for a practical utilization of such solutions. Thus, diversity of
the appliance and complexity of the industrial environment demand a
systematic and organized process for the design of supervision solutions,
a necessity already advocated by several authors [2,6,12,13].

In this context, the authors in [11] provide a recent review of
proposed processes to design supervision solutions (i.e. data-processing
algorithms) and overall implementing CBM/PHM strategies (i.e. su-
pervision algorithms and maintenance decisions) [1,6,10,12,14,15].
Considering such contributions, the most relevant steps to address are
here summarized within five macro-steps:

1. perform a cost–benefit analysis on employing a CBM/PHM strat-
egy;

2. select the most critical items to be monitored, their failure modes
and related parameters to be measured from sensors. Identify the
possible causes and symptoms of the selected failure modes;

3. select the methodological approaches (i.e. algorithms, signal
processing and data mining techniques) to address the supervi-
sion aims of diagnosis, monitoring and prognostics;
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4. define methods and tools to support maintenance decision-
making;

5. perform reviews on the choices made on the previous steps.

Among the aforementioned contributions, [1,14] specifically tar-
get the manufacturing industry. Tools and practical suggestions are
provided for the above macro-step 2, where the use of a Reliability
Centered Maintenance (RCM) rationale and tools like Failure Modes,
Effects, and Criticality Analysis (FMECA) is suggested. Macro-steps 1,
4 and 5 are also briefly considered, and case studies are provided
on industrial robots and bearing diagnosis, respectively. However, no
overall guidelines are provided on macro-step 3. The work [15] also
advocates RCM as item criticality selection tools in macro-step 2, and
suggest a strategy based on features and decision fusion for supervision.
While two case studies are reported on an electrical motor for elevator
systems and a low methane compressor used in petrochemical plants,
the proposed process remains too abstract for rapid practical usage.
The authors of [10] describe a CBM development process considering
the macro-steps 1, 2, 4 and 5, presenting three case studies on a
power plant, a manufacturing and a paper mill company. However,
since the proposed process is broad, few details are provided on how
to implement each step of the process, and since the focus is on
vibration analysis, little consideration is given to macro-step 3. The
work [12] starts with listing the benefits of CBM/PHM in industry,
and then presents a set of relevant aspects to be considered when
implementing a PHM solution, also indicating the use of appropriate
graphical tools for presenting the supervision results. The work lightly
touches all five macro-steps in common to the reviewed development
processes, and again RCM and FMECA are suggested tools for criti-
cality analysis of the equipment items. Nonetheless, little guidelines
are provided on the other steps of the process, and no experimental
case studies are discussed. Authors in [6] focus on the prognostics of
rotary machines. Regarding the macro-step 1, the work suggests the
use of a four-quadrant chart to identify critical items, representing
items fault frequency vs. the average downtime caused by those items.
The macro-step 3 is tackled by listing common measurements and
algorithms for the supervision of rotary items, with advantages and
disadvantages. Also, Quality Function Deployment [16], commonly
used in product design, is suggested as a tool to select between different
methodological approaches. Graphical tools denoted as Degradation
Chart, Performance Radar Chart, Problem Map and Risk Radar Chart
are proposed to support decisions at macro-step 4. Three case studies
are presented, related to an alternator, a chiller and a spindle bearing.
While review [11] considers [6] to be the most relevant contribution
as a development support for CBM/PHM, it also points out its specific
focus on rotary items. Lastly, the standard ISO 13372 [17] establishes a
comprehensive procedure in eight steps for implementing a condition
monitoring program, that covers all five steps listed in the previous
paragraph with some practical considerations. The standard provides,
for ten types of machines, examples of failures and associated parame-
ters to be monitored. ISO 13379-1 [18] suggests RCM and a modified
FMECA sheet to list the symptoms associated to each failure mode.
However, these standards are conceived for a ‘‘traditional’’ view of
CBM (i.e. relying on vibration, thermographic, acoustic or ultrasound
measurements) and should be adapted to consider more recent PHM
tools [6,12]; along this line, no recommendations related to macro-step
3 and macro-step 4 are present. The work [19], not present in [11]
since it is more recent, proposed a design process that is based on a
structured definition of a set of requirements for such solutions, and
a set of symptoms and diagnostic rules. After the definition of such
elements, the author employs a Bayesian Network to select the most
suitable set of diagnostic rules that satisfy the requirements. Although
interesting for its schematic approach, the work does not provide
enough details on the implementation of the process, and assumes that
2

a set of diagnostic rules is present prior to their selection.
It is worth mentioning the work [20], that suggests how to represent
the components of a supervision solution once is has been developed,
and thus applies after its design process.

Considering the reviewed papers, [11] concludes that ‘‘more guide-
lines and tools to facilitate the application and enhance the effective-
ness of each step’’ are necessary. Indeed, each CBM/PHM development
process has its own strengths and weaknesses, since more importance is
given to different aspects of the process. One of such aspects is related
to how to perform experiments for data collection, so that such data will
guide the development of the supervision solution. This important point
is not considered in any of the reviewed processes.

Based on these premises, the main purpose of this paper is to
provide an additional process for the design of supervision solutions
for industrial equipment, pointing to the most recent advancements
related to PHM and supervision tools and algorithms. Indeed, as far
as the authors are aware, the most recent contributions to CBM/PHM
development processes dates back to 2014 [6,12,14]. The process
proposed in this paper comprises eleven steps covering the previously
mentioned macro-steps 2 to 4, where emphasis is given to problem
definition and to data collection, a phase neglected or poorly covered
until now in existing processes and international standards. A compar-
ison of the steps of the proposed process with respect to the reviewed
ones is reported in Table A.12. The proposed process covers only the
design steps, that is the actions necessary to obtain a prototype of the
algorithmic solution. It will not cover the integration of such solution
into the existing hardware/software of the equipment. Likewise, this
paper does not cover methods for maintaining the functionality of the
equipment in case of faults [21], or recent advancements in control
theory integrating prognostics information into the control laws of
machinery [22]. The point of view of the paper is from a control
engineering perspective: however, we argue that related communities
as reliability engineering [23] and statistical process monitoring engi-
neering [24] may find value in the paper, although the terminology is
slightly different between those communities on the control one.

Contributions. Since not all industrial companies have a clear un-
erstanding of what entails to develop a supervision solution, with
his work we want to provide a bridge between theory and practice
n the design of such solutions, thus increasing the awareness of both
ndustries and newcomers to the field. For this reason, throughout the
aper user guidelines provide practical tips for the implementation
f the proposed process, and specific sections are devoted to cover
mportant tools and concepts to support those guidelines.

The contribution of this paper with respect to the existing literature
s to:

• provide, and experimentally validate, a practical process to design su-
pervision solutions algorithms for industrial equipment. With respect
to existing literature, the proposed process gives more focus to the
design of experiments (data collection and failure reproduction),
not limiting to list the steps of the process, but also emphasizing
the relations between those steps.

Outline. The paper is organized so that, after a contextualization in
Section 2, a discussion about technical tools and concepts for the design
of supervision solutions is provided in Sections 3 and 4. Then, each
step of the proposed design process is presented in Section 5. Each step
is related to one or more tools or concepts described in the previous
technical sections. Whenever a tool or concept is necessary for the
implementation of a step, links to the related sections are provided.
Technical readers can start by directly focusing on Section 5 and go
back to technical sections when necessary. The structure of the paper
is reported in Fig. 1.

The remainder of the paper is as follows. Section 2 briefly presents
an introduction to the topic of the supervision of industrial equip-
ment. Next, Section 3 reviews the Failure Modes and Effects Analysis
(FMECA) procedure and introduces a modified Supervision-oriented

FMECA worksheet to support the design of supervision solutions. This
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Fig. 1. Structure of the paper. The paper first defines in Section 2 the application context and the ‘‘why’’ of supervision solutions of industrial equipment. Then, Sections 3 and
4 (in yellow) are devoted to introduce the necessary tools to select ‘‘what’’ items are the focus of the analysis (using a proposed Supervision-oriented FMECA) and ‘‘how to’’
perform such analysis (pointing to a clear definition of the aims and methodological approaches). Section 5 aims to provide a ‘‘compass’’ for orientation and understand ‘‘where’’
the engineer is in the design of the supervision solution. This process relies on the tools defined previously in Sections 3 and 4. Finally, practical examples implementing the
proposed process and conclusions are provided.
Fig. 2. Redesign loop schematic. Plant measurements and supervision outputs are integrated with failures behaviors, failures statistics and their causes to improve the product or
process, maintenance procedures and tune supervision solutions.
is a suggested tool to select the critical components, their failure
modes and symptoms. Section 4 reviews the main types of supervision
solutions, guiding the selection of the most appropriate methodological
approach. Thus, considering the five macro-steps common to all the
reviewed processes, we cover the macro-steps 1, 2, and 3. Section 5
introduces the proposed process for designing a supervision solution
targeted to industrial equipment. This is the core contribution of the
paper. Sections 6 and 7 evaluate the proposed process on experimental
settings. Section 8 concludes the paper.

2. Supervision of industrial equipment

Fig. 2 shows a general feedback scheme where supervision functions
are integrated into an industrial equipment (a physical plant with
3

closed-loop control instrumentation). The plant supervision can be
performed by measuring its inputs 𝒖(𝑡) ∈ R𝑚𝑢×1 and outputs 𝒚(𝑡) ∈ R𝑝×1

(and also additional physical quantities if necessary, like vibrations
or superficial temperature). The aim of supervision is to assess the
presence of faults 𝒇 (𝑡) ∈ R𝑚𝑓×1 notwithstanding the presence of un-
measurable disturbances 𝒅(𝑡) ∈ R𝑚𝑑×1 and noises 𝒘(𝑡) ∈ R𝑚𝑤×1 that
influence 𝒖(𝑡) and 𝒚(𝑡). Here, 𝑡 denotes a continuous time instant.

The most basic supervision strategy is limit checking, that consists
in evaluating if the values of inputs and outputs signals are outside
tolerance intervals. Considering the outputs, this mean to check the
conditions 𝒚min < 𝒚(𝑡) < 𝒚max. Similarly, trend checking considers the
first derivative of these signals, so that the check becomes 𝒚̇min < 𝒚̇(𝑡) <
𝒚̇max, with the advantage of a possible earlier detection [25, Chapter 7].
Another rationale is given by plausibility checks, as a way to combine
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Table 1
Severity levels of a failure mode, for a qualitative criticality analysis. The levels express a classification of a failure mode
based on a judgmental evaluation of its undesired effects on the equipment and humans.

