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FOREWORD 
 

According to technological and market analyses and forecasts, maintenance and asset lifecycle 
management have grown in significance and are expected to continue strengthening, driven by their 
increasing contribution to industry and society. With predictive maintenance acknowledged as 
among the prime use cases of the accelerating technological change brought by Industry 4.0, and 
with lifecycle engineering, management, and associated services recognised as key contributors to 
sustainability and resilience across sectors as diverse as public infrastructure, manufacturing, 
transportation and logistics, aerospace and defence, energy and utilities, and healthcare, the field 
receives heightened attention from scientific and industrial communities. Activities across the 
lifecycle of physical assets, including design, operation, maintenance and end of life management 
are increasingly seen less as cost contributors but as essential value adding processes. It is within 
this global context that the 6th IFAC Workshop on Advanced Maintenance Engineering, Services, 
and Technology (AMEST2024) was held, bringing together international experts from academia and 
industry to present and debate the latest advances in Maintenance and Asset Lifecycle Management 
in support of the transition to sustainable, human-centric and resilient industrial systems, aligned 
with Industry 5.0 aims.  

 
The distinguished role of digitalization and interoperability in the field was highlighted by three 

inspiring keynotes on “digital transformation in maintenance and asset management”, on “modular 
and adaptive field – level automation architectures to support predictive maintenance”, and on 
“ontology-based asset information modelling for predictive maintenance”. The keynotes offered an 
excellent overarching setting for a series of sessions covering thematically the latest advancement 
in the field, as follows:  

 
 Digital Twins for Maintenance Applications, focused on the application of digital twin concepts 

and associated technologies across various industries including railway, manufacturing, energy, 
and steel manufacturing. This theme explored how digital twins can support decision-making 
covering regulatory compliance, integrated maintenance and energy decision-making, ontology-
based decisions, and joint planning for maintenance and production. 

 Artificial Intelligence for Maintenance and Asset and Product Lifecycle Management 
highlighted how the rapidly advancing field of AI contributes to improving maintenance and 
extending the asset lifespan. In particular, contributions presented AI methods applied to quality 
control, fault diagnosis, and zero-defect manufacturing applications.  

 Maintenance Strategies, Simulation, and Optimization of Complex Systems included 
contributions on strategies, methodologies, and solutions for optimizing maintenance processes, 
such as business intelligence applications for maintenance, lifecycle cost analysis, smart 
maintenance, and optimizing maintenance strategies post-COVID. It also covered simulation 
techniques and their applications in various maintenance scenarios. 

 Reliability, Dependability, and Risk-Based Approaches addressed dependability analysis 
models, alarm dynamics frameworks, reliability-centered maintenance, risk-based vs. time-
based maintenance, and optimization models, targeting and showing benefits for manufacturing 
and infrastructure sectors.  

 Industry 5.0, Human Factors, Education, and Skills in Maintenance emphasized new 
approaches for competencies building in maintenance, the use of augmented reality solutions, 
decision support systems for Industry 5.0, and integrating machine learning into educational 
activities. It also discussed sustainability and human factors in maintenance management. 

 Digitalization for Asset and Product Lifecycle Management explored Internet of Things (IoT) 
platforms in asset management digitalization, predictive failure modeling, and efficiency 
improvements in maintenance operations. It also covered the integration of Building Information 
Modelling (BIM) with digital twins, interoperability testing, and the application of cyber-physical 
systems for inspection. 

 Prognostics and Health Management, Condition-Based Maintenance, and Condition 
Monitoring was another discussed topic. This theme covered adaptive learning methods for 
machine tool prognostics, collaborative frameworks for anomaly detection, data-driven fault 
detection techniques, and enhanced feature extraction for sensor fault detection.  



 

 

 End of Life Management of Complex Systems addressed strategies for managing the end of 
life of products and assets. This comprised contributions on decision-making approaches for 
end-of-life management, impacts of obsolescence and shortages and their management, circular 
product designs, and resilience strategies to extend the lifespan of complex systems. 

 Product-Service Systems for Maintenance and Asset Management focused on the design 
of smart product-service systems, the use of smart devices in remote maintenance, predictive 
maintenance servitization, and requirements for digital servitization in asset lifecycle 
management. 

 Resilience and Sustainability in maintenance covered methodologies for economic and 
environmental sustainability in maintenance decision-making, resilience in hydrogen terminals, 
spare parts planning, emerging technologies for sustainability, and broadly Industry 4.0 
frameworks for Maintenance (Maintenance 4.0).  

 Maintenance, Product, and Asset Lifecycle Management targeted the need and introduced 
methods for investment evaluation in condition monitoring, current and future trends in asset 
performance management, efficient spare parts management, decision-making frameworks, 
digitalization in the energy sector, and predictive modelling for for road infrastructure. 
 
