Untangling temporal graphs of bounded degree

Riccardo Dondi
Università degli Studi di Bergamo, Bergamo, Italy

ARTICLE INFO

Article history:

Received 19 December 2022
Received in revised form 12 June 2023
Accepted 14 June 2023
Available online 19 June 2023

Keywords:

Temporal graphs
Vertex cover
Graph algorithms
Computational complexity

Abstract

In this contribution we consider a variant of the vertex cover problem in temporal graphs that has been recently introduced to summarize timeline activities in social networks. The problem is NP-hard, even when the time domain considered consists of two timestamps. We further analyze the complexity of this problem, focusing on temporal graphs of bounded degree. We prove that the problem is NP-hard when (1) each vertex has degree at most one in each timestamp and (2) each vertex is connected with at most three neighbors, has degree at most two in each timestamp and the time domain consists of three timestamps. On the other hand, we prove that the problem is in P when each vertex is connected with at most two neighbors. Then we present a fixed-parameter algorithm for the restriction where we bound the number of interactions in each timestamp and the length of the interval where a vertex has incident temporal edges.

(C) 2023 Elsevier B.V. All rights reserved.

1. Introduction

Network analysis has recently extended several classic problems on static graphs to temporal graphs. Temporal graphs describe dynamics of edge activity in a discrete time domain [14,12,17], while the vertex set is not changing. Several problems for finding paths and analyzing graph connectivity has been considered in the literature [14, 19, $20,5,8,21,9,4,15,1,7]$. Recently, one of the most relevant problem in graph theory and theoretical computer science, Vertex Cover, has been extended to temporal graphs $[2,18]$. In this paper we analyze a variant of Vertex Cover, called Network Untangling, that has been introduced in [18] for discovering event timelines and summarizing temporal networks. Given a sequence of interactions between entities (for example users of a social network platform), the proposed problem looks for an explanation of the observed interactions with few (and short) activity covering intervals of entities, such that each interaction is covered by at least one of the two entities involved (at least one of the two entities is active when an interaction between them is observed). This can be seen as a variant of Vertex Cover, where the temporal edges have to be covered with vertex activities of minimum length, called span. The span of a vertex is defined as the difference between the ending and starting interval endpoints where the vertex is defined to be active. A consequence of this definition is that when a vertex is active in a single timestamp, it has a span equal to 0 .

Four formulations of the problem have been considered in [18], depending on the fact that a vertex activity is defined as a single interval or $k \geq 2$ intervals and that the objective function is the minimization of the sum of vertex spans or the minimization of the maximum vertex span. In this paper we consider the formulation, denoted by MinTimelineCover, that asks for the definition of a covering interval for each vertex, so that (1) for each temporal edge $\{u, v, t\}$ at least one of the

[^0]covering intervals of u and v includes t and (2) the overall span is minimized. Given a temporal graph, MinTimelineCover looks for a cover of the temporal edges that has minimum span and such that each vertex is active in one time interval.

Other variants of Vertex Cover in temporal graphs have been introduced in [1]. A first variant asks for the minimum number of timestamps where vertices are defined to be active, such that each (non-temporal) edge $e=\{u, v\}$ is temporally covered, that is there exists a timestamp t where e is defined and one of (u, t) and (v, t) belongs to the cover. A second variant asks for each temporal edge to be temporally covered at least once for every interval of a given length. The two variants are NP-hard, also in very restricted cases [1]. Further results on the problem variants, including their approximability, have been given in [1,11].

The MinTimelineCover problem is known to be NP-hard [18], even in the restriction where the time domain consists of two timestamps [10] (when the time domain consists of a single timestamp, the problem is trivially in P, since any solution of the problem has span 0). For this restriction, MinTimelineCover is fixed-parameter tractable, when parameterized by the span of the solution [10]. The work in [10] has analyzed the parameterized complexity of the variants of Network Untangling proposed in [18], considering as parameters the number of vertices of the temporal graph, the length of the time domain, the number of intervals of vertex activity and the span of a solution.

In this paper, we consider the complexity of the MinTimelineCover problem when we bound the local degree (maximum number of interactions of a vertex in a timestamp) and the total degree (maximum number of neighbors of a vertex in the overall time domain). We prove in Section 3 that the problem is NP-hard even when there exists at most one interaction in each timestamp, and thus the local degree is bounded by 1 . In Section 4 we consider the complexity of MinTimelineCover when we bound the total (and possibly the local) degree of the temporal graph. We show that, while the problem is in P when the total degree is bounded by two, it is NP-hard when the total degree is bounded by three, the local degree is bounded by two and the time domain consists of three timestamps. Finally, in Section 5 we prove that the problem is fixed parameter tractable when the parameter is the size of the time window that bounds (1) the number of vertices with temporal edges in a timestamp (thus also the local degree) and (2) the length of the interval where a vertex has incident temporal edges. The idea of considering a time window has been applied before on temporal graphs, for example a sliding time window has been considered in the context of graph coloring [16] and for the graph covering formulation defined in [2].

We conclude the paper with some open problems in Section 6. In Section 2 we present some definitions and we formally define the MinTimelineCover problem.

2. Preliminaries

We start this section by defining the discrete time domain over which is defined a temporal graph.

Definition 1. A discrete time domain $\mathcal{T}=\left[1, \ldots, t_{\text {max }}\right]$ is a sequence of timestamps. An interval $T=\left[t_{i}, t_{j}\right]$ over \mathcal{T}, where $t_{i}, t_{j} \in \mathcal{T}$ and $t_{i} \leq t_{j}$, is the sequence of timestamps between t_{i} and t_{j}.

Two intervals $T_{1}=\left[t_{a, 1}, t_{b, 1}\right], T_{2}=\left[t_{a, 2}, t_{b, 2}\right]$ are disjoint if they do not share any timestamp, that is $t_{a, 1} \leq t_{b, 1}<t_{a, 2} \leq t_{b, 2}$ or $t_{a, 2} \leq t_{b, 2}<t_{a, 1} \leq t_{b, 1}$.

