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The impact of the European 
Union emissions trading system 
on carbon dioxide emissions: 
a matrix completion analysis
Francesco Biancalani 1, Giorgio Gnecco 1*, Rodolfo Metulini 2 & Massimo Riccaboni 1,3

Despite the negative externalities on the environment and human health, today’s economies still 
produce excessive carbon dioxide emissions. As a result, governments are trying to shift production 
and consumption to more sustainable models that reduce the environmental impact of carbon 
dioxide emissions. The European Union, in particular, has implemented an innovative policy to reduce 
carbon dioxide emissions by creating a market for emission rights, the emissions trading system. 
The objective of this paper is to perform a counterfactual analysis to measure the impact of the 
emissions trading system on the reduction of carbon dioxide emissions. For this purpose, a recently-
developed statistical machine learning method called matrix completion with fixed effects estimation 
is used and compared to traditional econometric techniques. We apply matrix completion with fixed 
effects estimation to the prediction of missing counterfactual entries of a carbon dioxide emissions 
matrix whose elements (indexed row-wise by country and column-wise by year) represent emissions 
without the emissions trading system for country-year pairs. The results obtained, confirmed by 
robust diagnostic tests, show a significant effect of the emissions trading system on the reduction of 
carbon dioxide emissions: the majority of European Union countries included in our analysis reduced 
their total carbon dioxide emissions (associated with selected industries) by about 15.4% during 
the emissions trading system treatment period 2005–2020, compared to the total carbon dioxide 
emissions (associated with the same industries) that would have been achieved in the absence of the 
emissions trading system policy. Finally, several managerial/practical implications of the study are 
discussed, together with its possible extensions.

Keywords  Matrix completion with fixed effects estimation, Counterfactual analysis, Policy impact analysis, 
Green economy, Pollution

Global warming is mainly a consequence of human activities and the use of fuels in an economic system. 
Currently, there is an extensive literature that examines various aspects related to global warming associated 
with CO2 emissions1–4. Limiting yearly carbon dioxide ( CO2 ) emissions can be an effective way to reduce the 
effects of global warming (e.g., by slowing the rise in temperature). In fact, increases in such production lead, 
for example, to sea level rise (and thus a reduction in available dry land). Global warming is a hot research 
topic because, among other things, it causes natural disasters such as hurricanes and floods. They all can cause 
persistent damage to agriculture and more generally to the whole economic system. For a debate on these issues, 
the reader is referred to5–10.

In recent years, some possible measures to mitigate climate change were proposed by governments, 
international organizations, and associations. But not all countries took significant action. One notable example of 
a policy to reduce CO2 emissions is the Emissions Trading System (ETS), which was introduced by the European 
Union (EU) in 2005 and came into effect in various stages. The ETS sets an annual cap on CO2 emissions for 
companies in certain industries. The basic idea behind this policy is that CO2 emissions are the main cause of 
current global warming and that reducing CO2 emissions can lead to stopping or slowing climate change. A 
significant portion of new CO2 emissions is caused by human impacts on the environment during manufacturing, 
transportation, and energy production (from fossil sources) that use large quantities of hydrocarbons. Since the 
amount of (EU) allowances is set by the authorities and a fine per ton is imposed if emissions are exceeded, the 
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EU can effectively curb CO2 emissions. Up to 2020, this policy has come into force in different phases (the first 
was in 2005, the second in 2008, and the third in 2013). The EU ETS policy is consistent with the 2016 Paris 
Agreement and the EU Nationally Determined Contributions (NDC). The latter calls for a 55% reduction in CO2 
emissions by 2030, using 1990 levels as the basis for calculation11. On the other hand, some non-EU countries 
implemented their CO2 reduction policies later and in a softer way.

Although some effects of the EU ETS policy were already studied (see the literature review in the “Empirical 
review” section), an examination of the literature reveals the following gaps: (i) few studies analyzed the impact 
of the EU ETS policy at the European level, while the rest of the analyses focused on specific EU countries; (ii) 
the results of the analyses conducted in different papers were often contradictory; (iii) few studies used a rigorous 
counterfactual analysis; (iv) typically, only the first phase of the EU ETS policy was analyzed (by considering 
quite a short period of time), not its long-term impact.

In this work, we have addressed the above gaps by using a state-of-the-art machine learning method (namely, 
Matrix Completion with Fixed Effects estimation, or MCFE, hereafter), which was recently shown by12 to be a 
more effective method for evaluating policies than other, more traditional econometric methods used for panel 
data analysis. From the policy-making perspective, our study has several managerial/practical implications (also 
discussed in the “Conclusions, policy implications, and possible future research developments” section). First, 
the study highlights the need to use more reliable and general methods to estimate the impact of policies, such 
as EU ETS, on pollution reduction. This issue is particularly important given the current prominence of climate 
change and, more generally, environmental issues and the lessons we can draw from the EU experience for 
policymakers in developing countries. Second, a similar analysis as ours could be used to suggest the adoption 
of policies similar to the EU ETS one to other countries. Third, the methodology used in this study could be 
used as one of the tools to assess the economic, social, and environmental impact of policies, as established by 
recent EU legislation. In this context, a possible motivation for the application of such methodology would be a 
sequential (rather than simultaneous) data availability.

The work is organized as follows: the “Literature review” section provides a literature review; the “Idea of 
the work and its original contributions” section illustrates the idea of the work and its original contributions; 
the “Description of the data set” section describes the available data set, used for our study; the “Methodology” 
section details the methodology adopted; the “Results” section shows the results obtained by applying this 
methodology to a suitable pre-processed CO2 emission matrix; the “Conclusions, policy implications, and possible 
future research developments” section concludes the work and sheds light on possible future developments. Some 
technical appendices provide additional analyses, and comparisons with other methods.

Literature review
In the following, we provide a literature review, which is divided into two parts: (1) a methodological review, 
mainly focused on the description of some methodologies commonly adopted in the literature for policy 
evaluation; (2) an empirical review, mainly focused on the state of the art on the evaluation of the EU ETS 
policy. These two parts are connected to the present work in the following way: our study deals with policy 
evaluation, in which the set of treated units is a subset of EU countries, and the set of untreated (control) units 
is a subset of non-EU countries; the study applies a recently developed methodology (Matrix Completion with 
Fixed Effects estimation, or MCFE) for policy evaluation, which overcomes most of the limitations of previous 
methods presented in the methodological review; MCFE is used in our study to investigate the effects of the EU 
ETS policy on total yearly CO2 emissions of (treated) industries in EU countries.

Methodological review
When doing policy evaluation, it is often the case that the ideal situation of a randomized sample in which treated 
subjects have ex-ante the same characteristics as untreated subjects cannot be achieved. Therefore, one should 
use techniques that can provide good counterfactual data for the elements of the treated group.

In the case in which randomized controls are not available (which occurs in most policy impact analyses), 
various techniques, such as Instrumental Variables (IVs), are often used in the literature to evaluate interventions. 
A relevant example of the use of IVs in the context of ecological economics comes from13, whose authors studied 
the effects of voluntary adoption of green programs on mayoral elections, using as IV the existence of a Covenant 
Territorial Coordinator. They found that participation in non-mandatory green programs at the local level was 
not a barrier to re-election. Another typical IV application was considered by14, where the authors examined 
the impact of environmental Non-Governmental Organisations (NGOs) on air quality. In this case, IVs were 
represented by the number of international NGOs per capita and membership density of international NGOs.

Another technique is Regression Discontinuity Design (RDD), which can be applied when there is at least 
one specific threshold that separates treated and untreated units. For example, water conservation in California 
was examined by15 using three discontinuity points in the timeline: June 2015, February 2016, and November 
2016 (i.e., the dates of key legislative events). Similarly, a spatial regression discontinuity design was used by16 to 
examine whether the Forest Stewardship Council (FSC) has changed (or not) the standard of living of indigenous 
people in Congo.

The use of Difference-in-Differences (DiD) (Remark 1: A brief introduction to the DiD method is provided 
in the “Supplementary Material”.) may provide a good alternative approach17, but its application requires the 
so-called parallel trend assumption, which is often difficult to be met. Adjustments to the control group such 
as Propensity Score Matching (or PSM)18 and Mahalanobis distance matching and entropy (or Hainmueller) 
balancing19 are often not conclusive in case of a large heterogeneity and small number of units available. These 
problems (especially the comparison between a small number of states or regions) can be partially solved with 
the Synthetic Control Method (SCM) (Remark 2: A non-technical introduction to the SCM is provided in the 
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“Supplementary Material”.). This method was applied by20 to analyze the impact of oil production in Basilicata 
(a small region in southern Italy) on socioeconomic indicators.