Severity level (𝑠𝐿) Failure mode effect Interpretation

1 No effect No effect on equipment/no injury on humans
2 Minor Equipment partly down or minor failure/slight injury on humans
3 Severe Items down or failure/injury on humans
4 Major Equipment shut down or serious damage/serious injury on humans
5 Catastrophic Equipment damage or destruction/death on humans
s

limit-checking of more measurements through simple rules in the form
of IF–THEN statements describing the plant behaviors [26].

Limit checking and plausibility checks are fine if the plant works
in a steady-state operating regime, does not present large signal tran-
sients, and faults are directly visible from raw signals data. When such
conditions do not hold, supervision algorithms for fault diagnosis, con-
dition monitoring and fault prognostics are needed to attain adequate
detection and low false positive performance [25].

Detected faults must be immediately displayed to the operator and
used for taking stopping or maintenance actions on the equipment.

In addition to the control and supervisory loops, a supervision
solution supports the definition of a redesign loop, see again Fig. 2,
where information about failures statistics, causes, and effects can be
leveraged by product/process engineers to improve product/process
design and quality, optimize maintenance procedures and refine the
supervision solutions [12]. In this way, for the equipment producer, the
supervision solutions become not only an ‘‘optional’’ to be sold along
with the equipment, but also a strategic asset that can be improved the
more the solution is used.

The next section shows how the FMECA procedure can be used to
prioritize the items that benefit from a supervision solution, proposing
also a Supervision-oriented FMECA worksheet to aid their design process.

2.1. User guidelines

» Measurements: when considering dynamical systems, in addition
to the plant outputs, measure also the plant inputs (control ac-
tions and reference signals if the system runs in a closed-loop
configuration). When considering passive mechanical components
(e.g. bearings, gears) carefully consider the best sensor location
(also trying different installations) to monitor their behavior. This
entails to understand the physical phenomenon that needs to be
captured and how the sensor works.

» Limit and trend checking : checking the tolerances of raw signals,
their first derivative, or a combination of both by plausibility
checks against fixed or adaptive thresholds might be enough to
detect most faults. Adaptive thresholds depend on the magnitude
of the input signals, signals trends [25, Chapter 7] and modeling
uncertainties in a model-based approach [27, Chapter 2].

» Wear-in period: the parameters of a tolerances check or diagnostic
method should be refined after an initial wear-in (also known as
burn-in) working period of the item under monitoring, to stabilize
the behavior of its mechanical components. Periodic retuning of
warning and alarm thresholds may be necessary to adapt the
thresholds to changes in the equipment not related to degradation
of its functions.

3. Failure modes, effects, and criticality analysis

The supervision solution should tackle (every or a subset of) the
failures, that, after a design and testing phase, remain unavoidable and
are dangerous from the reliability and safety point of view [28, Chapter
4.6]. The identification of those failures can be performed by a FMECA
procedure defined in international standards [29,30] and books [5,
Chapter 4.2] [23, Chapter 2.6]. The criticality term denotes a measure
4

of the severity of a failure mode and its frequency of occurrence. r
Table 2
Frequency of occurrence levels of a failure mode, for a qualitative criticality analysis.
The levels express a classification of a failure mode based on a judgmental evaluation
of its frequency of occurrence.

Frequency level (𝑜𝐿) Failure mode frequency Interpretation

1 Very unlikely ≥ 1 every 1000 years
2 Remote 1 every 100 years
3 Occasional 1 every 10 years
4 Probable 1 every 1 year
5 Frequent ≤ 1 every 1 month

The FMECA procedure can be performed qualitatively or quantita-
tively [25, Chapter 4][5,30]. In this paper we propose a criticality
table based on qualitative FMECA as a tool for prioritizing the items
that should be targeted by the supervision solution. Specifically, the
criticality analysis produces a measure of risk of the effect that a failure
mode has on the successful operation and safety of the equipment. This
use of FMECA for supervision solutions is supported by a proposed
Supervision-oriented FMECA worksheet.

3.1. Qualitative criticality analysis

A qualitative criticality analysis consists into defining, for each
failure mode, qualitative levels of severity and frequency of occurrence.
Severity levels can be defined as in Table 1, ranging from 1 to 5 and
denoting the no effects, minor, severe, major or catastrophic effects,
respectively.1

The same rationale is applied to the occurrence frequency of a
failure mode, ranging from 1 to 5 and denoting very unlikely, re-
mote, occasional, probable and frequent failure modes, respectively, see
Table 2.

A qualitative criticality analysis requires less effort than a quantita-
tive one, and can be used when numerical failure rates of the items are
not available. Failure rates for a quantitative analysis can be deduced
from in-house data (experimental or judgmental) or from several data
sources, as [31,32], [25, Chapter 3], [33, Appendixes 4–5], [5, Chapter
16].

3.2. Criticality matrix

The criticality matrix provides a graphical interpretation for classi-
fying failure modes into several risk categories, based on their severity
and frequency of occurrence. In this paper, it will be used for the
selection and prioritization of the items that have to be monitored by
a supervision solution, based on their most critical failure modes.

Fig. 3 presents a criticality matrix example. The abscissa axis can
be a discrete frequency level (in case of a qualitative analysis) as in
Table 2 or the continuous criticality number as suggested in [30] in
case of a quantitative analysis. Fig. 3 defines heuristically three risk
categories. The least risky failure modes, denoted by green cells, do
not require any corrective design action (for instance, replacing the

1 The reader should be aware that this is just a possible categorization: the
everity categories and their meaning should be defined such that they are
elevant for the specific practical application considered.
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Table 3
Supervision-oriented FMECA worksheet aimed at the selection of failure modes, and relative items, that should be considered as the focus of a supervision solution
algorithm. Each row of the table is a failure mode. Additional columns can be added, by reporting the name, function of the item or sub-item, notes or reliability
information such as the Mean Time Between Failures of the item, or possible methods for supervising the failure mode.

Failure description Failure effect Failure criticality Failure reproduction

Mode Causes Detection
method

Affected
variables

Symptoms On
item

On
equipment

Severity
(1–5)

Freq.cy
(1–5)

Fault
injection

Fault
degradation

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
(
S
o
d
e

Fig. 3. Criticality matrix, representing a categorization of the equipment failure modes
based on their qualitative severity level and their qualitative or quantitative frequency
of occurrence. Given the classification of each failure mode in the matrix cells, proper
actions can be prioritized.

item with one of higher quality or provide a physical redundancy)
and can be tackled by supervision algorithms. The most risky failure
modes, colored in red, require important corrective actions that no
algorithm can provide. In-between failure modes, denoted in yellow,
should be discussed singularly. However, the consideration of which
failure modes to tackle should depend on whether safety or cost is the
driving factor for the analysis. The proposed tool for selecting critical
item has a similar rationale to the four-quadrant char provided in [6]
and referenced in the introduction of this paper.

3.3. Supervision-oriented FMECA worksheet

Several examples of FMECA tables have been reported in specialized
literature and standards [5,23,25,30,34], with various levels of com-
plexity and detail. Table 3 proposes a qualitative Supervision-oriented
FMECA
(SoFMECA) worksheet, with columns tailored for a FMECA oriented to
the design of a supervision solution. A similar worksheet is proposed
in ISO13379-1 with focus on symptoms [18]: however, the proposed
one additionally focuses on failure reproduction procedures for data
acquisition. The worksheet is structured as follows. Each row of the
table is a failure mode, relative to a certain item. The columns are
grouped into:

1. failure description: these columns provide a description of the
failure. The Mode column reports the failure mode, that should
be specified as a nonfulfillment of the functional requirements
for that item.2 The Causes column lists the circumstances that
may produce or contribute to the failure mode. Column Detection
method contains the various possibilities for the detection of
the failure mode. These may involve diagnostic testing, alarms,
proof testing, or human perception. Column Affected variables
lists all the physical quantities (measurable or not) that might

2 Sometimes the distinction between a failure mode and a fault is blurry.
n the FMECA and criticality table, it may be of interest to consider not only
he failure modes, but also some faults (which do not compromise the item
unctionality).
5

be influenced by the failure mode. Column Symptoms3 describes
the observable symptoms produced by a failure mode.

2. failure effect: devoted to describe the failure effects on the
item (On item) and on the overall equipment (On equipment),
respectively.

3. failure criticality: devoted to qualitatively ascertain the criticality
of the failure mode. Severity (1–5) and Freq.cy (1–5) columns
refer to Table 2 and Table 1, respectively.

4. failure reproduction: devoted to the description of various ways
to introduce a state of fault in the item (that can lead to a failure
mode), by directly replacing the healthy item with a failed one
(fault injection) or by carrying out actions that progressively
lead a healthy item to become failed (fault degradation). These
actions are mandatory for acquiring experimental data in failed
or degraded situation.

After the selection of relevant items, the aims, needs and the type
of approach of the supervision solution must be chosen.

3.4. User guidelines

» Criticality analysis: start with a qualitative criticality analysis fol-
lowing Tables 1 and 2, tayloring meanings of the levels to the
application. If data and time are available, refine the results with
the quantitative approach.

» Failure modes assessment : perform a FMECA using the SoFMECA
worksheet, especially considering the affected physical variables
and failure reproduction possibilities.

» Failure modes reproduction: assess if a failure mode can be repro-
duced on the machine by fault injection or fault degradation, and
the degree of approximation of the introduced fault or failure
mode with respect to the nominal one. Note that some failure
modes only allow one simulation modality, and some cannot be
realistically reproduced at all.

» Prioritization of items: build a criticality matrix to categorize and
prioritize the failure modes (and thus the related items) that will
benefit the most from a supervision solution.

» Experimental effort estimation: based on chosen items and possi-
bility to reproduce the failure modes, estimate how much exper-
imental time is required to collect data in the failed condition,
so to reserve machine and human personnel availability for ex-
perimental tests. If the machine is scarcely available, consider
building an ad-hoc test bench for the items to be tested.

» Define the circumstances of the symptoms: establish the operating
regimes where the symptoms appear, for each fault or failure
mode. External factors and other conditions should be annotated.

3 Perception, made by means of human observations and measurements
descriptors), which may indicate the presence of one or more fault. [17].
ymptoms can be expressed by defining: (i) the time constant of the evolution
f the descriptor; (ii) the type of evolution of the magnitude change; (iii) the
escriptor used; (iv) the location where the symptom is observable on the
quipment; (v) the circumstance. Examples: Slow and regular increase of the

magnitude of the first harmonic of vibration acceleration; Bearing temperature is
◦
10 C above usual value in nominal condition.
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Fig. 4. Fault diagnosis includes fault detection, isolation, estimation and identification.
Sometimes, the terms fault estimation and fault identification are used as synonyms,
where one includes also the aims of the other.

