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Abstract

Gridded observational products of the main climate parameters are essential

in climate science. Current interpolation approaches, implemented to derive

such products, often lack of a proper uncertainty propagation and representa-

tion. In this study, we introduce a Bayesian spatiotemporal approach based on

the integrated nested Laplace approximation (INLA) and the stochastic partial

differential equation (SPDE). The method is described and discussed by using

a real case study based on high-resolution monthly 2-m maximum (Tmax) and

minimum (Tmin) air temperature over Italy in 1961–2020. The INLA-SPDE

based approach is able to properly take into account uncertainties in the final

gridded products and offers interesting promising advantages to deal with non-

stationary and non-Gaussian multisource data.
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1 | INTRODUCTION

Near-surface 2-m air temperature (hereafter Ta) provides
essential information on the state of the climate system,
its variability, extremes and its changes (Fang et al., 2022;
Lian et al., 2017). It is easily understandable and it can be
used for communicating effectively climate science and
climate change to the general public. Thus, it should not
come as a surprise that Ta plays an important role as a
target of the Paris agreement and, more generally, for cli-
mate change related political processes (GCOS, 2017).

While the Sixth Assessment Report (AR6) of the IPCC
(Masson-Delmotte et al., 2021) emphasizes that climate
change will induce a general increase in the frequency
and intensity of extreme events (such as heatwaves,
heavy precipitation, droughts), it has to be noted that
global warming is not homogeneous throughout the

globe and some areas are seeing a faster rate of warming
than others (Rantanen et al., 2022; Zittis et al., 2022).
The Mediterranean area is a notable example of this fact
(Tuel & Eltahir, 2020). Observational records and model-
based studies clearly indicate the Mediterranean as a
prominent climate change hot-spot, with a rate of warm-
ing which has accelerated particularly after the 1980s and
is higher than the global average (Bruley et al., 2022; Cos
et al., 2022; Lionello & Scarascia, 2018; Pastor et al., 2020;
Zittis et al., 2019). Italy, located in the very middle of the
Mediterranean basin, is particularly exposed to climate
change impacts especially in the south where a consider-
able number of municipalities show low levels of resil-
ience to disasters (Spano et al., 2020).

The collection and analysis of observational records
from meteorological ground weather stations provides
essential information for analysing past and current
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trend, variability, as well as possible future climate
scenarios. When interpolated into a regular grid, observa-
tional sparse data find use in a variety of scientific and
operational applications such as statistical downscaling
of Earth System Models and development of bias-
adjusted climate change scenarios (Herrera et al., 2019;
Tarek et al., 2021).

In recent decades, a number of gridded climate products
has been produced. A selected collection of these products
at the European (e.g., E-OBS) and global scale (e.g., CRU,
GISTEMP, Berkeley Earth) is available through the Coper-
nicus Climate Change Service (https://doi.org/10.24381/cds.
11dedf0c). A review of the E-OBS dataset and its applica-
tions is available, among others, in Cornes et al. (2018),
Ledesma and Futter (2017) and Raymond et al. (2017),
while an example of evaluation of the accuracy of the
E-OBS dataset against local observational measurements in
Italy (Apulia region) can be found in My et al. (2022).

Several interpolation techniques are available to produce
gridded maps from scattered in situ measurements of climate
variables (Chen & Guo, 2017; Hofstra et al., 2008; Yang &
Xing, 2021) and most of them are implemented in software
packages for the R language (R Core Team, 2021). For exam-
ple, gstat (Pebesma, 2004) is a well-known and user-friendly
R package which implements both deterministic (inverse dis-
tance weighting [IDW]) and geostatistical (traditional kriging
and its variants) methods. Geostatistical methods assume
that the observed data are a realization of a continuously
indexed spatial random field (Gelfand et al., 2010). In this
respect, Gaussian random fields (GRFs) play a dominant role
in spatial statistics and especially in the traditional field of
geostatistics (Lindgren et al., 2011). Conversely, for determin-
istic methods no probabilistic model of data generation is
taken into account. While geostatistical methods allow to
attach an uncertainty measure to the individual spatial pre-
dictions, with deterministic methods is only possible to calcu-
late an overall error rate (e.g., the root-mean-square error) by
doing cross-validation (Sahu, 2021).