Empirical review
The topic of the implementation of markets for emission rights, and in particular the implementation of the one 
designed by the EU (ETS), was already studied in the literature from various points of view21,22. One of them is the 
empirical analysis of the effective reduction of total CO2 emissions in the countries of the old continent. However, 
there is no consensus in the current literature on the impact of the EU ETS policy23. A relevant literature review24 
reports, among other things, on the following effects of policies such as the EU ETS: they tend to increase prices 
of emission-intensive goods25, thus generating incentives to reduce such emissions (in the case of the EU ETS 
and other policies, such a reduction was highlighted by several studies (i.e.,21,26–36) reviewed in Chapter 13 of24; 
they can stimulate technological change by participants and even other actors not involved in such policies30,37,38; 
they may impact other countries in various ways, including changes in their emissions (leakage effects, see39), 
although no (or not significant) evidence of such changes was observed for the case of the EU ETS23,27,30,40–45. 
Still, the study of the impact of ETS policies is complicated by the possible simultaneous presence of other similar 
policies and exogenous factors (e.g., fossil fuel price changes and fluctuating economic conditions)30,31,46, and 
by the fact that they apply to emissions associated with a subset of industries, possibly with different shares of 
emissions in different countries47.

In more detail, focusing on the specific techniques of analysis, one very relevant paper on the environmental 
impact of the ETS is certainly48, which combined a nearest-neighbor matching approach, between treated large 
plants and untreated small plants, with DiD and Difference-in-Means (DiM) estimators. However, in that work, 
whose analysis was focused on the United Kingdom from 2000 to 2012, no significant effect of the ETS on CO2 
emissions reductions was found for that country. The impact of the EU ETS on Lithuanian companies was studied 
by49, analyzing data from 2003 to 2010 (Remark 3: Lithuania joined the EU in 2004, so 2004 was considered 
the pre-treatment period for all its observed firms.). In their analysis, the authors combined nearest neighbor 
matching with DiD and then applied kernel matching as a robustness check. They concluded that the ETS did 
not significantly reduce CO2 emissions in Lithuania (in some treated years, only minor effects were achieved 
as the old plants of the large polluters were released). A similar methodological approach was used by50 for the 
Norwegian case (Remark 4: Although Norway is not an EU member, it adopted the EU ETS policy in 2008.). In 
that work, the authors used a fixed-effects DiD approach and selected a control group through nearest-neighbor 
matching, specifically assuming exact industry-level matching between treated and untreated firms. However, 
the results obtained related to emissions were not statistically significant.

Another stream of literature showed that the EU ETS had a positive impact on reducing CO2 emissions of 
selected European countries. For example, a relevant reduction in CO2 production in Germany was found by51, 
motivated by an increase in the energy efficiency of plants. Their econometric methodology used PSM to weigh 
treated and non-treated firms. Similarly, a significant reduction in CO2 production in France was observed by52. 
In our opinion, these approaches may hide a problem in obtaining a fair evaluation of the policy, since the treated 
plants were quite large, while the ones in the control group were small. As a result, there may be economies of 
scale in CO2 emissions that were not captured by the models. In other words, if the control group has different 
characteristics (i.e., in particular, a different order of magnitude in size) than the treated group, approaches based 
on (classical) matching cannot produce an adequate control group because the control group obtained cannot 
be entirely similar to the treated group.

A very recent article53 found a reduction of about 10% in CO2 emissions between 2005 and 2012 in four 
countries studied (i.e., France, the Netherlands, Norway, and the United Kingdom). However, in their one-to-
one matching approach, it was necessary to exclude a number of companies for which it was not possible to find 
a good match (e.g., large electricity production companies). This might have biased the results of their analysis 
due to the possible exclusion of some of the most important examples of potential CO2 emissions reductions.

Finally, a significant methodological improvement in studying the performance of the EU ETS in reducing 
pollution was made by31, where researchers applied the SCM at the industry level and concluded that the presence 
of the EU ETS policy significantly reduced CO2 production in the EU by 3.8% between 2008 and 2016, compared 
to its absence. However, SCM may fail under various circumstances, especially if the period of pre-treatment 
observations is not long enough54. The same method was also used by55, where the scholars concentrated their 
analysis on estimating the effects on emissions for Australia, if Australia had adopted the EU ETS scheme. They 
found a statistically significant reduction in the CO2 emissions per capita.

Idea of the work and its original contributions
Considering the limitations of the methods presented in the “Methodological review” section and reviewed in 
their application to the EU ETS policy analysis in the “Empirical review” section, in our analysis we have chosen 
to use another recently developed method coming from the Statistical Machine Learning literature (SML), 
namely Matrix Completion (MC), in order to verify whether the results found by31 are confirmed or not with this 
novel approach. Moreover, our use of MC allows us to fill the four gaps in the literature highlighted at the end of 
the “Introduction” section, namely: (i) the opportunity of focusing the analysis on a larger set of countries; (ii) 
the necessity of using reliable estimation methods; (iii) the requirement of performing a rigorous counterfactual 
analysis; (iv) the need of analyzing a period covering various phases of the EU ETS policy.

The following is a non-technical introduction to MC. In essence, MC deals with the challenge of reconstructing 
a data matrix with missing entries (see Chapter 4 in56). A typical example is given by predicting missing elements 
in a recommender system’s rating matrix, which reflects users’ preferences for various items (such as movies). 
Imagine a partially filled matrix in which each entry represents a user’s rating for a movie (if the user has seen 
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that movie). MC aims to predict the missing entries (users’ ratings for movies that they have not watched, but 
that have been seen by other users). In this application, the final goal could be, e.g., to suggest unseen movies 
that users might enjoy. To achieve this, MC leverages user and item similarities. The idea is that users who give 
similar ratings to movies likely share similar tastes for new ones. The resulting underlying pattern of the rating 
matrix, known as its low-rank structure, allows MC to make predictions for unseen entries in that matrix. For 
this reason, MC typically includes a regularization term in its mathematical formulation, whose goal is to enforce 
a low-rank structure to the reconstructed matrix. In its application to counterfactual analysis, detailed by12 and 
also considered in the present work, the goal of MC is, instead, to predict counterfactual values of an outcome 
variable for treated units during the treatment period, starting from observations of the outcome variable for the 
treated units in the pre-treatment period, and the observations of that variable during the whole (pre-treatment 
and treatment) period for the control units.

In more detail, from an optimization point of view, the main idea of (low-rank) MC is to minimize a proper 
tradeoff between a suitably-defined approximation error on a set of observed entries of a matrix (training set) and 
a proxy for the rank of the reconstructed matrix, e.g., its nuclear norm (i.e., the summation of its singular values). 
More technical details are reported in the “Methodology” section. MC is a state-of-the-art quantitative method 
particularly suited for counterfactual analyses, as recently demonstrated by12, where it was successfully compared 
with other commonly-adopted econometric methods such as DiD and SCM. Other effective applications of 
MC were made by57, in which MC was exploited in the context of international trade for the reconstruction of 
World Input–Output Database (WIOD) subtables58, by59,60, in which MC was used for the analysis of economic 
complexity, and by61,62, where MC was exploited for job analysis.

Non‑technical overview of the original contributions of the work
According to the framework detailed above, our main research question is to investigate, by means of the 
application of a specific MC method (suitable for the prediction of counterfactuals), whether EU countries—
through the EU ETS policy—reduced CO2 production significantly during a particular treatment period 
(2005–2020), which is equivalent to assessing the effectiveness of the EU ETS policy in reducing CO2 emissions in 
that period. Our goal is not limited to assessing whether or not reductions occurred but also includes quantifying 
(through a robust SML approach) the reduction in CO2 emissions due to the presence of the EU ETS policy. 
Specifically, we perform a counterfactual analysis based on MC to estimate the (unobserved) CO2 emissions of 
EU countries in the years of treatment in the absence of the EU ETS policy.

In this work, we aim to contribute to the academic debate by examining the impact of the EU ETS policy on 
reducing CO2 emissions. This work can be viewed as a development of the research made by63 and of our earlier 
conference article64 on the application of MC to the prediction of CO2 emissions, each based on two different data 
sets (Remark 5: The analysis made by64 was further extended recently by65, showing that the predictive accuracy 
of MC, applied to a matrix of CO2 emissions, can be improved by combining it with a baseline estimate (e.g., an 
estimate of fixed effects). In that work, an ensemble machine-learning approach was followed, in which first the 
baseline estimate was generated, then MC was applied to the residual. The MC approach by12, used in the present 
work, is based on a similar but more sophisticated idea, in which fixed-effects estimation and MC are performed 
simultaneously.). In contrast to these papers (in which only the predictive accuracy of MC was evaluated), here 
we perform a counterfactual analysis, based on MC. Moreover, this analysis is based on a different choice of the 
matrix to which MC is applied, as well as an appropriate choice of matrix elements provided as inputs to MC. 
We also use a different MC method that is more appropriate for estimating causal effects, perform robustness 
checks for the application of that MC method, and compare it with several other methods for counterfactual 
prediction (Remark 6: To improve the readability of the work, details on this comparison are reported in the 
“Supplementary Material”.). To our knowledge, no other previous work analyzed the effects of the EU ETS policy 
using MC. Finally, in our analysis, we apply MC to a data set related to total CO2 emissions coming from various 
EU and non-EU countries during a period of several years in the past.

