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Abstract In this paper we continue the investigation of the
connection between Casimir energy and the traversability
of a wormhole. In addition to the negative energy density
obtained by a Casimir device, we include the effect of an
electromagnetic field generated by an electric charge. This
combination defines an electrovacuum source which has an
extra parameter related to the size of the throat. Even if the
electromagnetic energy density is positive, the null energy
condition is still violated. The main reason is that the elec-
tromagnetic field satisfies the property ρ = −pr . As a con-
sequence, the traversable wormhole throat can be changed as
a function of the electric charge. This means that the throat
is no longer Planckian and the traversability is slightly less
in principle but slightly greater in practice.

1 Introduction

Casimir wormholes are traversable wormholes (TW) obtained
by solving the semiclassical Einstein field equations (EFE)

Gμν = κ
〈
Tμν

〉Ren
κ = 8πG

c4 (1)

with a source of the form

ρC (d) = − h̄cπ2

720d4 , (2)

P (d) = F (d)

S
= −3

h̄cπ2

720d4 , (3)

representing the energy density and the pressure, respec-
tively; d is the plate separation [1], and

〈
Tμν

〉Ren describes
the renormalized stress–energy tensor of some matter fields,
which in this specific case is obtained by the zero-point
energy (ZPE) contribution of the electromagnetic field. The
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two key ingredients useful for forming a Casimir wormhole
are in the relationship P (d) /ρC (d) = 3. This number is the
cornerstone of a Casimir wormhole. In addition, the plate
separation d has been promoted to be the radial coordinate r
considered as a variable. For this reason the pressure P (d)

will be interpreted as a radial pressure pr (r). To build a
Casimir wormhole we need to introduce the following space-
time metric

ds2 = −e2�(r) dt2 + dr2

1 − b(r)/r
+ r2d�2, (4)

where d�2 = dθ2 + sin2 θdφ2 is the line element of the
unit sphere, and �(r) and b(r) are two arbitrary functions of
the radial coordinate r ∈ [r0,+∞), denoted as the redshift
function and the shape function, respectively [2–4]. With the
help of the metric (4), the EFE, written in an orthonormal
frame, are

b′ (r)
r2 = κρ (r) , (5)

2

r

(
1 − b (r)

r

)
�′(r) − b (r)

r3 = κpr (r) (6)

and

{(
1 − b (r)

r

)[
�′′(r) + �′(r)

(
�′(r) + 1

r

)]

−b′ (r) r − b (r)

2r2

(
�′(r) + 1

r

)}
= κpt (r), (7)

where ρ (r) is the energy density,1 pr (r) is the radial pres-
sure, and pt (r) is the lateral pressure. The line element (4)
represents a spherically symmetric and static wormhole, and
r0 is the location of the throat. We can complete the EFE with

1 However, if ρ (r) represents the mass density, then we have to replace
ρ (r) with ρ (r) c2
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the expression of the conservation of the stress–energy ten-
sor which can be written in the same orthonormal reference
frame

p′
r (r) = 2

r
(pt (r) − pr (r)) − (ρ (r) + pr (r))�′(r). (8)

If we assume that an equation of state (EoS) pr (r) = ωρC (r)
is imposed, then we find the following solution to the semi-
classical EFE

�(r) = 1

2
(ω − 1) ln

(
rω

(ωr + r0)

)
(9)

b(r) =
(

1 − 1

ω

)
r0 + r2

0

ωr
, (10)

where we have used the energy density ρC (r) of Eq. (2) and
the radial pressure pr (r) described by Eq. (3) as a source,
with d replaced by r . A fundamental property of a wormhole
is that a flaring out condition of the throat, given by (b −
b′r)/b2 > 0, must be satisfied as well as the condition that
1 − b(r)/r > 0. Furthermore, at the throat, b(r0) = r0

and the condition b′(r0) < 1 is imposed to have wormhole
solutions. It is also fundamental that there are no horizons
present, which are identified as the surfaces with e2�(r) → 0,
so that �(r) must be finite everywhere. The procedure used
to obtain a Casimir wormhole can be extended to include the
electromagnetic field as an additional source. The key point is
in the following observation: the algebraic structure of stress–
energy tensors for electromagnetic fields is determined by
[5,6]

T 0
0 = T 1

1 (11)

which means

ρ = −pr . (12)

As a warm-up exercise we can consider a pure spherically
symmetric electromagnetic field without the contribution of
the Casimir energy, to see whether it is possible to build a
TW even if the energy density is positive. The stress–energy
tensor (SET) we will consider is generated by a spherically
symmetric electromagnetic field, namely

Er = E1 (r) = cF01 = −cF10. (13)

All other components are zero, since there are no currents
or magnetic monopoles. This means that the electric field
can only have a radial component. Also, this radial compo-
nent cannot depend on θ or φ. With these assumptions, in an
orthonormal frame, we can write

T EM
μν = 1

μ0

(
gναFμγ F

αγ − 1

4
gμνFαβF

αβ

)

= Q2

2 (4π)2 ε0r4
diag(1,−1, 1, 1), (14)

which is conserved and traceless. From the energy density
ρ of the SET, it is possible to obtain the following shape
function

b (r) = r0 + r2
2

r0
− r2

2

r
; r2

2 = GQ2

4πc4ε0
, (15)

which has the correct properties. Indeed,

b′ (r0) = r2
2

r2
0

< 1 �⇒ r2 < r0 (16)

and

1 − b(r)

r
= (r − r0)