The workshop successfully pursued the cross-fertilisation of ideas in the above areas by 

bringing together support from highly relevant scientific and industrial communities. Specifically, it 
was fully supported and sponsored by the IFAC TC 5.1. Manufacturing Plant Control, and co-
sponsored by TC 5.2. Management and Control in Manufacturing and Logistics, TC 5.3. Integration 
and Interoperability of Enterprise Systems (I2ES) and TC 6.4. Fault Detection, Supervision & Safety 
of Technical Processes – SAFEPROCESS, the workshop was also supported by the International 
Federation for Information Processing (IFIP) WG5.7 Advances in Production Management Systems, 
the Prognostics and Health Management (PHM) Society, and the European Safety and Reliability 
Association (ESRA).  

 
The papers presented at AMEST2024 brought a diverse range of topics that reflect the forefront 

of research and innovation in maintenance and asset management. Central themes included the 
transformative role of digital twins and artificial intelligence in optimizing maintenance strategies, 
enhancing reliability, and integrating advanced predictive models. The focus on digitalization, 
including IoT platforms and cyber-physical systems, underscores the drive towards smarter and 
more efficient operations. Human factors and Industry 5.0 highlight the critical importance of skills 
development and human-centricity in modern maintenance practices. Sustainability and resilience 
are pivotal, emphasizing the need for environmentally conscious and economically viable solutions. 
Finally, the integration of product-service systems and effective end-of-life management strategies 
showcases the holistic approach required for robust asset lifecycle management. Together, these 
themes illustrate a comprehensive vision for the future of maintenance and asset management, 
driven by innovation, digitalization, and a commitment to sustainability practices.  
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Abstract: Proper maintenance management allows companies to reduce failures and breakdowns while 

keeping high asset productivity. Several variables and uncertainties affect the selection of the optimal 

maintenance policy, and the one that might seem more cost effective in the short-term, might reveal having 

a total higher cost over the complete asset lifecycle. In this sense, the use of simulation to quantify the 

maintenance costs over the entire asset lifecycle can be helpful, allowing companies to test different 

scenarios and compare their result in a dynamic way, looking at long-term effects instead of short-term 

ones. The paper proposes an agent-based simulation model that allows to quantify the total costs associated 

with different maintenance policies, as well as computing productivity and important maintenance indexes 

to help companies in evaluating the most suitable maintenance strategy, being it used internally, or as a 

selling point for maintenance services towards customers. 

Keywords: maintenance; cost; total cost of ownership; TCO; simulation; agent-based simulation; service. 

1. INTRODUCTION 

Recently, the increased competitiveness of the market forced 

companies to improve their operations to reduce failures, 

contain costs, increase safety, effectiveness, and efficiency of 

the assets, transforming maintenance in a strategic function. 

Poor maintenance strategies are estimated to reduce a plant’s 

overall production capacity from 5 to 20% (Coleman et al., 

2022). Cost is often a decision-making driver for companies, 

but the risk is, in many cases, to have a myopic view, only 

focusing on the short-term. Total Cost of Ownership (TCO) 

should be considered when making investment decisions, 

since it includes all the costs (e.g., purchase, installation, 

management, maintenance, and disposal) a user (or a provider) 

must sustain throughout the asset life cycle. One of the costs 

impacting the TCO are the maintenance costs that depend on 

several variables (e.g., adopted policy, asset usage, 

environmental conditions). Simulation can be used to estimate 

the maintenance cost, allowing considering the variability and 

uncertainty of the system behavior over time, and evaluating 

business problems at different decision-making levels (e.g., 

strategic, tactical or operational) (Borshchev and Grigoryev, 

2020). Previous attempts have been done to do so. For 

instance, Roda et al. (2020) used Monte Carlo Simulation to 

evaluate the performance of an asset and then feed to the TCO 

model for decisions on asset configuration or performance. 

Despite, other typologies of simulation might be used to 

evaluate the problem from a different perspective and model 

complex relationships of components influencing each other’s. 

This paper aims at developing a simulation model that can help 

companies in choosing the optimal maintenance plan for an 

asset considering the maintenance lifecycle costs while also 

providing information on the asset productivity. The 

simulation model was developed and validated with the 

support of an Italian manufacturing company producing 

packing and bottling machines. After a short literature 

background on maintenance and simulation, the paper 

provides an overview of the main application of agent-based 

simulation in maintenance (section 2). The simulation model 

is presented (section 3), and results are presented (section 4), 

before the paper conclusion (section 5). 

2. LITERATURE BACKGROUND 

This section aims at introducing the main concepts related to 

maintenance and simulation, providing also an overview of the 

main applications of agent-based simulation in maintenance.  

2.1 Maintenance typologies and costs 

The term maintenance, as reported in the UNI EN 13306 

standard, refers to the "combination of all technical, 

administrative and managerial actions, during the life cycle of 

an entity, aimed at maintaining it or bringing it back to a state 

in which it can perform the required function" (UNI EN 

13306:2018, 2018). The purpose of maintenance is to ensure 

that the entities are reliable, i.e., as defined by the UNI EN 

13306 and UNI 9910 standards, "capable of performing a 

required function under given conditions, during a set time 

interval". Maintenance can be classified into different policies 

depending on the approach to fault management (Furlanetto et 

al., 2007). 

