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Introduction

Non-physiological stress and strain on vascular 
wall

Blood vessels are constantly exposed to two hemody-
namic stimuli due to the pulsatile nature of blood pres-
sure and flow: the wall shear stress (WSS), which is the 
frictional force per unit area exerted by the blood flow 
parallel to the vessel wall, and the intraluminal pressure, 
which stretches the vessel wall perpendicularly, promot-
ing circumferential strain.1,2 Vascular cells sense and 
respond to these mechanical stimuli to maintain the 
integrity of the vasculature itself and to enable appropri-
ate adaptations.3 Despite vascular endothelial cells (ECs) 
and vascular smooth muscle cells (SMCs) are exposed to 

both types of mechanical cues, the shear stress resulting 
from blood flow is acting primarily on ECs of the intima, 
whereas SMCs of the media are primarily subjected and 
sense changes in intramural stress.1,3
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In this context, several molecular pathways are known 
to be involved in the onset of cellular responses to the 
above-mentioned mechanical forces,1 which result in the 
regulation of intracellular signaling, gene expression, and 
protein expression that maintain the physiological function 
of blood vessels. In physiological conditions, the biological 
response varies with changes in mechanical and chemical 
stimuli, maintaining a dynamic balance which allows to 
preserve vascular homeostasis.4 However, when this bal-
ance is disturbed by non-physiological mechanical stimuli, 
cell signaling can lead to a responsive adaptation or damag-
ing of the vessel wall, possibly contributing to diseases of 
the vasculature. In this regards, previous research has dem-
onstrated that ECs exposed to unidirectional and elevated 
WSS exhibit a quiescent phenotype5,6 while disturbed flow 
characterized by low and oscillatory WSS, typically found 
in bifurcation or branching regions, has been suggested to 
trigger a proliferative, pro-inflammatory, pro-oxidant ECs 
state and an impaired vascular tone regulation.5 In litera-
ture, it is also reported that SMCs manifest a diverse array 
of phenotypes, based on the type of artery and the presence 
of disease. Additionally, different loads can promote vari-
ous cytoplasmic signals and gene expression patterns that 
modulate both SMCs’ structure and phenotype.3 Typically, 
cyclic strains or stresses at levels that replicate physiologi-
cal values result in maintaining physiological SMCs phe-
notypes. On the contrary, exposure to cyclic strains or 
stresses exceeding normal thresholds often triggers inflam-
matory pathways in SMCs.7,8

Perturbations in vascular stresses and strains caused by 
changes in blood pressure and hemodynamics may occur 
either under physiological conditions, such as during phys-
ical exercise, or pathological conditions related to vascular 
disease.9 Changes in physiological vascular stresses 
develop also in arteriovenous shunt for vascular access in 
hemodialysis patients, as well as in artificial vascular graft 
and in some conditions also with mechanical circulatory 
support. Thus, over the past decades it has become evident 
that understanding how the local hemodynamic conditions 
affect the mechanotransduction of vascular cells is crucial 
for elucidating the underlying mechanisms of vascular 
homeostasis and disease.

Turbulent-like flow-induced vascular wall 
vibrations revealed through computational 
studies

Disturbed blood flow and “turbulence” in the vascular 
system is normally linked to pathological conditions. 
These flows feature rapid and seemingly random veloc-
ity and pressure fluctuations in time and space, with 
continuous energy transfer across scales. Such flows 
may share certain features with turbulence, but do not 
necessarily exhibit all of the well-known characteristics 
outlined by Tennekes and Lumley in 1972 or follow 

mathematical theories of high Reynolds number homo-
geneous and isotropic turbulence itself.10

Furthermore, the presence of flow instabilities leading 
to vascular pathologies and adverse vascular remodeling is 
well-documented in various vascular districts. For instance, 
adopting medical image-based computational fluid dynam-
ics (CFD) from magnetic resonance imaging (MRI) or 
computed tomography (CT) scans, with boundary condi-
tions obtained from literature or patient-specific Doppler 
ultrasound, turbulent-like flow phenotypes have been doc-
umented in cerebral aneurysms,11 as well as in carotid 
syphons12 where atherosclerotic plaques commonly occur. 
Additionally, transitional flow has been found in the venous 
segment of hemodialysis arteriovenous fistula (AVF),13,14 a 
vascular region usually associated to neointimal hyperpla-
sia,15 which is a fibrotic-muscular thickening of the vessel 
wall caused by the migration of smooth muscle cells into 
the intimal layer of the vessel.16,17