(
rr0 − r2

2

)

r0r
> 0 if r > r0; r >

r2
2

r0

(17)

b − b′r
b2 = r0r2

(
r2

0 + r2
2

)

(
r2

0r + r2
2r − r2

2r0
)2 > 0. (18)

Equation (6), together with the shape function (15), allows
the computation of the redshift function

�(r) = 1

2
ln

(
(r − r0)

(
rr0 − r2

2

)

r2

)

+ C, (19)

where C is an integration constant.2 As expected, we cannot
adopt the strategy of Ref. [1] because the ln (r − r0) never
disappears for any choice of r0, even if property (12) is sat-
isfied. One could insist by imposing an inhomogeneous EoS
of the form

ω (r) = − b (r)

rb′ (r)
= r0r2

2 − (r2
0 + r2

2

)
r

r2
2r0

(22)

making it possible to fix �(r) = 0. Nevertheless, Eq. (22)
must be compatible with

ω (r) = pr (r)

ρ (r)
= −1. (23)

This leads to

ω (r0) = −1 (24)

which is incompatible with the flare-out condition (16),
because one gets

r0 = r2. (25)

2 Actually, because of the property (12), from Eq. (6) one can write

2

r

(
1 − b (r)

r

)
�′(r) − b (r)

r3 + b′ (r)
r2 = 0 (20)

which has the following solution

�(r) = 1

2
ln

(
1 − b (r)

r

)
+ C, (21)

which is a signature of a black hole.
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This means that a pure electromagnetic field cannot support
a TW even if ρ + pr = 0. It is necessary to have ρ + pr < 0.
For this reason, we are led to consider the superposition of the
Casimir source with the electromagnetic field. Such a combi-
nation could potentially produce a different result thanks to
the property (12) which defines an electrovacuum source.
Note that such an electrovacuum source was investigated
earlier in Ref. [7] even in the context of generalized uncer-
tainty principle (GUP) distortions. Note also that the idea of
including an electric charge or an electromagnetic field in
a TW configuration is not new. Indeed, this was first pro-
posed by Kim and Lee [8], who considered a combination of
the Morris–Thorne wormhole and the Reissner–Nordström
spacetime. Balakin et al. discussed a nonminimal Einstein–
Maxwell model [9]. Kuhfittig [10] considered a modification
of the Kim and Lee charged wormhole to enable compatibil-
ity with the quantum inequality of Ford and Roman [11]. The
purpose of this paper is to repeat the procedure which led to
the original Casimir wormhole spacetime to see whether it
is possible to obtain new EFE solutions with an additional
electric field. The rest of the paper is structured as follows. In
Sect. 2 we continue the investigation to determine whether
the Casimir energy density with an additional electric charge
can be considered as a source for a traversable wormhole.
In Sect. 3 we examine the features of the Casimir wormhole
with the additional electric charge, and in Sect. 4 we con-
sider the Casimir energy and the additional electric charge
with the plate separation regarded as a parameter instead of
a variable. We summarize and conclude in Sect. 5.

2 The Casimir traversable wormhole with an additional
electric charge

In this section we assume that our exotic matter will be rep-
resented by the Casimir energy density (2). Following Ref.
[1], we promote the constant plate separation d to a radial
coordinate r . In addition to the Casimir source we include the
contribution of an electric field generated by a point charge.
Since it is the null energy condition (NEC) that must be vio-
lated, the inequality ρ (r) + pr (r) < 0 must hold. We want
to point out to the reader that, thanks to the property (12), we
can write

ρ (r) + pr (r) = ρC (r) + pr,C (r) + ρE (r) + pr,E (r)

= −4h̄cπ2

720r4 < 0, (26)

where

ρC (r) = − h̄cπ2

720r4 ; pr,C (r) = −3h̄cπ2

720r4 ;

ρE (r) = Q2

2 (4π)2 ε0r4
; pr,E (r) = − Q2

2 (4π)2 ε0r4
. (27)

In this context, the total energy density is represented by

ρ (r) = ρC (r) + ρE (r)

= − h̄cπ2

720r4 + Q2

2 (4π)2 ε0r4
= − r2

1

κr4 + r2
2

κr4 , (28)

where

r2
1 = π3l2p

90
, (29)

r2
2 = GQ2

4πc4ε0
. (30)

Thus

ρ (r) < 0
ρ (r) = 0
ρ (r) > 0

when
r1 > r2

r1 = r2

r1 < r2

. (31)

The shape function b (r) can be obtained plugging ρ (r) of
Eq. (28) into Eq. (5), whose solution leads to

b (r) = r0 +
(
r2

2 − r2
1

) ∫ r

r0

dr ′

r ′2

= r0 − r2
1 − r2

2

r0
+ r2

1 − r2
2

r
, (32)

where the throat condition b(r0) = r0 has been imposed. The
redshift function can be obtained by solving Eq. (6) with the
help of the shape function (32). One finds

2

r

(

1 − r0

r
+ r2

1 − r2
2

r0r
− r2

1 − r2
2

r2

)

�′(r)

− r0

r3 + r2
1 − r2

2

r0r3 − (1 − ω)
r2

1 − r2
2

r4 = 0, (33)

where we have used an EoS of the form pr (r) = ωρ (r). The
solution can be written as

�(r) =
(
r2

0 − ω
(
r2

1 − r2
2

)

2
(
r2

0 + r2
1 − r2

2

)

)

ln(r − r0)