Uncertainty estimate is an important aspect to be con-
sidered when selecting and/or developing interpolation
methods. Despite climate records not being immune to
measurement and modelling uncertainties, scientists and
practitioners typically have to deal with datasets for which
the uncertainty information is generic, misleading, or
absent (Merchant et al., 2017). Indeed, the available
gridded datasets typically provide a single estimate for each
specific location and time step (Tang et al., 2022), where a
measure of uncertainty (the degree to which something is
known; Nature, 2019) would allow to assess reliability and
effects on derived products and information.

Although classical kriging is a very popular
geostatistical method among climate practitioners, it is
often neglected that its estimates of the prediction

variance do not account for the uncertainty caused by
inferring the covariance parameters from the data
(Moyeed & Papritz, 2002; Pilz et al., 2005). In other
words, by assuming that the spatial covariance function
is known (Handcock & Stein, 1993; Helbert et al., 2009;
Song et al., 2015) classical kriging suffers from uncer-
tainty underestimation.

Concerning Italy, several exercises have been recently
done and several products made available. For instance,
Crespi et al. (2021) used a combination of two determin-
istic methods (IDW and PRISM; Daly et al., 2002) to
develop high-resolution gridded datasets of daily mean
temperature and precipitation records during 1980–2018
in northeastern Italy (Trentino-South Tyrol region). IDW
was also applied in Caloiero et al. (2020) for southern
Italy (Calabria region). Curci et al. (2021) employed a
geostatistical approach (universal kriging) to generate
interpolated maps for mean temperature and precipita-
tion in central Italy (Abruzzo region) over the period
1930–2019. A comparison of IDW and geostatistical
methods to produce monthly gridded precipitation over
southern Italy (Calabria region) is discussed in Pellicone
et al. (2018). Finally, Brunetti et al. (2014) applied regres-
sion analysis (local weighted linear regression [LWLR])
to obtain 1961–1990 monthly temperature climatologies
for Italy. Although Brunetti et al. provide examples of
uncertainty estimates (68% confidence interval) associ-
ated to each grid point, the proposed LWLR method does
not explicitly account for the autocorrelation of data.
Indeed, that method consists in an iterative application
of local temperature-versus-elevation weighted regres-
sions where the stations which contribute to the tempera-
ture estimates are searched within an a priori fixed
spatial range of 200 km from a given grid cell.

In this study, we use a spatiotemporal regression model
to interpolate Tmax and Tmin monthly mean data on a
large space–time domain, namely the entire Italian terri-
tory for 60 years (1961–2020). We develop the statistical
analysis in a Bayesian framework in order to incorporate
all reasonable sources of uncertainty (including the param-
eters of the covariance function) in the final inferential
summaries. Because of the large space–time domain, the
inferential analysis has been implemented using the inte-
grated nested Laplace approximation (INLA) approach
(Rue et al., 2009) and the spatiotemporal covariance func-
tion has been derived from the solution of a stochastic par-
tial differential equation (SPDE; Lindgren & Rue, 2015).

INLA is a deterministic algorithm which provides
accurate approximation of the marginal posterior distri-
butions of the model parameters based on Laplace and
other numerical approximations and integration
schemes. The SPDE approach provides a way to represent
a continuous Gaussian Random Field through a
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discretely indexed Gaussian Markov random field
(GMRF; Lindgren et al., 2011). Computationally, GMRFs
are much more efficient than GRFs as they are based on
sparse matrices. The INLA-SPDE approach has been
proved to be computationally faster than the simulation-
based Markov chain Monte Carlo (MCMC) approach
commonly used for Bayesian inference (Martino &
Riebler, 2020). This is fundamental when models are
complex or deal with massive datasets (Blangiardo &
Cameletti, 2015).