Such turbulent-like flow can induce high-frequency 
vibrations in the vascular wall. Recent studies from our 
group18 showed, through a fluid-structure interaction (FSI) 
approach, that transitional flow-induced high frequency 
pressure fluctuations caused the walls in the AVF vein to 
vibrate at frequencies up to hundreds of Hz. Moreover, 
these vibration amplitudes were found to be predominant at 
the inner curvature of the cephalic vein, the region where 
stenotic lesions typically develop. Furthermore, recent FSI 
studies have uncovered the presence of vascular wall vibra-
tions also within cerebral aneurysms,10,19,20 unraveling 
broad-band, random vibrations which show similar charac-
teristics with clinically observed bruits.21,22

All these evidence from “in silico” studies suggest that 
high-frequency vibrations may play a role in vascular mech-
anobiology across different vascular regions, highlighting 
the need for further exploration into this phenomenon.

Vascular wall vibrations in the onset of 
cardiovascular disease

Investigating the impact of high-frequency vibrations on 
the cardiovascular system has roots dating back to the lat-
ter half of the 20th century. During this period, experimen-
tal setups and animal clinical models were developed to 
explore thrills, bruits, and high-frequency vibrations, sug-
gesting a potential link to the onset of vascular diseases. 
Already in 1963, Roach.23 observed that the presence of a 
recordable bruits was a common feature in various dis-
eases characterized by vascular stenosis. Wang et al.24 
found that patients with occlusive coronary arteries, where 
turbulent flow fluctuations were present, exhibited a typi-
cal increase in high frequencies that matched with acoustic 
signals recorded by a chest microphone. In the same 
period, other experiments25–27 documented vascular wall 
vibrations that might contribute to the pathogenesis of 
structural fatigue affecting the vasculature subjected to 
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non-physiological stimulus. Then, the relationship between 
bruits and pressure fluctuations in the post-stenotic region 
was numerically investigated in idealized vessels.28,29 
Also, recent studies on carotid artery bifurcation30 and cer-
ebral aneurysm31 reported turbulent flow-induced high-
frequency vibrations. Therefore, based on the reported 
rationale, understanding how the frequency of blood flow- 
and pressure-induced vessel wall displacement impacts on 
vascular function is essential for elucidating the underly-
ing mechanisms of vascular diseases. Thus, the aim of this 
review is to explore the existing literature regarding the 
effect of a high-frequency vibration on the behavior of 
vascular cells in terms of morphological, functional, and 

mechanobiological changes. We define as high-frequency 
vibrations, frequencies exceeding that induced by the nor-
mal heart rate, corresponding approximately to 1–2 Hz in 
humans and to 6 and 9 Hz in rats and mice, respectively 
(Figure 1).32

Impact of high-frequency stimulation 
on vascular cells morphology, 
functions, and mechanobiology

Cellular mechanotransduction is an important biological 
process in living organisms, deeply investigated to assess 
the impact of biological mechanical cues such as the 

Figure 1. Biological response of vascular cells to flow-induced high-frequency vibrations. The schematic diagram reports some 
of the morphological, functional, and gene expression changes observed in endothelial (ECs) and smooth muscle cells (SMCs) 
exposed to stimuli at high-frequencies. Morphological changes include actin fibers alignment and cell orientation, vascular tone 
regulation, formation of double-membrane limited vacuoles, and disruption of the internal elastic lamina (IEL). Vibrations induce 
the proliferation of smooth muscle cells leading to a thickening of the intimal layer and promote in ECs and SMCs the expression 
of factors and the activation of pathways related to inflammation, oxidative stress and vascular dysfunction, including extracellular 
signal-regulated kinase 1 and 2 (ERK1/2), endothelial nitric-oxide synthase (eNOS), nuclear factor-kB (NF-kB), soluble guanylate 
cyclase (sGC), Krüppel-like factor 2 (KLF-2), vascular endothelial growth factor (VEGF), tumour necrosis factor alpha (TNF-α), 
interleukin-8 (IL-8), interleukin-4 (IL-4), and interleukin-10 (IL-10). Early growth response 1 (Egr-1). This figure was created using 
Biorender.com
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circumferential stretching force, the fluid shear stress and 
the extracellular matrix (ECM) stiffness on multiple path-
ophysiological processes. Signals are sensed by the ion 
channels and receptors on the cell membrane and affect 
cell-matrix communications and signal transduction, trig-
gering changes in cytoskeleton structure and downstream 
signaling cascades which regulate several processes inclu-
ding cell differentiation, adhesion, migration, prolifera-
tion, secretion of factors, and ECM generation.33