−
(

ωr2
0 − r2

1 + r2
2

2
(
r2

0 + r2
1 − r2

2

)

)

ln
(
rr0 + r2

1 − r2
2

)

+ω − 1

2
ln(r) + C. (34)

If Q = 0, one recovers the familiar form of the Casimir
wormhole redshift function. It is possible to eliminate the
horizon if we constrain ω to be

ω = ω0 = r2
0

r2
1 − r2

2

(35)

and the redshift function (34) becomes

�(r) = −
(

ω − 1

2

)
ln

(
ωrr0 + r2

0

ωr

)

+ C. (36)
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By assuming that �(r) → 0 for r → ∞, then we find

�(r) = ω − 1

2
ln

(
ωr

ωr + r0

)
, (37)

which is formally the same as the result of Ref. [1]. The shape
function (32) can be rearranged to obtain the familiar form
of the Casimir wormhole [1]

b(r) = r0 − r2
1 − r2

2

r0
+ r2

1 − r2
2

r
= r0

(
1 − 1

ω

)
+ r2

0

ωr
.

(38)

On the other hand, since the ratio in Eq. (35) is not con-
strained, we can use the ratio pr (r) /ρ (r) to extract infor-
mation about the size of the throat. It can immediately be
seen that for

ω = pr (r)

ρ (r)
= 3r2

1 + r2
2

r2
1 − r2

2

; r1 �= r2, (39)

the EoS is satisfied and is not dependent on r . Plugging the
value of ω in Eq. (39) into Eq. (35), one finds

r0 =
√

3r2
1 + r2

2 . (40)

Note that r2 can be variable, while r1 cannot. It is conve-
nient to take r1 as a reference scale. Thus, if we introduce a
dimensionless variable

x = r2

r1
=
√

90GQ2

4πc4ε0π3l2p

=
√

90

π3 n
2 e2

4πε0h̄c
= 3n

π

√
10

π
α, (41)

one finds

ω = 3 + x2

1 − x2 ; r0 = r1

√
3 + x2; x �= 1, (42)

where Q = ne, e is the electron charge, α is the fine structure
constant, and n is the total number of electron charges. Note
that for

Q → 0, r2 → 0 �⇒ x → 0, (43)

one recovers the shape function of Ref. [1] with ω = 3. On
the other hand, when

Q → ∞, r2 → ∞ �⇒ x → ∞ (44)

and ω → −1. In conclusion, we can write

ω ∈ (3,+∞) ; x ∈ (0, 1−) (45)

ω ∈ (−∞,−1) ; x ∈ (1+,+∞) . (46)

A comment on the limit (44) is in order. Indeed, when ω →
−1, the shape function assumes the form

b (r) = 2r0 − r2
0

r
(47)

and the redshift function is

�(r) = ln

(
r − r0

r

)
(48)

no longer representing a TW, but a black hole. However,
ω → −1 is a limiting value which will never be reached.
This means that Q can be arbitrarily large but finite. Note that
in this range, ω < −1. This means that the pure electromag-
netic field, in this context, acts as a phantom energy source.
For completeness, we report the expression of the transverse
pressure which, in terms of ω, is identical to pt (r) of Ref.
[1]. One finds

pt (r) = r2
0

κωr4

[

ω + r0
(
1 − ω2

)

4ω (ω r + r0)

]

= ωt (r)

(
r2

0

κω r4

)

= ωt (r) ρ(r), (49)

where we have introduced an inhomogeneous EoS on the
transverse pressure with

ωt (r) = −
(

ω + r0
(
1 − ω2

)

4ω (ω r + r0)

)

, (50)

and the final form of the SET is

Tμν = r2
0

κω r4

[
diag (−1,−ω,ωt (r) , ωt (r))

]
. (51)

The conservation of the SET is satisfied but a comparison
with the SET source shows that

Tμν = T Source
μν − 1

κr4

[
diag (0, 0, ωt (r)

−
(
r2

1 + r2
2

)
, ωt (r) −

(
r2

1 + r2
2

)) ]
, (52)

namely a discrepancy in the transverse pressure with respect
to the SET source is present. We recall that the SET source
is defined by

T Source
μν = T Casimir

μν + T EM
μν = 1

κr4

[
diag

(
−r2

1 + r2
2 ,

−
(

3r2
1 + r2

2

)
, r2

1 + r2
2 , r2

1 + r2
2

)]
. (53)

It is important to note that there exists another interesting
value for ω, namely when ω = 1. For this special choice,
one finds that the line element reduces to the Ellis–Bronnikov
(EB) wormhole [12,13], that is,

ds2 = − dt2 + dr2

1 − r2
0
r2

+ r2 d�2 (54)

whose associated SET is

T EB
μν = r2

1 − r2
2

κr4

[
diag (−1,−1, 1, 1)

]
. (55)

Nevertheless, ω = 1 is incompatible with the relationship
(39), and therefore this option will be discarded.
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2.1 Special case r2
1 = r2

2

In the special case

r2
1 = r2

2 = r2
e , (56)

we find that the energy density vanishes. Therefore, the
wormhole shape function is

b (r) = r0. (57)

On the other hand, the redshift function appears to be non-
trivial. Indeed, from the EFE (6), we find

2

r

(
1 − r0

r

)
�′(r) − r0

r3 + 4r2
e

r4 = 0 (58)

which can be rearranged to give

�′(r) = r0r − 4r2
e

2 (r − r0) r2 . (59)

The solution is

�(r) = − ln(r)

