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Abstract. Given a probability space (X , μ), a square integrable function f on such space and a
(unilateral or bilateral) shift operator T, we prove under suitable assumptions that the ergodic means
N−1∑N−1

n=0 Tn f converge pointwise almost everywhere to zero with a speed of convergence which,
up to a small logarithmic transgression, is essentially of the order of N−1/2 . We also provide a few
applications of our results, especially in the case of shifts associated with toral endomorphisms.

1 Introduction and main results

Let (X , μ) be a probability space, and let T be a bounded linear operator on the Hilbert
space L2(X , μ). For f ∈ L2(X , μ), consider its ergodic means

1
N

N−1
∑
n=1

T n f (x), N ≥ 1, x ∈ X .

In this article, we study the speed of convergence of such ergodic means when T
is a unilateral or bilateral shift operator. Shift operators are sometimes induced by
ergodic transformations. Thus, our results also cover some particular instances of von
Neumann’s [vN32] and Birkhoff ’s [Bir31] ergodic theorems. It is well-known that, in
full generality, Birkhoff ’s and von Neumann’s theorems are optimal, in the sense that
the speed of convergence can indeed be arbitrarily slow, either in norm or in the sense
of almost everywhere convergence (see [KP81, Kre79], cf. Theorem 1.2). Nonetheless,
scholars have been intensively investigating such problems from different perspectives
and with different goals in mind. To keep track of the literature, as it often happens, is
a hard task and here we recall only a few meaningful papers, apologizing for the ones
we omit. In [FS99], Furman and Shalom consider the measure-preserving and ergodic
action of a locally compact group acting on a probability space and study the ergodic
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2 N. Chalmoukis et al.

properties of the action along random walks on G. The setting described in [FS99] is
quite different from ours, however, the results obtained are similar in the spirit with
the ones we obtain here (cf. [FS99, Theorem 1.2] with Theorem 1.4). Kachurovskĭı,
Podvigin, and coauthors have been studying the problem for the last decades from
the spectral theory point of view and we refer the reader to the survey [KP16]. In
the same spirit of the work of Kachurovskĭı and collaborators, we also mention the
work [BAM21]. Avigad and collaborators investigated the rate of convergence in
[AGT10, AI13, AR15] in the sense of metastability (see [Tao12]). Finally, we mention
the work of Das and Yorke [DY18], of Bayart, Buczolich, and Heureaux [BBH20] and
of Colzani, Gariboldi, and Monguzzi [Col22, CGM24], who all obtain the results on
the speed of convergence when one considers as transformation the map x → x + α,
which is an ergodic transformation of the d-dimensional torusTd = Rd/Zd whenever
α = (α1 , . . . , αd) is an irrational vector, that is, whenever 1, α1 , . . . , αd are linearly
independent over Q.

In order to provide some context for our results, let us focus for a moment on
a specific transformation, namely, the doubling map x ↦ 2xmod 1, which is a well-
known ergodic transformation of the one-dimensional torusT. The sum∑N−1

n=0 f (2n x)
satisfies the central limit theorem and the law of iterated logarithm for a large
class of functions. See the work of Fortet [For40], Kac [Kac46], and Maruyama
[Mar50]. For subsequent extension of these results we mention, among others, the
works of Aistleitner [Ais10, Ais13] and refer to the references therein. More in detail,
Maruyama, building upon the results of Kac, proved that if f is a continuous function
with vanishing mean and satisfying a Hölder condition of order α > 0, then, for almost
every x,

lim sup
N→+∞

1√
2N log log(N)

N−1
∑
n=0

f (2n x) = lim
N→+∞

( 1
N ∫T (

N−1
∑
n=0

f (2n y))
2

d y)
1
2

.

The point of view in the papers, we mentioned focuses on the lacunarity of the
sequence {2n x}n∈N and on the analogy with systems of independent random vari-
ables. In this work, instead, we take advantage of the fact that the composition operator
T f (x) = f (2x) is a shift operator on L2(T, dx) (see below for the exact definition).

Before stating our results, we briefly recall some definitions following [SNFBK10].
Let H be a complex separable Hilbert space endowed with the inner product ⟨⋅, ⋅⟩. Let
T ∶H →H be an isometry, that is, a bounded linear operator such that

⟨T f , T g⟩ = ⟨ f , g⟩ ∀ f , g ∈H.

A subspace V ⊆H is called a wandering subspace for the isometry T ∶H →H if

T m(V) ⊥ T n(V) ∀m, n ∈ N ∪ {0}, m ≠ n.

The isometry T ∶H →H is a unilateral shift if there exists a wandering subspace V ⊆
H for T such that

H = ⊕
k∈N∪{0}

T k(V).
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On the speed of convergence in the ergodic theorem for shift operators 3

In this case, we say that the subspace V is a generating wandering subspace for T.
Notice that

V =H⊖ T(H).

Unilateral shifts are ubiquitous in operator theory. One reason for this is provided
by Wold’s decomposition theorem (see, e.g., [SNFBK10, Chapter 1]).

Theorem 1.1 (Wold decomposition) Let T ∶H →H be an isometry. Then,

H =M⊕M⊥ ,

where M and M⊥ are invariant under T, T ∶M→M is a unilateral shift and
T ∶M⊥ →M⊥ is a unitary operator. Such decomposition is uniquely determined and
it holds

M = ⊕
k∈N∪{0}

T k(H⊖ T(H)), M⊥ = ⋂
k∈N

T k(H).

Similarly to unilateral shifts, it is possible to define bilateral shifts. A subspace
V ⊆H is called a wandering subspace for the unitary operator T ∶H →H if

T m(V) ⊥ T n(V) ∀m, n ∈ Z, m ≠ n

and T ∶H →H is a bilateral shift if there exists a generating wandering subspace
V ⊆H such that

H = ⊕
k∈Z

T k(V).

Notice that for bilateral shifts the generating wandering subspace is not uniquely
determined.