With the aforementioned goal in mind, in the present paper we propose to perform a counterfactual analysis 
for the EU ETS policy by referring to the approach used by12 (MC with Fixed Effects estimation, or MCFE, 
hereafter), based on a nuclear norm MC optimization problem, which is an extension of the optimization 
problem introduced by66 (baseline MC or MCB, hereafter, i.e., MC without fixed effects estimation) and 
solved numerically by applying the soft-impute algorithm developed in the latter work. The MCFE method is 
specifically designed for panel data analysis (where the rows and columns of the matrix may refer to individuals 
and time points, for example). It introduces a two-way (individual and time) fixed effects component to the 
MCB optimization problem considered by66, with the aim to increase the performance of matrix completion 
(or matrix reconstruction) (Remark 7: The performance of MCFE compared to MCB was recently evaluated in 
our conference paper67 using a simulation study for CO2 emission data. Therein, we found that the inclusion of 
individual and time fixed effects in the MC optimization problem, as well as an appropriate pre-processing of 
the original data achieved by applying a suitable l1 row-normalization, increases the predictive performance of 
the MC method. In particular, the latter normalization filters out the possible side effect of differences in CO2 
emission levels between countries. Therefore, also in the present work, we apply l1 normalization by row (i.e., by 
country) as an appropriate pre-processing of the matrix.). One important reason for its use in the present work 
is that the MCFE method was recently found to achieve better performance than alternative traditional methods 
used for causal panel data analysis (such as DiD and SCM), in several problems for which a ground truth is 
available 12 (Remark 8: As a side note, just to highlight the significance of MCFE as a state-of-the-art methodology 
for policy evaluation, it is worth remarking here that the work by12 in which MCFE was developed reached a 
huge number of citations since its recent publication (more than 630 citations at the time of writing the present 
study), and that it was co-authored by a recent recipient (in 2021) of the Nobel prize in Economics, namely 
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Prof. Guido Imbens.). More technical motivations for which MCFE is preferable, for the study of the impact 
of the EU ETS policy on CO2 emissions, to MCB, DiD, and SCM, are reported, respectively, in Supplementary 
Sections A, B, and C of the Supplementary Material. It is also worth observing that the MCFE method does not 
suffer from multicollinearity issues, since it works directly on a matrix of (partially) observed realizations of 
the outcome variable (Remark 9: Actually, the presence of multicollinearity could even support adopting a low-
rank approximation of the matrix to be reconstructed, which is enforced by the presence of the nuclear-norm 
regularization term in the objective function of the MC optimization problem (1), which is reported later in 
the “Methodology” section.). In other words, its goal is not to estimate the coefficients associated with covariates 
in a linear regression model, but just to generate predictions of counterfactual values of the outcome variable 
(Remark 10: This remark is valid also for the extension of the MC method to the inclusion of covariates in that 
method, which was examined by12. Indeed, also in that case focus is on prediction of counterfactual values of the 
outcome variable, not on the estimation of the coefficients associated with the covariates.). Moreover, the MCFE 
method does not rely on matrix inversion, which would suffer from numerical issues in case of approximate 
multicollinearity (Remark 11: These last two remarks hold also for the MCB method but, as already discussed, 
the MCFE method is more suitable for policy evaluation.).

We conclude this subsection by providing, in Fig. 1, a broad overview of the conceptual framework of the 
work, which is detailed in the following sections. We anticipate here that, in summary, as described in the next 
sections, our analysis finds that the EU ETS policy reduced CO2 emissions by about 15.4% in the European 
countries studied during the 2005–2020 period, ranging from almost no impact for Austria to a reduction of 
about 35% for Denmark.

Detailed overview of the original contributions of the work
The main original contributions of the work are related to an extensive evaluation of the MCFE application to 
assess the impact of the EU ETS policy on CO2 emissions on EU countries. For a better reading, the results of such 
an analysis are reported in the following subsections of the “Results” section, whose titles provide a more detailed 
overview of the original contributions of this work: application of statistical tests about the presence of individual 
and time fixed effects (“Application of statistical tests about the presence of individual and time fixed effects” 
section); evaluation of the MCFE reconstruction accuracy in the pre-treatment period (“Evaluation of the MCFE 
reconstruction accuracy in the pre-treatment period” section); additional comparisons with other methods 
(“Additional comparisons with other methods” section); comparison between counterfactual/actual values in 
the treatment period (“Comparison between counterfactual/actual values in the treatment period” section); 
application of statistical tests about the comparison between estimated and actual data (“Application of statistical 
tests about the comparison between estimated and actual data” section); robustness checks (“Robustness checks” 
section); analysis of the effects of the EU ETS policy on CO2 emissions (“Analysis of the effects of the EU ETS 
policy on CO2 emissions” section).

Additional more technical original contributions are reported in the “Supplementary Material”. They refer, 
respectively, to: a comparison between MC with/without fixed effects estimation (Supplementary Section A); 
a comparison with the DiD model (Supplementary Section B); a comparison with the SCM (Supplementary 
Section C); the presentation of additional tables related to the results obtained in the work (Supplementary 
Section D).

Description of the data set
In this paper, we use data on CO2 emissions by country. In our analysis of the causal effects of the EU ETS policy 
(covering the period from 2000 to 2020, being this policy introduced in 2005), we can consider EU countries as 
“treated” and selected high-income non-EU countries as “untreated”, since for the latter the potential treatment 
(before 2020) is limited compared to that of the EU countries31. The data set used for our analysis is extracted 

Available database on CO2 emissions

Extrac�on of a matrix of CO2 emissions at the country/year level

Extrac�on of training/valida�on/test set

Applica�on of matrix comple�on with fixed effects es�ma�on to 
predict counterfactual values on the test set

Comparison of counterfactual/actual values for the es�ma�on of the impact 
of the EU ETS policy on CO2 emissions at the country/year level

Iden�fica�on of treated/untreated industries and countries by the EU ETS policy

Figure 1.   Conceptual framework of the work.



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:19676  | https://doi.org/10.1038/s41598-024-70260-6

www.nature.com/scientificreports/

from the Emissions Database for Global Atmospheric Research (EDGAR), which covers all countries and can 
be accessed for free at https://​edgar.​jrc.​ec.​europa.​eu/ (Remark 12: This hyperlink was accessed in July 2024.). 
The reader is referred to68 for details about how missing data for specific sectors and years are handled in the 
construction of the EDGAR database (basically, suitable interpolation procedures are used therein). The issue 
of missing data is discussed also at the end of this section.

Since the ETS is mandatory for EU countries, we consider the following 17 countries as “treated” for our study: 
Austria (AUT), Belgium (BEL), Czech Republic (CZE), Germany (DEU), Denmark (DNK), Spain (ESP), Finland 
(FIN), France (FRA), Hungary (HUN), United Kingdom (GBR), Greece (GRC), Ireland (IRL), Italy (ITA), Poland 
(POL), Portugal (PRT), Slovakia (SVK), and Sweden (SWE). All these countries were members of the EU between 
2005 (the beginning of the ETS policy) and 2020 (Remark 13: Brexit came into effect in 2021, so the United 
Kingdom was a member of the EU during the study period. Indeed, although the United Kingdom left the EU 
at the end of January 2020, it continued to participate in many EU institutions, during a transition period that 
covered 11 months. Then, starting from January 2021, the EU ETS policy in the United Kingdom was replaced 
by the UK ETS policy.). Among the 25 countries that were part of the EU in 2005, we do not consider in our 
analysis small countries having less than 5 million inhabitants at the time (i.e., Cyprus, Estonia, Latvia, Lithuania, 
Luxembourg, Malta, Slovenia), as their data are expected to be highly sensitive even to small shocks (since 
even the cessation of production of a single plant could have had a large impact on their respective total CO2 
emissions). In the case of the Netherlands, only partial data are available in the EDGAR database for the period 
considered for our study. Hence, also that country is excluded from the analysis. Additionally, data related to 
other 6 non-EU countries (as of 2005) influenced by the ETS policy, i.e., Bulgaria, Croatia, Iceland, Liechtenstein, 
Norway, and Romania are not included in our analysis partly because of the small-country issue mentioned 
above, and partly because their emissions in the period of analysis could have been significantly influenced by 
other ad-hoc policies beside the EU ETS. Altogether, the selected 17 EU countries represent, respectively, about 
87% of the population in 2005 of the 25 EU countries at the time and of the 6 non-EU countries influenced by 
the ETS policy reported above, and 92% of total CO2 emissions of the same set of countries.

As a control group (non-treated countries, without ETS), we consider countries that were not members of the 
EU between 2000 and 2020 and that were not highly related to the EU (e.g., as a result of very relevant special 
agreements) during this period (i.e., Iceland, Liechtenstein, Norway, and Switzerland are excluded) (Remark 
14: Iceland, Liechtenstein, and Norway introduced the EU ETS in 2008 (i.e., during its phase 2), while Switzerland 
has several bilateral agreements with EU countries. A second reason to exclude from the control group countries 
such as Iceland, Liechtenstein, and Switzerland is the small-country issue just mentioned in the main text.). Our 
control group for this work consists of large non-EU high-income countries in the available database that are 
almost in the same phase of the so-called environmental Kuznets curve (Remark 15: Emerging economies are 
commonly regarded as the world’s biggest polluters. Conversely, developed countries are generally considered 
cleaner. This perception is theoretically supported by the concept of environmental Kuznets curve (see, e.g.,69), 
according to which there is an inverted “U” relationship between Gross Domestic Product (GDP) per capita 
and environmental degradation, measured as CO2 emissions per capita.) as the selected EU countries, and 
that are far from such countries geographically. Indeed, to obtain a valid control group, one needs to exclude 
as much as possible spillover effects of the EU ETS policy on its countries (due, e.g., to possible delocalization 
induced by the policy, which is unlikely to occur for the selected countries in the control group). Specifically, 
we include the following seven industrialized countries in the control group: Australia (AUS), Canada (CAN), 
Israel (ISR), Japan (JPN), New Zealand (NZL), South Korea (KOR), and the United States of America (USA). 
Although some non-EU countries also took specific measures to reduce CO2 emissions, the impact of these 
measures was relatively negligible compared to the EU ETS policy at least until 201628. For instance, Australia 
adopted a policy similar to the EU ETS one only some years later (in 2011), and ratified the Paris agreement 
only in November 201655.