2
+ 2 ln(r) r2

e

r2
0

−2r2
e

r0r
+ ln(r − r0)

2

(

1 − 4r2
e

r2
0

)

+ C. (60)

It can immediately be seen that for

r0 = 2re (61)

the horizon disappears and

�(r) = − r0

2r
, (62)

where we have assumed that �(r) → 0 for r → ∞. There-
fore, in this special case we still have a TW with the following
line element

ds2 = − exp
(
−r0

r

)
dt2 + dr2

1 − r0/r
+ r2d�2, (63)

which is traversable in principle but not in practice, because
the throat is Planckian. To complete this special case, we
compute the transverse pressure and we find

{
r2

0

r4 − r3
0

4r5

}
= κpt (r). (64)

Note that for this special case, we cannot impose an EoS of
the form pr (r) = ωρ (r) because ρ (r) is vanishing. In the
next section, we will explore some of the features of the TW
obtained by the Casimir source and the electromagnetic field.

3 Properties of the Casimir wormhole with an
additional electromagnetic field

In Sect. 2, we introduced the shape function (32) or (38)
obtained by the Casimir energy plus the electromagnetic
field. Here we want to discuss some of its properties. The
first quantity we will analyze is the proper radial distance,
defined by

l (r) = ±
∫ r

r0

dr ′
√

1 − b(r ′)
r ′

. (65)

In this specific case, plugging Eq. (38) into Eq. (65), one gets

l (r) = ±
∫ r

r0

dr ′
√

1 − r0
r ′
(
1 − 1

ω

)− r2
0

ωr ′2

= ±
(√

r − r0
√

ωr + r0√
ω

+r0
ω − 1

2ω
ln

(
r0 + (2r − r0) ω + 2

√
r − r0

√
ωr + r0

√
ω

(ω + 1) r0

))
.

(66)

We find

l (r) 

±
(
r + r0(ω−1)

2ω

(
ln
(

4ωr
r0(ω+1)

)
− 1
)

+ O
( 1
r

))
r → ∞

±2
√

r0ω
ω+1 (r − r0) + O

(
(r − r0)

3
2

)
r → r0

,

(67)

where the ± depends on the wormhole side we are on. The
proper radial distance is an essential tool to estimate the pos-
sible time trip in going from one station located in the lower
universe, say at l = −l1, and ending up in the upper universe
station, say at l = l2. Following Ref. [2], we shall locate
l1 and l2 at a value of the radius such that l1 
 l2 
 104r0,
which means that 1−b (r) /r 
 1. Assuming that the traveler
has a radial velocity v (r) as measured by a static observer
positioned at r , one may relate the proper distance traveled
dl, radius traveled dr , coordinate time elapsed dt , and proper
time elapsed as measured by the observer dτ , by the follow-
ing relationships

v = e−�(r) dl

dt

= e−�(r)
(

1 − b (r)

r

)− 1
2 dr

dt
(68)

and

vγ = dl

dτ
= ∓

(
1 − b (r)

r

)− 1
2 dr

dτ
;

γ =
(

1 − v2 (r)

c2

)− 1
2

(69)
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respectively. If the traveler travels at constant speed v, then
the total time is given by

�t =
∫ r

r0

e−�(r ′)dr ′

v

√
1 − b(r ′)

r ′

= ω1− ω
2

∫ r

r0

r
′ 3

2 − ω
2
(
ωr ′ + r0

)−1+ ω
2

v
√
r ′ − r0

dr ′ (70)

while the proper total time is

�τ =
∫ r

r0

dr ′

v

√
1 − b(r ′)

r ′

=
√
r − r0

√
ωr + r0

v
√

ω

+r0
ω − 1

2ω
ln

(
r0 + (2r − r0) ω + 2

√
r − r0

√
ωr + r0

√
ω

(ω + 1) r0

)
.

(71)

To evaluate �t we can proceed with the following approxi-
mations. Close to the throat, one finds

�t 
 ω1− ω
2

∫ r

r0

r
′ 3

2 − ω
2
(
ωr ′ + r0

)−1+ ω
2

v
√
r ′ − r0

dr ′


 2
√
r0

v

(
ω

ω + 1

)1− ω
2 √

r − r0 (72)

and, in this range, �t 
 �τ except for the value ω = −1,
where the TW turns into a black hole. On the other hand,
when r → ∞, one finds

�t 

∫ r

r0

r
′ 1

2

v
√
r ′ − r0

dr ′ 
 r0

v

×
(

1 − 1

ω

)
ln

(
r

r0

)
+ r

v
(73)

and even with this approximation, the leading term is the
same of �τ . On the same grounds, we can compute the
embedded surface, which is defined by

z (r) = ±
∫ r

r0

dr ′
√

r ′
b(r ′) − 1

(74)

and in the present case we find

z (r) = ±
∫ r

r0

√
r0

√
(ω − 1) r ′ + r0√

ωr ′ + r0
√
r ′ − r0

dr ′

±2r0

ω2

(
F

(√
r − r0

√
ω√

ωr + r0
,

1

ω

)

+�

(√
r − r0

√
ω√

ωr + r0
, 1,

1

ω

)(
ω2 − 1

))
, (75)

where F (ϕ, k) is the elliptic integral of the first kind and
�(ϕ, n, k) is the elliptic integral of the third kind. Close to

the throat, one can write

z (r) 
 ±2
√
r0

√
ω

1 + ω

√
r − r0. (76)