The effective use of INLA and SPDE is documented in
several studies based on environmental data, from ecologi-
cal applications to disease mapping. A comprehensive list of
updated references is available in Lindgren et al. (2022).
Going through this list, it is illuminating to note the absence
of applications in climate science. To bridge this gap, we
here introduce INLA and SPDE by using and discussing a
simple case study. In particular, we employ INLA and SPDE
to develop a spatiotemporal model to derive gridded monthly
temperature climatologies for Italy both for the most recent
standard 30-year period (1991–2020) and three previous stan-
dard periods (1961–1990, 1971–2000, 1981–2010).

The input dataset is described in section 2. Section 3
introduces the statistical model, while section 4 discusses
results, model validation and possible applications of the
model estimates. Section 5 reviews the benefits of
the INLA/SPDE approach.

2 | DATA

2.1 | The study area

Italy, with latitude boundaries between 36�N and 48�N
and longitude boundaries between 5�E and 20�E, is our
study domain. The country is characterized by a narrow
and long shape of about 7500 km of coast line which
extends into the Mediterranean sea, two large mountain
systems (the Alps to the north, and the Apennines which
run northwest to south along the country), a large plain
(the Po Valley with a surface of 46,000 km2) and two
major islands (Sicily and Sardinia). This complex mor-
phology leads to variegated and contrasted climate
regimes (from warm temperate with dry summer to
polar) which strongly influences the variability of soil
moisture and temperature (Lo Papa et al., 2020).

According to the technical report “Climate indicators
in Italy” (ISPRA, 2021), which uses a dataset of
140 homogenized daily temperature time series from
1961 to 2020, the Italian-average mean-temperature
anomalies (baseline period 1961–1990) are generally
characterized by higher variability than global anomalies.
The estimated warming trend for the annual Tmax and

Tmin Italian averages is +0.42 and +0.35�C�decade−1,
respectively. As regards Tmax, a positive anomaly of
+1.82�C ranks 2020 as the warmest year in Italy since
1961 (2021 and 2022 are not included in this analysis).

2.2 | Temperature data

Our study uses daily maximum and minimum tempera-
ture records taken from SCIA (Desiato et al., 2011), a
database which collects climate observations from
a national network (the Italian Air Force synoptic net-
work) and several meteorological, agro-meteorological
and hydrographic networks across the 20 Italian regions.
In SCIA, the raw temperature data are subjected to strict
quality controls (ISPRA, 2016) for the detection of errone-
ous daily observations. Such quality controls are basically
a subset of those described by Durre et al. (2010) for the
Global Historical Climatology Network (GHCN) dataset
(Menne et al., 2012).

Despite the large number of temperature records
which populate the SCIA database, here, we only focus
on those time series which supply data during 1961–2020
and with no missing data for the 2011–2020 decade. This
choice is motivated by the fact that the 2011–2020 decade
was particularly remarkable as regards global warming,
being the warmest on record since 1961 both in Italy and
at global scale (ISPRA, 2021; WMO, 2021).

The altitude of the selected weather stations varies
between 0 (Villapiana Scalo, Marina di Ravenna, Fossalon
stations) and 3488 m (Pian Rosa station) above mean sea
level. Figure 1 displays their spatial distribution, while the
inset on the left shows the number of available stations
across the years. A visual inspection reveals that only a lim-
ited number of stations provides a complete coverage of the
study period. Specifically, less than 250 stations are available
over the first 30 years (1961–1990), while more than 500 sta-
tions are available since the early 2000s. This increase in the
station number corresponds to the development of local
hydrographic authorities and regional environmental agen-
cies in Italy and the transition from mechanical to automatic
station networks (Libertino et al., 2018).