In our analysis, we aggregate to the country-year level the values of CO2 emissions originally available at the 
country-industry-year level in the EDGAR database. Instead of aggregating CO2 emissions coming from all 
the industries, we consider only those associated with a subset of industries that, according to70, are potentially 
influenced by the EU ETS policy. Specifically, for both the treated and untreated countries, we aggregate only 
CO2 emissions coming from the following industries (represented here by their EDGAR codes): 1.A.1.a (Main 
Activity Electricity and Heat Production), 1.A.1.bc (Petroleum Refining—Manufacture of Solid Fuels and Other 
Energy Industries), 1.A.2 (Manufacturing Industries and Construction), 2.A.1 (Cement Production), 2.A.2 (Lime 
Production), 2.A.3 (Glass Production), 2.A.4 (Other Process Uses of Carbonates), 2.B (Chemical Industry), 2.C 
(Metal Industry) (Remark 16: This partial aggregation has the advantage of limiting the potential influence of 
other policies similar to the EU ETS on our counterfactual estimates of CO2 emissions of treated countries.). 
Emission data related to these industries are available for all the countries considered in our analysis (which 
motivates the exclusion of the Netherlands, for which this does not hold). In this way, the resulting 24× 21 CO2 
emission matrix represents the (total) amount of CO2 emissions for each country and year, restricted to the 
selected industries. The portions of this matrix that are associated, respectively, with the pre-treatment period 
of EU countries (2000–2004) and with their treatment period (2005–2020) are reported in Tables 1 and 2. For 
illustrative reasons, rows corresponding to treated/untreated countries appear separately in the two tables.

The goal of this data aggregation is threefold. First, we reduce the computational burden of repeatedly applying 
MC(FE) by using a smaller matrix as input. Second, we simplify the analysis by focusing on the aggregate level 
for each country. Comparing countries, industries, and years (i.e., using three dimensions in the analysis) would 
make the approach to completing the matrix much more complex, possibly calling for its extension to the tensor 
case71. Third, by aggregating emissions patterns at the national level, our pre-processing provides an effective 
way to reduce the noise possibly due to missing disaggregated data.

https://edgar.jrc.ec.europa.eu/
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Methodology
In this paper, we opt for an innovative methodological approach in the field of policy evaluation. Clearly, with 
the available data set, it is not possible to conduct a randomized control trial analysis, because we have data on 
sovereign countries, and the ideal case of a randomized sample in which treated/untreated units have ex-ante the 
same characteristics is not realized. Some possible methods to perform policy evaluation in this situation (and 
their limitations) have been discussed in the “Methodological review” section (Remark 17: The application of 
some of the methods presented in the “Methodological review” section was excluded immediately, taking into 
account the peculiarities of the available data set: for instance, in our case, it was not possible to find at least one 
valid IV among the available variables; also RDD did not appear to be applicable because there was no sharp 
temporal or spatial threshold between treated and untreated countries; adjustments to the control group such 
as PSM and Mahalanobis distance matching and entropy balancing were not conclusive in our case, given the 
large heterogeneity and quite small number of countries in our sample.).

Given the peculiarities of our specific problem and data structure, in our analysis we prefer to adopt the 
MCFE approach for the following reasons: (i) the numerical results reported by12 show that their proposed MCFE 
method for policy evaluation generally outperforms other alternative methods, such as the SCM and elastic net 
estimators; (ii) the MCFE approach can also be interpreted as a generalization of earlier approaches such as the 
SCM. Indeed, these approaches share the same objective function (based on the Fröbenius norm of a suitable 
projection of the difference between a latent matrix and the observed matrix), but have different constraints 
(which are less stringent in the case of the MCFE method).

For the application considered in this paper, the use of the MCFE method is justified by the fact that the 
counterfactual CO2 emission levels for the treated countries (namely, the selected EU countries) are not known 
in the years of treatment when the EU ETS policy was in force. Therefore, we use the MCFE method to generate 
estimates of such counterfactual values and compare them to the actual CO2 emission values, with the ultimate 
goal of estimating the effect of the treatment on CO2 emission values through the EU ETS policy.

The main idea is to consider the treated values (i.e., the CO2 emission values of EU countries in the years of 
treatment) as missing values and the other entries of the CO2 emission matrix as given data. Specifically, in this 
paper, we apply the following formulation of the MC optimization problem, namely, the MCFE optimization 
problem proposed by12:

Table 1.   Portion of the emission matrix during the pre-treatment period of EU countries, which is obtained 
from the aggregation of data available in the EDGAR database. The values reported in the table are total yearly 
CO2 emissions in thousands of tons, restricted to selected industries (see the “Description of the data set” 
section for details).

Country/year 2000 2001 2002 2003 2004

Pre-treatment period (treated countries)

 AUT​ 34707 36675 36982 39740 41280

 BEL 70990 70182 64423 66120 63616

 CZE 101026 99733 96098 96161 96573

 DEU 511535 515928 515322 525809 519996

 DNK 33324 34789 34588 39439 33786

 ESP 182709 179756 195454 194093 203825

 FIN 39177 44337 46464 54446 51046

 FRA 160145 155427 156114 158261 154559

 GBR 305317 317019 307621 319570 314799

 GRC​ 65497 66026 65267 66137 66197

 HUN 33198 33586 32267 33085 31015

 IRL 23463 24829 23705 22549 22386

 ITA 250885 246360 255464 269626 277563

 POL 231400 225987 217256 225924 226089

 PRT 40896 39497 43004 37459 38431

 SVK 28023 28698 27911 29518 28765

 SWE 27286 27133 28851 29770 29408

Pre-treatment period (untreated countries)

 AUS 256160 263192 268015 264705 274725

 CAN 300356 298056 300351 313143 305502

 ISR 41785 41560 44628 45121 44459

 JPN 794764 779417 809513 824833 818929

 KOR 315217 322808 322926 326878 350700

 NZL 17240 19003 18553 18625 17927

 USA 3518332 3480104 3304577 3327424 3398937
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where

•	 �tr is a subset of pairs of indices (i, j) corresponding to the positions of known entries of a matrix M ∈ R
m×n 

(using a machine learning expression, �tr can be called a training set of pairs of indices);
•	 1n and 1m are column vectors consisting of n entries and m entries, respectively, all equal to 1;
•	 M̂ is the completed matrix decomposed as 

 (where L̂ , Ŵ̂ and �̂ must be chosen to solve the above optimization problem);
•	 � ≥ 0 is a regularization constant;
•	 �L̂�∗ is the nuclear norm of the matrix L̂ , i.e., the summation of all its singular values.

In the above, the two terms Ŵ̂1⊤n  and 1m�̂
⊤

 model, respectively, estimates of row-fixed effects (e.g., of unit-fixed 
effects) and of column-fixed effects (e.g., of time-fixed effects) in the reconstruction M̂ of M according to Eq. (2). 
The regularization constant � controls the tradeoff between adequately fitting the known entries of the matrix M 
and achieving a small nuclear norm of the first term L̂ of its reconstruction. Here, the nuclear norm plays a similar 
role as the l1-norm regularization term used in the well-known and widely used Least Absolute Shrinkage and 
Selection Operator (LASSO) regularization method56. It is worth noting that, in contrast to earlier formulations 
of the MC optimization problem—see, e.g.,66—the nuclear norm �L̂�∗ is used in the optimization problem (1) 
instead of the nuclear norm �M̂�∗ . In other words, in the case of the MCFE method, the estimated fixed effects 

(1)
minimize

M̂∈Rm×n ,L̂∈Rm×n ,Ŵ̂∈Rm×1,�̂∈Rn×1





1

|�tr|

�

(i,j)∈�tr

�

Mi,j − M̂i,j

�2
+ ��L̂�∗



,

subject to M̂ = L̂ + Ŵ̂1
⊤
n + 1m�̂

⊤
,

(2)M̂ = L̂ + Ŵ̂1
⊤
n + 1m�̂

⊤

Table 2.   Portion of the emission matrix during the treatment period of EU countries, which is obtained from 
the aggregation of data available in the EDGAR database. The values reported in the table are total yearly CO2 
emissions in thousands of tons, restricted to selected industries (see the “Description of the data set” section 
for details).