Many signaling pathways have been identified as 
involved in cell responding to mechanical stimuli. A large 
body of evidence is reported regarding the role of vascular 
endothelial growth factor (VEGF), Notch, platelet-derived 
growth factor (PDGF), Krüppel-like factor 2 (Klf2), 
endothelial nitric-oxide synthase (eNOS), endothelin, Rho 
family signaling molecules, mitogen-activated protein 
kinase (MAPK) signaling pathway, nuclear factor-kB (NF-
κB) signaling pathway, and GTPase signaling pathway.34,35 
Great attention was given to mechanosensors including 
integrins, the glycocalyx, primary cilia, G protein-coupled 
receptors, and ion channels36–43 such as Piezo1.44 In 
response that is, to fluid shear stress, several mechanosen-
sory complexes are also activated, including vascular 
endothelial cell cadherin (VE-cadherin), VEGF receptor 2 
(VEGFR2), and platelet endothelial cell adhesion mole-
cule (PECAM-1).41 Furthermore, activation of extracellu-
lar signal-regulated kinase 1 and 2 (ERK1/2) cascades is 
reported.45

With regard to cellular responses to cues, several inves-
tigations have explored the connection between mechani-
cal signal transduction and diseases. That being said, the 
study of vibrations of the blood vessel wall promoted by 
pressure fluctuations recently acquired interest, since a 
correlation with some vascular pathologies has been 
observed.19,20,23,31 Based on these studies, high-frequency 
vibrations appear to impact vascular cell functions, sug-
gesting the role of a mechanobiological process that links 
high-frequency stresses within the vessel wall to adverse 
vascular remodeling. In the next paragraphs, we report the 
available evidence in the literature concerning the effect of 
high-frequency stimuli on the biology of vascular cells.

Morphological changes in vascular cells 
stimulated by high-frequency stimuli

Over the years, the potential of high-frequency stimuli in 
inducing cell morphological changes has been studied by 
exposing cultured cells or vessel segments to mechanical 
loadings such as vibration or cyclic stretching. It is reason-
able that cells sense a cyclic circumferential strain when 
they are subjected to a vertical vibration, since their body 
is stretched perpendicularly to the axis of their displace-
ment. That being said, this stress might play a role in the 
effect of vibrations on vascular cells.

Several in vivo studies investigated the impact of this 
stimulus on vascular histology. Krajnak et al.46 explored 
the physiological effects of vibrations on the ventral tail 
artery of rats exposed to a 125 Hz-vibration. Their study 
revealed no apparent signs of trauma to the vascular 
smooth muscle or endothelial cell layer in arteries col-
lected from both stimulated and unstimulated animals. 
However, arteries from vibrated rat tails exhibited larger 
involutions in the internal elastic lamina (IEL), indicative 
of vessel constriction, and compression of endothelial 
cells.

Furthermore, in 2002, Curry investigated the mecha-
nism of vibration injury by exposing rat tails to a 60 Hz 
vibration.47 Electron microscopy revealed numerous arte-
rial regions with loss and thinning of endothelial cells, 
along with activated platelets coating the exposed suben-
dothelial tissue. Both ECs and SMCs contained double 
membrane-limited, swollen vacuoles similar to those 
formed under massive vasoconstriction induced by direct 
norepinephrine application.48 This similarity suggests the 
vasoconstrictive potential of vibrations. Additionally, the 
study identified an increase in chondroitin sulfate proteo-
glycan, which normally precedes smooth muscle migra-
tion,49 in the extracellular matrix between SMCs. Since the 
denudation of the endothelial barrier triggers platelet 
adherence and their release of factors leading to smooth 
muscle proliferation and stenosis, together with factors 
that degrade the internal elastic lamina, Curry hypothe-
sized that a similar scenario may occur when vibration dis-
rupts the endothelium of the tail artery, resulting in 
degradation of the IEL. If this hypothesis is correct, pro-
longed vibrations should result in smooth muscle over-
growth and eventually to vascular occlusion.