4. Supervision solutions

In the specific view of the authors, the terms fault diagnosis, condi-
tion monitoring and fault prognostics denote three different supervision
aims and needs. We distinguish such supervision aims based on:

1. the type of the output produced by the methods;
2. the time instant at which that output refers to.

Fault diagnosis methods produce (mostly) a dichotomous
(healthy/failed) output indication at each actual time. The same applies
for condition monitoring, except by producing a continuous output in
he form of condition indicators. Fault prognostics builds on condition
onitoring, by further providing values for the condition indicator (or

ndicators) that refers to future time instants.
Supervision solutions are characterized by their aims and needs and

ethodological approaches to reach those aims.

.1. Aims and needs of supervision

The supervision aims considered in this article are fault diagnosis,
ondition monitoring and prognostics.

.1.1. Fault diagnosis
Fault diagnosis is a reactive approach after the happening of faults

nd failures that entails the following tasks [35, Chapter 3.1], see Fig. 4:

1. Fault detection: to discover anomalous behaviors occurring in the
items of the equipment. It consists in the detection (a 0/1 dichoto-
mous logical output) of fault occurrence and the determination
of the time at which the item switches to a failed state.

2. Fault isolation: (following fault detection) to locate a fault within
the equipment, also among other faults. For instance, this may
mean to recognize which item has failed.

3. Fault analysis or identification: (following fault isolation) to char-
acterize the type, size (severity) and nature (cause or mechanism)
of detected faults.

4. Fault estimation: (following fault isolation) to reconstruct the
time-varying behavior (shape) of the fault signals. Fault estima-
tion can serve as basis for control law reconfiguration or virtual
sensor development [36, Chapter 14].

.1.2. Condition monitoring
Condition Monitoring (CM) refers to the continued oversight of the

rogressive degradation of the monitored equipment or item. The main
ifference with respect to fault diagnosis lies in the output that CM
rovides when evaluating the presence of faults. In the fault diagnosis
ase, the main interest is in a binary answer, that is the presence or
bsence of a fault (and eventually where it is located and its type
f fault isolation and identification are of concern). In CM, instead,
he aim is for a continuous evaluation of the system health condition.
deally, CM generates one or more condition indicators that mono-
6

onically evolve as equipment/item degradation progresses. Usually,
Fig. 5. Fault detection vs. condition monitoring vs. fault prognostics. Fault detection
provides a binary output when the fault presence is detected. Condition monitoring
produces continuous monitoring indicators of the item health state, that can be used for
fault prognostics to forecast the health state at future times, given current monitoring
information. The figure plots a monitoring indicator as a function of equipment/item
lifetime. Blue dots represent the value given by the condition monitoring indicator,
and the red dotted horizontal line is the fault threshold. Assume that a fault is present
at time 𝑡 = 7. At 𝑡 = 7, the monitoring indicator exceeds the threshold, and the
ault diagnosis (fault detection in this case) output goes from low (logical 0) to high
logical 1) state, indicating the detected presence of a fault. The prognostics module,
t time 𝑡 = 3, forecasts that the threshold will be exceeded at time 𝑡 = 6. With more
vailable data points, the prognostic model updates its predictions for the evolution of
he monitoring indicator.

his progression manifests with the lifetime increase, even if ‘‘infant
ortality’’ behaviors can occur in some components.

Fault estimation methods can be used to perform CM by directly
stimating fault signals. In these cases, the condition indicator is the
stimated fault signal.

.1.3. Fault prognostics
Fault prognostics denotes procedures that employ a condition indi-

ator, related to an item, to forecast the indicator future evolution [37].
he work [38] provide and excellent tutorial on how to design condi-
ion indicators and how to evaluate the performance of a prognostic
olution. Whenever possible, condition indicators should be driven by
he physics of the system [39].

The prognostics of a fault usually requires the development of a
odel for the evolution of the condition indicator, in order to ex-

rapolate its future trend. This model can be based on physics laws,
elying on a mathematical model of the failure mode (such as the rate
f crack growth, or the state of charge of Li-ions batteries) or based
n data, where a degradation model is fit on the indicators, and then
n extrapolation from the model is performed [40, Chapter 6][41].
hysics-based models for bearing and gear faults propagation are given
n [42, Chapter 19] relative to vibration parameters.

The extrapolated information from the model is used to estimate
he Remaining Useful Life of the item at a certain actual time instant,
hat is interpreted as the period of time between: (i) the time instant
hen the item no longer meets its functional performance specifications

time to failure) and (ii) the actual time instant. Fault prognostics is an
terative procedure, since the forecasts have to be updated every time
new value of the condition indicator is provided by the CM function.

Fig. 5 provides a graphical representation the discussed supervision
ims.

.2. Methodological approaches for supervision

The most common methodological approaches for satisfying the
upervision aims and needs can be categorized as [4,43–45]:
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Fig. 6. Main methodological approaches for supervision. Model-based approaches
exploit the highest amount of information about the equipment, since it models the
inputs–outputs relations. Here, the term input refers to both measurable and controlled
inputs, and also to not measurable ones such as disturbances, noises and faults. Signal-
based approaches rely on a-priori known specific descriptors computed from specific
signals. Data-driven approaches rely only on equipment data collected from sensors
readings in specific operating regimes.

1. model-based;
2. signal-based;
3. data-driven.

The choice between a methodological approach and another depends
on several factors, which are briefly described in the standard ISO
13379-1, along with suggestions on how to determine a confidence
level for the diagnosis produced by such methods [18]. Model-based
approaches are able to exploit prior information about the system
dynamics and how faults and disturbances/noise enter the system.
Signal-based approaches do not rely on a system model, but instead
employ (or assume) certain signals behaviors to exploit specific di-
agnostic techniques for extracting fault indicators (descriptors4) from
specific signals, using prior knowledge about the fault symptoms. Data-
driven methods use the least amount of prior information about the
faults, that has to be mined from data only, see Fig. 6.

We now briefly cover each of the three mentioned approaches.

4.2.1. Model-based approaches
Model-based approaches entail the analytical redundancy idea of

comparing the actual input/output behavior of the monitored plant to
the behavior simulated by a mathematical plant model. Plant measure-
ments, inputs 𝒖(𝑡) ∈ R𝑚𝑢×1 and outputs 𝒚(𝑡) ∈ R𝑝×1, are checked for
consistency with the mathematical model: the output of the consistency
check are called residuals signals and denoted by 𝒓(𝑡) ∈ R𝑞×1. Residuals
are nominally zero, and become nonzero in the presence of: (i) faults
𝒇 (𝑡), (ii) disturbances 𝒅(𝑡), (iii) noises 𝒘(𝑡), and (iv) modeling errors.
The analysis of the residuals allows producing supervision decisions. A
model-based residuals generator is thus a dynamical system, with (𝑚𝑢+𝑝)
inputs and 𝑞 outputs, that given the plant measured inputs and outputs
produces the residual signals. The residuals enter a residuals evaluation
stage that outputs the diagnostic decisions. Fault detection is possible
with a single residual (𝑞 = 1). Fault isolation almost always requires
𝑞 > 1 residuals, and can be made possible by enhancing them with
structured or directional properties [46, Chapter 7, Chapter 8].

The main model-based residuals generator implementations con-
sist in the following approaches, and relationships have been found
between them:

1. parity-space [35,46];
2. observers [27,36];
3. stable factorization (frequency-domain) [27,36,47];
4. parameters estimation [25,46].

Parity space and observers-based designs share many similarities, and
are usually employed to deal with additive faults (i.e. when external
unmeasurable signals enter the plant). One of the significant properties
of parity-space residual generators, also widely viewed as their main

4 Data item derived from raw or processed parameters or external observa-
ions [17]. Examples: amplitude of the first harmonic of the vibration acceleration,
rest factor of the vibration acceleration, rotation speed.
7

advantage over the observer-based approaches, is that their design
can be carried out in a straightforward manner. In fact, it only deals
with solutions of linear equations or linear optimization problems,
although numerical issues in the computation of the solution can be
present. To solve this is issue, [35] proposed reliable computational
methods to alleviate this issue [48]. Stable factorization approaches
allow to define robust specification directly in the frequency domain,
thus using robust control tools. Parameters estimation approaches are
used to deal with multiplicative faults (i.e. changes in the plant physical
parameters). A recent line of research consists in the direct data-driven
design of residual generators, using subspace or other system identifi-
cation approaches [49–51]: the idea is to directly estimate the residual
generator from input/output data, without first estimating a model
of the dynamical system. Another current research line is related to
the use of the uncertainty of the identified model for increasing the
robustness of the residual generator to modeling errors [52–55].

4.2.2. Signal-based approaches
Signal-based approaches entails the computation of descriptors from

signal measurements, so that a supervision output is produced by
comparing the actual descriptor values with prior knowledge about the
fault symptoms. These methods lie on the assumption that certain signals
carry information about the faults. Thus, the user has to know:

• where (which measurements) and,
• what (which descriptors computed from those signals),

to look for evaluating the health state of the item.
Supervision is achieved by comparing the actual value of the de-

scriptors with their values in the healthy equipment state. Their em-
ployment is especially useful to supervise ‘‘passive’’ items such as
mechanical or electrical components (bearings, gears, transformers,
inverters, etc.) where it is not meaningful or not possible to develop a
dynamical model of the item. The work [15] reviews, among commer-
cial products for supervision, some common descriptors and process-
ing techniques categorized into time, frequency and time–frequency
domains, see also [43,44]:

1. time domain: root-mean-square value (RMS), kurtosis, crest fac-
tor, number of zero crossings, cycle counting (number of ve-
locity reversals), on raw measurements or after preprocessing,
for instance, but not limited to, correlation functions, envelope
analysis, Dynamic Time Warping [56], cepstrum (when harmon-
ics to be detected have small magnitude compared to the other
ones) [57,58];

2. frequency domain: if the frequency content is time-invariant,
descriptors are computed on frequency spectra obtained by Dis-
crete Fourier Transform of the raw time domain measurements.
Classical analysis of bearings and Motor Current Signal Analysis
for electromechanical motors lie in this category [59,60]. If the
frequency content is time-varying (e.g. it depends on the item
rotation speed), order analysis can be used (given the availability
of an additional tachometer signal) [61];

3. time–frequency domain: if the frequency content varies with time,
methods as Short-Time Fourier Transform (STFT), wavelet trans-
form and, for cyclostationary signals, Wigner-Ville Spectrum
[62,63]. The work [64] provides a review of how Empirical
Modes Decomposition can be used for supervision. It is however
stated in [65] how such technique is less effective for bearings,
and more fitting for gears.