Given a set of pairwise disjoint intervals $T_{1}=\left[t_{a, 1}, t_{b, 1}\right], T_{2}=\left[t_{a, 2}, t_{b, 2}\right], \ldots, T_{q}=\left[t_{a, q}, t_{b, q}\right]$, where $t_{a, 1} \leq t_{b, 1}<t_{a, 2} \leq$ $t_{b, 2}<\cdots<t_{a, q} \leq t_{b, q}$, and $t_{b, i}=t_{a, i+1}-1,1 \leq i \leq q-1$, we can define the concatenation of these intervals:

$$
T_{1} \cdot T_{2} \cdots \cdot T_{q}=\left[t_{a, 1}, t_{b, q}\right]
$$

We present now the definition of temporal graph. The vertex set is not changing in the time domain, that is the vertex set is identical in each timestamp (see the example of Fig. 1).

Definition 2. A temporal graph $G=(V, E, \mathcal{T})$ consists of

1. A set V of vertices
2. A time domain \mathcal{T}
3. A set $E=\{\{u, v, t\}: u, v \in V, t \in \mathcal{T}\}$.

A temporal graph $G=(V, E, \mathcal{T})$ is associated with a static graph, called union graph $G_{u}=\left(V, E_{u}\right)$, over the same vertex set V, where the set of edges E_{u} is defined as follows (see the example of Fig. 1):

$$
E_{u}=\{\{u, v\}:\{u, v, t\} \in E, \text { for some timestamp } t \text { of the time domain } \mathcal{T}\}
$$

Notice that a slightly different definition of temporal graphs is sometimes considered in the literature (for example in [2,11$]$). A temporal graph is defined as a labeled graph, more precisely as a pair (G, λ), where $G=(V, E)$ is the underlying graph (G_{u} in our notation) and λ is a labeling function that associates with every edge the timestamps where it is defined. So if $\{u, v, t\}$ is a temporal edge, in this notation the edge $\{u, v\}$ will be labeled by t.

Fig. 1. An example (in the upper part) of a temporal graph G consisting of four vertices ($v_{1}, v_{2}, v_{3}, v_{4}$) and three timestamps ($1,2,3$) and the corresponding underlying static graph G_{u} (in the lower part). For each timestamp, the active temporal edges of G are represented. For example for $t=1$, the active edges are $\left\{v_{1}, v_{3}, 1\right\},\left\{v_{2}, v_{3}, 1\right\},\left\{v_{2}, v_{4}, 1\right\}$. Notice that the local degree $\Delta_{G}^{L}=2$, while the total degree $\Delta_{G}^{T}=3$ (v_{2} and v_{3} have degree three in G_{u}).

Given an interval I of $\mathcal{T}, E(I)$ denotes the set of active edges in the timestamps of I, that is:

$$
E(I)=\{\{u, v, t\} \mid\{u, v, t\} \in E \wedge t \in I\} .
$$

$E(t)=E([t, t])$ denotes the set of active edges in timestamp $t \in \mathcal{T}$.
Given a vertex $v \in V$, a covering interval of v is defined as an interval $I_{v}=\left[l_{v}, r_{v}\right]$, with $1 \leq l_{v} \leq r_{v} \leq t_{\max }$, of the time domain where v is defined to be active; an edge $\{v, u, t\}$, with $l_{v} \leq t \leq r_{v}$, is covered by I_{v}, that is a vertex v active in a covering interval $I_{v}=\left[l_{v}, r_{v}\right]$ covers the temporal edges incident in v and defined in a timestamp between l_{v} and r_{v}. In any timestamp not in I_{v}, v is considered inactive and does not cover temporal edges incident in it. Notice that if $I_{v}=\left[l_{v}, r_{v}\right]$ is a covering interval of v, there may exist temporal edges $\{u, v, t\}$, with $t<l_{v}$ or $t>r_{v}$ (see the example in Fig. 2). An activity timeline \mathcal{A} is a set of covering intervals, one for each vertex of the temporal graph, defined as follows:

$$
\mathcal{A}=\left\{I_{v}: v \in V\right\} .
$$

Given a temporal graph $G=(V, E, \mathcal{T})$, an activity timeline \mathcal{A} covers G if for each temporal edge $\{u, v, t\} \in E, t$ belongs to I_{u} or to I_{v}, where I_{u} (I_{v}, respectively) is the covering interval of u (of v, respectively) defined by \mathcal{A}. It follows that, for a temporal edge $\{u, v, t\}$, at least one of u, v is active in an interval that includes t.

The span of an interval $I_{v}=\left[l_{v}, r_{v}\right]$, with $v \in V$, is defined as follows:

$$
s\left(I_{v}\right)=\left|r_{v}-l_{v}\right|
$$

Notice that for a covering interval $I_{v}=\left[l_{v}, r_{v}\right]$ consisting of a single timestamp, that is where $l_{v}=r_{v}$, the span is equal to 0 , that is it holds that $s\left(I_{v}\right)=0$. The overall span of an activity timeline \mathcal{A} is equal to

$$
s(\mathcal{A})=\sum_{I_{v} \in \mathcal{A}} s\left(I_{v}\right)
$$

Now, we are ready to define the problem we are interested into (see the example of Fig. 2).

Problem 1. (MinTimelineCover)
Input: A temporal graph $G=(V, E, \mathcal{T})$.
Output: An activity timeline of minimum span that covers G.

Next, we introduce the concept of local and total degree (illustrated in Fig. 1). Given a temporal graph $G=(V, E, \mathcal{T})$ and a vertex $v \in V$, the local degree of v in a timestamp t, denoted by $\Delta_{G}^{L}(v, t)$, is defined as follows:

$$
\Delta_{G}^{L}(v, t)=|\{\{v, u, t\} \in E\}|
$$

that is the number of temporal edges $\{v, u, t\}$. The total degree of a vertex $v \in V$, denoted by $\Delta_{G}^{T}(v)$, is the degree of v in the underlying static graph G_{u}, that is

Fig. 2. An example of MinTimelineCover on a temporal graph G, where the gray rectangles represent the covering intervals of each vertex; v_{1} is active in timestamp 3, with span equal to $0, v_{2}$ and v_{3} are active in interval [1,2], each one with span equal to $1, v_{4}$ is active in timestamp 3 , with span equal to 0 . The activity timeline defined by the vertex covering intervals covers each temporal edge of the temporal graph with total span equal to 2 .

Fig. 3. A sketch of the time domain \mathcal{T} built by the reduction. For each of the nine disjoint intervals of \mathcal{T}, we present in the upper part a temporal edge defined in that interval or - when no temporal edge is defined.

$$
\Delta_{G}^{T}(v)=\left|\left\{\{v, x\} \in E_{u}\right\}\right| .
$$

The local degree Δ_{G}^{L} of G is the maximum over v and t of $\Delta_{G}^{L}(v, t)$; the total degree Δ_{G}^{T} of G is the maximum over v of $\Delta_{G}^{T}(v)$.