If T ∶H →H is a shift, then H admits an orthonormal basis of the form
{φ j,k} j∈X,k∈Y, where X ⊆ N and Y is either N ∪ {0} or Z depending on T being a
unilateral or bilateral shift, such that {φ j,k} j∈X is an orthonormal basis for T k(V) for
every k ∈ Y and such that, for every fixed k ∈ Y, it holds

Tφ j,k = φ j,k+1 .

From now on when, we say that the isometry T ∶H →H is a shift we mean that T
could be either a unilateral or a bilateral shift. However, the reader has to keep in
mind that whenever T is intended as a bilateral shift then T is not only an isometry,
but a unitary operator as well.

We now introduce the general setting in which our results take place. We will
assume the following:

(i) H is a Hilbert space and T ∶H →H is an isometry.
(ii) H =M⊕M⊥, where T ∣M ∶M→M is a shift (bilateral or unilateral) and T ∣M⊥ ∶

M⊥ →M⊥ is the identity operator; i.e., we are considering isometries whose
unitary part in the Wold decomposition is the identity operator.

(iii) V is a generating wandering subspace for T ∣M and ΠM⊥ and Πk are the orthog-
onal projections from H onto M⊥ and T k(V), respectively. Here, k varies either
in N ∪ {0} or Z accordingly with the fact that T is a unilateral or a bilateral shift.
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4 N. Chalmoukis et al.

The following theorem is implicit in the existing literature, but we could not find a
precise reference. In particular, when T is a shift such that dim(V) = +∞, the theorem
is proved in [Kre79] and [KP81]. Anyhow, a short proof will be included for the reader’s
convenience.

Theorem 1.2 With the notation above, for every positive vanishing sequence εn → 0 as
n → +∞, there exists f ∈H such that

lim sup
N→+∞

ε−1
N ∥

1
N

N−1
∑
n=0

T n f −ΠM⊥ f ∥
H

= +∞.

Despite the negative result in the previous theorem, it is possible to give some
positive results on the speed convergence under appropriate assumptions on the
operator and on the functions. The following result is no surprising and we include
it for the sake of completeness.

Theorem 1.3 With the notation above,

∥ 1
N

N−1
∑
n=0

T n f −ΠM⊥ f ∥
H

≤ 1√
N
∑

k
∥Πk f ∥H .

Moreover, the rate of convergence 1/
√

N is sharp.

The next theorem is our first main one. We obtain a result on the pointwise speed
of convergence and the boundedness of a maximal function.

Theorem 1.4 With the notation above, assume that H is the function space
L2

μ ∶= L2(X , dμ), where (X , μ) is a probability space, and that ε ∶ R+ → R+ is a positive
decreasing function. Define the maximal operator

S f (x) = sup
N≥1

Nε(N)∣ 1
N

N−1
∑
n=0

T n f (x) −ΠM⊥ f (x)∣.

Then, there exists a positive constant c such that

∥S f ∥L2(X ,μ) ≤ c(
+∞

∑
n=0

ε2(n) log2(n + 2))
1
2

∑
k
∥Πk f ∥L2

μ
.(1.1)

Moreover, if
+∞

∑
n=0

ε2(n) log2(n + 2) < +∞ and ∑
k
∥Πk f ∥L2

μ
< +∞,(1.2)

then, for μ-almost every x,

lim
N→+∞

Nε(N)∣ 1
N

N−1
∑
n=0

T n f (x) −ΠM⊥ f (x)∣ = 0.(1.3)

For example, one can choose ε(n) = n− 1
2 log−δ(n + 2) with δ > 3

2 . Then equation
(1.3) gives a speed of convergence of the ergodic means of T at least of the order
of N− 1

2 logδ(N + 2). Some particular instances of the above theorem, in the special
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On the speed of convergence in the ergodic theorem for shift operators 5

case that T is the operator of composition with a measure preserving transforma-
tion of X, have been obtained by Cuny [Cun11, Theorem 4.5] (see also Remark 1
after Theorem 4.5). The following are two straightforward applications of the above
theorem. In Corollary 1.5, we consider functions defined on the square [0, 1)2 and
their expansions with respect to the product Walsh system. We recall the definition of
such system in the proof of the corollary. In Corollary 1.6, we consider the system
of Laguerre polynomials, whose definition is, once again, recalled in the proof of
the corollary. In both the corollaries, the almost every convergence is intended with
respect to the Lebesgue measure.

Corollary 1.5 Let B ∶ [0, 1)2 → [0, 1)2 be the baker’s transformation defined by

B(x , y) =
⎧⎪⎪⎨⎪⎪⎩

(2x , y
2 ), if 0 ≤ x < 1

2 ,
(2x − 1, y

2 +
1
2 ), if 1

2 ≤ x < 1.

Assume that f has an absolutely convergent expansion with respect to the product Walsh
system on the square [0, 1)2. Then, for every η > 0 and for almost every x,

lim
N→+∞

√
N

(log(1 + N)) 3
2+η
∣ 1

N

N−1
∑
n=0

f (Bn x) − ∫
[0,1)2

f (y) d y∣ = 0.

Corollary 1.6 Let T be the operator

T f (x) = f (x) − ∫
x

0
f (y)d y

defined on the Hilbert space L2(R+ , e−x dx), and let {Ln}n∈N be the system of Laguerre
polynomials. Assume that the Laguerre coefficients of f are absolutely summable. Then,
for every η > 0 and for almost every x,

lim
N→+∞

√
N

(log(1 + N)) 3
2+η
∣ 1
N

N−1
∑
n=0

T n f (x)∣ = 0.

Our last theorem is about ergodic means associated with the endomorphisms of
the two-dimensional torus T2 = R2/Z2 and the classical trigonometric expansion.
We prove that it is enough to require a mild summability condition with respect
to a logarithmic weight on the Fourier coefficients of a function to gain a speed of
convergence essentially of order N− 1

2 for the ergodic means.