Much evidence shows that mechanical stresses can also 
modulate cell orientation and actin fibers alignment. For 
instance, cyclic strain at low frequencies has been observed 
to induce vascular cells to align most frequently approxi-
mately 90° away from the direction of stretch.50–53

In this regard, the orientation and structural network of 
the vascular SMCs layers that build up the arterial wall are 
very important for maintaining its mechanical strength and 
function and also for providing the mechanical compliance 
required for pulsatile blood flow.54–56 The stress loading 
induces vascular smooth muscle cells to align in a fre-
quency-dependent way,50 and their response to cyclic 
mechanical loading appears to accelerate with higher fre-
quencies.51 However, this phenomenon was assessed only 
for frequencies lower than 2 Hz, indicating a need for fur-
ther data on the outcomes of higher-frequency stimulation 
of these cells. Furthermore, ECs exhibit a greater degree of 
alignment in response to 1 Hz stretching compared to 
0.1 Hz, resulting in a more attenuated effect, and to 0.01 Hz, 
which causes a complete lack of stress fiber orientation. 
Again, despite interesting studies on the response of these 
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cells to low frequencies, information about the impact of 
high-frequencies is not present in the literature.52 Human 
fibroblasts subjected to cyclic stress elongate along the 
direction perpendicular to the mechanical loading, and the 
timing of the cytoskeleton orientation is influenced by cell 
density and stimulus frequency. For subconfluent cells, the 
time needed for the alignment decreases as the frequency 
of stretch loading raise from 0.1 Hz to 1 Hz. However, no 
further acceleration in alignment is observed when the 
stimulus is increased up to 20 Hz. Conversely, confluent 
cells exhibit a shorter reorientation time, which tends to 
decrease with increasing frequency of the applied stimu-
lus. These findings suggest that cell-cell contacts mediated 
by cadherins may play a significant role in the cellular 
response to mechanical strain.53

Additionally, in a recent study by Mu et al., the impact 
of a stimulation with vibrations at a frequency of 31.5 Hz 
on the morphology of cultured ECs was assessed. They 
observed that in the absence of vibrations cells exhibited 
a flat, polygonal morphology, tightly packed in a paving 
stone pattern. However, this morphology was notably 
altered after mechanical stimulation, with cells acquir-
ing a rounded morphology and a decreased distribution 
density.57

Overall, these studies highlight those different frequen-
cies of mechanical stimuli may induce diverse cellular 
responses in different cell types. Vascular cells adjust their 
shape and orientation to endure the cues they experience, 
leading to the remodeling of the vessel wall which aims at 
the maintenance of the structure, function, and mechanical 
integrity of the vessel. However, despite the large number 
of studies, primarily investigating histological modifica-
tions of the vessel wall, the molecular mechanism by 
which vibration leads to these changes remains unknown. 
Moreover, consistent observation of the effect of vibra-
tions within the range of 50–150 Hz is not yet present in 
the literature.

Functional changes in vascular cells stimulated 
by high-frequency stimuli

Mechanical signals exert significant influence over numer-
ous essential cellular functions, impacting processes such 
as cell proliferation, differentiation, and migration, and 
consequently governing critical phenomena including 
bone and cartilage growth, wound healing, and angiogen-
esis.58 However, many aspects of the biochemical trans-
duction of some mechanical stresses like vibrations are not 
known in detail, yet a profound understanding of the way 
cells respond to them is important for basic biological sci-
ence, in the vascular field in particular.

It has been reported that a normal response of bio-
logical tissues to repeated stress is an increase in prolif-
eration.59 Therefore, it is reasonable to hypothesize that 

exposure of vascular cells to high frequency stimulation 
may induce changes in cell growth and vessel remode-
ling. However, there is limited research available on 
this topic.