Given an interval I of the time domain \mathcal{T}, the time window associated with I (denoted by $W(I)$) is defined as

$$
W(I)=\{(v, t):\{v, u, t\} \in E \wedge t \text { in } I\}
$$

that is the set of pairs consisting of vertices $v \in V$ and timestamps t of I, such that there exists a temporal edge incident in v in timestamp t. We define a temporal graph to be (w, h)-window-constrained if (1) the temporal edges incident in each vertex belong to an interval of length at most w and (2) in each timestamp there are at most h vertices with incident temporal edges.

3. Hardness of MinTimelineCover for bounded local degree

In this section we consider the MinTimelineCover problem when each timestamp contains at most a single active edge, and thus the local degree Δ_{G}^{L} of G is also bounded by 1 . We denote this restriction by 1 -MinTimelineCover. We prove that 1 -MinTimelineCover is NP-hard by giving a reduction from the Vertex Cover problem. Next, we recall the definition of Vertex Cover:

Problem 2. (Vertex Cover)
Input: A graph $G_{c}=\left(V_{c}, E_{c}\right)$.
Output: A minimum cardinality set $V_{c}^{\prime} \subseteq V_{c}$ such that for each $\{u, v\} \in E_{c}, u \in V_{c}^{\prime}$ or $v \in V_{c}^{\prime}$.
Consider an instance $G_{c}=\left(V_{c}, E_{c}\right)$ of Vertex Cover, where $\left|V_{c}\right|=n$ and $\left|E_{c}\right|=m$, we define a corresponding instance of MinTimelineCover, that is a temporal graph $G=(V, E, \mathcal{T})$, as follows (a sketch of the temporal graph is given in Fig. 3). We assume in what follows that m is large enough so that $m^{4}>n\left(m^{2}+m+2 n\right)$.

We start by defining the time domain \mathcal{T} that consists of $2 m^{4}+m^{2}+m+n+2$ timestamps and is defined starting from the following disjoint intervals:

- $I_{V, 1}=[1, n] I_{V, 1}$ consists of n timestamps
- $I_{S, 1}=\left[n+1, m^{2}+n\right] I_{S, 1}$ consists of m^{2} timestamps
- $I_{V, 2}=\left[m^{2}+n+1, m^{2}+2 n\right] I_{V, 2}$ consists of n timestamps
$-I_{E}=\left[m^{2}+2 n+1, m^{2}+m+2 n\right] I_{E}$ consists of m timestamps
- $I_{V, 3}=\left[m^{2}+m+2 n+1, m^{2}+m+3 n\right] I_{V, 3}$ consists of n timestamps
$-I_{S, 2}=\left[m^{2}+m+3 n+1, m^{4}+m^{2}+m+3 n\right] I_{S, 2}$ consists of m^{4} timestamps
$-I_{A, 1}=\left[m^{4}+m^{2}+m+3 n+1, m^{4}+m^{2}+m+3 n+1\right] I_{A, 1}$ consists of 1 timestamp
$-I_{S, 3}=\left[m^{4}+m^{2}+m+3 n+2,2 m^{4}+m^{2}+m+3 n+1\right] I_{S, 3}$ consists of m^{4} timestamps
$-I_{A, 2}=\left[2 m^{4}+m^{2}+m+3 n+2,2 m^{4}+m^{2}+m+3 n+2\right] I_{A, 2}$ consists of 1 timestamp
The time domain \mathcal{T} is the concatenation of the disjoint intervals defined previously:

$$
\mathcal{T}=I_{V, 1} \cdot I_{S, 1} \cdot I_{V, 2} \cdot I_{E} \cdot I_{V, 3} \cdot I_{S, 2} \cdot I_{A, 1} \cdot I_{S, 3} \cdot I_{A, 2}
$$

The set V is defined as follows:

$$
V=\left\{u_{i}, u_{i}^{\prime}: v_{i} \in V_{c}, 1 \leq i \leq n\right\} \cup\left\{u_{0}\right\} \cup\left\{u_{0}^{\prime}\right\}
$$

Now, we define the set E of temporal edges in each interval of the time domain \mathcal{T}. In each interval $I_{S, x}, x \in\{1,2,3\}$, no temporal edge is active. We assume that there are no self-loops and that the edges of G_{c} are ordered as follows: for two edges $\left\{v_{i}, v_{j}\right\},\left\{v_{x}, v_{y}\right\} \in E_{c}$, where $i<j$ and $x<y,\left\{v_{i}, v_{j}\right\}<\left\{v_{x}, v_{y}\right\}$ if $i<x$, or $i=x$ and $j<y$. We refer to the p-th edge of G_{c} as the edge in position p based on this order. Recall that $E(I)$ denotes the set of temporal edges active in interval I. Next, we define the sets of temporal edges in $I_{V, 1}, I_{V, 2}, I_{E}, I_{V, 3}, I_{A, 1}$ and $I_{A, 2}$:

$$
\begin{aligned}
& -E\left(I_{V, 1}\right)=\left\{\left\{u_{i}, u_{0}, t\right\}: 1 \leq t \leq n\right\} \\
& -E\left(I_{V, 2}\right)=\left\{\left\{u_{i}^{\prime}, u_{0}, t\right\}: t=m^{2}+n+i, 1 \leq i \leq n\right\} \\
& -E\left(I_{E}\right)=\left\{\left\{u_{i}, u_{j}, t\right\}: t=m^{2}+2 n+p, 1 \leq p \leq m,\left\{v_{i}, v_{j}\right\} \text { is the } p \text {-edge of } G_{c}\right\} \\
& -E\left(I_{V, 3}\right)=\left\{\left\{u_{i}, u_{i}^{\prime}, t\right\}: t=m^{2}+m+2 n+i, 1 \leq i \leq n\right\} \\
& -E\left(I_{A, 1}\right)=\left\{\left\{u_{0}, u_{0}^{\prime}, t\right\}: t=m^{4}+m^{2}+m+3 n+1\right\} \\
& -E\left(I_{A, 2}\right)=\left\{\left\{u_{0}, u_{0}^{\prime}, t\right\}: t=2 m^{4}+m^{2}+m+3 n+2\right\} .
\end{aligned}
$$

We start by proving some properties of G. First, notice that by construction in each timestamp there exists at most one active temporal edge, thus G is an instance of 1 -MinTimelineCover. Now, we present a property of vertices u_{0} and u_{0}^{\prime}.