The design of signal-based condition indicators for industrial equip-
ment, given a probability of false alarms and starting from a deductive
statistical point of view, is proposed in [66], while [67] proposed a
unified framework for expressing common descriptors in equipment
monitoring. Recent research is devoted to integrating signal-based ap-
proaches with data-driven (machine learning) ones, making the latter

physics-informed [68–71].
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Vibrations analysis is a widespread instrument for monitoring equip-
ment and their items, especially for rotating ones as bearings [40,57,
72,73] or gears [74,75]. Acceptability levels for machine vibrations
measured at nonrotating locations, given in terms of vibration velocity
(mm/s), for different power classes of machines, is given in [76,
Appendix A2] which is based on an earlier version of ISO 20816 [77].

4.2.3. Data-driven approaches
Data-driven approaches do not rely on a prior knowledge about

system behaviors or symptoms, but they assume that this indication
is present, but hidden, in the measured data and just need to be
discovered. Data-driven approaches share a two-stages procedure:

1. a training (offline) phase, where supervision knowledge is repre-
sented using data in healthy and (possibly) failed condition;

2. an evaluation (online) phase, where the incoming data are com-
pared with the information extracted from the training phase.

Many data-driven algorithms lie under the artificial intelligence
(mainly machine learning) umbrella [78]. Several challenges are
present in the adoption of artificial intelligence for supervision in
industry [79,80], as: (i) imbalanced and unlabeled data sets; (ii) in-
terpretability of the model decisions; (iii) integration of several hetero-
geneous data sources. To face those challenges, a recent research trend
is the use of transfer learning methods, able to reuse the knowledge
extracted from one problem domain to another (e.g. similar machines
but different speeds, loads, etc.) [81,82].

Statistical Process Control (SPC) methods provide statistical indi-
ators (most common of which are the 𝑇 2 and SPE statistics) for
valuating anomalous behaviors in the data, relying only on healthy
raining dataset. SPC methods are mainly based on Principal Compo-
ent Analysis of the data matrix (where each row is an observation
f a features/descriptors vector) [24,83]. Alternatively, Partial Least
quares methods can be used to correlate process variables with quality
ndicators [84,85]. Fault isolation can be performed by reconstruction
lots [86], while prognostics with such plots is faced in [87]. The SPC
ndicators assume a static setting, i.e. they must consider data from the
lant in a steady-state equilibrium, although some dynamical variants
xist [88].

Other methods that follow under the category of data-driven ap-
roaches consist in classification and change-point detection algo-
ithms [89–92]. As the name suggests, change-point detection is the
ask of finding changes in the underlying model of a signal or time
eries [93].

.3. User guidelines

• Definition of the supervision aims and needs: prior to the develop-
ment of the supervision solution, it is necessary to choose, for
each item previously selected for supervision, which supervision
aim should be pursued.

• Choice of the methodological approach: the following aspects should
be considered:

1. if the item being monitored is a passive one, use signal-
based or data-driven approaches;

2. if the item being monitored is an active dynamical one, and
time and cost resources are available, use a model-based
approach. This allows the residual to have some robustness
against disturbances and noise. We suggest the approach
of [35] as numerical aspects of implementation are taken
into consideration. A software tool is available [48];

3. several methodological approaches can also be combined,
e.g. by evaluating model-based residuals with signal pro-
8

cessing tools for further insights, like fault isolation [94].
• Operating regimes and external factors: especially for signal-based
and data-driven approaches, the data collection during the usage
phase of the supervision solution must be performed in conditions
as similar as possible as during the design phase of the supervision
solution.

• Circumstances for detection: the supervision solution is not neces-
sarily required to be run during normal equipment operation. It
is often possible to define specific motions of the equipment with the
only aim to collect data for supervision. The supervision solution
then will process these data, that can be periodically collected.

5. Design process for industrial supervision solutions

This section describes the proposed process for the design of super-
vision solutions for industrial equipment, making use of the concepts
introduced in the previous sections. Three main steps are considered,
each one articulated in several tasks as follows.

(S1) definition of the supervision scope

T1.1 supervision aims and needs;
T1.2 technical specifications;
T1.3 critical items;
T1.4 supervision information;
T1.5 supervision approaches.

(S2) data collection

T2.1 experimental test plan;
T2.2 acquisition of measurements.

(S3) technical development

T3.1 algorithmic technique;
T3.2 internal presentation of the results;
T3.3 deployment of the solution;
T3.4 human–machine interface.

Step (S1) is the starting point. It requires a clear definition of the
aims and needs of the supervision solution. This step entails three
tasks. Task T1.1 specifies the supervision outputs that the supervision
solution should provide. Task T1.2 requires considering from the start
the technical specifications of the hardware that should run the solution
and the processing flow of the data. Task T1.3 selects the items (and
related failure modes) that will be the target, and will benefit the
most, of the supervision solution. A study on how and under which
circumstances (operating regimes + external factors) the symptoms of
faults appear is essential. Each item (and relative fault/failure modes)
may have a different supervision aim. Task T1.4 analyzes the infor-
mation that might help in performing the supervision on the items,
as consulting maintenance reports, talk with maintenance operators
and monitor physical quantities. Finally, Task T1.5 requires the initial
choice of the more adequate supervision approaches.

The second Step (S2) consists in the collection of experimental
data in the form of equipment measurements. A test campaign shall
be planned in Task T2.1 to acquire data during defined operating
regimes, in both healthy and (if possible) failed or degraded items
states. Depending on the considered failure modes, specific physical
quantities may have to be measured.

The third Step (S3) is devoted to the development of the supervision
solution. Task T3.1 selects the algorithmic techniques, based on the
methodological approaches, to perform the supervision aims for each
item. Task T3.2 entails the internal presentation of the supervision
solution results. Task T3.3 focuses on the deployment of the solution
onto the hardware platform running the supervision algorithms. Task
T3.4 considers the display of the supervision outputs to the end-user of

the solution.
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Fig. 7. Steps in the design of a supervision solution. The three main steps are at the top level, and each one is exploded into its tasks. The dependence between two tasks is
shown by an arrow. The sink task (where the arrow points) depends on the source one (where the arrow starts). Continuous arrows denote a forward path in the task sequence,
while dashed arrows represent a backward path. The starting tasks are highlighted by a double edge boundary.
Fig. 7, Table 4 and Figs. 8–19 show the most significant relations be-
tween the steps and their tasks. The proposed process for the design of
a supervision solution is iterative. Often, a first prototype of the solution
is developed, and then tested against requirements and specifications.
If the tests are not successful, a retuning of the solution, or a change of
the supervision aims, should be considered. The tasks are dependent:
once a decision is taken on a particular task, it will influence several
successive ones. Moreover, the execution of one task may shed light on
previous decisions, so that the scope of the whole supervision solution
can be refined.

The specific focus on the data collection tasks and on the relations
between tasks is what differentiate the proposed process with respect
to existing ones.

5.1. (S1) Definition of the supervision scope

The scope of the supervision solution entails:

1. the supervision outputs for each failure mode;
2. the technical specifications for its implementation;
3. the definition of the items to be supervised;
4. the gathering of all supervision information;
5. the choice of the methodological approaches for each failure mode.

The outputs of Step (S1) directly influence the tasks of Step (S2) and
9

tep (S3).
Fig. 8. Task T1.1 dependencies. An edge indicates that the source node influences
the sink node. Dashed edges indicate that a subsequent task may have influence on a
previous one.

5.1.1. T1.1 Supervision aims and needs
This task must answer the question:

Which kind of outputs the supervision solution shall provide?

Reference section: 4.1 ‘‘Aims and needs of supervision’’.

The clarification of what the supervision solution has to provide
must be performed at the beginning of the design cycle. The defi-
nition of the supervision aims usually starts with a single aim that
encompasses all items. After that all failure modes to be supervised are
selected, it is possible to decide for a different supervision aim for each

of them.
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Table 4
Adjacency matrix of the relations between the tasks of the proposed design process. The (𝑖, 𝑗)-th element denotes that the task at row 𝑖 influences the task at column 𝑗. Filled
quares (■) indicate that a task influences a subsequent one. Empty squares (□) indicate that a task influences a preceding one. The number of row-wise squares determines the
verall influence of a task over other ones. The number of column-wise squares determines the overall dependence of a task from other ones.

T1.1
aims

T1.2
specs.

T1.3
items

T1.4
info

T1.5
approach

T2.1
tests

T2.2
measures

T3.1
technique

T3.2
int.
results

T3.3
deploy

T3.4
hmi

Row
sum

T1.1
aims

■ ■ ■ ■ ■ 5

T1.2
specs.

■ ■ 2

T1.3
items

■ 1

T1.4
info

□ □ ■ ■ ■ 5

T1.5
approach

■ 1

T2.1
tests

■ 1

T2.2
measures

□ □ ■ 3

T3.1
technique

■ 1

T3.2
int.
results

□ □ □ □ □ 5

T3.3
deploy

□ □ 2

T3.4
hmi

0

Column
sum

2 1 1 2 2 4 4 5 1 2 1
The definition of which supervision aim is of interest influences the
xperimental tests (see Section 5.2.1 ‘‘T2.1 Define the test plan’’), since:

• the fault detection and isolation aims will only require tests with
healthy and (possibly) failed items. Fault injection has to be
planned;

• the condition monitoring or prognostics aims will require (possibly
multiple) endurance sessions to progressively degrade the item,
leading to its failure. Especially in the prognostics case, this is
important for building a statistical distribution of the times to
failure. Fault degradation has to be planned.

The supervision aims and related outputs define how many re-
ources (number of measurements, amount of data for each mea-
urement, memory requirements) have to be managed, both in the
evelopment and usage stages of the solution (see Section 5.2.2 ‘‘T2.2
cquire the measurements’’ and Section 5.3.3 ‘‘T3.3 Deploy the solu-

ion’’). For instance, a fault detection aim may require to store only
batch of periodically replaced data, while a prognostics strategy, in

ddition, has to keep in memory also previous values of the monitoring
ndicator to update the prognostic model.