In vivo, prolonged exposure to vibrations triggers vas-
cular impairment. Histological changes observed in the 
peripheral arteries of workers subjected to the frequent use 
of vibrating tools, who manifested Raynaud’s phenome-
non,60 can be considered among the first evidence of the 
damaging potential of this mechanical stimulus. Raynaud’s 
phenomenon is one of the main symptoms of the hand-arm 
vibration syndrome (HAVS), which is characterized by 
dysfunction of the peripheral vascular and sensorineural 
systems, and cause an exaggerated vasoconstriction, espe-
cially in response to cold temperature-exposure.46,61

Several studies investigated the role of wall vibrations 
in inducing vascular remodeling. Okada et al.62 demon-
strated experimentally the occurrence of intimal thicken-
ing in peripheral arteries of rats after 90 days of exposure 
to a local vibration at 60 Hz. The same group, some years 
later showed that the small arteries of hind legs of rats 
exposed for 30 days to vibrations at 30 and 480 Hz mani-
fested a thicker intimal layer. The disruption of internal 
elastic lamina and focal cell proliferation and the forma-
tion of collagen and elastic fibres was also observed.60 
Further research63 revealed an important reduction in the 
lumen diameter of ventral tail arteries in rats exposed to 
vibrations at 250 Hz, accompanied by a significant increase 
in vascular smooth muscle thickness. Conversely, stimula-
tion at frequencies of 62.5 and 125 Hz induced morpho-
logical changes that were not statistically significant.

Additionally, Bittle59 proposed a hypothesis trying to 
correlate the hyperproliferation of the intimal layer with 
vascular vibrations. She reported that the contractile 
myofilaments of vascular smooth muscle cells and their 
attachment to the plasma membrane as forming a lattice 
network. This network allows internal cellular struc-
tures, such as the nucleus and Golgi complex, to move 
differently from the surrounding cytoskeletal structure, 
resulting in abnormal stresses on cell structures. Such 
abnormal stress, along with localized stretching of the 
membrane due to relative motion of the myofilaments, 
may activate cellular signaling pathways leading to 
increased cell growth or replication. She also assessed 
the impact of vibrations on cell proliferation by cultur-
ing vascular SMCs in growth environments simulating 
disturbed flow, with high-frequency vibrations and small 
amplitude motions. Among different combination of the 
two parameters, she found that only cells exposed to a 
displacement of 12 µm at 45 Hz exhibited significantly 
higher growth rates compared to cells cultured in static 
conditions. This suggests that both the frequency and 
amplitude of the stimulus may impact on cellular func-
tions. At variance to this investigation, a study conducted 
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in 201264 demonstrated that two murine myoblast cell 
lines, C2C12 and L6C11, exhibited reduced prolifera-
tion rates compared to control cells after being exposed 
to 30 Hz-frequency vibrations for one week. The cell 
index, a measure of cell quantity in a culture plate well, 
was significantly lower in treated wells. They also con-
cluded that the decreased growth rate was not due to 
apoptosis activation, since no differences in apoptotic 
cell percentages were observed. Therefore, they sug-
gested that mechanical vibration might induce micro 
cytoskeletal alterations, leading to a reduction in cycling 
capabilities of cells. This discrepancy among the studies 
available in the literature need further investigation to 
understand more in detail the effect of high-frequency 
vibrations in this cell phenotype.

High-frequency mechanical stimuli modulate 
gene expression in vascular cells

Exposure to high-frequency stimuli may modulate the 
expression level of some genes in vascular cells. It is 
known that altered blood flow hemodynamics triggers an 
adaptive response of the vessel wall involving migration 
and proliferation of vascular SMCs in the subintimal 
space65 through the activation of intracellular signaling 
molecules such as MAPKs.66,67 The MAPK cascade, 
comprising ERK1 and ERK2, is well known for its role 
in mediating signal transduction induced by hemody-
namic forces and growth factors.68 This cascade activates 
the nuclear transcription factor Elk-1, crucial for the tran-
scriptional activation of early growth response 1 (Egr-
1),69 which coordinates the expression of various 
endothelial and vascular smooth muscle cell proteins 
involved in the molecular signaling activated by hemo-
dynamic cues, such as PDGF-A, PDGF-B, and trans-
forming growth factor-β (TGF-b).68,70 Based on this 
rationale, Loth et al.68 examined the distribution and 
activity level of ERK1/2 in a porcine arteriovenous graft 
model. This study showed that venous anastomosis 
exhibits areas of high-frequency vein-wall vibration 
(~300 Hz), which correlate with elevated activity levels 
of ERK1/2 and intimal thickening. In detail, a densito-
metric analysis revealed that ERK1/2 primarily localized 
in regions with the highest intensity of vibration within 
the intimal and medial SMCs. Molecular investigations 
using MAPK assay and Western Blot assay confirmed 
their enhanced activity along with increased activation of 
the downstream effector Elk-1. These findings provide 
initial evidence of a potential association between vein-
wall vibration and the ERK1/2 mechanotransduction 
pathway. Furthermore, 4 weeks post-anastomosis, there 
was a modest increase in T lymphocyte and macrophage 
infiltration across the anastomotic regions, albeit not co-
localized with activated ERK1/2 within the intima.68 This 