Lemma 1. Given an instance G_{c} of Vertex Cover, let G be the corresponding instance of 1-MinTimelineCover. Let \mathcal{A} be a solution of 1 -MinTimelineCover on instance G of span at most $n\left(m^{2}+m+2 n\right)$, then each of the vertices u_{0} and u_{0}^{\prime} is active in exactly one of the timestamps of intervals $I_{A, 1}$ and $I_{A, 2}$.

Proof. Consider a solution \mathcal{A} of 1-MinTimelineCover on instance G of span at most $n\left(m^{2}+m+2 n\right)$. Notice that, by construction, each of u_{0}, u_{0}^{\prime} is active in exactly one of the intervals $I_{A, 1}$ and in $I_{A, 2}$, as otherwise \mathcal{A} has a span of at least $m^{4}>n\left(m^{2}+m+2 n\right)$. Since temporal edges incident in u_{0}^{\prime} are defined only in the timestamps of $I_{A, 1}$ and $I_{A, 2}$, we can assume that u_{0}^{\prime} is active in a timestamp of $I_{A, 1}$ or of $I_{A, 2}$. Now, consider vertex u_{0}. There exist temporal edges incident in u_{0} in intervals $I_{A, 1}, I_{A, 2}, I_{V, 1}$ and $I_{V, 2}$. Since u_{0} has to be active in one of $I_{A, 1}, I_{A, 2}$, if u_{0} is active in a timestamp of $I_{V, 1}$ or $I_{V, 2}$, it has a span of at least $m^{4}>n\left(m^{2}+m+2 n\right)$, hence \mathcal{A} has a span of at least $m^{4}>n\left(m^{2}+m+2 n\right)$. Hence \mathcal{A} defines u_{0} active only in a timestamp of $I_{A, 1}$ or $I_{A, 2}$, thus concluding the proof.

We show next how to relate a vertex cover of G_{c} and a solution of MinTimelineCover on G.
Lemma 2. Consider an instance G_{c} of Vertex Cover, let G be the corresponding instance of 1-MinTimelineCover. If there exists a vertex cover of G_{c} consisting of k vertices, then there exists a solution of 1 -MinTimelineCover on instance G of span at most $k\left(m^{2}+m+2 n\right)+$ $(n-k)(n+m)$.

Proof. Given a vertex cover $V_{c}^{\prime} \subseteq V_{c}$ of G, with $\left|V_{c}^{\prime}\right|=k$, we define a solution \mathcal{A} of 1-MinTimelineCover as follows:

- Vertex u_{0} (u_{0}^{\prime}, respectively), is active in the unique timestamp of interval $I_{A, 1}$ (of interval $I_{A, 2}$, respectively); u_{0} and u_{0}^{\prime} have a span equal to 0 .
- For each vertex $v_{i} \in V_{c} \backslash V_{c}^{\prime}, 1 \leq i \leq n$, vertex u_{i} is active in timestamp i and has a span equal to 0 , vertex u_{i}^{\prime} is active in interval $\left[m^{2}+n+i, m^{2}+m+2 n+i\right]$, and has a span equal to $m+n$.
- For each vertex $v_{i} \in V_{c}^{\prime}, 1 \leq i \leq n, u_{i}$ is active in interval $\left[i, m^{2}+m+2 n+i\right]$, and has a span equal to $m^{2}+m+2 n$; vertex u_{i}^{\prime} is active in timestamp $m^{2}+n+i$, and has a span equal to 0 .

Consider the activity timeline \mathcal{A}, we show that it covers every temporal edge of G. Indeed, the temporal edges of $I_{A, 1}$ and $I_{A, 2}$ are covered by u_{0} and u_{0}^{\prime}, respectively. The temporal edges in $I_{V, 1}$ are covered by vertices $u_{i}, 1 \leq i \leq n$, since u_{i} is active in timestamp i. The temporal edges of $I_{V, 2}$ are covered by $u_{i}^{\prime}, 1 \leq i \leq n$, since u_{i}^{\prime} is active in timestamp $m^{2}+n+i$. Consider a temporal edge $\left\{u_{i}, u_{j}, t\right\}$ defined in interval I_{E}. Since V_{c}^{\prime} is a vertex cover of G_{c}, by construction u_{i} is active in interval $I_{u_{i}}=\left[i, m^{2}+m+n+i\right]$ or u_{j} is active in interval $I_{u_{j}}=\left[j, m^{2}+m+2 n+j\right]$; both intervals include I_{E}, thus at least one of $I_{u_{i}}$ or $I_{u_{j}}$ covers the temporal edge $\left\{u_{i}, u_{j}, t\right\}$. Finally, the edges of $I_{V, 3}$ are covered either by u_{i}, if $v_{i} \in V_{c}^{\prime}$, since u_{i} in this case is active in interval $\left[i, m^{2}+m+2 n+i\right]$, or by u_{i}^{\prime}, if $v_{i} \in V_{c} \backslash V_{c}^{\prime}$, since u_{i}^{\prime} in this case is active in interval $\left[m^{2}+n+i, m^{2}+m+2 n+i\right]$. It follows that all the temporal edges are covered, thus \mathcal{A} covers G.

Now, consider the span of \mathcal{A}. Since k vertices u_{i}, with $v_{i} \in V_{c}^{\prime}$, have a span of $m^{2}+m+2 n$ and $n-k$ vertices u_{i}^{\prime}, with $v_{i} \in V_{c} \backslash V_{c}^{\prime}$, have a span of $n+m$, the overall span of \mathcal{A} is $k\left(m^{2}+m+2 n\right)+(n-k)(n+m)$, thus concluding the proof.

Based on Lemma 1, we can prove the following result.
Lemma 3. Given an instance G_{c} of Vertex Cover, consider the corresponding instance G of 1-MinTimelineCover. Let \mathcal{A} be a solution of 1 -MinTimelineCover on instance G having span $k\left(m^{2}+m+2 n\right)+(n-k)(n+m)$, then there exists a vertex cover of G_{c} consisting of at most k vertices.