How to present the supervision outputs both internally and to the
nd-user depends on the aims (see Section 5.3.2 ‘‘T3.2 Present the
xperimental results internally’’ and Section 5.3.4 ‘‘T3.4 Present the
upervision outputs to the end-user (human–machine-interface)’’): if
nly fault detection is required, then a simple binary indicator, or
ound, can be displayed. If condition monitoring or prognostics are of
nterest, a plot that shows the trends of the monitoring indicators, with
arning and alarm thresholds, is appropriate. In both cases, however,

aution should be paid to not show too erratic outputs behaviors: if so,
he end-user will not get a good perception of the supervision outputs,
nd its trust in the provided solution will drop.

.1.2. T1.2 Define the technical specifications
This task must answer the question:

Which are the technical characteristics and functionalities of the
hardware that will run the supervision solution?
10
Fig. 9. Task T1.2 dependencies.

Fig. 10. Task T1.3 dependencies.

The technical specifications should be considered in the early phases
of the project, in particular regarding its limitations. These include
computing power, memory requirements, Internet connection, supply
power, programming language for the deployment. Their knowledge
impacts the choices of algorithmic techniques, see Section 5.3.1 ‘‘T3.1
Choose the algorithmic technique’’ and Section 5.3.3 ‘‘T3.3 Deploy the
solution’’.

5.1.3. T1.3 Select the critical items
This task must answer the question:

Which are the items, and relative faults or failure modes, that
the supervision solution has to consider?

Reference section: 3.2 ‘‘Criticality matrix’’.

Most of the times, equipment producers desire a supervision solu-
tion for a machine composed by several items working together to fulfill
an high-level functionality. The number of items can vary from few to
many. In these latter cases, it is unfeasible to develop a supervision
solution for all the items from scratch. Thus, a feasible rationale is to
focus on the most critical items and their faults and failure modes.
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Fig. 11. Task T1.4 dependencies.

urthermore, a maintenance strategy can be composed by a mixture
f rationales: for some items, time-based, preventive, or even reactive
aintenance might be the best solution. The selection of the items to

e supervised requires interacting with the operation and maintenance
ersonnel.

The critical items directly influence the supervision information that
hould be collected regarding them (see Section 5.1.4 ‘‘T1.4 Collect
vailable supervision information’’).

.1.4. T1.4 Collect available supervision information
This task must answer the questions:

1. Are there any additional information useful to perform
the supervision aims?

2. Which are the circumstances that lead to a failure mode?
3. How it is possible to reproduce a failure mode?
4. Which physical quantities are mostly affected by the

failure mode?

Reference section: 3.3 ‘‘Supervision-oriented FMECA work-
sheet’’.

Ancillary information that help in the supervision of the selected
tems are usually present, like historical records of fault occurrences,
ailure modes, failure rates, failure causes and mechanisms. Possible
pproaches to experimentally reproduce the failed conditions of the
tems can be discovered in this phase. Often, only a proxy the failed
onditions can be introduced, as the failure/degradation process can be
ardly reproducible. An analysis of the physical quantities that are most
ensitive to faults and failure modes to be supervised should be also
erformed; such indications for typical machines and related failures is
rovided in [6,95]. As in the previous task, it is of uttermost importance
o consult the operation and maintenance personnel.

The supervision information influence the supervision approaches
hat can be used, for instance based on the active/passive nature of the
tems and their faults or failure modes (see Section 5.1.5 ‘‘T1.5 Select
he supervision approaches’’), the type of experimental tests regarding
he fault reproduction strategy (see Section 5.2.1 ‘‘T2.1 Define the test
lan’’) and most suitable measurements for each fault (see Section 5.2.2

‘T2.2 Acquire the measurements’’).
If the supervision information relative to an item are not enough ac-

urate or informative supervise the item, its supervision aim or failure
ode should be reconsidered (see Section 5.1.1 ‘‘T1.1 Supervision aims

nd needs’’ and Section 5.1.3 ‘‘T1.3 Select the critical items’’).

.1.5. T1.5 Select the supervision approaches
This task must answer the question:

Which are the supervision approaches that are most suitable to
supervise the selected failure modes?

Reference section: 4.2 ‘‘Methodological approaches for
supervision’’.
11
Fig. 12. Task T1.5 dependencies.

Fig. 13. Task T2.1 dependencies.

A supervision solution can have different supervision approaches,
one for each failure mode of the items; moreover, a failure mode can
be supervised by more than one supervision approach. These choices
influence the algorithmic technique employed (see Section 5.3.1 ‘‘T3.1
Choose the algorithmic technique’’).

5.2. (S2) Data collection

The data collection step entails:

1. the planning of the experimental test plan for each fault and
failure mode;

2. the acquisition of measurements from each test run.

The outputs of Step (S2) directly influence the tasks of Step (S3), but
they can shed light also on the tasks of Step (S1).

5.2.1. T2.1 Define the test plan
This task must answer the questions:

1. In which experimental conditions the tests should be run?
2. How much time the tests will require?
3. How many experimental sessions are required?

Reference section: 3.3 ‘‘Supervision-oriented FMECA work-
sheet’’.

The test plan definition should be carefully done prior to perform
the experiments. The aim is to perform experimental tests in healthy
condition and tests in a failed condition (that is, with a fault or
degradation introduced in the item). This requires to have clear:

• what it meant by healthy and failed states;
• the fault circumstances, as they guide how the equipment will run

during the tests. Tests should be performed also in typical (nom-
inal) operating regimes, if there are any (e.g. a set of constant
rotation speeds, nominal loads, etc.);

• if the equipment runs with or without load;
• the motion profiles of the item, including their duration, jerk and

accelerations levels;
• the set of measurements that will be collected, along with the feasi-

bility to install new sensors, both in the prototype and production
supervision systems;
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Fig. 14. Task T2.2 dependencies.

• the possible degree of approximation that the fault reproduction
introduces. In a fault degradation test case, it might not be
possible to degrade the component in a reasonable amount of
time. In this case, it can be possible to accelerate the degradation,
e.g. by removing lubricant or running the equipment at higher
than nominal load conditions;

• the repeatability and quantifiability of the fault injection or degra-
dation procedure. Also, the manufacturing variability of healthy
items should be assessed, since a to high variability in the mea-
surements can hidden the faults.

sually, one fault at a time is evaluated for data collection, to avoid
overlapping of fault and failure effects on the measurements. Fault
injection of different faults requires time to dismount and remount the
items. When the equipment returns to an healthy state, a test should be
performed to check if the equipment performs as in the starting healthy
condition (prior to any fault injection).

It is highly suggested to prepare a spreadsheet test table, where each
row is a test, and the columns reports experimental information related
to that test, as duration, load, motion profile, acquired measurements,
notes and so on. This helps also in the quantification of the time needed
for performing the tests.

Experimental tests on an item can be performed:

• with the item directly mounted on its equipment;
• with the item isolated in a dedicated test bench.

The definition of the experimental tests plan affects how measure-
ments are collected (see Section 5.2.2 ‘‘T2.2 Acquire the measure-
ments’’).

5.2.2. T2.2 Acquire the measurements
This task must answer the questions:

1. Are additional sensors required?
2. What is the sampling frequency?
3. Do measurements come from different sources and need

to be synchronized?
4. How much computer storage is required?

Reference section: 3.3 ‘‘Supervision-oriented FMECA work-
sheet’’.

Physical variables can be acquired by the equipment built-in sen-
ors and logging capabilities and by introducing additional sensors
or prototyping the supervision solution. If the additional sensors are
ound necessary, they will have to be integrated in the equipment. It is
mportant to consider the following aspects:

• if additional sensors are mounted, other than buying the acquisi-
tion hardware and set up the acquisition code (that requires time),
it might be necessary to synchronize the measurements from these
sensors and those already present in the machine;

• the amount of computer storage required;
• check the repeatability of the measurements by performing more

experiments in the same settings;
12
Fig. 15. Data collection strategy typical of fault degradation experiments. Degradation
tests (usually in not nominal conditions to accelerate the degradation) are alternated
with acquisition tests (in nominal conditions). In this way, a continuous acquisition is
turned into a batch acquisition, with savings on computer storage.

• if fault degradation tests are considered, it might unfeasible to
store the data continuously due to storage limits. A typical strat-
egy is to alternate between degradation tests (where the item is
degraded, usually in an accelerated manner, an no measurements
are stored) and acquisition tests (where the item is run at nominal
conditions and measurements are stored), see Fig. 15;

• prepare beforehand a computer script to load and visualize the
data at regular intervals during their acquisition. If some sen-
sor provides data that are clearly wrong or do not align with
expectations, a promptly intervention can save an entire day of
work.

The characteristics of the measurements affects the algorithmic
technique that can be used (see Section 5.3.1 ‘‘T3.1 Choose the algo-
rithmic technique’’). Sometimes it is already known how measurements
look like when there is a fault. In these cases, if measurements do not
show the expected behavior (after a fast, also visual, data processing) it
can be necessary to think of different ways to perform the experiments,
for instance by changing operating regime or artificially inject an
harsher fault condition on the item (see Section 5.2.1 ‘‘T2.1 Define the
test plan’’). If the measurements are not sensitive enough to the fault
behavior, it may be necessary to rethink the information needed for
the supervision (see Section 5.1.4 ‘‘T1.4 Collect available supervision
information’’).

5.3. (S3) Technical development

The technical development step entails:

1. the choice and development of the algorithmic technique for each
failure mode;

2. the internal presentation of the results obtained by applying the
algorithmic technique to the experimental data;

3. the deployment of the solution;
4. the design of the human–machine interface for presenting the

supervision outputs to the end-user.

he outputs of Step (S3) influence the entire Step (S2) and have
epercussions also onto the tasks of Step (S1).

.3.1. T3.1 Choose the algorithmic technique
This task must answer the question:

Given a failure mode and a methodological approach, which
technique is best to process the measurements for reaching

the supervision aim?

Reference section: 4.2 ‘‘Methodological approaches for
supervision’’.

The best supervision algorithm, for each considered failure mode
and item, strongly depends on the chosen supervision approach, avail-
able measurements and the physics/functionality of the item. Model-

based approaches may select a technique based on the modeling of
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Fig. 16. Task T3.1 dependencies.

Fig. 17. Task T3.2 dependencies.

aults as additive or multiplicative, and robustness against noise and
odel uncertainties. Vibration measurements for rotating components

enefit from a signal-based approach, with techniques rooted in en-
elope and frequency analysis. Techniques based on data-driven ap-
roaches can be distinguished based on the presence or lack of data
n failed conditions. In the former case, classification methods can be
sed. In the latter, anomaly detection, statistical process monitoring or
hange detection techniques have to be used, that rely only on data
haracterizing the nominal healthy condition.