Country/
Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Treatment period (treated countries)

 AUT​ 41417 40742 39733 40069 35094 39861 40340 37671 36671 34461 34912 34244 35846 33279 34720 32021

 BEL 61890 60810 59912 57445 52916 58905 54153 52234 51810 50732 50801 50117 49241 50198 50881 47430

 CZE 95541 95299 97959 91662 86821 86597 85194 81446 77078 75693 75553 75779 75975 75507 70759 63544

 DEU 512214 518967 532729 513605 467501 500953 493731 500504 503910 482378 481942 480249 464755 449741 395238 356315

 DNK 30274 38249 33377 30500 29163 29192 25106 21608 23545 20042 17247 18606 16610 16532 13541 12288

 ESP 215340 202179 214060 191705 162382 149795 160615 165360 138852 138820 150250 138143 151717 142705 126248 105940

 FIN 39001 50620 48331 41277 39319 47368 40756 34952 36562 33877 30684 32182 30055 31619 28564 24816

 FRA 162353 157648 159113 151980 139882 148646 144459 140928 133894 116696 117419 120495 124085 119375 115227 102829

 GBR 314999 319266 312715 299790 260934 267828 249959 264253 249522 224321 202852 173242 160151 154349 143756 130593

 GRC​ 67216 65638 70021 66959 60441 57247 54679 55892 51880 49085 45454 44284 44910 43557 37577 30431

 HUN 29768 29937 30898 29738 24245 25029 25746 24258 22353 22226 23253 23553 28170 27433 25258 24298

 IRL 23127 22749 22002 21258 18010 18286 16379 17527 16218 16598 17477 18485 17853 16791 15429 14711

 ITA 275508 272742 271390 259886 215099 224502 222088 209769 179866 167416 174652 171107 171902 164078 157317 142954

 POL 220887 227740 228082 218310 204236 212864 216447 209140 209250 200601 201770 202755 207730 207356 194394 180448

 PRT 41905 38068 36517 35048 34350 29485 29616 29690 28366 27813 31687 30047 34284 30005 24931 22192

 SVK 28592 28300 27633 26162 23433 24840 24628 24001 23576 22463 22978 23270 24187 23859 21747 20578

 SWE 26913 26409 24824 24729 21907 27070 24255 23206 22220 21534 21920 22490 22582 21225 20353 20666

Treatment period (untreated countries)

 AUS 275978 281321 289438 291008 296375 295491 290440 288395 278607 267909 272227 279623 279245 274799 273692 265331

 CAN 311545 308482 327438 308867 284589 296059 302167 305267 305731 307571 308974 310726 310847 309819 307753 288648

 ISR 44135 46428 48183 48243 46020 50370 50329 56015 51204 48631 49158 48162 47911 43548 44775 42083

 JPN 830547 819719 867927 816586 766791 825911 888195 932825 945707 908041 871998 863760 846319 816234 783470 740558

 KOR 346953 362790 375267 391885 399810 441847 472250 472054 468071 461935 476183 481839 488572 495141 475400 446528

 NZL 18544 18609 17305 18384 15971 15940 15100 16803 16703 17113 16506 15815 16157 15359 16988 16079

 USA 3409149 3361812 3417242 3325690 3007161 3196881 3045237 2922073 2937381 2943427 2799234 2714036 2629591 2688014 2542358 2348769
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Ŵ̂1
⊤
n  and 1m�̂

⊤
 are not regularized. In the present context, this is an important issue because otherwise, by using 

the alternative regularization term ��M̂�∗ instead of ��L̂�∗ (i.e., by regularizing the entire reconstructed matrix 
M̂ , which is the case of the MCB method) (Remark 18: Or, equivalently, by further constraining the optimization 
vectors Ŵ̂ and �̂ to be equal to 0.), one could obtain biased estimates that might underestimate the actual values72. 
In other words, any estimated element M̂i,j could be a systematic underestimate of the corresponding element 
Mi,j for the optimal choice of � , making it difficult to obtain reliable estimated counterfactual values (Remark 
19: The issue of underestimation under MC is investigated in more detail in Supplementary Section A of the 
Supplementary Material, where it is shown by means of one representative example that MC without fixed 
effects estimation (i.e., MCB) indeed underestimates the missing elements systematically, when it is applied to 
the specific data set considered in the present work.). As described in the literature, this is a common problem 
when using regularization methods. For instance, it is well-known that the LASSO regularization method may 
be affected by underestimation problems73,74.

In this paper, the optimization problem (1) is solved numerically by applying the soft-impute algorithm 
developed by66 and adapted by12 to the case of the optimization problem (1) (Remark 20: Specifically, we apply 
the function “mcnnm” contained in the R package “MCPanel”, which is freely available at the following hyperlink: 
https://​rdrr.​io/​github/​susan​athey/​MCPan​el/​man/​mcnnm.​html. This function allows the possibility of either 
estimating or not the row-fixed and column-fixed effects.). It is worth noting that the MCFE estimator used in 
this work was demonstrated by12—using two applications to smoker data and stock market data—to outperform 
several alternative methods such as DiD, SCM, vertical regression with elastic net regularization, and horizontal 
regression with elastic net regularization12.

The soft-impute algorithm for calculating the MCFE estimator goes as follows. Let the projection operator 
P�tr : Rm×n → R

m×n be defined as [P�tr (M)]i,j := Mi,j if (i, j) ∈ �tr, 0 otherwise . Similarly, let the projection 
operator P⊥

�tr : R
m×n → R

m×n be defined as [P⊥
�tr (M)]i,j := Mi,j if (i, j) /∈ �tr, 0 otherwise . For a matrix 

M ∈ R
m×n with rank r, let its Singular Value Decomposition (SVD) be

where Dr ∈ R
r×r is a diagonal matrix, which collects the r singular values d1, . . . , dr of M . Then, the soft-

thresholded version of the SVD of M reads as

where

and the subscript “+” stands for the non-negative part of a real number.
According to the soft-impute algorithm, we first initialize L̂ as L̂old = P�tr (M) ∈ R

m×n and generate an 
increasing sequence of K values ( �1 < . . . < �K ) for the regularization constant � ≥ 0 . Let ε > 0 denote a selected 
tolerance, and � · �F the Fröbenius norm. Then, for each k = 1, . . . ,K , set � = �k and 

1.	 Iterate until convergence the following: 

(a)	 Given the current L̂ = L̂
old , get Ŵ̂ and �̂ by imposing the first-order optimality conditions in the 

optimization problem (1);
(b)	 Compute L̂new ← S �|�tr |

2

(

P�tr (M− Ŵ̂1
⊤
n − 1m�̂

⊤
)+ P

⊥
�tr (L̂

old)

)

;

(c)	 If �L̂
new−L̂

old�2F
�L̂old�2F

≤ ε , go to Step 2;
(d)	 Set L̂old ← L̂

new;

2.	 Set L̂� ← L̂
new and M̂� ← L̂� + Ŵ̂1

⊤
n + 1m�̂

⊤
.

Since previous investigations showed that MC performs better when the elements of the matrix to which it is 
applied have similar magnitudes (e.g., when they are row-normalized, as in the cases considered by65,67), in 
our application the original matrix of annual CO2 emissions is pre-processed by dividing each row (country) 
by the l1-norm of that row restricted to the training set (Remark 21: This restriction is applied to avoid any use 
of the validation and test sets in the pre-processing phase.), and multiplied by the fraction of observed entries 
in that row. Then, MCFE is actually applied to the resulting matrix M (then, in a post-processing phase, a row 
de-normalization is performed, to go back to the original scale of the data).

In our application, where M is derived from the 24× 21 true CO2 emission matrix, with rows referring to 
countries and columns to years, the tolerance parameter ε is chosen as ε = 10−30 , in order to avoid early stopping 
of the algorithm. If convergence is not achieved, the soft-impute algorithm is stopped after N it = 104 iterations 
to reduce the total computational time.

In the present application, as shown in Fig. 2:

•	 the training set �tr corresponds to the union of the positions of all entries for the years 2000–2004 (pre-
treatment period) and 75% (randomly selected) of the positions of entries belonging to non-EU countries 
in the years 2005–2020 (treatment period covered by the data set);

(3)Sr(M) = UDrV
T ,

(4)S�(M) := UD�V
T ,

(5)D� := diag[(d1 − �)+, . . . , (dr − �)+] ,

https://rdrr.io/github/susanathey/MCPanel/man/mcnnm.html
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•	 the validation set �val corresponds to the other 25% of the items of the entries belonging to non-EU countries 
in 2005–2020 that are not part of the training set;

•	 the test set �test corresponds to the items belonging to EU countries in the treatment period covered by the 
data set (2005–2020).

It is noteworthy that while ground truth without treatment is available for the validation set �val (which refers 
to untreated non-EU countries), this is not true for the test set �test (which refers to treated EU countries). To 
generate confidence intervals and represent the best/worst scenarios for the estimates for each treated country, 
MC is applied 100 times (Remark 22: This number was chosen as a tradeoff between reducing machine processing 
time and achieving a satisfactory number of generations.), each time randomly selecting the training and 
validation sets as described above.