2.2 Modelling and simulation 

Simulation proved, over the years, to be a reliable instrument 

to study the behavior of processes or business models. After 

creating a simplified model of the original system with an 

adequate level of abstraction, it is possible to analyze and drill 

down into the structure and behavior of the original system, 

dynamically examining how it will act in different situations 

and scenarios (Borshchev and Grigoryev, 2020). 
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The three main simulation paradigms are System Dynamics 

(SD), Discrete Event Simulation (DES), and Agent-Based 

Simulation (ABS). Table 1 provides an overview of the 

features that every simulation paradigm offers. When 

necessary, SD, DES, and ABS can be mixed in hybrid 

approaches.  

Table 1 - Comparison of different simulation paradigms 

DES ABS SD 

Process-oriented: 

focus is on 

modeling the 

system in detail 

Individual-oriented: 

the focus is on 

modeling the agents 

and interaction 

between them 

System-oriented: 

the focus is on 

modeling the 

system observable  

Based on entity 

flows through 

blocks 

Based on single 

agents interacting 

with each other’s 

Based on stocks 

and flows between 

stocks 

Entities are passive Agents are active Continuous 

systems, no entities  

Global system 

behavior 

Global behavior 

results as the 

interaction of many 

agents 

Global system 

behavior as several 

interacting 

feedback loops  

Suited for tactical 

and/or operational 

decision-making  

Suited for strategic, 

tactical, and 

operational 

decisions 

Suited for strategic 

modelling purposes 

Adopted in 

business process, 

manufacturing, 

logistics and 

service delivery 

processes 

Mainly applied in 

social sciences 

including 

marketing, social 

processes, and 

healthcare/epidemic 

models 

Adopted in urban, 

social, ecological 

types of systems.  

In this paper, agent-based simulation has been selected to 

evaluate the behavior of an asset over its full lifecycle 

considering the adoption of different maintenance strategies 

because of its flexibility and capability of handling complex 

problems (Kono and Haneda, 2021). Thus, the next section 

presents applications of ABS in the context of maintenance 

found in the literature, highlighting the present of cost-related 

analysis in the papers. 

2.3 Applications of ABS for maintenance decision-making 

Licup and Materum (2023), created an ABS model predicting 

the impact of technology adoption in the implementation of 

maintenance activities to ensure high availability of broadband 

internet service letting out cost analysis. Sun, Han and Zhang 

(2023), optimize resource allocation to maximize the 

resilience of the infrastructure network. Again, no cost 

analysis is reported. Allal et al. (2021) use ABS to optimize 

maintenance route planning in an offshore wind farm to 

minimize travel costs. Nordal and El-Thalji (2021) simulate 

individual physical components and their failure modes, 

preventive maintenance plans, and opportunistic maintenance 

intervals to exploit these intervals in terms of intelligent 

maintenance. While the model simulates the lifecycle of the 

asset, it does not take into consideration costs. Kono and 

Haneda (2021) model support maintenance design, by 

comparing different scenarios, making it possible to predict the 

associated KPIs, but does not consider costs. Meissner, Meyer 

and Wicke (2021)  optimize maintenance planning estimating 

their operational impact. Maintenance activities are ranked 

according to their cost. Liu et al. (2021) simulate the aircraft 

maintenance process and produce large amounts of reliability 

data while performing fault classification through an ad-hoc 

algorithm. The model allows, among other things, to quantify 

the costs associated with a certain maintenance strategy. 

Abdelkhalek and Zayed (2020) used hybrid modeling (DES + 

ABS) to plan inspections of the scaffolding of a concrete 

bridge. The model quantifies the duration and cost of the 

inspection in different scenarios to identify the best ones. Lee 

and Mitici (2020) propose a simulation model to evaluate the 

safety and efficiency of aircraft maintenance strategies using 

ABS in combination with Petri Nets and Monte Carlo 

Simulation. The model allows the evaluation of new 

maintenance strategies before their practical implementation. 

Liu et al. (2019) use historical and real-time data to optimize 

maintenance plans according to service level, reliability, and 

cost. Wang et al. (2017) use ABS to model the availability of 

a complex multi-unit system, but costs are not considered in 

the simulation. Alsina, Cabri and Regattieri (2014) use ABS to 

simulate the behavior of a production line and the effect of 

maintenance on its performance. Cost analysis is not 

considered in the model. Lynch et al. (2013) integrate a genetic 

algorithm with an ABS model to optimize spare parts 

inventory and maintenance operations. Cost analysis is used as 

a driver of comparison. Kaegi, Mock and Kröger (2009) 

developed a model that evaluates the performance of the 

system concerning different maintenance strategies through a 

cost-benefit analysis. Hilletofth et al. (2009) compare different 

maintenance scenario based on multiple inputs. Costs are not 

considered in the model. From this brief overview, it emerges 

that the application of ABS in maintenance can contribute to 

decision-making at different levels but, at the same time, it also 

emerges that the cost perspective is not always considered. 