It is interesting to note the singularity appearing when ω =
−1, showing the presence of a black hole. To further investi-
gate the properties of the shape function (38), we consider the
computation of the total gravitational energy for a wormhole
[14], defined as

EG (r) =
∫ r

r0

[

1 −
√

1

1 − b (r ′) /r ′

]

ρ
(
r ′) dr ′r ′2

+ r0

2G
=
(
M − MP±

)
c2, (77)

where M is the total mass M and MP is the proper mass,
respectively. Even in this case, the ± depends on the worm-
hole side we are on. In particular,

M =
∫ r

r0

4π

c2 ρ
(
r ′) r ′2dr ′ + r0

2Gc2

= c2

2G

(

r0

(
1 − 1

ω

)
+ r2

0

ωr
− r0

)

+ r0c2

2G

= c2

2G

(

−r0

ω
+ r2

0

ωr

)

+ r0

2Gc2 

r→∞ − r0c2

2Gω
+ r0c2

2G
= r0c2

2G

(
1 − 1

ω

)

(78)

and

MP± = ±4π

c2

∫ r

r0

ρ
(
r ′) r ′2

√
1 − b (r ′) /r ′ dr

′

= ± c2

2G

∫ r

r0

b′ (r ′)
√

1 − b (r ′) /r ′ dr
′

∓ r0c2

4G
√

ω

(
π − 2 arctan

(
rω − r + 2r0

2
√
rω + r0

√
r − r0

))



r→∞ ∓ r0c2

4G
√

ω

(
π − 2 arctan

(
ω − 1

2
√

ω

))
. (79)

Thus, at infinity one finds

EG (r) 

r→∞

r0c2

2G

[(
1 − 1

ω

)
∓ 1

2
√

ω

(
π − 2 arctan

(
ω − 1

2
√

ω

))]
.

(80)

An important traversability condition is that the acceleration
felt by the traveler should not exceed Earth’s gravity g⊕ 

980 cm/s2. In an orthonormal basis of the traveler’s proper
reference frame, we can find

|a| =
∣∣∣∣∣

√

1 − b (r)

r
e−�(r)

(
γ e�(r)

)′
∣∣∣∣∣
≤ g⊕

c2 . (81)
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If we assume a constant speed and γ 
 1, then we can write

|a| =
∣∣∣∣∣∣

√

1 − r0

r

(
1 − 1

ω

)
− r2

0

ωr2

(ω − 1) r0

2r (ωr + r0)

∣∣∣∣∣∣
≤ g⊕

c2 .

(82)

We can see that in the proximity of the throat, the traveler
has a vanishing acceleration. Always following Ref. [2], we
can estimate the tidal forces by imposing an upper bound
represented by g⊕. The radial tidal constraint

∣∣∣∣

(
1 − b (r)

r

) [
�′′ (r)

+ (�′ (r)
)2 − b′ (r) r − b (r)

2r (r − b (r))
�′ (r)

]∣∣∣∣

×c2
∣∣∣η1̂′ ∣∣∣ ≤ g⊕, (83)

constrains the redshift function, and the lateral tidal con-
straint

∣∣∣∣
γ 2c2

2r2

[
v2 (r)

c2

(
b′ (r)

−b (r)

r

)
+ 2r (r − b (r))�′ (r)

]∣∣∣∣

×
∣∣∣η2̂′ ∣∣∣ ≤ g⊕, (84)

constrains the velocity with which the observers traverse the

wormhole. η1̂′
and η2̂′

represent the size of the traveler. In
Ref. [2], they are fixed approximately equal, at the symbolic
value of 2 m. Close to the throat, the radial tidal constraint
(83) becomes

∣∣∣∣

[
b (r) − b′ (r) r

2r2 �′ (r)
]∣∣∣∣

= ((ω − 1) r + 2r0) r2
0 (ω − 1)

4ω (ωr + r0) r4 r→r0

= 1

6r2
0

≤ g⊕
c2
∣∣∣η1̂′
∣∣∣

�⇒ 108m � r0. (85)

For the lateral tidal constraint, we find

v2r0

2r4

∣∣∣∣
r (ω − 1) + 2r0

ω

∣∣∣∣
∣∣∣η2̂′ ∣∣∣ � g⊕ �⇒

v � r0

√∣∣∣∣
ω

ω + 1

∣∣∣∣ g⊕ �⇒ v � 3.13r0

√∣∣∣∣
ω

ω + 1

∣∣∣∣ m/s.

(86)

If the observer has a vanishing v, then the tidal forces are null.
We can use these last estimates to complete the evaluation of
the crossing time, which is approximately

�t 
 �l

3.13r0

√∣∣∣ ω
ω+1

∣∣∣

×
(

ω

ω + 1

)− ω
2 
 6.4 × 103

(∣∣∣∣
ω

ω + 1

∣∣∣∣

)− 1
2
(

ω

ω + 1

)− ω
2

s,

(87)

in agreement with the estimates found in Ref. [2], even for
ω → ±∞. The last property we will discuss is the “total
amount” of averaged NEC (ANEC)-violating matter in the
spacetime [15], which is described by

IV =
∫

[ρ(r) + pr (r)]dV (88)

and for the line element (4), one can write

IV = 1

κ

∫
(r − b (r))

×
[

ln

(
e2�(r)

1 − b(r)
r

)]′
dr, (89)

where the measure dV has been changed into r2dr . For the
metric (38), one obtains

IV = − 1

κ

∫ ∞

r0

(ω + 1) r2
0

ωr2 dr = − (ω + 1) r0

ωκ
. (90)

Even in this case, IV is finite everywhere. The reason is that
the structure of the shape function and of the redshift function
are equal to the pure Casimir wormhole [1]. Therefore, we
can conclude that in the proximity of the throat, the ANEC
can be arbitrarily small.