During the technical development, it is important to select the
ircumstances for the detection, that is a set of motion profiles, loads,
tc. such that the collected signals are as clean as possible to be
rocessed by the supervision algorithms.

The choice of the technique affects its deployment, due to its com-
utational and memory requirements (see Section 5.3.3 ‘‘T3.3 Deploy
he solution’’).

.3.2. T3.2 Present the experimental results internally
This task must answer the question:

How to summarize the results of the prototype supervision
solution for internal discussion?

Reference section: 4 ‘‘Supervision solutions’’.

A summary of the experimental results is where an overall evalu-
tion of the supervision solutions is made. These results are usually
roduced by a model-in-the-loop paradigm (e.g. in MatLab, R, Julia
r Python software environments). A quantitative evaluation of a su-
ervision solution can consider the percentage of detection of a set
f failures and their missed detections, along with the time required
or their detection and robustness with respect switch-off of measured
ignals and symptoms delay [96]. A set of table templates for presenting
ualitative results is proposed in Tables 5–7. The tables represent the
upervision results of each item (failure mode) at different detail levels.
able 5 is a low-level representation where different algorithmic tech-
iques and descriptors for the same items are compared, considering
he measurements upon which they relied. The supervision aims and
he need for additional sensors is also considered. The cells of the tables
an contain a description of the symptoms and the circumstances where
he data should be acquired for later processing. Table 6 is a mid-level
epresentation, where the techniques and descriptors are considered on
n aggregate level than Table 5, and gives more importance to needed
easurements. Table 7 is a higher-level representation of the best
ossible set of sensors to reach the supervision aims. With decreasing
13

etail level, only the best result is kept as indication. i
Fig. 18. Task T3.3 dependencies.

If the solution does not provide the required performance, even
if all necessary measurements have been collected, then it may be
possible that the aims are not attainable. This may happen because
the symptoms in the data are too weak with respect to the noise
level, or because information that are wrong or unrelated to the failure
mode are considered. In these cases, the problem definition and ap-
proaches should be revised (see Section 5.1.1 ‘‘T1.1 Supervision aims
and needs’’, Section 5.1.5 ‘‘T1.5 Select the supervision approaches’’).
Another possibility for not satisfactorily results are experimental tests
in not appropriate conditions or not informative measurements (see
Section 5.2.1 ‘‘T2.1 Define the test plan’’ and Section 5.2.2 ‘‘T2.2 Ac-
quire the measurements’’). A modification of the algorithmic technique
is possible (see Section 5.3.1 ‘‘T3.1 Choose the algorithmic technique’’).

5.3.3. T3.3 Deploy the solution
This task must answer the questions:

Where the algorithms will run? Which information are
computed? What is the data processing flow of information?

The integration and testing of the solution can be performed either
in a software-in-the-loop or hardware-in-the-loop manner, and then
directly evaluated on the equipment. For rapid control prototyping and
hardware-in-the-loop, possible solutions are given by Speedgoat and
DSpace hardware, both interacting via software with MatLab. For data
acquisition, the combination of National Instruments CDAQ hardware
and LabView software is a great choice. Moving closer to deployment,
Siemens provides PLCs (with limitations on sampling frequency) that
can be integrated with SM1281 accelerometers acquisition hardware
(with much higher sampling frequency). In addition, computing ca-
pabilities can be extended with the edge device Siemens SIMATIC
IPC427E. Here, applications can be developed using Python language.

The implementation for production should first consider the phys-
ical locations where the algorithms will run and which information is
computed in each location. There are two main alternatives:

1. on-premise: the algorithms are implemented on a electronic con-
trol unit or an edge device, usually written in C or Python
programming language;

2. on-cloud: the algorithms run on a web-server, on process aggre-
gated data transmitted via an Internet connection.

In the first case, there are constraints related to memory and computa-
tional power that need to be allocated on the hardware that runs the
supervision algorithms. In the second case, communication bandwidth
and cost per data-packet transmission (especially in less developed
countries) may pose a limit, so that only few aggregated monitoring
indexes can be transmitted to the web-server for computation.

The initial deployment specifications are then updated and re-
considered as the development proceeds, as well as the algorithmic
technique (see Section 5.1.2 ‘‘T1.2 Define the technical specifications’’
and Section 5.3.1 ‘‘T3.1 Choose the algorithmic technique’’).

Considering the deployment, there are not only technical choices,
but also commercial ones. In fact, if the equipment producer is interested

n selling the supervision solution as an optional service provided to
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Table 5
Low-level detail results table, highlighting the algorithmic techniques. A green cell indicates that the technique was able to provide fault detection, and the results has been
alidated both theoretically and experimentally. A green cell with blue border indicates that a fault isolation result has been attained. A yellow cell indicates a

fault detection result, validated only empirically without a strong theoretical support. A red cell indicates that the fault has not been detected. Blank cells indicate a not
applicable or not considered case.

Item No additional
sensors

With additional
sensors

Position Current Vibration

Tracking
error

FFT RMS Envelope
analysis

RMS

Fault
injection

Bearing
+ circumstances for detection and data collection
+ symptoms

Valve
Motor

Fault
degradation

Bearing
Table 6
Mid-level detail results table. A green cell indicates that at least one algorithmic technique was able to provide fault
detection, and the results has been validated both theoretically and experimentally. A green cell with blue border

indicates that at least one fault isolation result has been attained. A yellow cell indicates at least a fault detection
result, validated only empirically without a strong theoretical support. A red cell indicates that the fault has not been
detected. Blank cells indicate a not applicable or not considered case.

Item No add.
sensors

With add.
sensors

Position Current Vibration

Fault injection
Bearing

Valve
Motor

Fault
degradation

Bearing
-

Table 7
High-level detail results table. The meaning of the cells colors is analogue to Table 6.

Item Nominal set of sensors
+
accelerometer

Fault
injection

Bearing

Valve
Motor

Fault
degradation

Bearing

their clients, they have to think about what is the most remunerative
way to offer this functionality.

As suggested, the technological limitations of the computing hard-
ware should be known beforehand. The software development team has
to be included in the definition of the supervision algorithms, to share
information about the hardware resources that will be available. For
instance, the transcription of the code from a prototype implementation
(e.g. MatLab) to a production one (e.g. C, Python) might undergo a
performance degradation of the supervision, due to limited resources
in the latter case that mandates for downgrading of the solution.

Standards have been proposed to describe the data processing flow
of information in a supervision solution. In this context, ISO 13374 [97]
proposes a sequence of steps to run a supervision solution. This is
the basis for the Machinery Information Management Open Systems
Alliance (MIMOSA) published a set of conceptual data representa-
tion schema to describe the communication of machinery information
14

in computer systems resorting to an eXtendable Markup Language,
Fig. 19. Task T3.4 dependencies.

without proprietary protocols [98]. Additional standards are analyzed
in [99].

5.3.4. T3.4 Present the supervision outputs to the end-user (human–machine
interface)

This task must answer the questions:

How to present the supervision outputs to the end-user of the
equipment in an informative way?

The display of the supervision outputs to the end-user should pro-
vide a mean to identify, confirm or understand an abnormal equipment
state. As discussed in the introduction, [6] proposes four graphical
representations to communicate the supervision results.

Although display formats should be customized for individual appli-
cations, for many users the display can be separated into five distinct
areas that provide a summary of the equipment health state [97]:

1. condition monitoring : this area of the display presents infor-
mation as trend data (e.g. a certain monitoring indicator ver-
sus operating time) with corresponding abnormality zones and
warning/alarm thresholds;

2. overall health assessment : summarizes the results of condition
monitoring and diagnosis. A health index on a scale from 0
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Table 8
Simplified chronological view of the tasks of the proposed process.

Task Description Yes No

Start: T1.1, T1.3 Have supervision aims and items been defined? Go to T1.2 Go to T1.1, T1.3
T1.2 Has the technical hardware been defined? Go to T1.4 Go to T1.2
T1.4 Has further information been collected? Go to T1.5 Go to T1.1, T1.3, T1.4
T1.5 Have the supervision approaches been defined? Go to T2.1 Go to T1.4, T1.5
T2.1 Has the test plan been defined? Go to T2.2 Go to T1.4, T1.5, T2.1
T2.2 Has the data been acquired? Go to T3.1 Go to T2.1, T2.2
T3.1 Have the algorithmic techniques been defined? Go to T3.1 Go to T1.4, T1.5, T2.2, T3.1
T3.2 Have the results been presented? Go to T3.3 Go to T3.1, T3.2
T3.3 Has the solution been deployed? Go to T3.4 Go to T3.1, T3.3
T3.4 Has the HMI been tested? Go to T1.1 Go to T3.3, T3.4
End Is a review necessary? Go to T1.1 Go to End
Table 9
Questions that should be answered during the design of a supervision solution within the proposed design process.

N. Question

1 Which kind of outputs the supervision solution shall provide?
2 Which are the technical characteristics and functionalities of the hardware that will run the solution?
3 Which are the items, and relative faults or failure modes, that the supervision solution has to consider?
4 Are there any additional information useful to perform the supervision aims?
5 Which are the circumstances that lead to a failure mode?
6 How it is possible to reproduce a failure mode?
7 Which physical quantities are mostly affected by the failure mode?
8 Which are the supervision approaches that are most suitable to supervise the selected failure modes?
9 In which experimental conditions the tests should be run?
10 How much time the tests will require?
11 How many experimental sessions are required?
12 Are additional sensors required?
13 What is the sampling frequency?
14 Do measurements come from different sources and need to be synchronized?
15 How much computer storage is required?
16 Given a failure mode, which technique is best to process the measurements for reaching the supervision aim?
17 How to summarize the results of the prototype supervision solution for internal discussion?
18 Where the algorithms will run? Which information are computed? What is the processing flow of information?
19 How to present the supervision outputs to the end-user of the equipment in an informative way?
Fig. 20. Equipment items and their connections.

(complete failure) to 10 (as new) can be displayed, along with
information about fault diagnosis (detection, isolation and iden-
tification);

3. prognostics: presents prognostics information as the estimated
remaining useful life;

4. recommended actions: suggests recommended actions to be taken,
as ‘‘replace or repair items’’, or ‘‘reduce the load’’;
15
5. equipment information: describes information about equipment
number, item number, assessment date.

Table 8 illustrates a simplified chronological sequence of the tasks.
Moreover, Table 9 summarizes the set of questions that should be
answered during the tasks of the proposed design process. A practical
use case is now presented to illustrate the proposed process, that
considers the supervision of DC motor transmission items.