3. SIMULATION MODEL 

This section presents the developed model and the validation 

process, carried out with the support of an Italian 

manufacturing company producing packaging and bottling 

machines. For privacy purposes, data reported in this paper are 

realistic, but not the real one. The machine used for developing 

and validating the simulation model is a shrink wrapper. First, 

the Failure Modes and Effect Analysis (FMECA) was used to 

understand the functional structure of the asset and create a 

counterpart in the simulation model, as well as understand 

effects of components’ failure. Based on the FMECA shared 

by the company, the analyzed machine is composed of around 

70 components, each one belonging to a specific functional 

group and contributing to the machine’s functioning. 

The model is created with AnyLogic 8.8.6 Personal Learning 

Edition software and is built upon two agents: System agent 

(describes the behavior of the system as an ensemble of 

components, thus representing the asset), and Component 
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their operational impact. Maintenance activities are ranked 

according to their cost. Liu et al. (2021) simulate the aircraft 

maintenance process and produce large amounts of reliability 

data while performing fault classification through an ad-hoc 

algorithm. The model allows, among other things, to quantify 

the costs associated with a certain maintenance strategy. 

Abdelkhalek and Zayed (2020) used hybrid modeling (DES + 

ABS) to plan inspections of the scaffolding of a concrete 

bridge. The model quantifies the duration and cost of the 

inspection in different scenarios to identify the best ones. Lee 

and Mitici (2020) propose a simulation model to evaluate the 

safety and efficiency of aircraft maintenance strategies using 

ABS in combination with Petri Nets and Monte Carlo 

Simulation. The model allows the evaluation of new 

maintenance strategies before their practical implementation. 

Liu et al. (2019) use historical and real-time data to optimize 

maintenance plans according to service level, reliability, and 

cost. Wang et al. (2017) use ABS to model the availability of 

a complex multi-unit system, but costs are not considered in 

the simulation. Alsina, Cabri and Regattieri (2014) use ABS to 

simulate the behavior of a production line and the effect of 

maintenance on its performance. Cost analysis is not 

considered in the model. Lynch et al. (2013) integrate a genetic 

algorithm with an ABS model to optimize spare parts 

inventory and maintenance operations. Cost analysis is used as 

a driver of comparison. Kaegi, Mock and Kröger (2009) 

developed a model that evaluates the performance of the 

system concerning different maintenance strategies through a 

cost-benefit analysis. Hilletofth et al. (2009) compare different 

maintenance scenario based on multiple inputs. Costs are not 

considered in the model. From this brief overview, it emerges 

that the application of ABS in maintenance can contribute to 

decision-making at different levels but, at the same time, it also 

emerges that the cost perspective is not always considered. 

3. SIMULATION MODEL 

This section presents the developed model and the validation 

process, carried out with the support of an Italian 

manufacturing company producing packaging and bottling 

machines. For privacy purposes, data reported in this paper are 

realistic, but not the real one. The machine used for developing 

and validating the simulation model is a shrink wrapper. First, 

the Failure Modes and Effect Analysis (FMECA) was used to 

understand the functional structure of the asset and create a 

counterpart in the simulation model, as well as understand 

effects of components’ failure. Based on the FMECA shared 

by the company, the analyzed machine is composed of around 

70 components, each one belonging to a specific functional 

group and contributing to the machine’s functioning. 

The model is created with AnyLogic 8.8.6 Personal Learning 

Edition software and is built upon two agents: System agent 

(describes the behavior of the system as an ensemble of 

components, thus representing the asset), and Component 

agent (that represents the operations of the individual 

components). The functioning of System agent type depends 

on the Component agent type as described in the following. 

3.1 Input and Output 

Table 2 summarizes the input used to run the model. The data 

is read by AnyLogic from an Excel file, in which each row 

represents an asset component, at the beginning of the 

simulation. The output is represented by the calculation of 

relevant indexes at both the system level (i.e., for the asset) and 

at component level. In particular, a list of maintenance indexes 

(computed for each component and the system) was defined. 

Time Between Failures (TBF) – i.e., the time interval between 

the end of the repair of the previous failure and the occurrence 

of the next failure – and Mean Time Between Failures (MTBF) 

– i.e., average of the TBF – were used for repairable entities. 

For non-repairable entities, Time To Failure (TTF) and Mean 

Time To Failure (MTTF) were used. To measure maintenance 

time, Time Between Maintenance (TBM) – i.e., the time 

interval between two consecutive maintenance interventions, 

corrective or preventive – as well as Mean Time Between 

Maintenance (MTBM) were selected. Then, Time To Repair 

(TTR) – i.e., the time required to execute a maintenance 

intervention – and Mean Time To Repair (MTTR). In addition, 

indexes related to costs and production time (nominal, slow, 

and downtime) were used. Depending on the data availability, 

the model may include direct (e.g., maintenance personnel, 

materials, spare parts, and third-party costs due to outsourcing) 

and indirect costs (cost of other personnel, cost required for 

maintenance structure to work, financial costs for spare parts 

in the warehouse, auxiliary maintenance costs), as well as 

hidden costs (costs due to downtime, contribution margin, to 

not using the production personnel, scraps and reworks, 

inefficiency, safety). For space constraints, only cost-related 

indexes will be presented in the results section. 