suggests the possible existence of an ERK1/2-independent 
mechanism responsible for recruiting inflammatory cells 
to the damaged vessel site, although this aspect was not 
investigated in this study. Overall, these findings suggest 
that mechanical variables, such as turbulence-induced 
vein-wall vibrations, may significantly influence MAPK 
activation in intimal endothelial cells. However, given 
the proximity of the oscillation region to the flow branch-
ing area, it is challenging to distinguish their individual 
effects. Therefore, further research is necessary to eluci-
date the precise distribution of ERK1/2 and its role in 
mechanotransduction.

Another signaling molecule that has a pivotal role in 
regulating blood flow and oxygenation of tissues is nitric 
oxide (NO). Nitric oxide is produced and released into 
the blood by the endothelial cells that line the blood  
vessels and lymphatic vessels.71 The effect of high-fre-
quencies stimuli on NO release by ECs was already 
investigated in the early 1990s by Hutchenson,72 who 
found that the molecule is produced as a function of pul-
satility with an optimal frequency of pulsation of 2–8 Hz 
(120–480 cpm). The baseline pulsations in the human cir-
culation are in the frequency range of 1–2 Hz and addi-
tional pulsations beyond these increase NO bioavailability 
via eNOS.72–74 Vibration stimulates ECs to produce and 
release NO and crucial for its generation is the endothe-
lial nitric oxide synthase. Despite the precise mechanisms 
by which vibrations influence endothelial mechanosen-
sors to modulate eNOS activity are not fully understood, 
it seems that the endothelial cells mechanosensor-pro-
teins Syndecan-4 (Syn4), VEGF, and KLF2 translate the 
physical force from the vibration into biochemical sig-
nals. Studies have demonstrated that vibroacoustic stim-
ulation at 100 Hz induces Syn4 and VEGF expression.75,76 
NO, in response, regulates blood flow and vascular tone 
by affecting vascular smooth muscle cells, activating 
guanylate cyclase (sGC),77 and regulates the phospho-
rylation of ERK1/2.78 Significant NO-release increment 
has been observed with different types of vibrations, 
including whole-body periodic acceleration at 6 Hz,79 
arm-applied vibration at 50 Hz,80 chest-applied sonic 
vibration at 100 Hz,81 and low amplitude-vibrations at 
various body surfaces ranging from 150 to 250 Hz.82 
Furthermore, nuclei of endothelial, smooth muscle, and 
adventitial cells from rat ventral tail arteries exposed for 
4 h to a 60 Hz-vibration, showed an increased immu-
nostaining of the Ca+2 activated nuclear factor of acti-
vated T-cells cytoplasmic 3 (NFATc3), induced by the 
upregulation and nuclear translocation of the factor.47 
Since NFAT is known to regulate cardiac hypertrophy,83 
it is plausible to consider its involvement in vibration-
induced endothelial cell injury. Although the mechanism 
of action and protein expression influenced by NFAT 
were not characterized, evidence concerning this factor 
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could be relevant for future research aimed at investigat-
ing the cellular and molecular mechanisms involved in 
the early stages of vibration injury.

Recent research suggests that high-frequency mechani-
cal vibration can promote inflammation and oxidative 
stress. Indeed, the stimulation of cultured cells increases 
the expression of the inflammatory factor NF-κB,57 and 
the inflammatory cytokines tumour necrosis factor alpha 
(TNF-α), interleukin-8 (IL-8), interleukin-4 (IL-4), and 
interleukin-10 (IL-10),84 whereas the ventral tail artery of 
rats exposed to vibrations show a higher expression of 
interleukin-6 (IL-6), interleukin-1β (IL-1β), and metal-
lothionein 1a (MT-1a).63