In each application of MCFE, the regularization constant � is selected via an approach similar to that proposed 
by12. In particular, the optimization problem (1) is solved for multiple choices �k for � . To explore different scales, 
these values are exponentially distributed as �k = 2k/2−25 , for k = 1, . . . ,K = 100 . For each �k , the Root Mean 
Square Error (RMSE) of the matrix reconstruction on the validation set is calculated as follows:

then the choice �◦k that minimizes the RMSEval
�k

 for k = 1, . . . , 100 is found. For each �k , the RMSE of the matrix 
reconstruction on the training set ( RMSEtr

�k
 ) is defined in a similar way, as

In particular, the focus is on the values of RMSEval
�k

 and RMSEtr
�k

 calculated for � = �
◦
k . Since there is no ground 

truth for the counterfactual values in the test set (i.e., the values without treatment), the RMSE for the test set is 
not calculated in this application of the MCFE method.

Results
The MCFE method described in the “Methodology” section was applied starting from the 24× 21 country-year 
level CO2 emissions matrix where selected industries are aggregated (see the “Description of the data set” section), 
and then pre-processed according to the methodology described in the “Methodology” section.

Application of statistical tests about the presence of individual and time fixed effects
To further motivate the adoption of the MCFE method described in the “Methodology” section (which also 
includes individual and time fixed effects), we performed some statistical tests for the presence of significant 

(6)RMSEval
�k

:=

√
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√

√
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Figure 2.   Partition of the considered matrix into training, validation and test sets. Countries are indicated 
on the y axis, while years are indicated on the x axis. T stands for “Treated” and NT stands for “Non Treated” 
(untreated). The training set �tr corresponds to the union of the positions of all entries for the years 2000–2004 
and 75% (randomly selected) of the positions of entries belonging to industrialized non-EU countries in the 
years 2005–2020. The validation set �val corresponds to the other 25% of the positions of the entries belonging 
to industrialized non-EU countries in 2005–2020 that are not part of the training set. The test set �test 
corresponds to the positions of the items belonging to the 17 considered EU countries in 2005–2020.
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individual and time effects in our data. More specifically, we conducted an F-test for the null hypothesis of the 
absence of such effects in the context of a within regression model for panel data75 where the 1-year lagged 
term is the only model covariate. We did not find a significant departure from the null hypothesis of absence of 
individual effects (F =  0.610, p-value = 0.923). On the contrary, time-fixed effects, conditional to allowing for 
individual fixed effects, were found to be statistically significant (F = 2.946, p- value = 0.000). The null hypothesis 
of the F-test for the joint absence of time and individual effects was also rejected (F = 1.694, p-value = 0.006). In 
addition, it should be noted that, as mentioned by12, the inclusion of the individual and temporal components 
aims to improve the quality of the imputation by penalizing only the residual component of the completed matrix 
in the optimization problem (1) (i.e., the one obtained by filtering out the individual and temporal components). 
Thus, it would have made sense to include them even in the case in which the F-test had not rejected the null 
hypothesis. As mentioned in the “Methodology” section, not including such components would lead to systematic 
underestimates.

Evaluation of the MCFE reconstruction accuracy in the pre‑treatment period
It is worth noting that a necessary condition for obtaining credible counterfactual results is that the MCFE 
method achieves satisfactory performance in reconstructing the original matrix without any treatment. In 
the specific analysis, underestimation of the predicted values would not be recommended, as it could lead to 
incorrect conclusions about the impact of the ETS policy on different EU countries. In other words, in this 
context, it is crucial to avoid systematically underestimating the predicted values. It is worth mentioning that 
the performance of nuclear norm-based MC methods was assessed through a simulation study by67 by applying 
such methods to a total CO2 emission matrix, limited to the period 2000–2005, and generated based on the 
World Input–Output Database (WIOD) environmental accounts, 2016 release76. In that work, we found that the 
MCFE method proposed by12 outperformed the MCB method developed by66 in terms of goodness of fit (Mean 
Absolute Percentage Error, or MAPE, was used in that study). In particular, the MAPE of MCFE was very low 
even with a rather large number of unobserved entries in the matrix.

Additional comparisons with other methods
An additional comparison between MC with/without fixed effects estimation (i.e., between MCFE and MCB) 
is reported in Supplementary Section A of the Supplementary Material, which shows that MCFE turns out 
to be more suitable than MCB for assessing the impact of the EU ETS policy on CO2 emissions. Moreover, 
Supplementary Sections B and C of the Supplementary Material compare MCFE with two other econometric 
methods commonly used to estimate counterfactuals (respectively, DiD and SCM), highlighting the advantages 
of MCFE for the specific case of assessing the impact of the EU ETS policy on CO2 emissions. To ease the reading, 
these three comparisons are reported in the “Supplementary Material” rather than in the main text.

Comparison between counterfactual/actual values in the treatment period
The following results refer to the comparison of the counterfactual values (without treatment) with the actual 
values (with treatment). To summarize the results of the analysis, we report our main findings in Fig. 3. The 
estimated CO2 emission values of the treated countries were obtained by applying MCFE. In other words, we 
used MCFE to estimate CO2 emissions in the years of treatment for EU countries (i.e., treated countries) as if they 
had not received the treatment. We repeated the estimation process 100 times, each time randomly splitting the 
untreated portion of the matrix into training and validation sets, as described in the “Methodology” section. Then, 
Fig. 3 shows, for the elements of the test set related to the treated countries, the actual values of CO2 emissions 
(i.e., those obtained in the case of treatment) against the appropriate statistics of the corresponding estimated 
values obtained by MCFE in the case of no treatment. Points are used for the medians (black), 10th percentiles 
(red), and 90th percentiles (blue) of the distributions of estimated values (obtained in the no-treatment case) in 
the 100 repetitions (one distribution for each treated country). The actual values (corresponding to the case of 
treatment) are shown through dark green points. It is worth noting that the actual and estimated values presented 
in Fig. 3 and in the successive figures of the main text have been de-normalized by row, since the application of 
the MCFE method was done after performing the l1-norm row-normalization, then it was necessary to invert that 
process to go back to the original scale of the data. At first glance, we can see that the estimated values are, at a 
different extent, higher than the actual values for all treated countries in our analysis. In other words, according 
to our results, the ETS policy generally reduced CO2 emissions of treated countries, particularly in the years 
after the second year of the second treatment phase (i.e., from 2009 onwards), as intended by the policy itself. It 
is worth noting that to obtain such a result, it was necessary to use the MCFE method by12 instead of the MCB 
method (without fixed effects estimation) by66, as explained in the “Methodology” section.

Application of statistical tests about the comparison between estimated and actual data
A parametric t-student test for the difference between means in independent populations (paired data t-test) 
was also performed to test whether the difference between actual values and estimated values was statistically 
significant under the hypothesis of no treatment. The test was performed for both the raw data and their natural 
logarithmic transformation (to more easily satisfy the normality assumption). To perform this statistical test, 
we considered two samples ( S1 , with the actual values, and S2 , with the imputed values) with the same sample 
size of n1 = n2 = 272 , where 272 is the product of the number of countries treated (17) and the number of years 
of treatment (16).

For all 100 simulations performed (with both raw and log normalized data), we rejected the null hypothesis 
of equal means. This simple evidence combined with Fig. 3 might suggest that the introduction of the EU ETS 
policy had a significant effect on reducing CO2 emissions. At the same time, without a further check, we cannot 
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rule out that this preliminary result is the consequence of using a positively biased estimator, i.e., the method 
used might tend to yield higher values than the true (unknown) counterfactual values.

To verify that this was not the case, we compared, as a diagnostic test, the actual values and the values 
estimated by the MCFE method for both the training and validation sets in the case of the untreated countries 
(this comparison was not possible for the test set because the counterfactual values were not available as 
ground truth). If the MCFE method we used were robust (i.e., if there were no significant overestimates or 
underestimates), then the true and estimated values for these countries would be essentially indistinguishable 
(especially in the case of the training set). This would be particularly important in the case of the validation set 
because it would rule out the overfitting of the training set.

Figures 4 and 5—referring respectively to the training set (restricted to the untreated countries after the start 
of treatment for treated countries) and the validation set (which, by construction, refers only to the untreated 
countries),—show that the differences between the actual values and the values estimated by MCFE were, as 
expected, quite negligible with respect to the corresponding differences obtained, in the original analysis, on the 
elements of the test set related to the treated countries.

Robustness checks
To further verify that our main results, related to the significant reduction of CO2 emissions by the treatment, 
were not affected by a systematic overestimation, we decided to perform a counter-proof as a robustness test. 
To this end, we repeated the counterfactual analysis by reversing the roles of treated and untreated countries. 
In other words, this time we considered the EU countries as untreated and the non-EU countries as treated. So, 
for this second analysis, the (modified) test set was for the non-EU countries over the period 2005–2020. As can 
be seen in Fig. 6, the treatment effects (artificial this time) remained very strong (though reversed in sign, as 
expected) and, in particular, it was possible to rule out the problem of systematic overestimation of the MCFE 
method used, since the predicted values on the new test set looked much lower than the observed values.

Analysis of the effects of the EU ETS policy on CO
2
 emissions

To return to the original analysis presented in the “Comparison between counterfactual/actual values in the 
treatment period” section, as can be seen in Fig. 3, when comparing the actual values of treated countries in the 
years of treatment with the medians of the corresponding counterfactual estimates (Remark 23: For simplicity, 
we consider here and below the medians of the estimated values instead of the estimated values themselves, since 
these are random variables.) obtained (in the case of no treatment) by the MCFE simulations, we can conclude 
that the EU ETS policy was effective in reducing CO2 emissions. This is in line with other literature such as31,51.