Theorem 1.7 Let A be a 2 × 2 integer matrix such that det(A) ≠ 0 and no eigenvalue
of A is a root of unity. Assume that f ∈ L2(T2 , dx) has the trigonometric expansion

f (x) = ∑
ξ∈Z2

f̂ (ξ)e2πix ξ

and that, for some δ > 0,

∑
ξ∈Z2
(log(1 + ∣ξ∣))1+δ ∣ f̂ (ξ)∣2 < +∞.(1.4)

https://doi.org/10.4153/S0008414X24000658 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000658


6 N. Chalmoukis et al.

Then, for every η > 0 and for almost every x ∈ T2,

lim
N→+∞

√
N

(log(1 + N)) 3
2+η
∣ 1

N

N−1
∑
n=0

f (An x) − ∫
T2

f (y) d y∣ = 0.

We point out that, in the above theorem, A has no eigenvalues which are not roots of
unity if and only if A is an ergodic matrix [EW11, Corollary 2.2]. Therefore, the above
theorem guarantees a speed a convergence for the ergodic means of a large class of
functions for a particular instance of Birkhoff ’s ergodic theorem. Condition (1.4) is
satisfied, for instance, by functions in any fractional Sobolev space. A more general
sufficient condition in terms of the L2 integral modulus of continuity will be given in
Proposition 4.1.

The situation in dimension d > 2 seems to be more complicated. Nonetheless, we
prove the following partial result, which is a corollary of Theorem 1.4.

Corollary 1.8 Let A be a d × d matrix with integer coefficients and det(A) ≠ 0.
Suppose there exists a set E ⊆ Zd/{0} such that the subspace of L2

0(Td , dx)

VE ∶= { f ∈ L2
0(Td , dx) ∶ supp( f̂ ) ⊆ E}

is a generating wandering subspace for the operator TA f = f ○ A. Suppose that there exist
c > 0, q > 1, such that for all ξ ∈ E and k ∈ Y (where Y is either N ∪ {0} or Z depending
on whether TA is a unilateral or bilateral shift),

∣Ak ξ∣ ≥ cq∣k∣ .(1.5)

Assume that f ∈ L2(T2 , dx) has the trigonometric expansion

f (x) = ∑
ξ∈Z2

f̂ (ξ)e2πix ξ

and that, for some δ > 0,

∑
ξ∈Z2
(log(1 + ∣ξ∣))1+δ ∣ f̂ (ξ)∣2 < +∞.(1.6)

Then, for every η > 0 and for almost every x ∈ T2,

lim
N→+∞

√
N

(log(1 + N)) 3
2+η
∣ 1

N

N−1
∑
n=0

f (An x) − ∫
T2

f (y) d y∣ = 0.

Assumption (1.5) is satisfied, for instance, whenever A is an expansive matrix, i.e.,
whenever there exists q > 1 such that ∣Ax∣ ≥ q∣x∣ for all x ∈ Rd .

We should also mention that in the literature there exist theorems of flavor similar
to Theorem 1.7. For example in [Lö14, Theorem 1.2], the author proves the law of the
iterated logarithm for averages of the form

1
N

N−1
∑
n=0

f (Mn x),

where (Mn)n≥1 is a sequence of integer matrices satisfies a strong Hadamard-type
condition [Lö14, Condition (1.4)] and f is a function of finite Hardy–Krause total
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On the speed of convergence in the ergodic theorem for shift operators 7

variation. Although our theorem gives less precise asymptotic information than the
law of the iterated logarithm, our assumptions are much less stringent. If A is a matrix
as in Theorem 1.7, then the sequence Mn ∶= An does not in general satisfy [Lö14,
Condition (1.4)] and functions satisfying (1.4) can be quite rough. Furthermore, for
matrices with eigenvalues of modulus greater than 1, Fan [Fan99] has obtained sharp
estimates for the decay of correlation which lead to central limit-type theorems for the
distribution of values of the ergodic averages.

2 Proof of Theorems 1.2, 1.3, and 1.4 and of Corollaries 1.5
and 1.6

The proof of Theorem 1.2 is straightforward.

Proof of Theorem 1.2 Since T has operator norm 1, the averaging operator
UN ∶= 1

N ∑
N−1
n=0 T n has operator norm at most 1. Furthermore, the norm is at least

1, as it can be seen by testing the operator UN on the functions fH = ∑H
k=0 φ j,k and

letting H → +∞. Here, {φ j,k} j,k is an orthonormal basis associated with the shift T.
Therefore, the family of operators {ε−1

N UN}N is not uniformly bounded in the operator
norm. Hence, by the Banach–Steinhaus uniform boundedness principle, there exists
f ∈M ⊆H such that

lim sup
N→+∞

ε−1
N ∥

1
N

N−1
∑
n=0

T n f ∥
H

= +∞. ∎

As mentioned, Theorem 1.3 can also be proved using the unitary equivalence with
the shift operator on vector valued Hardy spaces in the unit disc. However, for the sake
of completeness, we provide here a direct proof.

Proof of Theorem 1.3 The proof for unilateral or bilateral shifts is the same. Let
T ∶M→M be a bilateral shift. Then, there exists a generating wandering subspace
V such that

H =M⊕M⊥ = (⊕
k∈Z

T k(V)) ⊕M⊥ .

Let {φ j,k} j∈X,k∈Z be an orthonormal basis ofM associated with T. Without losing gen-
erality, we assume that f has only finitely many nonzero coefficients { f̂ ( j, k)} j∈X,k∈Z
with respect to the orthonormal basis {φ j,k} j∈X,k∈Z. Since T acts as the identity on
M⊥, we have

1
N

N−1
∑
n=0

T n f −ΠM⊥ f = 1
N

N−1
∑
n=0
∑
j,k

f̂ ( j, k)φ j,k+n =
1√
N
∑
j,k

f̂ ( j, k)Ψj,k(N),

where we have set

Ψj,k(N) =
1√
N

N−1
∑
n=0

φ j,k+n .
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8 N. Chalmoukis et al.

It can be readily checked that {Ψj,k(N)} j∈X is an orthonormal system for every fixed
k ∈ Z. Hence, by Parserval’s identity,

∥ 1
N

N−1
∑
n=0

T n f −ΠM⊥ f ∥ = ∥ 1√
N
∑
j,k

f̂ ( j, k)Ψj,k(N)∥

≤ 1√
N
∑
k∈Z
∥∑

j∈X
f̂ ( j, k)Ψj,k(N)∥

= 1√
N
∑
k∈Z
(∑

j∈X
∣ f̂ ( j, k)∣2)

1
2

= 1√
N
∑
k∈Z
∥Πk f ∥.