3.2 “Component” agent 

A population of agents “Component”, as well as their 

characteristics, is created based on the number of rows (one for 

each component) in the input file. During the simulation, each 

agent (Figure 1) can enter in one of the states listed in Table 3. 

The PM (Preventive Maintenance) state puts the machine in a 

stoppage state. When a failure happens to the component, the 

Fault state is activated and, depending on the component, the 

production is stopped or slowed down. The component goes 

into MachineStopped state when the system is stopped due to 

a failure or maintenance operation on a different component. 

In ABS, transitions (Table 4) are used to allow an agent to 

move from one state to another. 

The transition from Working to PM status is unlocked upon 

condition. This occurs when a specific timer, counting the 

hours elapsed since the last maintenance intervention, reaches 

the number of hours scheduled for preventive maintenance. At 

the end of any maintenance work, the timer is reset, to consider 

the preventive maintenance policy (at a constant age) adopted. 

 

Table 2. Input data for the simulation model 

Variable Unit of measure 

Name, sub-zone, group, ID (from FMECA) / 

SparePartCost €/piece 

PMInterval h 

PMLenght h/intervention 

CMLenght h/intervention 

PercentageReplaced % 

Alpha h 

LogisticTime h  

TechnicianCost €/h 

Table 3. States of the "Component" agent 

State Description 

Working The entity is working normally 

PM Component is under PM 

Fault Component suffered a failure 

Replacement Component is replaced 

Repair Component is repaired 

MachineStopped The component is not working because the 

machine is stopped for some reason 

 
Table 4. Transitions used in the model 

Transition Trigger 

Timeout The agent has spent a certain amount of time in a 

certain state. 

Rate Same logic used in the "timeout" but the time is 

given by an exponential distribution of which the 

average value is known. 

Condition A condition is satisfied. 

Message A certain message arrives from other agents. 

The agent returns to the status of a working component upon a 

timeout transition which is dictated by the PreventiveDuration 

parameter indicated in the input Excel file. Transitions 

between the Working and MachineStopped states are defined 

by an exchange of messages with the System agent. When an 

agent “Component” causes the stoppage, either due to the 

occurrence of the failure or the execution of PM, a message is 

sent to the system agent, which causes the System stoppage. 

As a result, the System agent communicates, via message to 

the other components, that the plant is inactive, causing it to 

switch to the MachineStopped state. At the end of maintenance 

intervention, a message is sent for the return of the machine to 

the Working state. In turn, again via message, this will activate 

the operating state of the other components. The transition 

from Working to Fault is modeled by applying the definition 

of reliability through a Weibull distribution (Hossain and 

Zimmer, 2003). Like for PM, the timer is reset after every 

intervention. As the working time increases, the reliability will 

decrease following the negative exponential trend of the 

reliability distribution. The occurrence of failure events is 

simulated by comparing the reliability parameter with a 

variable that simulates the probability of a random failure. A 

FaultRandomness variable is therefore defined for each 

component, and calculated after each intervention that the 

component undergoes, assuming a random value between zero 

and one. As soon as the reliability value falls below the 

FaultRandomness value, the transition to the fault state is 

activated (lasting until the maintenance intervention is 
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completed). In this way, the probability of failure – that 

increases as the machine's working time increases – was 

simulated. After the fault, the status of the component can 

change to Repair or Replacement, depending on the activity 

for the broken component. The PercentageReplaced, uniquely 

defined for each component, is used to determine whether a 

component is replaced or repaired. The duration of the 

corrective interventions is established by the CMLenght 

parameter, through a timeout transition that returns the 

component to the Working state. At the level of individual 

components, for diagnostic purposes, it was considered useful 

to collect some simulation data. This is why whenever the state 

of a component changes to PM, Fault or Replacement, a 

counter keeping track of the total number of PM, breakdowns 

or replacements is added. Multiplying the number of 

replacements made by the cost of the individual component 

(input from Excel) allows to calculate the total cost due to the 

purchase of spare parts. In the Working, PM, Replacement and 

Repair states, there are internal Timeout transitions that, every 

hour, update the values of the parameters used to collect data 

on the operational status of the component. 

 

Figure 1. "Component" agent 

At the end of the simulation, reliability and maintainability 

parameters, useful for evaluating and improving the 

maintenance management, are calculated. Subsequently, all 

the data collected are reported on a database where the history 

of the results of the various simulations is stored, allowing 

them to be tracked. In this way, by varying the input data, it is 

possible to compare various preventive maintenance plans to 

define the most beneficial. 