3.1 Properties of the Casimir wormhole with an additional
electromagnetic field for the special case r2

1 = r2
2

In Sect. 2.1, we considered the special case in which the neg-
ative Casimir energy is compensated by the positive electro-
magnetic field with the assumption that r2

1 = r2
2 . We want to

discuss some of its properties, even if the size of this TW is
Planckian. Repeating the same steps of Sect. 3, we find that
the proper radial distance is

l (r) = ±
∫ r

r0

dr ′
√

1 − r0
r ′

= ± (√r − r0
√
r

+r0

2
ln

(

1 + 2

√
r − r0

(√
r + √

r − r0
)

r0

))

(91)
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and its asymptotic behavior becomes

l (r) 

±
(
r + r0

2

(
ln
(

4r
r0

)
− 1
)

+ O
(

1
r2

))
r → ∞

±2
√
r0 (r − r0) + O

(
(r − r0)

3
2

)
r → r0

, (92)

where the ± depends on the wormhole side we are on. From
Eqs. (68) and (69), we can compute the total time �t and the
proper total time �τ , respectively. The total time is

�t =
∫ r

r0

√
r ′ exp

(− r0
2r ′
)

v
√
r ′ − r0

dr ′ (93)

and it is bounded by the following inequality chain

1

v
√
e

∫ r

r0

√
r ′

√
r ′ − r0

dr ′ ≤ �t ≤ 1

v

∫ r

r0

√
r ′

√
r ′ − r0

dr ′. (94)

On the other hand, the proper total time is simply

�τ = �l

v
. (95)

On the same grounds, we can compute the embedded surface,
which is defined by

z (r) = ±
∫ r

r0

dr ′
√

r ′
b(r ′) − 1

= ±2
√
r0

√
r − r0 (96)

Note that in this special case, the total gravitational energy
for a wormhole [14] is vanishing. As regards the acceleration
felt by the traveler, the relationship (81) becomes

|a| =
∣∣∣∣

√
1 − r0

r

r0

2r2

∣∣∣∣ ≤
g⊕
c2 , (97)

where we have assumed a constant speed and γ 
 1. Even
in this case, in the proximity of the throat, the traveler has
a vanishing acceleration. On the other hand, the radial tidal
constraint (83) and the lateral tidal constraint (84) become
respectively on the throat

r2
0

4r4 =
r→r0

1

4r2
0

≤ g⊕
c2
∣∣∣η1̂′
∣∣∣

108m

2g⊕
≤ r0 �⇒ 108m � r0 (98)

and

v2

2r2

∣∣∣−r0

r

∣∣∣
∣∣∣η2̂′ ∣∣∣ � g⊕ �⇒

v � r0
√

2g⊕ �⇒ v � 4.43r0 m/s, (99)

where we have assumed that the size of the traveler, described
by η1̂′

and η2̂′
, is fixed at the symbolic value of 2 m. If the

observer has a vanishing v, then the tidal forces are null. We
can use these last estimates to complete the evaluation of the
crossing time, which is approximately

�t 
 �l

4.43r0

 4.5 × 103s, (100)

where we have assumed that �l 
 2 × 104r0 as in Sect. 3. It
is important to observe that since r0 has a Planckian value,

then one finds
∣∣∣η1̂′ ∣∣∣ � 2.1×10−43 m. This means that with a

Planckian wormhole, nothing can traverse it. The last prop-
erty we will discuss is the “total amount” of ANEC-violating
matter in the spacetime [15], which is described by Eq. (89),
and for the present case, one finds

IV = 1

κ

∫
(r − r0)

[
ln

(
e−r0/r

1 − r0
r

)]′
dr

= − 1

κ

∫ ∞

r0

r2
0

r2 dr = −r0

κ
, (101)

Even in this case, IV is finite everywhere, and this corre-
sponds to taking the limit ω → ∞ in Eq. (90).

4 The Casimir traversable wormhole with an additional
electric charge: the constant plate separation case

In this section we consider the following setting for the
energy density and radial pressure

ρC (d) = − h̄cπ2

720d4 ;

pr,C (d) = −3h̄cπ2

720d4 ; ρE (r) = Q2

2 (4π)2 ε0r4
;

pr,E (r) = − Q2

2 (4π)2 ε0r4
, (102)

namely that our exotic matter will be represented by the
Casimir energy density (2) and only the electric field is vari-
able, with a radial coordinate r . Of course, even in this case
we find that the NEC is violated, namely

ρ (r) + pr (r) = ρC (d) + pr,C (d) + ρE (r)

+pr,E (r) = −4h̄cπ2

720d4 < 0. (103)

The total energy density is represented by

ρ (r) = ρC (d) + ρE (r)

= − h̄cπ2

720d4 + Q2

2 (4π)2 ε0r4
. (104)

It is interesting to observe that, in contrast to Eq. (28), the
energy density (104) vanishes when

r = r̄ = d

√
r2

r1
= d

√
n

π

4
√

90πα, (105)

where Q = ne, e is the electron charge, α is the fine structure
constant, and n is the total number of the electron charges.
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In particular, we find that

ρ (r) � 0, when

⎧
⎨

⎩

r0 ≤ r < r̄
r = r̄
r > r̄

. (106)