Finally, observe that if f = Πk f for a single k, then all the above inequalities actually
are identities. Hence, the theorem is sharp. ∎

The proof of Theorem 1.4 is in principle similar to the proof of Theorem 1.3. The
main ingredient is the Rademacher–Menshov theorem, which we now recall.

Theorem 2.1 (Rademacher–Menshov) There exists an absolute positive constant C
such that for every positive measure space (X , μ) and every orthogonal system f0 , f1 . . .
in L2(X , μ), the maximal function

M(x) ∶= sup
k≥0
∣

k
∑
n=0

fn(x)∣

satisfies the estimate

∥M∥L2(X ,μ) ≤ C(
+∞

∑
n=0

log2(n + 2)∥ fn∥2
L2(X ,μ))

1
2

.

It is important to emphasize that the constant C in the above theorem is absolute
and we refer the reader to [Mea07] for a discussion on this.

Recall also the next lemma by Kronecker, which is an application of Abel’s summa-
tion by parts formula.

Lemma 2.2 Suppose that an is a sequence of complex numbers such that∑∞n=1 an , exists
and is finite. Assume also that bn is a nondecreasing sequence of positive numbers tending
to infinity. Then,

lim
N→∞

1
bN

N−1
∑
n=0

bn an = 0.

Proof of Theorem 1.4 We assume again that T is a bilateral shift. The proof for
the unilateral case is the same. To simplify the notation, we also assume that f is in
M, so that ΠM⊥ f = 0. Finally, assume that f has only finitely many nonzero Fourier
coefficients. Then,

Nε(N)( 1
N

N−1
∑
n=0

T n f (x) −ΠM⊥ f (x)) = ε(N)
N−1
∑
n=0

T n f (x).
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On the speed of convergence in the ergodic theorem for shift operators 9

We derive both (1.1) and (1.3) from the boundedness of an auxiliary maximal
function. Let ε ∶ [0,+∞) → R, not necessarily decreasing, and define

S̃ f (x) ∶= sup
N≥1
∣

N−1
∑
n=0

ε(n)T n f (x)∣.

We have
N−1
∑
n=0

ε(n)T n f (x) =
N−1
∑
n=0

ε(n) ∑
j∈X,k∈Z

f̂ ( j, k)φ j,k+n(x) = ∑
k∈Z

A(k)
N−1
∑
n=0

ε(n)Φ(k, n, x),

where we have set

A(k) = ∥Πk f ∥L2
μ
= (∑

j∈X
∣ f̂ ( j, k)∣2)

1
2

, Φ(k, n, x) = 1
A(k) ∑j∈X

f̂ ( j, k)φ j,k+n(x).

Then,

sup
N≥1
∣

N−1
∑
n=0

ε(n)T n f (x)∣ = sup
N≥1
∣ ∑

k∈Z
A(k)

N−1
∑
n=0

ε(n)Φ(k, n, x)∣.

In the above formula, we simply omit the terms such that A(k) = 0. It may be promptly
verified that {Φ(k, n, x)}N−1

n=0 is an orthonormal system for every fixed k ∈ Z and N ∈
N. Hence, by means of the Rademacher–Menshov theorem,

∥S̃ f ∥L2
μ
= (∫

X
( sup

N≥1
∣

N−1
∑
n=0

ε(n)T n f (x)∣)
2

dμ(x))
1
2

≤ ∑
k∈Z

A(k)(∫
X
( sup

N≥1
∣

N−1
∑
n=0

ε(n)Φ(k, n, x)∣)
2

dμ(x))
1
2

≤ c( ∑
n∈N

ε2(n) log2(n + 2))
1
2

∑
k∈Z
∥Πk f ∥L2

μ
.(2.1)

Now a standard argument, as in [Zyg03, p. 190], shows that inequality (2.1) with condi-
tion (1.2) implies that the series∑∞n=0 ε(n)T n f (x) converges μ-a.e. Moreover, restrict-
ing to a positive decreasing ε, we apply Kronecker’s lemma with an = ε(n)T n f (x),
bn = ε−1(n) and we have that

lim
N→∞

ε(N)∣
N−1
∑
n=0

T n f (x)∣ = 0, μ-a.e.,

which proves (1.3).
In order to prove (1.1), assume again that ε is positive and decreasing. Then, by

Abel’s summation by parts,

ε(N)
N−1
∑
n=0

T n f (x) = ε(N)
ε(N − 1)

N−1
∑
n=0

ε(n)T n f (x)

− ε(N)
N−2
∑
j=0
(

j

∑
n=0

ε(n)T n f (x))( 1
ε( j + 1) −

1
ε( j)).
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10 N. Chalmoukis et al.

Hence,

S f (x) = sup
N≥1

ε(N)∣
N−1
∑
n=0

T n f (x)∣ ≤ 2 sup
N≥1
∣

N−1
∑
n=0

ε(n)T n f (x)∣ = 2 S̃ f (x).(2.2)

This, together with (2.1) proves (1.1). ∎
We conclude the section showing that the hypothesis of Theorem 1.4 are satisfied

in the setting of Corollaries 1.5 and 1.6.

Proof of Corollary 1.5 One can verify that the composition operator TB f (x , y) =
f (B(x , y)) is a bilateral shift with respect to the product Walsh system on the square
[0, 1)2, whose definition we now recall. Let rk be the one-dimensional kth Rademacher
function

rk(x) = sgn( sin(2k πx)), k ∈ N, x ∈ [0, 1).