The homogenization of temperature time series is a
pre-requisite for applying statistical data analysis (Toreti
et al., 2011). For the detection and adjustment of noncli-
mate perturbations (breakpoints) in temperature time
series we used Climatol (Guijarro, 2019), a ready-to-use R
package and an automatic well-established homogeniza-
tion tool (Joelsson et al., 2022). Details and results of the
homogenization study are not given here for lack of
space. We refer interested readers to Fioravanti et al.
(2019) for a more in-depth description both of the conti-
nuity and completeness criteria adopted for the selection
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of the temperature time series and the homogenization
process.

Tmax and Tmin monthly averages were calculated
using only daily observations collected during the 1961–
2020 period, no estimation or smoothing methods were
applied to refill data gaps. The daily data were averaged
by month for each year following the “10/4” complete-
ness rule (WMO, 2017), which states that monthly values
should not be calculated when (1) observations are miss-
ing for 11 or more days during the month; (2) observa-
tions are missing for a period of 5 or more consecutive
days during the month.

2.3 | Terrain and location predictors

We used the following variables as predictors of the Tmax
and Tmin monthly mean temperatures: latitude, elevation

and distance to sea (Osborn et al., 2021). All these predic-
tors have a clear and physically sound effect on air
temperature.

For interpolation purposes, the predictors must be avail-
able as rectangular raster datasets (see Figure 2). The lati-
tude raster simply contains the latitude value (Universal
Transversal Mercator original coordinates scaled to kilo-
metres) for each grid cell. The “distance to sea” raster con-
tains the minimum Euclidean distance of each grid point to
the Italian coastline. These two rasters were generated by
using the geoprocessing capabilities of the R terra package
(Maechler et al., 2021). Finally, the digital elevation model
dataset EU-DEM v1.1 from the Land Monitoring Service of
Copernicus (https://land.copernicus.eu/imagery-in-situ/eu-
dem) was used as the elevation raster. The final spatial reso-
lutions of the gridded predictors is 1 km × 1 km.

All these predictors have been rescaled to have zero
mean and standard deviation equal to one to avoid

FIGURE 1 Spatial distribution and historical time series (inset, bottom-left) of the number of the selected input stations for the month

of June (Tmax). The same results hold for Tmin and the other months of the year. In the background, the mesh used to build the SPDE

approximation to the continuous Matérn field. Note, our study domain comprises only the Italian peninsula and the two major islands

(Sicily and Sardinia) [Colour figure can be viewed at wileyonlinelibrary.com]
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numerical problems and ease interpretability of their
effects on temperature data.

3 | METHODOLOGY

3.1 | Modelling monthly temperatures
with INLA and the SPDE

Here, we introduce the mathematics which defines our
statistical model. Before that, we clearly motivate why an
explicit spatiotemporal approach is needed: to this end,
we start from a simple regression model.

Let ym t,sð Þ denote the realization of a space–time pro-
cess Ym t,sð Þ which represents the monthly Tmax (Tmin)
mean temperatures at year t=1961,…,2020 of month
m=1,…,12 at location s�S, where S is the domain of
interest. A linear model where the covariates account for
the temporal and spatial trend can be written as

ym t,sð Þ=μm+αm t+x sð ÞβmT+εm t,sð Þ: ð1Þ

Here μm is a month specific intercept, x sð Þ is the vec-
tor of observed covariates (introduced in section 2.3), βm

is the vector of coefficients to be estimated. We also
include a linear time trend with coefficient αm and a
Gaussian distributed independent measurement error
εm t,sð Þ with mean 0 and standard deviation σmε . We fit
the same model independently for each month and for
both Tmax and Tmin (24 models in total), as from our
exploratory analysis (not shown) we observed that the
impact of each predictor varies across months. As we

are interested in the long term trend for each month,
modelling each months' time series independently con-
siderably simplifies the model allowing to ignore the
seasonal cycle of temperatures and the strong temporal
dependence between consecutive months. To ease the
notation in the rest of the paper we omit the month
index m.