 

Figure 2. "System" agent 

3.2 “System” agent 

The “System” agent (Figure 2) is also represented through 

state-chart whose states are summarized in Table 5. The 

transitions among states are determined by the “Component” 

agent states.  
Table 5. States of the "System" agent 

State Description 

NominalProduction The productivity is within acceptable range 

SlowedProduction In operation, but productivity is below 

minimum of acceptability 

ProductionStopped One of the components stop the production 

due to a fault or a maintenance intervention 

The transition from NominalProduction to SlowedProduction 

is managed through a condition (Table 4) which is unlocked 

when the machine's productivity falls below the tolerance limit 

(established through a parameter). According to the 

knowledge of the company, the productivity of the machine 

decreases by 0,5% every hundred hours of uninterrupted 

production. This is accomplished in the simulation model 

through an event that cyclically changes the value of the 

productivity parameter. When a maintenance intervention is 

executed, productivity is restored to its maximum. When the 

plant produces, regardless of the production rate, it can switch 

to a stopped state in the event of a breakdown or if preventive 

maintenance is planned to stop the production of the machine. 

These switches between SlowedProduction and 

StoppedProduction states, as well as between 

NominalProduction and StoppedProduction states and vice 

versa, are managed through messages transitions (Table 4), 

sent between the “Components” agent and the “System” agent. 

When a PM or a Fault state is active in one of the components, 

signaled through a message, the System goes into the 

StoppedProduction state. The NominalProduction state is 

restored as soon as maintenance is finished. As for the 

“Component” agent, there are internal transitions in the system 

states that are collected in parameters used to monitor the 

operational status of the system.  

4.  RESULTS AND DISCUSSION 

Due to privacy concerns, the input used for the simulation 

presented in this paper was realistic ones and not the real data 

of the company. As above-mentioned, information related to 

components’ failure as well as all the input data reported in 

Table 2 was derived from the FMECA. The simulation length 

was set to 20 years, as the company declared it to be the 

average lifetime of the machine. At the end of the simulation, 

multiple performance indexes related to maintenance, cost and 

production time were obtained at the asset level (Figure 3), and 

at the component level. For instance, the breakdown of the 20 

years into nominal and slowed production as well as stoppage 

hours could be an important proxy to evaluate the impact of 

the maintenance plan and policies on the machine productivity, 

also considering the number of produced products. On the cost 

side, the PM and CM costs can be identified as well as the total 

maintenance cost. Maintenance indexes (MTBF, MTTR, 

Availability) can be calculated at asset and components levels 

to evaluate the effectiveness of the applied policies. 
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3.2 “System” agent 

The “System” agent (Figure 2) is also represented through 

state-chart whose states are summarized in Table 5. The 

transitions among states are determined by the “Component” 

agent states.  
Table 5. States of the "System" agent 

State Description 

NominalProduction The productivity is within acceptable range 

SlowedProduction In operation, but productivity is below 

minimum of acceptability 

ProductionStopped One of the components stop the production 

due to a fault or a maintenance intervention 

The transition from NominalProduction to SlowedProduction 

is managed through a condition (Table 4) which is unlocked 

when the machine's productivity falls below the tolerance limit 

(established through a parameter). According to the 

knowledge of the company, the productivity of the machine 

decreases by 0,5% every hundred hours of uninterrupted 

production. This is accomplished in the simulation model 

through an event that cyclically changes the value of the 

productivity parameter. When a maintenance intervention is 

executed, productivity is restored to its maximum. When the 

plant produces, regardless of the production rate, it can switch 

to a stopped state in the event of a breakdown or if preventive 

maintenance is planned to stop the production of the machine. 

These switches between SlowedProduction and 

StoppedProduction states, as well as between 

NominalProduction and StoppedProduction states and vice 

versa, are managed through messages transitions (Table 4), 

sent between the “Components” agent and the “System” agent. 

When a PM or a Fault state is active in one of the components, 

signaled through a message, the System goes into the 

StoppedProduction state. The NominalProduction state is 

restored as soon as maintenance is finished. As for the 

“Component” agent, there are internal transitions in the system 

states that are collected in parameters used to monitor the 

operational status of the system.  

4.  RESULTS AND DISCUSSION 

Due to privacy concerns, the input used for the simulation 

presented in this paper was realistic ones and not the real data 

of the company. As above-mentioned, information related to 

components’ failure as well as all the input data reported in 

Table 2 was derived from the FMECA. The simulation length 

was set to 20 years, as the company declared it to be the 

average lifetime of the machine. At the end of the simulation, 

multiple performance indexes related to maintenance, cost and 

production time were obtained at the asset level (Figure 3), and 

at the component level. For instance, the breakdown of the 20 

years into nominal and slowed production as well as stoppage 

hours could be an important proxy to evaluate the impact of 

the maintenance plan and policies on the machine productivity, 

also considering the number of produced products. On the cost 

side, the PM and CM costs can be identified as well as the total 

maintenance cost. Maintenance indexes (MTBF, MTTR, 

Availability) can be calculated at asset and components levels 

to evaluate the effectiveness of the applied policies. 

From a deeper analysis of outputs, a problem with the film 

winding rod component was noticed, being it the one with the 

higher number of failures and, in turn, the lowest MTBF. Since 

the company did not have in place any preventive maintenance 

plan for this component, four preventive maintenance 

scenarios were simulated and compared to investigate the 

effect of each maintenance plan on the asset productivity and 

cost. Table 6 summarizes the results of the simulation, 

detailing the lifecycle maintenance costs, the number of 

failures, and the number of PM interventions associated with 

different PM intervals. 