On the unit square [0, 1)2 define the function

Rk(x , y) ∶=
⎧⎪⎪⎨⎪⎪⎩

rk+1(x) k = 0, 1, 2, . . .
r∣k∣(y) k = −1,−2, . . .

and for every set of integers k1 < k2 < ⋅ ⋅ ⋅ < kn define

Wk1 k2 . . .kn(x , y) = Rk1(x , y) . . . Rkn(x , y).
Then,

L2
0([0, 1)2) = span{Wk1 k2 . . .kn ∶ k1 < k2 < ⋅ ⋅ ⋅ < kn , k j ∈ Z, n ∈ N},

where L2
0([0, 1)2) is the subspace of L2([0, 1)2) consisting of functions with vanishing

mean. One can verify that

T(Wk1 k2 . . .kn) =W(k1+1)(k2+1). . .(kn+1) .

Hence, the transformation T is a bilateral shift on L2
0([0, 1)2) with a generating

wandering subspace given by

V = span{W1k2 . . .kn , 1 < k2 < k3 < . . . kn , k j ∈ Z, n ∈ N}.

Then, Theorem 1.4 applies. ∎
Proof of Corollary 1.6 Recall the definition of Laguerre polynomials {Ln}n∈N,

Ln(x) =
ex

n!
dn

dxn (e
−x xn) =

n
∑
k=0
(n

k
)(−1)k

k!
xk .

This family of polynomials is an orthonormal basis for the Hilbert space
L2(R+ , e−x dx). As observed by Von Neumann [vN29] (see also Brown and Halmos
[BHS65, p. 135]), the operator

T f (x) = f (x) − ∫
x

0
f (y)d y
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On the speed of convergence in the ergodic theorem for shift operators 11

is the unilateral shift with respect to the Laguerre basis of L2(R+ , e−x dx). Indeed,

TLn(x) =
n
∑
k=0
(n

k
)(−1)k

k!
xk +

n
∑
k=0
(n

k
)(−1)k+1

(k + 1)! xk+1 =
n+1
∑
k=0
(n + 1

k
)(−1)k

k!
xk = Ln+1(x).

Hence, Theorem 1.4 applies. ∎

3 Speed of convergence for toral endomorphisms

Before actually proving Theorem 1.7 and Corollary 1.8, we make some preliminary
observations. If in Theorem 1.7, we choose a matrix A with ∣det A∣ > 1, then the
operator TA f = f ○ A is a unilateral shift on L2

0(T2), the space of square integrable
functions with vanishing means. This is proved, e.g., in [Krz93], but it will also follow
from the proof of Lemma 3.3. If, on the other hand, ∣det A∣ = 1, then TA is a bilateral
shift on L2

0(T2). A generating wandering subspace for TA can be constructed as
follows. Let us consider equivalence relation onZ2/{0}defined by the orbits of A∗, i.e.,

ξ ∼ μ ⇐⇒ ∃k ∈ Z ∶ A∗k ξ = μ.

Let now E be the set containing of representative from each equivalence class of
Z2/{0}/ ∼. A generating wandering subspace VE for TA is then given by

VE = { f ∈ L2(Td) ∶ supp f̂ ⊆ E}.(3.1)

The proof of Theorem 1.7 will follow from a series of preparatory results. In particular,
we deal with the cases ∣det A∣ > 1 and ∣det A∣ = 1 in different ways. In this latter case,
we will have to be more careful in constructing a generating wandering subspace VE,
which we recall is not unique for bilateral shifts.

3.1 Proof of Theorem 1.7: case ∣det A∣ = 1

Let tr(A) be the trace of the matrix A. Observe that if det(A) = 1 the eigenvalues of A
are given by

tr(A) ±
√

tr2(A) − 4
2

.

Since no eigenvalue of A is a root of unity by hypothesis, we can assume that
∣ tr(A)∣ > 2. Otherwise, that is, if tr(A) = 0,±1,±2, it can be checked by hand that
the eigenvalues of A are roots of unity and in this case Birkhoff ’s theorem would not
apply since the matrix A would not be ergodic (see [Krz93]). If det(A) = −1, then the
eigenvalues of A are given by

tr(A) ±
√

tr2(A) + 4
2

.

Notice that these are roots of unity if and only if tr(A) = 0. In all remaining cases, we
have two distinct eigenvalues λ, λ−1 ∈ R and, without loss of generality, we can assume
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12 N. Chalmoukis et al.

that 0 < ∣λ∣−1 < 1 < ∣λ∣. We now take advantage of this to define a suitable generating
wandering subspace for the bilateral shift TA. Let S ∈ GL2(R) be such that

A = S−1 [λ−1 0
0 λ] S = S−1DS .

Let E ⊆ Z2/{0} be such that it contains exactly one element from each orbit of the
action of A on Z2. We choose such element as follows. Define ∣ξ∣∞ = ∣(ξ1 , ξ2)∣∞ =
max{∣ξ1∣, ∣ξ2∣}. LetO an orbit of A inZ2/{0} and consider the set SO. Then, we choose
ξ ∈ O such that Sξ has the minimal ∣ ⋅ ∣∞ norm. Equivalently, for all k ∈ Z, we have that

∣SAk ξ∣∞ = ∣Dk Sξ∣∞ ≥ ∣Sξ∣∞.(3.2)

Then, a generating wandering subspace for TA is defined as in (3.1).
Using the notation above, we prove the following.

Lemma 3.1 Let A be a 2 × 2 integer matrix such that ∣det A∣ = 1 and no eigenvalues of
A is a root of unity. Let E be defined as above. Then, there exist constants c > 0 and q > 1
such that, for every k ∈ Z,

min{∣Ak ξ∣ ∶ ξ ∈ E} ≥ cq∣k∣ .

Proof Assume that det A = 1; the case det A = −1 is similar. Since for every
ξ ∈ Z2/{0} and k ∈ Z it holds that

∣Ak ξ∣ = ∣S−1Dk Sξ∣ ≥ ∥S∥−1∣Dk Sξ∣,

and all norms in a finite-dimensional vector space are equivalent, it suffices to show
that there exist c > 0, q > 1 such that ∣Dk Sξ∣∞ ≥ cq∣k∣ for every ξ ∈ E. Let η = (η1 , η2) =
Sξ where ξ is in E and let λ−1 , λ the two real eigenvalues of A with ∣λ∣ > 1. Then,

∣Dk η∣∞ = ∣(λ−1η1 , λk η2)∣∞ ≥ ∣λ∣k ∣η2∣ ≥min{∣η1∣, ∣η2∣}∣λ∣k

and, similarly,

∣Dk η∣∞ = ∣(λ−1η1 , λk η2)∣∞ ≥ ∣λ∣−k ∣η1∣ ≥min{∣η1∣, ∣η2∣}∣λ∣−k .