The shape function b (r) can be obtained by plugging ρ (r)
(28) into Eq. (5), whose solution leads to

b (r) = r0 + GQ2

2πc4ε0

∫ r

r0

dr ′

r ′2

− π3

90d4

(
h̄G

c3

)∫ r

r0

r ′2dr ′

= r0 + r2
2

r0
− r2

2

r
− r2

1

3d4

(
r3 − r3

0

)
, (107)

where r1 and r2 have the same meaning as in the previous
section. We know that the shape function (107) does not rep-
resent a TW because it is not asymptotically flat. Moreover,
for large r , b (r) becomes negative. This means that there
exists r̃ such that b (r̃) = 0. However, instead of discarding
b (r) of Eq. (107), we can try to establish whether there is a
way to obtain a TW from Eq. (107). One important property
is the flare-out condition described by

b′ (r0) < 1 ⇐⇒ r2
2d

4 − r4
0r

2
1

r2
0d

4
< 1, (108)

which is satisfied when

r0 >

√
2d

2r1

√

−d2 +
√
d4 + 4r2

1r
2
2 . (109)

Another property that has to be satisfied is the absence of a
horizon for the redshift function. From Eqs. (6) and (107)
one finds

�′(r) =
(
3d4r2

0 + 3d4r2
2 + r4

0 r
2
1

)
r − 6r2

2 r0 d4 − 10r4r2
1 r0

2r0r2
1 r

5+6d4r0r3+(−6d4r2
0 −6d4r2

2 −2r4
0 r

2
1

)
r2+6d4r0r2

2 r
.

(110)

Close to the throat, the r.h.s. can be approximated by

�′(r) =
(
3d4r2

0 + 3d4r2
2 + r4

0 r
2
1

)
r0 − 6r2

2 r0d4 − 10r5
0 r

2
1

10r5
0 r

2
1 +18d4r3

0 +2
(−6d4r2

0 −6d4r2
2 −2r4

0 r
2
1

)
r0+6r2

2 r0d4

(r − r0)
−1+O(1) . (111)

It can be clearly seen that a horizon will be present unless we
impose the condition that

(
3d4r2

0 + 3d4r2
2 + r4

0r
2
1

)
r0 − 6r2

2r0d
4 − 10r5

0r
2
1 = 0.

(112)

We have four solutions, but only two are real. They are rep-
resented by

r0 =
√

6

√

d2 ±
√
d4 − 12r2

1r
2
2 d

6r1
. (113)

The first one is

r0 =
√

6d

6r1

√

d2 +
√
d4 − 12r2

1r
2
2 


d�r1

√
3d2

3r1
+ O

(
1

d2

)
,

(114)

which is independent of r2 and therefore of the electric field.
The result has a dependence on d similar to the one obtained
in Refs. [16,17]. The other interesting solution is

r0 =
√

6d

6r1

√

d2 −
√
d4 − 12r2

1r
2
2 


d�r1
r2 + O

(
1

d4

)
,

(115)

which is independent of the plate separation but is depen-
dent on the electric field. However, the two solutions can be
merged into one if

d = 4
√

3
√

2r1r2. (116)

It is straightforward to verify that

√
6

√

d2 ±
√
d4 − 12r2

1 r
2
2 d

6r1
>

√
2d

2r1

√

−d2 +
√
d4 + 4r2

1 r
2
2

(117)

even when the condition (116) is used. This means that the
throat location is compatible with the flare-out condition.
Note that Eq. (116) establishes a relationship between the
plate separation and the charge quantity that can be used. In
particular, if d is of the order of nm

(
d 
 10−9m

)
and r1 is

Planckian, one obtains

d

r1

 10−9m

10−35m

 n

π

√
180

137π

 0.205 85n �⇒ n 
 1026,

(118)

where we have used the fine structure constant introduced in
(41). Note that for silver, the average number of conduction
electrons is 5.8 · 1028/m3. As we can see, the relationship
(116) constrains the plate separation to be a function of the
electric charge. This also implies that the throat (113) reduces
to

r0 = √
2r2. (119)
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If we put numbers in (119), one finds

r0 = 180n2

137π3 r1 
 (4. 237 4 × 10−2n2)

× (1.6 × 10−37m
) 
 (1026)2 6. 779 8

×10−39m 
 1013m. (120)

Note that the equation connecting the throat with the plate
separation and the fine structure constant can also be obtained
with the help of an EoS of the form pr (r) = ω (r) ρ (r) with

ω (r) = − b (r)

rb′ (r)
= rd4

⎛

⎝
r0 + r2

2
r0

− r2
2
r − r2

1
3d4

(
r3 − r3

0

)

r2
1 r

4 − r2
2d

4

⎞

⎠

(121)

allowing us to fix �′(r) = 0. On the other hand, from pr (r)
and ρ (r) defined in (102), one can also obtain

ω (r) = pr (r)

ρ (r)
= 3r2

1r
4 + r2

2d
4

r2
1r

4 − r2
2d

4
. (122)

If we impose the condition that ω (r) in Eq. (121) must be
equal to ω (r) in Eq. (122), one finds that the only solution is
represented by Eq. (113). Nevertheless, outside of the throat,
the function ω (r) in Eq. (121) is no longer equal to the one
of Eq. (122). Plugging the value of r0 in (119) into the shape
function (107), one finds

b (r) = 14

9
r0 − r2

0

2r
− r3

18r2
0

. (123)

In this reduced form, it is easier to see that there exists

r̃ = 2.9208r0 where b (r̃) = 0. (124)

For r > r̄ , b (r) < 0. Therefore, to avoid negative values, we
can cut off the region where r > r̄ . For this reason, the range
of the wormhole must be constrained to be very close to the
throat. A possible profile comes from the following setup
{
b (r) = 14

9 r0 − r2
0

2r − r3

18r2
0

r0 ≤ r ≤ r̃ b (r) = 0 r ≥ r̃

�(r) = 0.