 

Figure 3. Simulation results 

Table 6. Comparison of simulation scenario 

PM interval 

[h] 

Total 

Maintenance 

costs [€] 

Number 

of failures 

PM 

interventions 

- 156.500 15 0 

20.000 161.000 15 3 

16.000 159.800 11 6 

12.000 153.000 8 10 

6.000 170.800 6 27 

The four scenarios tested and compared against the original 

one showed interesting insights. First, from an economic 

standpoint, carrying out too frequent (i.e., every 6000 hours) 

or too rare (i.e., every 20000 hours) PM actions led to worst 

results compared to the original scenario. Indeed, when the 

20.000 h PM interval was applied, the number of failures 

suffered by the component, as well as the MTBF, remained 

unchanged, while the total number of interventions (corrective 

and preventive) increased since PM was performed 3 times, 

only causing an increase in the total maintenance cost with 

respect to the original scenario. Instead, very frequent 

maintenance (i.e., every 6.000 h), lead to a reduction of 

failures, but significantly increase the number of PM 

interventions, having bad effects on the maintenance costs, 

also having negative effects on the productivity, since the 

machine is frequently stopped to carry out the interventions. 

The 16.000 h PM interval provide cost improvements over the 

20.000 h scenario but is still worse than the original one. 

Instead, from a cost-wise perspective, the 12.000 h interval is 

the most convenient among the ones analyzed. Here, the 

number of failures is reduced to eight (second lowest), 

compared to ten PM interventions carried out (second highest). 

Also, improvements in terms of general index are achieved 

(e.g., MTBF).  

It should be noted that, for long PM intervals (e.g., 20000 h), 

the reduction in the probability of failure is not sufficient to 

justify the use of a PM policy. In fact, out of the total, the 

increase in costs due to scheduled maintenance is greater than 

the savings obtained thanks to the reduction in the number of 

failures. Instead, with too frequent maintenance, costs increase 

significantly due to the high number of replacements of non-

failed components. Compared to the original scenario, it is 

only possible to reduce costs by adopting 12.000 h PM 

intervals. This strikes a balance between the costly occurrence 

and the high cost of too many PM interventions. 

5.  CONCLUSIONS 

The paper developed an agent-based simulation model to 

predict the maintenance costs that occur during the lifecycle of 

an asset, taking into consideration the variability in its 

behavior. Through a scenario analysis, the model allows to 

evaluate the costs and effectiveness of various maintenance 

policies in terms of reliability, availability, and productivity, 

and allow to select the most convenient one considering 

different performance indexes (e.g., cost, productivity). 

Thanks to the lifecycle perspective, this model could be 

integrated in the TCO calculation of an asset since it forecasts 

the total lifecycle maintenance cost that the owner of the asset 

should sustain, considering the decrease of reliability of the 

asset during its life and the uncertainty of failures occurrence. 

Compared to the literature, the proposed model integrates a 

strong cost perspective that, added to the computation of the 

maintenance index, can support companies for improved 

decision-making, and could be used as a selling point in case 

of maintenance-based service offering, showing to customers 

the importance of executing PM during the asset lifecycle and 

comparing different working scenario. The adoption of ABS 

and the structure of the model favor generalization and 

adaptation to other cases since the relationship 

component/system is easily replicable to other assets. 

During the development, it was necessary to make some 

approximations due to lack of data or modeling necessities. In 

this sense, possible improvements for future research have 

been identified, for example through the systematics collection 

and processing of historical data to be used as input. This 

would be useful to model the Weibull function and, improve 

the reliability analysis used during the simulation. Another 

aspect relates to the assumption that, after maintenance, a 

component returns to the optimal working state (“as good as 

new”). This assumption could be removed, and other modeling 

approaches could be adopted. A more in-depth study of the 

effects that a component health has on overall productivity 

could be carried out. Considering the importance of knowing 

the lifecycle cost for the company to make decisions at a 

strategic level, the inclusion of additional costs (e.g., spare 

parts disposal), in a TCO fashion, could support the company 

in making better decisions. Currently, due to the lack of some 

data, it is not possible to include all the costs in the TCO 

analysis. Having more information on the costs incurred by the 
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company would be able to enrich the model for more detailed 

analyses.  

ACKNOWLEDGEMENTS 

This paper was supported by the project National Recovery 

and Resilience Plan (NRRP), Mission 4 Component 2 

Investment 1.3 – Call for tender No. 341 of 15/03/2022 of 

Italian Ministry of University and Research funded by the 

European Union (NextGenerationEU), Award Number 

PE00000004, Concession Decree No. 1551 of 11/10/2022 

adopted by the Italian Ministry of University and Research, 

CUP F13C22001230001 MICS (Made in Italy - Circular and 

Sustainable).  

This work also contributes to the advances of the Erasmus + 

Project CoDEMO - Co-Creative Decision-Makers for 5.0 

Organizations (Project Nr. 101104819). 

REFERENCES 

Abdelkhalek, S. and Zayed, T. (2020), “Simulation-based 

planning of concrete bridge deck inspection with non-

destructive technologies”, Automation in Construction, 

Elsevier, Vol. 119, p. 103337. 