Proof. Consider a solution \mathcal{A} of 1 -MinTimelineCover on instance G that has a span $k\left(m^{2}+m+2 n\right)+(n-k)(n+m) \leq$ $n\left(m^{2}+m+2 n\right)$). By Lemma 1, we can assume that each of u_{0} and u_{0}^{\prime} is active in one of the timestamps of $I_{A, 1}, I_{A, 2}$. This implies that in any solution of $1-\mathrm{Min}$ TimelineCover on instance G, each vertex u_{i}, with $1 \leq i \leq n$, must be active in timestamp i and each vertex u_{i}^{\prime}, with $1 \leq i \leq n$, must be active in timestamp $m^{2}+n+i$. Since each temporal edge $\left\{u_{i}, u_{j}, t\right\}$ in I_{E} must be covered by one of u_{i}, u_{j}, it follows that \mathcal{A} defines a span of at least $m^{2}+n$ for a subset $U \subseteq\left\{u_{i}: 1 \leq i \leq n\right\}$ of vertices. Furthermore, for each i with $1 \leq i \leq n$, the temporal edge $\left\{u_{i}, u_{i}^{\prime}, m^{2}+m+2 n+i\right\}$ of interval $I_{V, 3}$ must be covered by u_{i} or by u_{i}^{\prime}.

Now, we claim that, for each vertex $u_{i} \in U, u_{i}$ covers the temporal edge $\left\{u_{i}, u_{i}^{\prime}, m^{2}+m+2 n+i\right\}$. Assume it is not the case, then the temporal edge $\left\{u_{i}, u_{i}^{\prime}, m^{2}+m+2 n+i\right\}$ is covered by u_{i}^{\prime}. Then u_{i} has a span of at least $m^{2}+n$, while u_{i}^{\prime} has a span of $m+n$. If we modify the solution \mathcal{A} so that u_{i} is active in interval $\left[i, m^{2}+m+2 n+i\right]$ and thus it covers also the temporal edge $\left\{u_{i}, u_{i}^{\prime}, m^{2}+m+2 n+i\right\}$, while u_{i}^{\prime} is active only in timestamp $m^{2}+n+i$, we obtain that u_{i} has a span of $m^{2}+m+2 n$, while u_{i}^{\prime} has a span of 0 , thus we obtain a solution that does not increase the span with respect to \mathcal{A}.

Since \mathcal{A} has a span of $k\left(m^{2}+m+2 n\right)+(n-k)(m+n)$, it follows that the set U contains at most k vertices. Define the following subset V_{c}^{\prime} of vertices of V_{c} :

$$
V_{c}^{\prime}=\left\{v_{i}: u_{i} \in U\right\}
$$

By construction, it holds that $\left|V_{c}^{\prime}\right| \leq k$. Furthermore, we claim that V_{c}^{\prime} is vertex cover of G_{c}. Indeed, assume that there exists an edge $\left\{v_{i}, v_{j}\right\} \in E_{c}$ such that $v_{i} \notin V_{c}^{\prime}$ and $v_{j} \notin V_{c}^{\prime}$. Then, by construction $u_{i}, u_{j} \notin U$, thus the temporal edge $\left\{u_{i}, u_{j}, t\right\}$ of I_{E} would not be covered by \mathcal{A}, thus leading to a contradiction. It follows that V_{c}^{\prime} is a vertex cover of G_{c} of size at most k, thus concluding the proof.

Now, we are able to prove the main result of this section.
Theorem 1. 1-MinTimelineCover is NP-hard and the decision version of 1-Min TimelineCover is NP-complete.
Proof. It follows from Lemma 2 and Lemma 3 that we have designed a polynomial-time reduction from Vertex Cover to 1-MinTimelineCover. Since Vertex Cover is NP-hard [13], it follows that also 1-MinTimelineCover is NP-hard.

Notice that the decision version of 1-MinTimelineCover is in NP, since giving a solution of 1-MinTimelineCover we can check in polynomial time that it covers G and that has at most a given span.

4. MinTimelineCover for bounded total degree

In this section we analyze another restriction of the MinTimelineCover problem, in particular we consider a bound on the total degree of the input temporal graph. We start by showing that MinTimelineCover is polynomial-time solvable when the total degree Δ_{G}^{T} is bounded by 2 . Then we show that the problem is NP-hard when the total degree Δ_{G}^{T} is equal to 3 and, furthermore, the following restrictions hold: (1) the local degree $\Delta_{G}^{L}=2$ and (2) the time domain consists of three timestamps.

4.1. Total degree Δ_{G}^{T} bounded by 2

We start by showing that when $\Delta_{G}^{T} \leq 2$, MinTimelineCover is solvable in polynomial time. Consider the underlying static graph G_{u} associated with G and let $H=\left(V_{H}, E_{H}\right)$ be a connected component of G_{u}. Since $\Delta_{G}^{T} \leq 2$, it follows that $H=$
$\left(V_{H}, E_{H}\right)$ is either a simple cycle (that is, it contains no chord) or a path. We present a polynomial algorithm that defines an activity timeline \mathcal{A} of minimum span when H is a cycle (if H is a path then the algorithm can be easily adapted).

First, define a vertex of H as h_{1}, and define vertices h_{2}, \ldots, h_{z} according to a depth first search of H that starts from h_{1}. Notice that, since H is a simple cycle, h_{z} is adjacent to h_{1} in H. Now, we consider two timestamps a, b, with $1 \leq a \leq b \leq t_{\max }$, where h_{1} must be active and we define function $D_{a, b}\left[i, t_{i, 1}, t_{i, 2}\right]$ as follows. $D_{a, b}\left[i, t_{i, 1}, t_{i, 2}\right]$ is the minimum span of an activity timeline \mathcal{A} of vertices $h_{1}, \ldots h_{i}$ that covers each temporal edge between vertices h_{1}, \ldots, h_{i} such that h_{i} is defined to be active in interval $\left[t_{i, 1}, t_{i, 2}\right.$] and vertex h_{1} is defined to be active in interval $[a, b]$.

Next, we present a recurrence to compute $D_{a, b}\left[i, t_{i, 1}, t_{i, 2}\right]$. For $2 \leq i \leq z, D_{a, b}\left[i, t_{i, 1}, t_{i, 2}\right]$ is defined as follows:

$$
\begin{equation*}
D_{a, b}\left[i, t_{i, 1}, t_{i, 2}\right]=\min _{t_{i-1,1}, t_{i-1,2}: t_{i-1,1} \leq t_{i-1,2}} D_{a, b}\left[i, t_{i-1,1}, t_{i-1,2}\right]+t_{i, 2}-t_{i, 1} \tag{1}
\end{equation*}
$$

such that the following conditions hold:

1. Each temporal edge between h_{i-1} and h_{i} is defined in a timestamp contained in interval $\left[t_{i-1,1}, t_{i-2,2}\right]$ or in interval $\left[t_{i, 1}, t_{i, 2}\right]$.
2. If $i=z$, each temporal edge between h_{1} and h_{z} is defined in a timestamp that belongs to interval $\left[t_{z, 1}, t_{z, 2}\right]$ or $[a, b]$.