(125)

Note that in the region r̄ ≤ r ≤ r̃ , the constant Casimir
source becomes relevant. One can be tempted to classify such
a TW as an absurdly-benign traversable wormhole (ABTW)
defined by [16]

{
b (r) = r0 (1 − μ (r − r0))

2 r0 ≤ r ≤ r0 + 1
μ
; b (r) = 0 r ≥ r0 + 1

μ

�(r) = 0.
(126)

Even if, outside the region r = r̄ , ρ (r) and pr (r) tend to a
constant value, one has to realize that this behavior cannot
be extended to the whole space; rather it is likely that ρ (r)
and pr (r) vanish in the proximity of the external part of the

plates, as in the model introduced by Visser, who proposed
considering the following SET [4]

Tμν
σ = σ t̂μ t̂ν [δ (z) + δ (z − a)]

+�(z)� (a − z)
h̄cπ2

720a4

[
ημν − 4ẑμ ẑν

]
, (127)

where t̂μ is a unit time-like vector, ẑμ is a normal vector to
the plates, and σ is the mass density of the plates.

5 Conclusions

In this paper, we have extended the study begun in Ref. [1] by
including an electromagnetic source. Since the electromag-
netic field satisfies the property (12), the NEC is still violated,
and it seems to be independent of the strength of the electro-
magnetic field. Repeating the same strategy adopted in Ref.
[1], we have found another Casimir wormhole with a dif-
ferent ω, as it should be. We would like to point out to the
reader that the additional electric field is a part of the source
and not a feature of the TW. The most important consequence
is that the wormhole throat becomes directly dependent on
the charge in an additive way, even if under the square root

r0 =
√

3r2
1 + r2

2 . (128)

If this result seems encouraging, on the other hand we have
two aspects that must be explored. The first one is that for
r2 � r1, the energy density becomes positive. At this stage of
the analysis, we do not know whether the TW ceases to exist
or not. A possible answer could come from a back reaction
investigation of the electromagnetic and gravitational fields
together, which is beyond the scope of this paper. The second
aspect is that, always in the range where r2 � r1, ω → −1
and a horizon seems to be appear. However, this is the result
of a limiting procedure, and the value ω = −1 can never
be reached. For this purpose, we have to recall that it is the
NEC that must be violated. This means that with the help of
phantom energy, ρ (r) > 0 [18–20]. Indeed, the following
relationship

pr (r) = ωρ (r) ,�⇒ pr (r) + ρ (r) < 0

⇐⇒ (1 + ω) ρ (r) < 0, (129)

allows us to keep ρ (r) > 0, provided that ω < −1. How-
ever, generally speaking, it is not known how to build and

manipulate such phantom energy. The electrovacuum exam-
ple we have discussed in this paper seems to be encourag-
ing, because in this context the electromagnetic field appears
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to behave exactly like a phantom source. Note that this is
not true when the electromagnetic field is the only source.
To further proceed, note that there is an essential disconti-
nuity when r2 = r1 into the relationship (39). For this rea-
son, this case has been examined separately in paragraph 2.1.
It is important to observe that even in this case, a TW can
exist at zero density with a throat of Planckian size. A differ-
ent behavior appears when one considers the mixed source
case, namely that only the electromagnetic field has a vari-
able radius, while the plate separation has been considered
as a parameter. In this framework, one finds that it is possi-
ble to avoid the creation of a horizon if the throat satisfies
Eq. (113). Because we have two solutions, it is possible to
have only one solution if we impose the constraint (116). This
constraint creates a relationship between the plate separation,
the Planck length which is not modifiable, and the quantity
of charge introduced which can be changed. Unfortunately,
even in this case the main limitation comes from the plate
separation, which also has consequences with respect to the
throat size. However, such a limitation is not so stringent as
in Refs. [16,17] because of the presence of the square root in
Eq. (116). Indeed, if it were possible to push the plate sepa-
ration at a distance of the order of pm, one would find that
the throat could be of the order of 109m: a gain of a factor
102 with respect to what we found in Ref. [16]. Note that the
constraint (116) implies that we have a throat radius directly
proportional to the charge of the electromagnetic field. For
this reason, in contrast to the pure Casimir source, the intro-
duction of an electromagnetic field seems to go towards a
traversable wormhole which is slightly less traversable in
principle and slightly more traversable in practice. It is also
important to observe that the shape function (107) and sub-
sequently the shape function (123) can be promoted to be a
traversable wormhole shape function if we assume that there
is a smooth transition between the curved space and flat space
expressed by Eq. (124). Alternatively, one could use the cut-
and-paste technique and glue the shape function (123) with a
Schwarzschild profile. Of course, the whole analysis can be
generalized to include even a magnetic field, and this will be
examined in a future publication. It is interesting to observe
that, contrary to the pure Casimir wormhole, with the addi-
tional electromagnetic field, we avoid a TW with a throat
of Planckian size. Needless to say, things could drastically
change with the inclusion of quantum corrections along the
line of Refs. [21–25].
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