We fit a simple multiple linear regression model in
Equation (1) to our data and, only for exploratory pur-
poses, use spatiotemporal variograms (Wikle et al., 2019)
to investigate the independence assumption in model
residuals ε t,sð Þ.

Figure 3 shows the variograms for the residuals of
model 1 (solid lines) for all the 12 months fitted with
Tmax data (similar results hold for Tmin, not shown).
Spatial correlation is clearly visible in all panels,
moreover, the variograms show that the residual spa-
tial correlation varies across months. For example,
September and October are characterized by large
range spatial dependence with the variance increasing
slowly, while December and January are character-
ized by a clear spatial range of 150 km. When it comes
to time, all months exhibit week temporal correlation.
In summary, the results of Figure 3 indicate that the
standard assumption of independent and identically
distributed errors is not tenable for our dataset. For a
more general review of potential pitfalls that can seri-
ously affect the results of ordinary least square regres-
sion we suggest Zuur et al. (2010).

We therefore modify the model including random
effects terms that explicitly account for spatial and tem-
poral correlation among temperature records,
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FIGURE 2 Raster maps of the spatial predictors used for interpolating Tmax and Tmin monthly mean records over the period 1961–
2020 [Colour figure can be viewed at wileyonlinelibrary.com]
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y t,sð Þ=μ+α t+x sð Þβ0+ω t,sð Þ+z tð Þ+ε t,sð Þ: ð2Þ

Here, z tð Þ�N 0,σ2z
� �

, t=1961,…,2020, is a temporal
random effect meant to account for the extra temporal
variability (colder or warmer than average years) that is
not captured by the linear time trend. A similar effect is
used in Serrano-Notivoli et al. (2019) for the estimation
of daily temperatures in Spain.

The term ω t,sð Þ is a spatially correlated process meant
to capture the residual dependence beside that described
by the covariates. We assume ω t,sð Þ to be independent in
time but correlated in space with covariance function,

Cov ω t,sð Þ,ω t0,s0ð Þð Þ= 0, fort≠ t0

C hð Þ, fort= t0

�
, ð3Þ

where h=
���s−s0

��� is the Euclidean distance between sites
s and s0.

A common specification for the purely spatial covari-
ance function C hð Þ is the Matérn function,

C hð Þ=σ2ω
1

Γ νð Þ2ν−1 k hð ÞνKν k hð Þ, ð4Þ

where σ2ω is the marginal variance and Kν �ð Þ the Bessel
function of second kind and order ν>0. The parameter ν
measures the degree of spatial smoothness of the process.
As this parameter is hard to estimate, we fixed it to one
as suggested by Blangiardo and Cameletti (2015). The
term k>0 is a scaling parameter related to the range ρ,
that is, the distance at which the spatial correlation
becomes negligible (close to 0.1). The larger ρ is, the more
dependent the spatial process is. In Equation (4) ρ is
defined as

ffiffiffiffi
8ν

p
k , an empirically derived definition proposed

by Lindgren et al. (2011). To represent the continuous
field ω t,sð Þ as a GMRF, we used the SPDE approach,
which is based on the finite element method (fem). In
our case, the triangulation used for fem is the one shown
in Figure 1. In order to obtain accurate approximations of
the underlying GRF, the triangular mesh must be dense
enough to capture the spatial variability of the monthly
mean temperatures. It is noteworthy to observe that we
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FIGURE 3 Monthly spatiotemporal variograms for the residuals of the linear model in Equation (1) (solid lines) and the spatiotemporal

model in Equation (2) (dashed lines). Results refer to the Tmax parameter. Similar results hold for Tmin [Colour figure can be viewed at

wileyonlinelibrary.com]
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constructed a mesh which is rather dense over the study
domain and sparser in the outer region. The purpose of
the outer region is twofold: avoid boundary effects and,
at the same time, reduce the computational costs.