In addition, vibrations at 30 Hz have an effect on the 
muscle atrophy pathway in myoblasts, which exhibit a 
reduced expression of myostatin, a key gene involved in 
muscular tissue loss.64,85–89 In vivo, a decreased expression 
of both myostatin and atrogin-1, the other master gene of 
the atrophy pathway, was observed after 30 Hz-vibration 
exposure, and a significant phosphorylation of protein 
kinase B (AKT) was found.64 Activation of the Akt/mTOR 
pathway has been shown as necessary and sufficient to 
induce hypertrophy and to block skeletal muscle atro-
phy.85,89,90 Therefore, high-frequency vibrations appear to 
induce hypertrophy in skeletal muscle.64 The same study 
revealed an enhanced expression of M-cadherin,64 which 
has been shown to be crucial in regulating myoblast align-
ment and fusion.91

Furthermore, in 2018, Krajnak et al.92 found a rise in the 
transcript number for the genes metallothionen 1a (mt1a), 
intracellular adhesion molecule-1 (i-cam1), and myeloid 
leukemia-1 protein (runx) by analysing tissue samples 
from the ventral tail artery of rats subjected for several 
days to a 250 Hz-vibration.

A more recent work84 investigated the effects of 
vibration on the expression of long non-coding RNA 
(IncRNA) maternally expressed gene 3 (MEG3) by vas-
cular endothelial cells in vitro. lncRNA MEG3 is 
involved in the physiological and pathological pro-
cesses of various vascular diseases and could be consid-
ered an effective indicator of vascular structural and 
functional changes. A vibration-induced decrease in 
lncRNA MEG3 expression was observed after 1-day 
stimulation with three different frequencies (63, 200, 
and 250 Hz), while in the 2-day exposure group, this 
decrease was evident only with the 63 Hz vibration. 
Based on these findings, different frequencies and dura-
tions of the stimulus seem to differently affect cell 
expression. However, to date, the association between 
vibration-induced endothelial cell damage and lncRNA 
MEG3 remains unclear; therefore, further exploration 
of its involvement in the process is needed (Table 1).

Conclusions
In light of all the in vivo and in vitro studies here reported, 
there is evidence that mechanical vibrations affect cellular 
phenotypes and gene expression of vascular cells. Speci-
fically, high-frequency vibrations have been shown to 
induce morphological and functional changes in vascular 
cells, including alterations in cytoskeletal organization, 
proliferation, and production of signaling factors. These 
alterations may contribute to vascular impairment, causing 
vascular constriction and disruption of the internal elastic 
lamina, as well as the induction of inflammatory responses, 
which together might contribute to vascular remodeling 
and occlusion. Key effectors and signaling pathways, such 
as ERK1/2, that in SMCs lead to intimal thickening and 
recruitment of inflammatory cells to damaged vessel sites, 
Syn4, VEGF, KLF2, ICAM-1, and NFATc3, have been 
identified in responding to high-frequency vibrations. 
Furthermore, this mechanical stimulus has been found to 
influence muscle atrophy pathways, potentially leading to 
hypertrophic growth of skeletal muscle which could 
explain stenosis development occurring in some vascular 
diseases. Whether similar effects develop also in vascular 
vessel wall subjected to these mechanical stimuli needs 
further investigation.

It is well-established that disturbances in vascular 
stresses and strains, whether arising from physiological 
activities or pathological conditions, can impact the mech-
anosensors and signaling pathways of endothelial and 
smooth muscle cells. This review underscores that cellular 
responses to these cues exhibit variability contingent upon 
factors like the frequency, duration, and intensity of the 
stimulus, highlighting the complexity of mechanotrans-
duction processes in vascular cells.

Despite the wealth of evidence suggesting the possible 
role of high-frequency vibration in vascular damage, several 
gaps in understanding remain, particularly concerning the 
molecular mechanisms underlying cellular responses to this 
stimulus and its implications for vessels disease. Therefore, 
further research is warranted to elucidate these mechanisms 
of mechanotransduction and their potential therapeutic impli-
cations in vascular pathologies. For instance, studying the 
effect of in vitro exposure of vascular cells to vibrations at the 
frequencies observed through computational studies could be 
useful for the comprehension of the cellular effects triggered 
by this type of stimulus at molecular and protein level. In 
addition, also in vivo observation of blood vessels subjected 
to vibrations could allow the investigation of the contribution 
of different vascular cells to the biological response. Finally, 
understanding more in detail the mechanism by which high-
frequency vibrations induce vascular changes may open the 
possibility of developing new pharmacological interventions 
for vascular diseases.
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