If condition 1 and 2 defined above do not hold, $D_{a, b}\left[i, t_{i, 1}, t_{i, 2}\right]=-\infty$.
For $i=1, D_{a, b}\left[1, t_{1,1}, t_{1,2}\right]$ is defined as follows:

$$
\begin{equation*}
D_{a, b}\left[1, t_{1,1}, t_{1,2}\right]=t_{1,2}-t_{1,1} \tag{2}
\end{equation*}
$$

if $t_{i, 1}=a$ and $t_{i, 2}=b$, else $D_{a, b}\left[1, t_{1,1}, t_{1,2}\right]=-\infty$.
Next, we prove the correctness of the recurrence (Equation (1) and Equation (2)).
Lemma 4. Given a connected component H of G_{u}, there exists an activity timeline \mathcal{A} for vertices h_{1}, \ldots, h_{i}, with $1 \leq i \leq z$, such that (1) it covers each temporal edge between vertices $h_{1}, \ldots, h_{i}(2)$ it has a span of k and (3) it defines h_{i} active in interval $\left[t_{i, 1}, t_{i, 2}\right]$ and h_{1} active in interval $[a, b]$ if and only if $D_{a, b}\left[i, t_{i, 1}, t_{i, 2}\right]=k$.

Proof. We prove the lemma by induction on $i \geq 1$. If $i=1$, since there is no temporal edge connecting h_{1} with itself, it follows by the definition of $D_{a, b}\left[1, t_{1,1}, t_{1,2}\right]$ that $D_{a, b}\left[1, t_{1,1}, t_{1,2}\right]=t_{1,2}-t_{1,1}=k$ if and only if there exists an activity timeline \mathcal{A} that has a span of $b-a=k$ and defines h_{1} active in interval [a,b].

Now, assume that the lemma holds for $i-1$, we show that it holds for i. Assume that $D_{a, b}\left[i, t_{i, 1}, t_{i, 2}\right]=k$, then it follows that there exist two timestamps $t_{i-1,1}, t_{i-1,2}$, with $t_{i-1,1} \leq t_{i-1,2}$ such that $D_{a, b}\left[i, t_{i-1,1}, t_{i-1,2}\right]=k-\left(t_{i, 2}-t_{i, 1}\right)$. By induction hypothesis there exists an activity timeline \mathcal{A}^{\prime} for the vertices h_{1}, \ldots, h_{i-1} such that (1) it covers each temporal edge between vertices $h_{1}, \ldots, h_{i-1}(2)$ it has a span of $k-\left(t_{i, 2}-t_{i, 1}\right)$ and (3) it defines h_{i-1} active in interval $\left[t_{i-1,1}, t_{i-1,2}\right]$ and h_{1} active in interval $[a, b]$. By the definition of $D_{a, b}\left[i, t_{i, 1}, t_{i, 2}\right]$, it follows that the activity timeline \mathcal{A} defined from \mathcal{A}^{\prime} by adding h_{i} active in interval [$t_{i, 1}, t_{i, 2}$] covers each temporal edge between vertices h_{i-1} and h_{i}, since by definition of $D_{a, b}\left[i, t_{i, 1}, t_{i, 2}\right]$ every temporal edge between h_{i} and h_{i-1} must belong to a timestamp in interval $\left[t_{i, 1}, t_{i, 2}\right]$ or [$\left.t_{i-1,1}, t_{i-1,2}\right]$. Furthermore if $i=z$, by the definition of $D_{a, b}\left[z, t_{z, 1}, t_{z, 2}\right]$, every temporal edge between h_{1} and h_{z} is defined in a timestamp that belongs to interval $[a, b]$ or $\left[t_{z, 1}, t_{z, 2}\right]$. Finally, \mathcal{A} has a span of k and defines h_{i} active in interval $\left[t_{i, 1}, t_{i, 2}\right]$ and h_{1} active in interval $[a, b]$.

Assume that there exists an activity timeline \mathcal{A} of minimum span for vertices h_{1}, \ldots, h_{i} such that (1) it covers each temporal edge between vertices $h_{1}, \ldots, h_{i}(2)$ it has a span of k and (3) it defines h_{i} active in interval $\left[t_{i, 1}, t_{i, 2}\right]$ and h_{1} active in interval $[a, b]$. Consider the activity timeline \mathcal{A}^{\prime} for vertices h_{1}, \ldots, h_{i-1} such that (1) it covers each temporal edge between vertices h_{1}, \ldots, h_{i-1} (2) it has a span of k_{1} and (3) it defines h_{i-1} active in interval $\left[t_{i-1,1}, t_{i-1,2}\right]$ and h_{1} active in interval $[a, b]$. By induction hypothesis, $D_{a, b}\left[i-1, t_{i-1,1}, t_{i-1,2}\right]=k_{1}$. Consider the covering interval defined for vertex h_{i} as [$t_{i, 1}, t_{i, 2}$]. Notice that it covers each temporal edge between vertices h_{i-1} and h_{i} not covered by vertex h_{i-1}. Furthermore if $i=z$, every temporal edge between h_{1} and h_{z} is defined in a timestamp that belongs to interval [a,b] or $\left[t_{z, 1}, t_{z, 2}\right]$. Thus $D_{a, b}\left[i, t_{i, 1}, t_{i, 2}\right]=D_{a, b}\left[i-1, t_{i-1,1}, t_{i-1,2}\right]+t_{i, 2}-t_{i, 1}=k$.