3.2 | Priors definition

We finalize our Bayesian model by defining priors on all
model parameters: the coefficients α and β, the standard
deviations σε,σz, σω and the range ρ of the Matérn func-
tion. We used vague independent Gaussian priors for α
and β and log-Gamma priors on the log precision parame-
ters (equal to the log of the inverse of the variances σε,σz).

For the parameters of the Matérn field, we used
penalized complexity (PC) priors (Simpson et al., 2017).
PC priors are designed to penalize model complexity and
avoid overfitting. For ρ and σω we used the joint PC prior
suggested in Fuglstad et al. (2019). The prior parameters
are expressed as

Prob ρ<uρ
� �

=αρ;Prob σω>uσωð Þ=ασω ,

where we set uρ=700, αρ=0:7, uσω =1 and ασω =0:6. Since
the large scale spatial dependence is explained by the

elevation and location covariates, it is reasonable to
assume the range of the residual spatial dependence to be
smaller than 700 km.

4 | RESULTS

In this section we first look at the residuals of the model
given by Equation (2) to check if the assumption of error
independence is now more reasonably satisfied. We then
discuss parameter estimates for the 24 monthly models
and assess model performance through cross-validation.
Finally, we use the interpolated monthly surfaces of
Tmax and Tmin to calculate climate normals for the fol-
lowing standard 30-year periods: 1961–1990, 1971–2000,
1981–2010 and 1991–2020. A comparison between 1991–
2020 and the previous standard periods is then presented.

4.1 | Variograms for the residuals of the
spatiotemporal model

The dashed lines in Figure 3 refer to the spatiotemporal
variograms for the Tmax residuals of model of
Equation (2). The plot shows that the Matérn field
allowed to capture the spatiotemporal signal: the

FIGURE 4 Tmax: marginal posterior distributions for the intercept μ, the linear time trend coefficient α and fixed effects β. The shaded

colour refers to fixed effects for which the whole 95% credible interval is above or below zero (fixed effects which are significantly different

from zero)
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uncorrelated residuals return variograms which are more
or less flat both along the spatial and temporal dimen-
sion. This result holds for Tmin as well (not shown).

4.2 | Parameter estimates

The plots in Figures 4 and 5 reproduce the marginal pos-
terior distributions for the intercept μ, the linear time

effect α and the covariate coefficients β for Tmax and
Tmin monthly means, respectively.

The plots show both the intercept and the spatial pre-
dictors (elevation, latitude and distance to sea) have a
clear seasonal behaviour, whatever the parameter
(Tmax/Tmin). These seasonal-varying effects support our
initial hypothesis that a monthly regression analysis
could improve the accuracy of the final estimates. Inter-
estingly, both latitude and elevation have a negative

FIGURE 5 Tmin: marginal posterior distributions for the intercept μ, the linear time trend α and fixed effects β. The shaded colour refers

to fixed effects for which the whole 95% credible interval is above or below zero (fixed effects which are significantly different from zero)

FIGURE 6 Marginal posterior distributions for the standard deviation of the Matérn field ω t,sð Þ

8 FIORAVANTI ET AL.
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effect on temperatures across the months, while the sign
of the distance to sea effect depends on the variable:
when Tmax is considered, distance to sea has a negative
effect during the winter season and positive otherwise.
Conversely, a negative effect on Tmin monthly means
characterizes distance to sea across the year.

The linear time effect α indicates a clear increase of
the Tmax and Tmin monthly mean temperatures during
1961–2020, more marked during the summer season
(June–August). Further, a significant positive effect char-
acterizes the linear time trend of Tmax across the year,

while a weaker linear time trend effect characterizes the
winter season (January and February) and the month of
September for Tmin.