Hence,

∣Dk η∣∞ ≥min{∣η1∣, ∣η2∣}∣λ∣∣k∣ .(3.3)

The conclusion will follows once we prove that min{∣η1∣, ∣η2∣} is bounded from below
uniformly for η = (η1 , η2) in E. But this is true because of the following. If ∣η2∣ ≤ ∣η1∣,
by the definition of E,

∣(η1 , η2)∣∞ ≤ ∣D(η1 , η2)∣∞ = ∣(λ−1η1 , λη2)∣∞ = ∣λ∣∣η2∣.

The last identity holds since if ∣(λ−1η1 , λη2)∣∞ = ∣λ
−1∣∣η1∣, then we would have

∣η1∣ ≤ ∣λ−1∣∣η1∣, which is a contradiction since ∣λ−1∣ < 1 and η1 ≠ 0. Similarly, if
∣η1∣ ≤ ∣η2∣,

∣(η1 , η2)∣∞ ≤ ∣D−1(η1 , η2)∣∞ = ∣(λη1 , λ−1η2)∣∞ = ∣λ∣∣η1∣.
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Hence, ∣(η1 , η2)∣∞ ≤ ∣λ∣min{∣η1∣, ∣η2∣}, that is, ∣η1∣ and ∣η2∣ are comparable. Therefore,
by (3.3),

∣Dk η∣∞ ≥min{∣η1∣, ∣η2∣}∣λ∣∣k∣ ≥ ∣η∣∞∣λ∣k−1 ≥ c∣λ∣k

for some positive constant c. This follows from the fact that η ∈ SZ2/{0}. ∎

We now conclude the proof of Theorem 1.7 in the case ∣det A∣ = 1. As observed at
the beginning of Section 3, the operator TA f (x) = f (Ax) is a bilateral shift on L2

0(T2)
with a generating subspace given by VE as in (3.1) where E is defined by means of the
property (3.2). Hence, Theorem 1.4 applies and, in particular, it applies with ε(n) =
(n + 1)− 1

2 (log(2 + n))− 3
2−η for any η > 0.

Set now Fk ∶= (A∗)kE. Observe that A satisfies the hypothesis of Lemma 3.1 if and
only if A∗ does. Hence, by such lemma, there exist constants c > 0 and q > 1 such that,
for every k ∈ Z,

min{∣ξ∣ ∶ ξ ∈ (A∗)kE/{0}} ≥ cq∣k∣ .

Hence, for every positive increasing function ν and f satisfying (1.4), one has

∑
k∈Z∪{0}

∥Πk f ∥L2 = ∑
k∈Z∪{0}

( ∑
ξ∈Fk

∣ f̂ (ξ)∣2)
1
2

≤ ( ∑
k∈Z∪{0}

ν−2(k))
1
2

( ∑
k∈Z∪{0}

ν2(k) ∑
ξ∈Fk

∣ f̂ (ξ)∣2)
1
2

≤ ( ∑
k∈Z∪{0}

ν−2(k))
1
2

( ∑
k∈Z∪{0}

∑
ξ∈Fk

ν2( log ∣ξ∣ − log c
log q

)∣ f̂ (ξ)∣2)
1
2

.

The conclusion follows choosing ν(t) = t 1
2+

δ
2 + 1.

3.2 Proof of Theorem 1.7: case ∣det A∣ > 1

We want to prove the analogous of Lemma 3.1 for a matrix A with ∣det A∣ > 1. However,
we need a preliminary result, which is a special case of [Kat71, Lemma 3]. The proof
we provide here for the reader’s convenience is essentially the same one as in [Kat71]
adapted to the case d = 2.

Lemma 3.2 Let A be a 2 × 2 integer matrix with a real irrational eigenvalue λ, and let
Vλ be its corresponding eigenspace. Then, there exists CA > 0 such that, for ξ ∈ Z2/{0},

∣ξ∣dist(ξ, Vλ) ≥ CA,

where dist is the Euclidean distance between ξ and Vλ .

Proof By Dirichlet’s theorem, for every Q ∈ N, there exists q ∈ N, q ≤ Q and r ∈ Z
such that

∣λ − r
q
∣ < 1

qQ
.
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Now, fix ξ ∈ Z2/{0} and notice that (qA− r)ξ ∈ Z2/{0}, so 1/q ≤ ∣(A− r/q)ξ∣. Let y
be the orthogonal projection of ξ on Vλ . We have

1
q
≤∣(A− r

q
)ξ∣ = ∣(A− r

q
)(ξ − y) + (λ − r

q
)y∣

≤(∥A∥ + ∣λ∣ + 1)dist(ξ, Vλ) +
∣ξ∣
qQ

.

Setting C = ∥A∥ + ∣λ∣ + 1 and rearranging the above inequality, we get

(1 − ∣ξ∣
Q
) ≤ C dist(ξ, Vλ)q ≤ C dist(ξ, Vλ)Q .

Setting Q = ⌈2∣ξ∣⌉ we obtain the desired estimate. ∎
Lemma 3.3 Let A be a 2 × 2 integer matrix such that ∣det A∣ > 1 and no eigenvalue of
A is a root of unity. Then, there exist constants c > 0 and q > 1 such that, for every k ∈ N

min{∣ξ∣ ∶ ξ ∈ AkZ2/{0}} ≥ cqk .

Proof We study separately the cases when A is diagonalizable and when it is not.
Denote by λ, Λ ∈ C the eigenvalues of the matrix A so that ∣λ∣ ≤ ∣Λ∣. Recall that
det(A) = λΛ is an integer different from −1, 1, 0. If these eigenvalues are complex,
then they are conjugate to each other and 1 < ∣λ∣ = ∣Λ∣. If the eigenvalues are real, then,
either 1 < ∣λ∣ ≤ ∣Λ∣ or ∣λ∣ < 1 < ∣Λ∣. In this last case, λ and Λ cannot be rational, since
the characteristic polynomial of A is a monic polynomial with integer coefficients and
any rational root of such polynomial is an integer.