Allal, A., Sahnoun, M., Adjoudj, R., Benslimane, S.M. and 

Mazar, M. (2021), “Multi-agent based simulation-

optimization of maintenance routing in offshore wind 

farms”, Computers & Industrial Engineering, Elsevier, 

Vol. 157, p. 107342. 

Alsina, E.F., Cabri, G. and Regattieri, A. (2014), “An agent-

based approach to simulate production, degradation, repair, 

replacement and preventive maintenance of manufacturing 

systems”, 2014 IEEE Symposium on Computational 

Intelligence in Production and Logistics Systems (CIPLS), 

IEEE, pp. 24–31. 

Borshchev, A. and Grigoryev, I. (2020), “Modeling and 

simulation modeling”, The Big Book of Simulation 

Modeling: Multimethod Modeling with AnyLogic, Vol. 8. 

Coleman, C., Damodaran, S. and Deuel, E. (2022), Predictive 

Maintenance and the Smart Factory, Deloitte. 

Furlanetto, L., Garetti, M. and Macchi, M. (2007), Ingegneria 

Della Manutenzione. Strategie e Metodi, Vol. 677, 

FrancoAngeli. 

Hilletofth, P., Lättilä, L., Ujvari, S. and Hilmola, O.-P. (2009), 

“Agent-based decision support in maintenance service 

operations”, The 16th International Annual EurOMA 

Conference. 

Hossain, A. and Zimmer, W. (2003), “Comparison of 

estimation methods for weibull parameters: Complete and 

censored samples”, Journal of Statistical Computation and 

Simulation, Taylor & Francis Group, doi: 

10.1080/00949650215730. 

Kaegi, M., Mock, R. and Kröger, W. (2009), “Analyzing 

maintenance strategies by agent-based simulations: A 

feasibility study”, Reliability Engineering & System Safety, 

Elsevier, Vol. 94 No. 9, pp. 1416–1421. 

Kono, T. and Haneda, K. (2021), “Simulation-supported 

maintenance design and decision-making using agent-

based modeling technology”, CIRP Annals, Elsevier, Vol. 

70 No. 1, pp. 13–16. 

Lee, J. and Mitici, M. (2020), “An integrated assessment of 

safety and efficiency of aircraft maintenance strategies 

using agent-based modelling and stochastic Petri nets”, 

Reliability Engineering & System Safety, Elsevier, Vol. 

202, p. 107052. 

Licup, R.J.M. and Materum, L. (2023), “Technology 

Adoption: Intelligent Agent-based Model for Philippines 

FTTH Broadband Service”, Journal of Communications, 

Vol. 18 No. 4. 

Liu, Y., Wang, T., Zhang, H. and Cheutet, V. (2021), 

“Simulation-based fuzzy-rough nearest neighbour fault 

classification and prediction for aircraft maintenance”, 

Journal of Simulation, Taylor & Francis, Vol. 15 No. 3, pp. 

202–216. 

Liu, Y., Wang, T., Zhang, H., Cheutet, V. and Shen, G. (2019), 

“The design and simulation of an autonomous system for 

aircraft maintenance scheduling”, Computers & Industrial 

Engineering, Elsevier, Vol. 137, p. 106041. 

Lynch, P., Adendorff, K., Yadavalli, V.S. and Adetunji, O. 

(2013), “Optimal spares and preventive maintenance 

frequencies for constrained industrial systems”, Computers 

& Industrial Engineering, Elsevier, Vol. 65 No. 3, pp. 378–

387. 

Meissner, R., Meyer, H. and Wicke, K. (2021), “Concept and 

economic evaluation of prescriptive maintenance strategies 

for an automated condition monitoring system”, 

International Journal of Prognostics and Health 

Management, Vol. 12 No. 3. 

Nordal, H. and El-Thalji, I. (2021), “Lifetime benefit analysis 

of intelligent maintenance: Simulation modeling approach 

and industrial case study”, Applied Sciences, MDPI, Vol. 

11 No. 8, p. 3487. 

Roda, I., Macchi, M. and Albanese, S. (2020), “Building a 

Total Cost of Ownership model to support manufacturing 

asset lifecycle management”, Production Planning and 

Control, Taylor and Francis Ltd., Vol. 31 No. 1, pp. 19–37, 

doi: 10.1080/09537287.2019.1625079. 

Sun, J., Han, Z. and Zhang, Z. (2023), “Resource Allocation 

Framework for Optimizing Long-Term Infrastructure 

Network Resilience”, Journal of Infrastructure Systems, 

American Society of Civil Engineers, Vol. 29 No. 1, p. 

04022048. 

UNI EN 13306:2018. (2018), “Manutenzione - Terminologia 

di manutenzione”. 

Wang, L., Xu, H., Wu, J., Chen, X. and Na, W. (2017), “Agent-

based modeling of availability for complex multiple units 

systems”, Journal of Quality in Maintenance Engineering, 

Emerald Publishing Limited, Vol. 23 No. 1, pp. 71–81. 

 