The marginal posterior densities of the standard devi-
ation σω and spatial range ρ of the Matérn field ω are
reproduced in Figures 6 and 7. As observed above (sec-
tion 3), the larger ρ is, the more dependent the spatial
process is. First, we observe that, unlike the spatial pre-
dictors in Figures 4 and 5, here the estimated densities
are characterized by very skewed shapes and do not
exhibit any pronounced seasonal effect. Second, the
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FIGURE 7 Marginal

posterior distributions for the

spatial range ρ of the Matérn

field ω
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visual inspection of the posterior densities suggests that
Tmax data show much more spatial structure than Tmin:
the posterior mean of ρ varies between 100 and 160 km

for Tmin and between 100 and 500 km for Tmax. At the
same time, both the standard deviation and the spatial
range of Tmax shows greater variability than Tmin.

TABLE 1 Cross-validation monthly results: average performance measures over the three validation datasets

RMSE �C Correlation Bias �C

Tmax Tmin Tmax Tmin Tmax Tmin

January 1.13 1.54 0.96 0.95 0.13 0.02

February 1.05 1.46 0.97 0.95 0.18 0.03

March 1.04 1.36 0.96 0.94 0.23 0.06

April 1.07 1.3 0.96 0.94 0.27 0.11

May 1.15 1.33 0.96 0.94 0.29 0.07

June 1.21 1.48 0.96 0.92 0.29 0.03

July 1.33 1.63 0.95 0.92 0.30 −0.01

August 1.3 1.63 0.95 0.92 0.29 −0.03

September 1.13 1.42 0.96 0.94 0.24 −0.02

October 1.01 1.4 0.97 0.94 0.21 0

November 1 1.37 0.97 0.95 0.15 0.03

December 1.12 1.49 0.97 0.95 0.12 0.04

FIGURE 8 Agreement between modelled (means of the posterior predictive distributions) and observed Tmax monthly means. Lighter

colours indicate areas with higher points concentrations. The solid line is the 1:1 line as a reference [Colour figure can be viewed at

wileyonlinelibrary.com]
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We conclude this section observing that the estimated
densities of the spatial range are consistent with the var-
iograms reproduced in Figure 3 for the residuals of model
1. For example, the diffuse posterior density for the
month of October indicates that for Tmax the spatial
correlation decays slowly at long distance. Its posterior
mean is 488 km and its 95% credible interval is quite wide
with bounds of 323 and 616 km. Indeed, the corresponding
variograms increase slowly and level off after 250 km (the
maximum spatial distance reported in Figure 3). Con-
versely, the posterior distribution for the month of January
is characterized by a posterior mean of 165 km and a nar-
row 95% credible interval with bounds of 160 and 173 km.
A spatial range of approximately 160 km can be inferred by
a visual inspection of the variogram of Figure 3.

4.3 | Model validation

To investigate if the model generalizes well or suffers from
overfitting/underfitting, we implemented the following vali-
dation strategy. First, we identified the weather stations
which provide data across all months both for Tmax and
Tmin (it can happen that a station does not meet complete-
ness criteria for a specific month and/or variable). These

stations were stratified according to their network of origin
(see section 2.2). Within each network, we sampled ran-
domly 10% of the stations in order to define a validation
dataset (67 stations). The remainder of the stations consti-
tutes the training dataset. Finally, we fitted the 24 monthly
models to the training stations and the fitted models were
used to predict the monthly mean temperatures on the vali-
dation stations. The above procedure was repeated using
three different validation and training datasets.

As performance measures we choose the following statis-
tics comparing predicted and observed values: (1) the Pear-
son correlation coefficient; (2) the root-mean-square error
(RMSE); (3) the bias (calculated as difference between fitted
and observed values). For each station, these statistics are
computed by comparing the observed Tmax and Tmin
monthly means and the means of the corresponding poste-
rior predictive distributions (PPDs; McElreath, 2020) com-
puted using the spatiotemporal model. For each of the three
validation datasets, the average of each performance measure
over all stations was computed. Table 1 reports the global
model performance, that is, the average of each score over
the three different validations datasets.