A is diagonalizable and 1 < ∣λ∣ ≤ ∣Λ∣. In this case, there exists S ∈ GL2(C) such that
for every k ∈ N

Ak = S−1 [λk 0
0 Λk] S .

Therefore, for ξ ∈ Z2/{0},

∣Ak ξ∣ ≥ 1
∥S∥

AAAAAAAAAAA
[λk 0

0 Λk] Sξ
AAAAAAAAAAA
≥ ∣λ∣k ∣ξ∣
∥S∥ ∥S−1∥ ≥

∣λ∣k
∥S∥ ∥S−1∥ ,

and the claim is proved in this case.
A is diagonalizable and ∣λ∣ < 1 < ∣Λ∣. Let Vλ , VΛ be the one-dimensional eigen-

spaces corresponding to λ and Λ, respectively, let θ ∈ (0, π) be the angle between
them, and let Pλ , PΛ be the oblique projections with respect to the axes Vλ , VΛ . Define
a new norm in R2 as follows,

[ξ]A ∶= ∣Pλ ξ∣ + ∣PΛ ξ∣.
This is of course equivalent to the Euclidean norm of R2 up to multiplicative constants
which depends on A. In what follows c, C denote positive constants which depend only
on A and might change from appearance to appearance. Applying now Lemma 3.2 for
some ξ ∈ Z2/{0}, we have

dist(ξ, Vλ) = ∣ sin(θ)∣∣PΛ ξ∣ ≥ c∣ξ∣−1 ≥ c[ξ]−1
A .
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Hence,

∣PΛ ξ∣ ≥ c[ξ]−1
A .

Writing ξ = Pλ ξ + PΛ ξ and applying Ak , we obtain Ak ξ = λk Pλ ξ + Λk PΛ ξ. Hence,

C∣Ak ξ∣ ≥ [Ak x]A = ∣λ∣k ∣Pλ ξ∣ + ∣Λ∣k ∣PΛ ξ∣

= ∣λ∣k([ξ]A − ∣PΛ ξ∣) + ∣Λ∣k ∣PΛ ξ∣

= ∣λ∣k[ξ]A + (∣Λ∣k − ∣λ∣k)∣PΛ ξ∣

≥ ∣λ∣k[ξ]A + c ∣Λ∣
k − ∣λ∣k
[ξ]A

=∶ f ([ξ]A),

where f (t) = ∣λ∣k t + c(∣Λ∣k − ∣λ∣k)t−1 , t > 0. Such function f admits a global mini-
mum at tmin,

tmin =
B
CCD c(∣Λ∣k − ∣λ∣k)

∣λ∣k , f (tmin) = 2
√

c∣λ∣k(∣Λ∣k − ∣λ∣k).

For k sufficiently large the estimate f (tmin) ≥ c
√
∣λ∣k ∣Λ∣k = c∣det(A)∣ k

2 holds true,
and this, combined with the above estimate, proves the claim.

A is not diagonalizable. In this case, we have a single eigenvalue λ with 2λ = tr(A)
and λ2 = det(A). Hence, tr(A)2 = 4 det(A). This implies that tr(A) is an even integer,
so that λ ∈ Z/{0}. The Jordan decomposition of A guarantees that

A = S−1 [λ 1
0 λ] S ,

for some S ∈ GL2(C). However, since the columns of S are obtained by solving a
homogeneous system of linear equations with integer coefficients, we can assume,
without loss of generality, that S has integer entries. Assume for the moment that λ∣k,
i.e., there exists q ∈ Z such that k = qλ. Then,

Ak = S−1 [λk kλk−1

0 λk ] S = λk S−1 [1 q
0 1] S .

Notice that U ∶= [1 q
0 1] is in GL2(Z). Therefore,

AkZ2 = λk S−1USZ2 ⊆ λk S−1UZ2 = λk S−1Z2 .

In particular, it follows that

δk ∶=min{∣y∣ ∶ y ∈ AkZ2/{0} ≥ ∥S∥−1∣λ∣k},

which proves the claim when λ∣k. In general, let k ≡ rmod ∣λ∣, 0 ≤ r < ∣λ∣. Then,
δn ≥ δk−r ≥ c∣λ∣k−r ≥ (c∣λ∣−∣λ∣)∣det(A)∣ k

2 , and this concludes the proof for a nondi-
agonalizable matrix A. ∎
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We now conclude the proof of Theorem 1.7 in the case ∣det A∣ > 1. Notice
that A satisfies the hypothesis of Lemma 3.3 if and only if A∗ does. By Wold’s
theorem, the unitary part of the operator TA f = f ○ A acts on the subspace
⋂k∈N∪{0} T k

A(L2
0(T2)), but this intersection is trivial and this follows at once from

the fact that ⋂k∈N∪{0}(A∗)kZ2 = {0} since

min{∣ξ∣ ∶ ξ ∈ (A∗)kZ2/{0}} ≥ cqk → +∞ as k → +∞,

by Lemma 3.3 applied to A∗. Therefore, TA is a unilateral shift with generating
wandering subspace

V = L2
0(T2)/TA(L2

0(T2)) = span{e2πi ξ⋅x}ξ∉A∗(Z2).

Hence, Theorem 1.4 applies and, in particular, it applies with ε(n) = (n + 1)− 1
2 (log(2 +

n))− 3
2−η for any η > 0. The proof now proceeds as in the case of matrices with

determinant ±1. Set Fk ∶= A∗kZ2/A∗(k+1)Z2. By Lemma (3.3) applied to A∗, for every
positive increasing function ν and f satisfying (1.4), one has

∑
k∈N∪{0}

∥Πk f ∥L2 = ∑
k∈N∪{0}

( ∑
ξ∈Fk

∣ f̂ (ξ)∣2)
1
2

≤ ( ∑
k∈N∪{0}

ν−2(k))
1
2

( ∑
k∈N∪{0}

ν2(k) ∑
ξ∈Fk

∣ f̂ (ξ)∣2)
1
2

≤ ( ∑
k∈N∪{0}

ν−2(k))
1
2

( ∑
k∈N∪{0}

∑
ξ∈Fk

ν2( log ∣ξ∣ − log c
log q

)∣ f̂ (ξ)∣2)
1
2

.