6. Illustrative example: supervision of transmission items from an
electromechanical actuator

The following practical example illustrates the main steps of the
proposed design process on fault detection and isolation of mechanical
components from the transmission of an electromechanical actuator
(EMA). The example is based on [94], reinterpreted in the context of
this article.

The equipment consists of a EMA that actuates a sliding gate. The
EMA contains a direct current motor with nominal voltage of 𝑉0 = 24V.
The gate moves by means of steel wheels on a steel rail. The motor is
connected to the gate through a transmission that converts the motor
rotation to a linear movement. The transmission is composed of: (i) a
worm gear, (ii) a nylon gear, (iii) a shaft, (iv) a pinion and (v) a rack
that belongs to the gate.

Fig. 20 depicts how these items are connected. The worm gear is
welded to the rotor of the motor, and it is coupled with the nylon gear.
Since the rack is external to the EMA cover, a shaft connects nylon the
gear to the steel pinion, which in turn it is paired with the gate rack.
The EMA rotation is transformed into a linear motion by the pinon and
the rack. An encoder measures the motor speed 𝜔𝑀 (𝑡); this rotation
speed can be converted to axial speed by the transmission ratio of the
overall transmission.
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Fig. 21. Criticality matrix resulting from FMECA on the considered EMA equipment.
Red bold entries are considered for investigation by the supervision solution.

6.1. (S1) Definition of the supervision scope

6.1.1. T1.1 Supervision aims and needs
Design of a fault detection and isolation solution for a low-cost

industrial EMA.

6.1.2. T1.2 Define the technical specifications
The supervision solution must be composed of algorithms that

run on a low-cost consumer electronics, with a limited set of sensors
(possibly, the ones already used for controlling the actuator).

6.1.3. T1.3 Select the critical items
The most occurring faults and failure modes, appearing in years of

maintenance reports, are:

1. rack with broken tooth;
2. pinion with broken tooth;
3. broken shaft;
4. broken nylon gear;
5. short circuit of the motor;
6. corrupted wheel.

The resulting criticality matrix is depicted in Fig. 21. Based on
this table and after considerations with the maintenance and operation
personnel, the failure modes (and relative items) considered as focus of
the supervision solution are:

• Rack with broken tooth;
• Pinion with broken tooth;
• Broken nylon gear.

6.1.4. T1.4 Collect the supervision information
Circumstances that lead to a fault or failure mode. The fault and failure

circumstances are due to extended usage of the components and high
gate loads.

Failure modes reproduction. Since the aim is fault detection and
isolation, fault injection has to be performed. The rack and pinion faults
were injected by removing a tooth using a vise.

To reproduce the break of the nylon gear, firstly one hundred
gate movements (opening and closing) are performed to wear-in the
component. After that, the fault is injected by carving perpendicularly
the 80% of the total gear radius using a saw. The width of this notch
is about 1mm, see Fig. 23-(left). The fault is injected in the area where
the gear is subject to the force applied by the shaft through its joint.
In this notched condition, the inner ring of the gear, i.e. the part that
delimits the shaft slot, is still not broken. Thus, to induce its breakage,
the carved gear is mounted on the EMA and about 50 openings and 50
closings are performed. Fig. 23-(right) represents the condition of the
gear after the 100 movements.
16
Fig. 22. Failed rack (left) and pinion (right) items.

Fig. 23. Failed nylon gear without breaking the inner ring (left); natural notch that
breaks the inner ring (right). The width of the natural notch is less than the width of
the artificial one (highlighted in blue).

The nylon gear and pinion failure modes can be observed many
times during the gate motion, but the failed portion of the rack is visible
only one time per gate movement (see Fig. 22).

Useful measurements. The measurements that can be sensitive to the
faults consist in the motor output speed, input voltage and current. No
additional sensors can be added in production. However, for prototyp-
ing and validation purposes, a piezoelectric accelerometer is mounted
on the motor housing.

6.1.5. T1.5 Select the supervision approaches
The items which are the focus of the supervision solution are passive

components that rotates at constant speed for a considerable time, due
to how the movement of the gate is performed. However, they are
actuated by a motor, for which a model can be usually easily derived.

A model of a direct current motor, with voltage as input and axial
speed as output is usually easily affordable. Since also isolation of
faults is of interest, the combination of a model-based and signal-based
approach is envisaged.

Since additional sensors on items cannot be considered for the final
solution, motor measurements have to be used. For prototyping, the
analysis of vibrations collected in constant speed conditions can be
performed using standard spectrum and envelope analysis as pointed
out in Section 4.2.

6.2. (S2) Data collection

6.2.1. T2.1 Define the test plan
The experimental protocol is composed of four different test plans:

(i) tests with items in healthy condition; (ii) gear fault tests; (iii) pinion
fault tests; (iv) rack fault tests.

Each test plan consists in opening and closing gate movements,
interspersed with a break of 7 s, in order to not overheat the motor. The
motor is commanded in open-loop with trapezoidal voltage profiles,
that define acceleration, constant speed, and deceleration phases. The
rise and fall times of the acceleration and deceleration phases have
been set to 1 s (the minimum settable acceleration/deceleration time).
This choice is motivated by two ideas: (i) perform movements that are
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stressful for the system (to enhance the fault detectability); (ii) practical
use of the gates, where the fastest opening and closing movements (but
within laws regulations) are usually desirable.

Experimental conditions. One fault at a time is considered. All exper-
iments share the same gate, gate binary and environment.

Time required to perform the tests. The whole experimental protocol
requires an entire day to be performed.

Number of experimental sessions. The whole experimental protocol
is performed one time on two different EMAs, to evaluate the inner
variability on the healthy items.

6.2.2. T2.2 Acquire the measurements
The following measurements are collected:

1. motor speed 𝜔𝑀 (𝑡), measured by the motor encoder;
2. motor working phase 𝑝(𝑡), showing which working phase the mo-

tor is currently performing (acceleration phase, constant velocity
phase, deceleration phase);

3. motor current 𝑖(𝑡), flowing in the DC motor coils;
4. motor voltage 𝑉 (𝑡), powering the motor.

Additional sensors. An accelerometer is mounted on the motor hous-
ing.

Sampling frequency. The EMA hardware a custom electronic board
allows the acquisition with a sampling frequency of 𝑓𝑠 = 5 kHz. The
accelerometer is acquired by a National Instrument CDAQ with a IEPE
module able to supply and acquire the sensor at 12.8 kHz.

Synchronization of measurements. Since the accelerometer data are
collected from a different hardware than EMA measurements, a post-
acquisition synchronization of the data is necessary. A synchronization
signal is acquired by both hardware (custom board and CDAQ) to allow
the synchronization of both vibration and EMA measurements.

6.3. (S3) Technical development

6.3.1. T3.1 Choose the algorithmic technique
The overall supervision solution consists in:

1. an output-error model-based approach for residual generation
[25, Chapter 10], by comparing the motor axial speed with the
one simulated by the model of the motor;

2. the FFT of the envelope of the residual signal, considering the
constant speed phase of the EMA motion;

3. a Support Vector Machine (SVM) algorithm for the classification
of two descriptors computed from the FFT spectrum derived in
step 2.

Circumstances for the detection. The application of the envelope
spectrum analysis necessitates of data collected during constant speed
of the motor.

Residual generation. The motor model consists in a first-order dynam-
ical model with a delay. The starting values of the model parameters
are available from the datasheet of the motor. An identification phase
is performed to align the model to experimental data.

The residual 𝑟(𝑡) is computed by an output-error based scheme given
an input 𝑉 (𝑡), as

𝑟(𝑡) = 𝑣(𝑡) − 𝑣̂(𝑡), (1)

where 𝑣(𝑡) is the measured motor axial speed (computed from the
measure of 𝜔𝑀 (𝑡)), and 𝑣̂(𝑡) is the axial speed simulated by the motor
model.

Residual evaluation. Residual evaluation is performed to detect and
isolate the faults into the considered fault categories. Envelope analysis
is performed on the residual signal 𝑟(𝑡) in (1). The spectrum of the
envelope of the residual is looked for the fault frequency 𝑓fault that may
appear on the shaft that connects the nylon gear to the steel pinion
17

(which is then linked to the rack of the gate). p
Fig. 24. FFT spectrum of the residual envelope signal.

Table 10
Confusion matrix of the classifier trained on all the data.

Actual EMA state

Healthy Pinon + gear
faults

Rack
fault

Estimated
Healthy 130 1 2
Pinion +
gear faults

0 89 4

Rack fault 1 2 31

During the constant speed motion, the rotational motor speed is
known and it is about 𝜔𝑀 (𝑡) = 4100 rpm. The shaft rotational speed is
4100 rpm

44 ≈ 93 rpm, where 44 is the ratio reduction from motor to shaft
(i.e. the number of teeth of the nylon gear). Hence, the fault frequency
of the components that are coupled to the shaft is about 𝑓fault = 1.55Hz,
see Fig. 24.

Decision logic. Fault isolation is performed by first computing two
escriptors 𝐹1 and 𝐹2 from the FFT spectrum 𝜃(𝑡) of the envelope of
he residual signal 𝑟(𝑡):

1 =
3
∑

𝑘=1
𝜃(𝑘 ⋅ 𝑓fault); 𝐹2 =

3
∑

𝑘=1

𝑘⋅𝑓fault⋅1.05
∑

𝑗=𝑘⋅𝑓fault⋅0.95
𝜃(𝑗). (2)

he indicators in (2) extract the frequency amplitude at the first
hree harmonics of the fault frequency 𝑓fault and in the area in their
eighborhoods, respectively.

A linear SVM is then used to perform fault isolation. The SVM
lgorithm classifies the features in (2) into three classes: (i) health, (ii)
inion fault + nylon gear fault and (iii) rack fault. The nylon gear and
inion faults are difficult to isolate since these items are connected to
he same shaft, so their rotation frequency is the same. Thus, a single
‘fault class’’ has been considered for their isolation.

.3.2. T3.2 Present the experimental results internally
Fig. 25 depicts the 2D-plane composed by the 𝐹1 and 𝐹2 descriptors,

omputed from the first and the second tested EMA.
The classification boundaries show a good capability of isolating

he various kind of failed conditions with an accuracy of 96.15%. The
lassifier performance is then evaluated by 10-fold cross-validation on
ll the data, resulting in an average cross-validation accuracy of 86.18%
nd a classification variance of 0.33%.

Table 10 presents the confusion matrix of this classifier, using all the
ata. Vibration data collected by the additional accelerometer did not
rovide useful information for the FDI aim, due to the high vibrations
evel produced by the gate.