The results of Table 1 suggest a good model performance
across the months both for Tmax and Tmin. The Pearson
correlation coefficient is always greater than 0.9, while the

FIGURE 9 Agreement between modelled (means of the posterior predictive distributions) and observed Tmin monthly means. Lighter colours

indicate areas with higher points concentrations. The solid line is the 1:1 line as a reference [Colour figure can be viewed at wileyonlinelibrary.com]
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bias ranges between 0 and 0.3�C in absolute value. Finally,
the RMSE is always lower than 1.5�C with the exception of
the months of January, July and August for Tmin.

The scatterplots in Figures 8 and 9 show, for the vali-
dation datasets, the distribution of the fitted values
(means of the PPDs) versus the observed values for Tmax
and Tmin, respectively. The points spread uniformly
along the diagonal line, showing good agreement
between observed and modelled data.

Figures 10 and 11 compare observed and predicted
annual time series for two illustrative stations chosen
from the validation dataset. The plots indicate that the
Tmax and Tmin monthly models are able to reproduce
the temporal variability of the weather stations in the val-
idation dataset. Each estimate (mean of the PPD) comes
with an associated measure of uncertainty: the yellow
band marks the bounds of the 95% prediction interval
(Figures 10 and 11). In general, almost all of the observed

FIGURE 10 Maximum temperature monthly time series for the station of “Forlì urbana” (Emilia-Romagna, north of Italy). Observed

(solid lines) versus fitted values (dashed lines). The 95% credible interval of each series is represented as a yellow band [Colour figure can be

viewed at wileyonlinelibrary.com]

12 FIORAVANTI ET AL.

 10970088, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.8240 by C
ochraneItalia, W

iley O
nline L

ibrary on [06/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


temperatures fall within their 95% prediction interval.
Note, in this example the 95% prediction intervals are
quite wide for the station of Mileto in Figure 11.

4.4 | Tmax and Tmin monthly
climatologies

Once the model is fitted, it is possible to sample from the
posterior distribution of all parameters. Each sample

would correspond to parameters values that are plausible
under our model assumptions and observed data. We use
such simulated values in order to generate gridded maps
of temperatures over the space–time domain considered in
the paper: the Italian territory in the period 1961–2020.
For each month and year, we generate 1000 such maps.
These represent an ensamble that embeds in a natural
way the various uncertainties in the model.

We can then use such simulated maps to create 1000
long-term (30-year) monthly averages (climatologies), for

FIGURE 11 Minimum temperature monthly time series for the station of Mileto (Calabria, south of Italy). Observed (solid lines) versus

fitted values (dashed lines) [Colour figure can be viewed at wileyonlinelibrary.com]
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example, for the period 1991–2020. The 1000 climatologies
represent a distribution of gridded maps, which we sum-
marize using their mean and standard deviation. In Fig-
ures 12 and 13 the resulting means are plotted for the
period 1991–2020 for Tmax and Tmin, respectively.

The corresponding standard deviations maps are in
Figure 14 (Tmax only).

These maps point to a global low degree of uncer-
tainty in our predictions, with values of the standard
deviation lower that 0.3�C. As expected, greater
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FIGURE 12 Mean of the sample distribution of the monthly climatologies in Italy for the period 1991–2020 (Tmax) [Colour figure can

be viewed at wileyonlinelibrary.com]
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uncertainty affects those areas where the density of the
weather stations is poorer (see the spatial distribution of
the input stations in Figure 1).

Another way to use our ensamble of gridded maps is
to compute “difference” maps (1991–2020 vs. 1961–

1990, 1991–2020 vs. 1971–2000, 1991–2020 vs. 1981–
2010). We follow the same procedure as before, that is,
we compute 1000 differences for each month and year
and then summarize them using mean and standard
deviation.
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FIGURE 13 Mean of the sample distribution of the monthly climatologies in Italy for the period 1991–2020 (Tmin) [Colour figure can

be viewed at wileyonlinelibrary.com]
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