The conclusion follows choosing ν(t) = t 1
2+

δ
2 + 1. In only remains to prove Corol-

lary 1.8, but this is now immediate.

Proof of Corollary 1.8 Notice that, thanks to (1.5), we can repeat the very same
argument of the proof of Theorem 1.7 to obtain the conclusion. ∎

4 Concluding remarks

As mentioned in the introduction, functions satisfying condition (1.4) on their Fourier
coefficients are, for instance, functions in any fractional Sobolev space. Here is another,
more general, sufficient condition in terms of the L2 integral modulus of continuity.

Proposition 4.1 Let ω( f , t), t > 0, be the modulus of continuity of the function
f ∈ L2(Td),

ω( f , t) ∶= sup
∣y∣≤t
(∫

Td
∣ f (x + y) − f (x)∣2dx)

1
2
.

Also let α ≥ 0. Then there exists a constant c independent of f such that

∑
ξ∈Zd

logα(1 + ∣ξ∣)∣ f̂ (ξ)∣2 ≤ c
+∞

∑
j=0
(1 + jα)ω2( f , 2− j).
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Proof One has

∑
ξ∈Zd

logα(1 + ∣ξ∣)∣ f̂ (ξ)∣2 ≤
+∞

∑
j=0

logα(1 + 2 j+1) ∑
2 j≤∣ξ∣∞<2 j+1

∣ f̂ (ξ)∣2 .

It then suffices to show that

∑
2 j≤∣ξ∣∞<2 j+1

∣ f̂ (ξ)∣2 ≤ c ω2( f , 2− j), ∀ j ≥ 0.

This inequality is well-known, but it is easier to give a proof than a reference.
Parseval’s identity gives

∫
Td
∣ f (x + y) − f (x)∣2dx = ∑

ξ∈Zd

∣e2πi ξy − 1∣2∣ f̂ (ξ)∣2 .

Write ξ = (h, k), with h ∈ Z and k ∈ Zd−1, and take y = (2− j−2 , 0). Then
ξy = 2− j−2h, and

∑
(h ,k)∈Z×Zd

2 j≤∣h∣<2 j+1

∣ f̂ (ξ)∣2 ≤ c ∑
(h ,k)∈Z×Zd

2 j≤∣h∣<2 j+1

∣e2πi2− j−2 h − 1∣2∣ f̂ (ξ)∣2 ≤ cω2( f , 2− j−2) ≤ cω2( f , 2− j).

Iterating for each of the d coordinates of ξ, one obtains

∑
2 j≤∣ξ∣∞<2 j+1

∣ f̂ (ξ)∣2 ≤ cω2( f , 2− j). ∎

It is interesting to observe that, using the above proposition, Corollary 1.8 can be
applied whenever f is the characteristic function of a domain with a fractal boundary
with a minimally regular geometry. More precisely, let Ω ⊆ Td be a Borel measurable
set, and suppose that there exists ε > 0 such that

∣{x ∈ Td ∶ dist(x , ∂Ω) ≤ t}∣ ≤ c( log 1/t)−2−ε , for all 0 < t ≤ 1/2.

Notice that this is an assumption on the Minkowski content of ∂Ω. Then, for 0 < δ < ε,

+∞

∑
j=0
(1 + j1+δ)ω2(χΩ , 2− j) =

+∞

∑
j=0
(1 + j1+δ) sup

∣y∣≤2− j
∫
Td
∣χΩ(x + y) − χΩ(x)∣2dx

≤
+∞

∑
j=0
(1 + j1+δ)∣{x ∈ Td ∶ dist(x , ∂Ω) ≤ 2− j}∣

≤ c(1 +
+∞

∑
j=1
(1 + j1+δ) j−2−ε) < +∞.

Hence, by Proposition 4.1, we have that

∑
ξ∈Zd

log1+δ(1 + ∣ξ∣)∣ χ̂Ω(ξ)∣2 < +∞.
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Explicitly, from Corollary 1.8, we obtain that, for every matrix A satisfying (1.5), for
every η > 0 and for almost every x ∈ Td , there exists C > 0, depending on x , η, and A,
such that for every N ∈ N

∣ 1
N

N−1
∑
n=0

χΩ(An x) − ∣Ω∣∣ ≤ CN−
1
2 log N

3
2+η .(4.1)

It is interesting to compare the above estimate with some results in [BCT23]. In
particular, in [BCT23, Corollary 4], it is proved that if Ω is such that for some β > 0
and for every t > 0, sufficiently small, one has

∣{x ∈ Rd ∶ dist(x , ∂Ω) ≤ t}∣ ≤ ctβ

and if Ω satisfies some other mild technical assumptions, then there exists a constant
c > 0 such that for every distribution of points {pn}N−1

n=0 there exists an affine copy Ω̃
of Ω which satisfies the estimate

∣ 1
N

N−1
∑
n=0

χΩ̃(pn) − ∣Ω̃∣∣ ≥ cN−
1
2−

β
2 .

Moreover, in [BCT23, Theorem 12], it is proved that, under the same hypothesis on Ω,
there exists c > 0 such that for every N there exists a distribution of N points {pn}N

n=1
such that

∣ 1
N

N−1
∑
n=0

χΩ̃(pn) − ∣Ω̃∣∣ ≤ cN−
1
2−

β
2 ,

for “many” affine copies Ω̃ of Ω. We point out that in this last estimate the single set
of points {pn}N−1

n=0 depends on Ω and N, while, in our estimate (4.1) the underlying
sequence of points is fixed. However, notice that the numerology in our upper bound
(4.1) tends to coincide, up to a logarithmic transgression, with the upper bound in
[BCT23, Theorem 12] when β tends to 0.
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