Table 11 shows a summary of the supervision results.

. Illustrative example: supervision of items from blow molding
quipments in bottling plant

The equipment consists in a blow molding machine for bottling
lant schematized in Fig. 26. The bottling process consists of eight
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.

Fig. 25. Descriptors plane and faults classification boundaries. The pinion and gear
faults overlaps and are not isolable using the developed solution. However, all faults
are detectable and the rack one also isolable.

Table 11
Mid-level results table for the actuator equipment. The combined model-based and
signal-based approach provides fault detection for all faults and isolation for the
rack fault. The processing of vibration measurements, collected by an additional
accelerometer placed at the motor housing, does not provide the detection of any fault

Item No add.
sensors

With add.
sensors

Voltage and Position Vibration

Fault
injection

Gear
Pinion

Rack

Fig. 26. Schematic of the blow molding bottling equipment. The steps of the produc-
tion process, from (1) to (8), are highlighted with respect to the components responsible
for each step. The focus of this example is on fault detection of the mold item.

steps [73]: (i) plastic preform feeding; (ii) heating of preforms; (iii)
blowing of preforms; (iv) bottles filling and capping; (v) labeling; (vi)
transportation along the production line; (vii) packaging and (viii)
palletizing.

The equipment consists in the following components:

• the rotating carousel, that supports one or more blowing stations;
• the stations, the main component for blowing the preforms. Each

station is made up of the following items:

– a mold, that defines the form of the blown bottle
– a rod, which is used to stretch the heated preform prior to

its blowing;
– the blowing system;

• the output and input gripping pliers. Their supervision is faced
in [73].

In the following, we focus on the station component of the blow
molding machine, responsible for shaping the plastic bottles when the
heated plastic preforms are blew and thus formed. This covers the step
18

3 of the bottling process.
Fig. 27. Detail of the mold item. An accelerometer is added to characterize the mold
movement. The fault injection regards the damper of the mold. In particular, we
manually reduced the stroke of the damper.

7.1. (S1) Definition of the supervision scope

7.1.1. T1.1 Supervision aims and needs
Design of a fault detection solution for the components of the

stations in the carousel of a blow molding machine.

7.1.2. T1.2 Define the technical specifications
The supervision solution can run on a dedicated electronic (e.g. an

edge device). It is possible to use additional sensors.

7.1.3. T1.3 Select the critical items
Considering the station component, the most critical faults and

failure modes are related to:

1. dust or iron chipboard on the rod;
2. loosened mold support;
3. loosened (reduced stroke) mold damper.

In the following, we focus on the mold damper item. The damper
has the aim to attenuate the forces that are generated when the mold
closes around the heated plastic preform, prior to preform blowing, see
Fig. 27.

7.1.4. T1.4 Collect the supervision information
Circumstances that lead to a fault or failure mode. The circumstances

of a loosened mold damper are due to extended usage of the compo-
nents.

Failure modes reproduction. Since the aim is fault detection, fault in-
jection has to be performed. The loosening of the damper has been per-
formed by manually reducing its maximum allowable stroke through
changing the nut position on the damper screw. The injected fault can
be observed every time the mold closes.

Useful measurements. The measurements that can be sensitive to
injected fault are the current of the mold motor and the mold piezo-
electric accelerometer that we added as in Fig. 27.

7.1.5. T1.5 Select the supervision approaches
The mold item is passive components that is subject to compres-

sion forces when the mold closes. Thus, signal-based or data-driven
approaches need to be used. Important variables might be the motor
quadrature current (proportional to the motor torque) and the mold

accelerometer.
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7.2. (S2) Data collection

7.2.1. T2.1 Define the test plan
The experimental protocol consists in tests with a healthy mold

damper and with mold damper with reduced stroke. We performed
experiments at 1800 revolutions per hour of the carousel, where each
test lasts about 3 min. We performed 10 tests in each healthy and
failed condition. Each station presents a brushless motor that actuates
each of its components (rod and mold). Motor-related measurements,
as the voltage, currents and positions of such motors, are available for
supervision purposes.

Experimental conditions. All experiments are performed at the same
otational speed and with the same type of fed plastic preforms.

Time required to perform the tests. The whole experimental protocol
requires 4 h to be completed.

Number of experimental sessions. The whole experimental protocol is
performed on two different stations (the experiments can be performed
with two failed stations simultaneously).

7.2.2. T2.2 Acquire the measurements
The following measurements are collected by the electronic of the

equipment: (i) current of the mold motor; (ii) position of the mold
motor.

Additional sensors. An accelerometer is mounted on the side of the
mold.

Sampling frequency. The equipment electronics allows the acquisi-
tion with a sampling frequency of 𝑓𝑠 = 1 kHz. The accelerometer is
acquired by a National Instrument CDAQ with a IEPE module able to
supply and acquire the sensor at 12.8 kHz.

Synchronization of measurements. Since the accelerometer data are
collected from a different hardware than the motor measurements, a
post-acquisition synchronization of the data is necessary. A synchro-
nization signal is acquired by both hardware (custom board and CDAQ)
to allow the synchronization of both vibration and EMA measurements.

7.3. (S3) Technical development

7.3.1. T3.1 Choose the algorithmic technique
From the experiments, it has been noticed that the quadrature

current that actuates the opening/closing of the mold is highly re-
peatable. Moreover, such current is sensitive to the loosening of the
mold damper, as it influences the torque of the mold motor especially
during closing and opening events. Thus, the supervision rationale is as
follows:

1. using the current data in healthy tests, compute an ‘‘average
signal’’ by averaging multiple current signals corresponding to
an opening/closing cycle of the mold;

2. compute a residual signal that is the difference between the
average and actual current signals;

3. compute the root-mean-square(RMS) value of the residual signal.

Fig. 28 depicts the torque of the mold motor (proportional to its
current), during a single closing/opening cycle, in a healthy and failed
condition. Differences in the magnitude of the residual signals are
noticeable.

Circumstances for the detection. From the experiments, it has been
noticed that the current of the mold motor is affected by the pressure
generated by the air blew in the preform. To avoid such disturbance,
the data for supervision should be collected without the blowing pro-
cess. Moreover, it is important that the equipment has been run for
several minutes, to wear-in its motors.

7.3.2. T3.2 Present the experimental results internally
Fig. 29 presents the experimental results, where a set of healthy tests

and a set of failed tests are plot together. For different samples of the
current (torque) profile, the RMS value of the residual signal is up to
19

five times greater in the failed condition that in the healthy one.
Fig. 28. Torque signals of the mold motor. (Top) mold in healthy conditions. (Bottom)
mold in failed conditions. The residual signal, computed as the difference between the
healthy and failed data, show increased magnitude in a failed condition.

Fig. 29. Detection results for the loosened damper of the mold. Tests in failed
conditions present higher values of the RMS of the residual signal.

8. Conclusions and outlook

The design of supervision solutions for industrial equipment re-
quires a broad knowledge and wide set of ‘‘hard’’ competences, ranging
from higher-level production and business skills to lower-level control
and signal processing ones, and ‘‘soft’’ skills needed to understand and
talk with the personnel. Thus, all these competences should be included
in the team that designs the supervision solution.

This article proposed an iterative process for the design of such
supervision solutions, comprising three main steps: ‘‘(S1) Definition
of the supervision scope’’, ‘‘(S2) Data collection’’, and ‘‘(S3) Technical
development’’. The most important points, which are the starting ones,
are the clarification of the aims and needs for supervision; technical
specifications for deployment and the definition of critical items. After
an equipment audit, the items to be supervised, with their faults and
failure modes, must be selected. This guides the types of experiments
to be performed and measurements to be acquired. As a consequence,
specific methodological approaches and algorithmic techniques can be

evaluated on collected data.
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Table A.12
Comparison of the steps in the design processes proposed in the literature.

Ref. 1. Cost–benefit
analysis

2. Critical items
Failure modes
Causes and
symptoms

3. Methodological
approach

4. Decision-making
5. Review

ISO
13372 [17]

Cost–benefit
analysis

Equipment audit

Reliability and
criticality audit

Maintenance strategy
Monitoring method
Data acquisition and
analysis

Maintenance actions

Review

Starr [1] Criticality survey

Maintenance
audit
Select units

Match technique
to failure mode
Routine monitoring

Assess technique
and cost

Niu et al. [15] Object
identification
Failure modes
Failure effects

Maintenance tasks and
interval
Cost analysis
Sensor module
Signal processing
Condition monitoring
Health assessment
Prognostics

Decision support
Presentation

Al-Najjar [10] Problem
areas

Significant
components
Damage causes
and development

Monitoring systems
Technical justification
Measuring system
Data gathering
Normal, warning and
replacement levels
Data analysis

Presentation of
result
Maintenance actions

Human resources
Technical and
economic impacts
Follow-up
Maintenance roles

Rastegari
et al. [14]

Concept study
Define
responsibilities

Assets
selection

Techniques and
technologies
Installation, Data handling
Training
Measurement and
setting baseline data
Data analysis

Evaluation
Improvement

López
et al. [12]

Preparatory task
and
implementation
plan

Asset hierarchy
RCM analysis

Signals and
detection methods
for critical
failure modes
Algorithms to support
decision-making

Transferring
results
Following the
efficiency
and effectiveness
of maintenance

Lee et al. [6] Critical
components
Sort, filtering,
prioritize data

Features, Tools, Hardware
Interface for DAQ
Connectivity

Information
visualization
Management tools
Value chain

This paper Supervision aims

and needs
Technical
specifications

Critical items
Supervision
information

Supervision approaches
Experimental test plan
Acquisition of
measurements
Algorithmic technique
Presentation results
Deployment, HMI
s

D

c
i

D

The advance in autonomous supervision solutions, for instance us-
ng artificial intelligence methods, must not disregard the understanding
f the physics of the items being monitored, that is always important
o improve the effectiveness of a supervision solution. This includes the
ynamic behavior of an item, its motion laws inside the equipment, and
he loads it is subject to. To further support this statement, and in line
ith the industry 5.0 idea, the human operator can play a determinant

ole in the supervision of its equipment.
Computational and causal methods, able to take into account also

uman knowledge in the form of a causal graph, will be of utmost
mportance for rapid supervision of abnormal states. Future research
hallenges could be in this direction.
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Appendix. Comparison of design approaches

Table A.12 compares the steps of the design processes proposed in
the literature for the design of supervision solutions. The grouping of
the steps in five macro-steps has been performed to systematize the
comparison.
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