Lemma 5. MinTimelineCover is solvable in polynomial time when $\Delta_{G}^{T} \leq 2$.
Proof. MinTimelineCover can be solvable in polynomial time when $\Delta_{G}^{T} \leq 2$ by applying the dynamic programming recurrence $D_{a, b}\left[z, t_{z, 1}, t_{z, 2}\right]$ on each connected component of G_{u}. The correctness of the recurrence follows from Lemma 4. In particular, consider a connected component H of G_{u} consisting of vertices h_{1}, \ldots, h_{z}. There exists an activity timeline \mathcal{A} that covers the temporal edges of H such that it has a span of k and it defines h_{z} active in interval $\left[t_{z, 1}, t_{z, 2}\right]$ and h_{1} active in interval $[a, b]$ if and only if $D_{a, b}\left[z, t_{z, 1}, t_{z, 2}\right]=k$.

The time complexity of the algorithm on each connected component $H=\left(V_{H}, E_{H}\right)$, with $\left|V_{H}\right|=z$, is $O\left(z t_{\text {max }}^{6}\right)$. Indeed, fixed two timestamps a and b, there are $O\left(z t_{\max }^{2}\right)$ entries of $D_{a, b}\left[i, t_{i, 1}, t_{i, 2}\right]$, as $1 \leq i \leq z$ and $1 \leq t_{i, 1} \leq t_{i, 2} \leq t_{\max }$. Each entry $D_{a, b}\left[i, t_{i, 1}, t_{i, 2}\right]$ can be computed in $O\left(t_{\max }^{2}\right)$ time, since we have to consider two possible timestamps $t_{i-1,1}, t_{i-1,2}$,

Fig. 4. The structure of the temporal graph G builds by the reduction from Cubic Vertex Cover. $E_{t, 1}, E_{t, 2}, E_{t, 3}$ are the sets of temporal edges defined in the three timestamps 1,2 and 3 , respectively.
with $1 \leq t_{i-1,1} \leq t_{i-1,2} \leq t_{\max }$. Thus the entries of $D_{a, b}\left[i, t_{i, 1}, t_{i, 2}\right]$ can be computed in $O\left(z t_{\max }^{4}\right)$ time. Since there are $O\left(t_{\max }^{2}\right)$ choices of values a and b, the overall time complexity is $O\left(z t_{\max }^{6}\right)$ for each connected component H. The overall time complexity of the algorithm on input $G=(V, E, \mathcal{T})$ is $O\left(|V| t_{\max }^{6}\right)$.
4.2. Total degree $\Delta_{G}^{T}=3$

We prove that MinTimelineCover is NP-hard when the total degree $\Delta_{G}^{T}=3$, the time domain consists of three timestamps and the local degree $\Delta_{G}^{L}=2$, by giving a reduction from Vertex Cover on cubic graphs (a variant of Vertex Cover denoted by Cubic Vertex Cover). We recall that a graph is cubic when each of its vertex has degree equal to three.

Given an instance $G_{c}=\left(V_{c}, E_{c}\right)$ of Cubic Vertex Cover, we build a corresponding temporal graph $G=(V, E, \mathcal{T})$ as follows (a sketch of G is given in Fig. 4). First, the time domain $\mathcal{T}=[1,2,3]$.

The vertex set V is defined as follows. For each $v_{i} \in V_{c}\left(1 \leq i \leq\left|V_{c}\right|\right)$, define the set U_{i} of vertices:

$$
U_{i}=\left\{u_{i, 1}, u_{i, 2}, u_{i, 3}, w_{i, a}, w_{i, b}, z_{i}: v_{i} \in V_{c}\right\}
$$

The set V is then defined as:

$$
V=\bigcup_{i=1}^{\left|V_{c}\right|} U_{i}
$$

The set E consists of three subsets $E_{t, 1}\left(E_{t, 2}, E_{t, 3}\right.$, respectively) representing temporal edges active in timestamp 1 (2,3, respectively). As in the reduction of Section 3, we assume that the edges of G_{c} are ordered based on lexicographic order. Since G_{c} is cubic, based on this order we refer to the edges incident on a vertex $v \in V_{c}$ as the first (second, third, respectively) edge of v. The set $E_{t, 1}, E_{t, 2}, E_{t, 3}$ are defined as follows:

$$
\begin{aligned}
& E_{t, 1}=\left\{\left\{w_{i, a}, z_{i}, 1\right\},\left\{w_{i, b}, z_{i}, 1\right\}: v_{i} \in V_{c}, 1 \leq i \leq\left|V_{c}\right|\right\} \\
& E_{t, 2}=\left\{\left\{u_{i, 1}, w_{i, a}, 2\right\},\left\{u_{i, 2}, w_{i, a}, 2\right\},\left\{u_{i, 2}, w_{i, b}, 2\right\},\left\{u_{i, 3}, w_{i, b}, 2\right\}: v_{i} \in V_{c}, 1 \leq i \leq\left|V_{c}\right|\right\} \\
& E_{t, 3}=\left\{\left\{w_{i, a}, z_{i}, 3\right\},\left\{w_{i, b}, z_{i}, 3\right\}: v_{i} \in V_{c}\right\} \cup \\
& \left\{\left\{u_{i, x}, u_{j, y}, 3\right\}:\left\{v_{i}, v_{j}\right\} \in E_{c} \text { and }\left\{v_{i}, v_{j}\right\} \text { is the } x \text {-th edge of } v_{i}\right. \\
& \text { and the } \left.y \text {-th edge of } v_{j}, 1 \leq i \leq\left|V_{c}\right|, 1 \leq x, y \leq 3\right\}
\end{aligned}
$$

By construction, G is defined over a time domain consisting of three timestamps. We prove now that G has total degree equal to three and local degree equal to two.

Lemma 6. Given an instance G_{c} of Cubic Vertex Cover, let G be the corresponding instance of MinTimelineCover. Then the local degree Δ_{G}^{L} of G is equal to 2 and the total degree Δ_{G}^{T} of G is equal to three.

Proof. We start by proving that the local degree Δ_{G}^{L} of G is equal to 2 . By construction, for the set $E_{t, 1}$ of temporal edges, each vertex is incident in two temporal edges (vertex z_{i}) or one temporal edge (vertices $w_{i, a}, w_{i, b}$), for each i with $1 \leq i \leq\left|V_{c}\right|$. For the set $E_{t, 2}$ of temporal edges, each vertex is incident in two temporal edges (vertices $w_{i, a}, w_{i, b}, u_{i, 2}$) or one temporal edge (vertex $u_{i, 1}, u_{i, 3}$), for each $1 \leq i \leq\left|V_{c}\right|$. For the set $E_{t, 3}$ of temporal edges, each vertex is incident in at most two edges (vertex z_{i}) or one edge (vertex $u_{i, 1}, u_{i, 2}, u_{i, 3}, w_{i, a}, w_{i, b}$), for each i with $1 \leq i \leq\left|V_{c}\right|$.