As shown in the “Supplementary Material”, during the whole treatment period covered in the database 
(2005–2020), the majority of the EU countries included in our analysis achieved a ratio between the sum of 
the observed values and the sum of the medians of the estimated values (expressed as a percentage) of about 
75–80%. The smallest value (65.01%) was obtained in the case of Denmark (i.e., Denmark’s CO2 emissions were 
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Figure 3.   CO2 emissions of treated countries. Actual values (dark green points) compared to values calculated 
by MCFE for the no-treatment hypothesis (test set). Medians (black points), 10th percentiles (red points), and 
90th percentiles (blue points) considering the 100 MCFE random simulations. The solid vertical red line divides 
the period into pre-treatment and treatment periods. The dashed vertical red line represents the start of the 
second phase of ETS. The reader is referred to the “Comparison between counterfactual/actual values in the 
treatment period”–“Analysis of the effects of the EU ETS policy on CO2 emissions” sections for an additional 
discussion of this figure.
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reduced to more than 3/10 of the sum of the medians of the estimated counterfactual values associated with 
no treatment throughout the analysis period). The largest value (93.32%) was found in the case of Austria (this 
means that the amount of CO2 emissions of Austria decreased at a minimal extent during the whole treatment 
period covered in the database, i.e., 2005–2020, due to the EU ETS policy). In general, however, we can conclude 
that the EU ETS policy did not have an irrelevant impact on CO2 emissions in the EU. According to the results 
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Figure 4.   CO2 emissions of untreated countries. Actual values (dark green points) compared to values 
calculated by MCFE for the no-treatment hypothesis (training set only, after the start of treatment of treated 
countries). Medians (black points), 10th percentiles (red points), and 90th percentiles (blue points) considering 
the 100 MCFE random simulations. The solid vertical red line divides the period into pre-treatment and 
treatment periods. The dashed vertical red line represents the start of the second phase of ETS. The reader is 
referred to the “Application of statistical tests about the comparison between estimated and actual data” section 
for an additional discussion of this figure.
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Figure 5.   CO2 emissions of untreated countries. Actual values (dark green points) compared to values 
calculated by MCFE for the no-treatment hypothesis (validation set only). Medians (black points), 10th 
percentiles (red points), and 90th percentiles (blue points) considering the 100 MCFE random simulations. The 
solid vertical red line divides the period into pre-treatment and treatment periods. The dashed vertical red line 
represents the start of the second phase of ETS. The reader is referred to the “Application of statistical tests about 
the comparison between estimated and actual data” section for an additional discussion of this figure.
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of our analysis, the reduction was even larger than that estimated by 31. In that paper, the authors estimated a 
reduction in CO2 emissions (with respect to the case of the absence of the EU ETS policy) of about 3.8% using 
SCM across the EU for the period 2008–2016. According to the results of our analysis (based on the medians 
of the estimates), the reduction in CO2 emissions for all EU countries included in our analysis (Remark 24: This 
reduction was calculated by comparing the sum of CO2 emissions for each period for all EU countries included 
in the analysis with the sum of the medians of the estimated counterfactual CO2 emissions for the same period 
and the same EU countries.) was approximately 19.0% in the same period 2008–2016 which was considered by31; 
15.4% in the entire 2005–2020 treatment period (these results were obtained from the comparison of the sums 
of actual and counterfactual median values included in Fig. 7 and also in the Supplementary Section D of the 
Supplementary Material) (Remark 25: Still, we point out that the vertical distance between the various 10th and 
90th percentile curves reported in Fig. 3 tends to increase when moving towards the end of the time horizon of 
analysis, so the results obtained at the end of the period turn out to be less reliable than, e.g., the ones related to 
the first year in the treatment period.).

Our results are consistent with the large increase in CO2 emissions compared to the pre-treatment period, as 
shown in Fig. 5. Although both our analysis and that presented by31 show positive effects of the EU ETS policy, 
some differences are observed in the magnitude of the effects achieved. This result could be explained not only 
by the different selection of EU countries considered in the two analyses (Remark 26: Supplementary Sections B 
and C of the Supplementary Material show that a similar magnitude of the estimated effects was obtained by 
replacing MCFE with either DiD or SCM (thus, providing even stronger support to the results obtained by 
MCFE). Nevertheless, MCFE still presented several advantages over these two other methods, as detailed in those 
appendices.), but also by the fact that the work31, neglecting possible transmission effects, derived all their control 
and treated units within the same group of EU countries (i.e., their control and treated units were, respectively, 
economic sectors of EU countries directly affected by EU ETS policy and other economic sectors of the same EU 
countries not directly affected by the EU ETS policy). Instead, our analysis is done at a more aggregate level (i.e., 
EU countries are treated as a whole, limiting to industries potentially affected by that policy, while the control 
units are other countries outside the EU).

It is worth noting that our results change somewhat if we consider CO2 emissions reductions only in the 
first phase of the EU ETS policy (2005–2007), as indicated in the “Supplementary Material”. In this case, the 
reduction in CO2 emissions from the EU ETS policy was much smaller. In particular, looking at the median 
estimates, the reduction in CO2 emissions across the entire group of EU countries included in the analysis 
was about 2.5% in 2005–2007 (Remark 27: It is worth noting that the results obtained by our analysis, at the 
level of the whole set of treated countries, turned out to be quite robust with respect to variations in the data 
set. Indeed, we performed a similar analysis using CO2 emissions data from a different source (the WIOD 
database environmental accounts, see76). Two smaller subsets of treated and untreated countries were selected, 
a shorter period of analysis was considered, and the aggregation of CO2 emissions was made by considering all 
the industries. In spite of these changes, our estimated reductions of CO2 emissions in the whole set of treated 
countries in the periods 2005–2007 and 2008–2016 ( 3.1% and 19.4% , respectively) were quite similar to the ones 
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Figure 6.   Inversion of treated and untreated countries in MCFE analysis. CO2 emissions of untreated countries. 
Actual values (dark green points) versus values calculated by MCFE in the treatment hypothesis (modified test 
set). Medians (black points), 10th percentiles (red points), and 90th percentiles (blue points) considering the 
100 MCFE random simulations. The solid vertical red line divides the period into pre-treatment and treatment 
periods. The dashed vertical red line represents the start of the second phase of ETS. The reader is referred to 
the “Robustness checks” section for an additional discussion of this figure.
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obtained in the present analysis, based on the EDGAR database (i.e., 2.5% and 19.0% , respectively). This issue, 
combined with the extremely high coverage of CO2 emissions by the data set considered in the present analysis, 
leads us to believe that the impacts estimated by our analysis are quite robust to different approaches to identify 
treated and control units of analysis.). Moreover, in three countries (Austria, Italy and Spain) the sums of the 
medians of the estimated counterfactuals were even higher than the corresponding sums of the observed values. 
In the first phase of the policy, the penalty for CO2 emissions exceeding the quota was indeed small. This fact 
could be a possible explanation for the lower reduction in the first years of the policy.

Conclusions, policy implications, and possible future research developments
CO2 emissions represent a growing problem closely related to pollution and climate change. Economic systems 
produce large amounts of CO2 through the use of fossil energy. Therefore, governments are trying to shift 
production to new systems in order to reduce emissions77. In this context, the EU has introduced a market for 
emission rights, called the Emissions Trading Scheme (ETS), which was launched in 2005 and further expanded 
in subsequent years, as the second phase began in 2008. The impact of EU ETS on reducing CO2 emissions is 
still debated in the literature.

In this paper, we present a new approach to quantify the impact of EU ETS policy on CO2 emissions 
reductions. A counterfactual analysis allows us to quantify the reduction in CO2 emissions from the ETS policy. 
The novelty of our work is that we apply, for the evaluation of the EU ETS policy, a state-of-the-art Statistical 
Machine Learning (SML) method based on Matrix Completion with Fixed Effects estimation (MCFE) for 
counterfactual analysis. The importance of using MCFE for this task becomes clear when one considers that 
conventional policy evaluation methods such as matching techniques—e.g., Propensity Score Matching (PSM), 
Mahalanobis and Hainmueller balancing—and the Synthetic Control Method (SCM) are not always suitable 
for performing true policy evaluation, since in some applications it may be nearly impossible to identify an 
appropriate control group for these methods, or small-sample issues may arise (Remark 28: See Supplementary 
Section C of the Supplementary Material for a more detailed discussion on these issues for the SCM case.). 
Applying the MCFE method to the CO2 emissions matrix at the country-year level allowed us to quantitatively 
assess the impact of EU ETS on reducing emissions.

Using robust statistical tests and diagnostic controls, the effect of the EU ETS was found to be statistically 
significant, in line with some recent contributions. Based on our analysis, the CO2 reduction from this policy 
appears to be higher than that found in the previous literature. We believe that the previous literature tends 
to underestimate the CO2 reduction because it focused on the first phase of the policy and selected countries 
using less sophisticated methods to establish valid counterfactual estimates. We believe that overcoming such 
drawbacks through the adoption of MCFE is a significant result in terms of policy evaluation.

From the policy-making perspective, a first managerial/practical implication of this study concerns suggesting 
the adoption of policies similar to the EU ETS one to other similar countries (e.g., in the same phase of the 
environmental Kuznets curve) (Remark 29: This kind of application would be similar to the counter-proof 

● ●
● ●

●
● ●

● ● ● ● ● ● ● ●

●

0

500

1000

1500

2000

2500

17 treated EU countries

year

C
O

2�
em

is
si

on
s 

(m
illi

on
s 

of
 to

ns
)

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

● ● ● ●

●
● ●

● ● ● ● ● ●
● ●

●

● ●
● ●

●
● ●

●
● ● ● ● ● ● ●

●● ● ●
● ● ● ● ●

●

●
● ● ●

●
● ● ● ●

●

●

●

●

●

●

●

Counterfactual (MCFE) − median
Counterfactual (MCFE) − p10
Counterfactual (MCFE) − p90
Actual

Figure 7.   Sums of (observed and estimated) CO2 emissions of the entire group of the 17 treated EU countries. 
Actual values (dark green points) compared to values calculated by MCFE for the hypothesis without EU ETS 
treatment (test set). Sum of medians across treated countries (black points), sum of 10th percentiles across 
treated countries (red points), and sum of 90th percentiles across treated countries (blue points) considering 
the 100 MCFE random simulations. The solid vertical red line divides the period into the pre-treatment and 
treatment periods. The dashed vertical red line represents the start of the second phase of ETS. The reader 
is referred to the “Analysis of the effects of the EU ETS policy on CO2 emissions” section for an additional 
discussion of this figure.
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reported in the “Robustness checks” section.), in the spirit of the classical Matrix Completion (MC) application 
to recommender systems, which has been outlined at the beginning of the “Non-technical overview of the 
original contributions of the work” section. A second managerial/practical implication of our study concerns 
following the same pipeline as in the “Results” section for the evaluation of the environmental impact of other 
policies different from the EU ETS one. As a third important managerial/practical implication, the methodology 
adopted in the study could be employed as one of the tools to assess the economic, social, and environmental 
impact of policies, as established by recent EU legislation (Remark 30: See https://​commi​ssion.​europa.​eu/​law/​
law-​making-​proce​ss/​plann​ing-​and-​propo​sing-​law/​impact-​asses​sments_​en.). In this context, MC could be used 
to do a more rigorous impact analysis of various policies, also with predictive aims: for instance, when one was 
given timely information for a group of countries but less recent information for a second group of countries, 
then one aimed to estimate trends for the countries in the latter group. This situation would likely arise when 
data related to different countries were not available simultaneously, but sequentially, because of the presence 
of heterogeneous data sources (Remark 31: A similar argument was used to motivate the recent MC application 
made by57 in the context of input–output analysis.).

The results of our analysis make it possible in a rather simple way to express the reduction in environmental 
damage resulting from the introduction of the EU ETS policy in monetary terms. As this issue is not the focus 
of the present work, we plan to address it in a future extension of this research. Other possible future research 
developments concern overcoming some of the limitations of the current MCFE application, which are listed 
below along with possible ways to overcome these limitations.

First, the assumption that EU countries represent the treated group while the selected non-EU high-income 
countries are untreated by the EU ETS policy might oversimplify the complexity of that policy implementation 
and of its environmental impact. In particular, the possible presence of confounding factors—such as 
heterogeneous population growth and Gross Domestic Product (GDP) growth—could influence the estimates 
(Remark 32: It is also worth noting that the MC methodology adopted in our work already deals partially with 
these issues, because, differently from other econometric methods such as the Difference-in-Differences (DiD), it 
does not require the parallel trend assumption in the pre-treatment phase, implying the possibility to extrapolate 
time series to the treatment period even in the presence of heterogeneous trends in such time series during the 
pre-treatment period.) and would deserve further investigation in a future development of the present study 
(Remark 33: The possible presence of such factors is one additional reason for the exclusion of small countries 
from the data set used for the analysis made in the present study, in view of their expected high sensitivity to 
small shocks (see “Description of the data set” section).). Still remaining in the context of a MCFE analysis, 
the validity of the assumption above could be verified in the following way. First, one could include additional 
covariates in the MCFE optimization problem, either by inserting them at the beginning of each row of the matrix 
to be reconstructed (as is done in some applications of SCM78), or by applying the extension to the presence of 
covariates, still proposed by12, of the MCFE optimization problem considered in this study. Then, one would 
compare the resulting estimates with the ones achieved in the present work, assessing if only minor changes 
were obtained. Such additional analyses are expected to require an extensive integration of the available data set, 
with the aim of including a sufficiently large number of potential confounders. An alternative way to address 
this issue could consist in replacing MC(FE) with either collective MC79 or tensor completion80 (possibly still 
with the insertion of covariates in the model). This could have the advantage of making it possible to consider 
different levels of treatment. However, both the latter extensions are expected to be much more computationally 
expensive than the MCFE approach adopted in this work.

Second, the MCFE application made in the present study works at quite an aggregate level, since the entries of 
the matrix to be reconstructed refer to CO2 emissions at the country-year level, by restricting the aggregation to 
CO2 emissions coming from selected industries. On one hand, a first possible future development could consist in 
a further data aggregation in each country by considering CO2 emissions coming from all the industries, with the 
aim of verifying the absence of leakage effects of the EU ETS policy with respect to other industries in the same 
country. On the other hand, as a second possible future development, one could further disaggregate the data. For 
instance, after estimating the yearly impact of the ETS policy for a specific EU country (as made in the present 
work), one could distinguish between treated/untreated industries in that country, and perform the analysis at 
the industry-year level (focusing on the specific country). This would help assessing possible heterogeneous 
impacts of the ETS policy on different industries of the selected country. It is worth mentioning that, differently 
from the MCFE application considered in the present article, at this less aggregate level the average effect of the 
ETS policy of a given EU country on CO2 emissions related to the activity of specific industries could be even 
negative, while at the level of the whole country, the effect of the policy on CO2 emissions of the activity of all 
the industries in that country is expected to be positive, at least after some years since the adoption of the policy. 
So, identifying industries for which a negative average effect is obtained could help policymakers to investigate 
improvements of the policy and/or the possible presence of confounding factors that have influenced negatively 
the policy implementation.

Third, the EU ETS policy is a rather complex policy, which actually covers several phases of actuation. In our 
work, we have simplified the analysis of the treated countries by including information for them only on the fact 
they were treated/untreated in a specific period. Indeed, a direct application to causal inference of the matrix 
completion methodology developed by12 allows one only to distinguish, for treated countries, between periods 
of treatment and periods of no treatment, but does not allow to include (at least in a straightforward manner) 
information about the occurrence of a specific phase of treatment. Further developments of this methodology 
would make it more feasible to extend the present MC analysis to the estimation of phase-dependent CO2 
counterfactual emission levels.

Fourth, for future research, we also consider developing a more sophisticated model that examines (in 
monetary terms) whether or not the decrease in output due to the price of CO2 emissions outweighs the reduced 

https://commission.europa.eu/law/law-making-process/planning-and-proposing-law/impact-assessments_en
https://commission.europa.eu/law/law-making-process/planning-and-proposing-law/impact-assessments_en
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environmental damage (this would require an appropriate definition of green gross domestic product). In 
addition, the whole analysis could be extended to a less aggregate level (with larger matrices) after accelerating/
parallelizing the MCFE implementation, as was done recently by60 for another application of the related baseline 
MC (MCB) method. This is important for the potential use of MCFE with three-dimensional data set of countries, 
industries, and years, possibly achieved by associating country-industry pairs with a single index, to avoid 
replacing MC with tensor completion. Finally, more sophisticated methods could be applied to obtain an estimate 
of the possible indirect impact of the EU ETS policy (e.g., related to carbon leakage to other non-EU countries) 
to better estimate the overall impact of the EU ETS policy.

Fifth, another possible research development concerns the investigation of potential adverse economic effects 
of the EU ETS policy. This would require replacing/combining the data set used for the current analysis with 
one related to the yearly level of economic activities of each country. Beside MCFE, other possible methods of 
analysis could be the already-mentioned collective MC and tensor completion.

Finally, the recent Machine Learning (ML) literature points out other methods for time-series prediction, such 
as multivariate Gaussian processes regression81, and deep learning techniques82, which could be also considered 
as possible alternative methods for counterfactual prediction in a future extension of this research.

Data availibility
The database used (i.e., the Emissions Database for Global Atmospheric Research, or EDGAR) can be accessed 
for free at https://​edgar.​jrc.​ec.​europa.​eu/. Population data are taken from the World Bank’s free database, available 
at https://​data.​world​bank.​org/. The MCFE analysis performed in this work is based on the application of the 
function “mcnnm” contained in the R package “MCPanel”, which is freely available at the following hyperlink: 
https://​rdrr.​io/​github/​susan​athey/​MCPan​el/​man/​mcnnm.​html. This function allows the possibility of either 
estimating or not the row-fixed and column-fixed effects (hence, to apply also the MCB method). The SCM 
application is based on the MATLAB package “Synth”, which is freely available at the following hyperlink: https://​
web.​stanf​ord.​edu/​~jhain/​Synth_​Matlab/​Synth_​MATLAB.​zip.
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