Now, we consider the total degree Δ_{G}^{T} of G. Each vertex $z_{i}, 1 \leq i \leq\left|V_{c}\right|$, is adjacent to vertices $w_{i, a}, w_{i, b}$, hence it has a total degree of two. Vertices $w_{i, a}, w_{i, b}, 1 \leq i \leq\left|V_{c}\right|$, are adjacent to three vertices in G_{u} and in G (that is $z_{i}, u_{i, x}, u_{i, y}$, for some $x, y \in\{1,2,3\}$). Finally, each vertex $u_{i, x}$, with $1 \leq i \leq\left|V_{c}\right|$ and $1 \leq x \leq 3$, is adjacent to at most three vertices in G_{u} and in $G\left(w_{i, a}, w_{i, b}\right.$ and $u_{j, y}$, for some j with $\left.1 \leq j \leq\left|V_{c}\right|, y \in\{1,2,3\}\right)$.

Next, we prove that we can restrict ourselves to solutions where each vertex $z_{i}, 1 \leq i \leq\left|V_{c}\right|$, is active only in timestamp 3.

Lemma 7. Given an instance G_{c} of Cubic Vertex Cover, let G be the corresponding instance of MinTimelineCover. Then, given a solution \mathcal{A} of MinTimelineCover on instance G, we can compute in polynomial time a solution \mathcal{A}^{\prime} of MinTimelineCover on instance G such that each vertex $z_{i}, 1 \leq i \leq\left|V_{c}\right|$, is active only in timestamp 3 and the span of \mathcal{A}^{\prime} is at most the span of \mathcal{A}.

Proof. Consider the solution \mathcal{A} of MinTimelineCover on instance G. Assume that \mathcal{A} defines z_{i}, for some i with $1 \leq i \leq\left|V_{c}\right|$, active in interval $[1,3]$ (notice that the temporal edges incident in z_{i} are defined in timestamps 1 and 3). Then the temporal edges $\left\{z_{i}, w_{i, a}, 1\right\},\left\{z_{i}, w_{i, b}, 1\right\},\left\{z_{i}, w_{i, a}, 3\right\},\left\{z_{i}, w_{i, b}, 3\right\}$ are covered by z_{i}, hence we can assume that $w_{i, a}, w_{i, b}$ are active only in timestamp 2. It follows that z_{i} has a span of 2 , while $w_{i, a}, w_{i, b}$ have a span of 0 . We can define an activity timeline \mathcal{A}^{\prime} so that $w_{i, a}, w_{i, b}$ are both active in interval [1,2] (each one having span 1) and z_{i} is active only in timestamp 3 (with span 0), thus the span of $w_{i, a}, w_{i, b}, z_{i}$ in \mathcal{A}^{\prime} is not increased with respect to \mathcal{A}.

Assume that $z_{i}, 1 \leq i \leq\left|V_{c}\right|$, is active only in timestamp 1, it follows that $w_{i, a}, w_{i, b}$ must be active in timestamp 3 (and possibly in timestamp 2). Then we can define an activity timeline \mathcal{A}^{\prime} where z_{i} is active only in timestamp $3, w_{i, a}, w_{i, b}$ are active in timestamp 1 (and possibly in timestamp 2 if they are defined active in timestamp 2 by \mathcal{A}). In this case the span of $w_{i, a}, w_{i, b}, z_{i}$ in \mathcal{A}^{\prime} is not increased with respect to \mathcal{A}, thus concluding the proof.

Now, we show how to relate a solution of Cubic Vertex Cover on G_{c} and a solution of MinTimelineCover on G.
Lemma 8. Given an instance G_{c} of Cubic Vertex Cover, let G be the corresponding instance of MinTimelineCover. Let V_{c}^{\prime} be a solution of Cubic Vertex Cover, with $\left|V_{c}^{\prime}\right|=k$, then there exists a solution of MinTimelineCover on instance G of span at most $\left|E_{c}\right|+k-\left|V_{c}\right|$.

Proof. Consider a solution V_{c}^{\prime} of Cubic Vertex Cover on instance G, we define a solution \mathcal{A} of MinTimelineCover on instance G as follows. For each set $U_{i}, 1 \leq i \leq\left|V_{c}\right|$, associated with $v_{i} \in V_{c} \backslash V_{c}^{\prime}, \mathcal{A}$ is defined as follows:

- $w_{i, a}, w_{i, b}$ are active in interval $[1,2]$, each one with span 1
- For each $\left\{v_{i}, v_{j}\right\} \in E$, which is the p-th edge of v_{i} and the q-th edge of $v_{j}, u_{i, p}$ is active in timestamp 3 with span 0
- Vertex z_{i} is active in timestamp 3, with span 0.

For each set $U_{i}, 1 \leq i \leq\left|V_{c}\right|$, associated with $v_{i} \in V_{c}^{\prime}, \mathcal{A}$ is defined as follows:

- Vertices $w_{i, a}, w_{i, b}$ are active in timestamp 1 , each one with span 0
- Each vertex $u_{i, p}, 1 \leq p \leq 3$, is active in timestamp 2 (the span of u_{i} depends on the next point)
- For each $\left\{v_{i}, v_{j}\right\} \in E_{c}$, with $v_{i}, v_{j} \in V_{c}^{\prime}$, which is the p-th edge of v_{i} and the q-th edge of v_{j} : if $i<j$, then $u_{i, p}$ is active in interval [2,3] (with span 1), else $u_{j, q}$ is active in interval [2,3] (with span 1).
- Vertex z_{i} is active in timestamp 3, with span 0.

By construction, \mathcal{A} covers each temporal edge of G. Indeed, for each i with $1 \leq i \leq\left|V_{c}\right|$, the following properties hold. The temporal edges in $E_{t, 1}$ are covered by $w_{i, a}, w_{i, b}$. The temporal edges in $E_{t, 2}$ are either covered by $w_{i, a}, w_{i, b}$, if $v_{i} \in$ $V_{c} \backslash V_{c}^{\prime}$, or by $u_{i, 1}, u_{i, 2}, u_{i, 3}$, if $v_{i} \in V_{c}^{\prime}$. The temporal edges $\left\{w_{i, a}, z_{i}, 3\right\}$ and $\left\{w_{i, b}, z_{i}, 3\right\}$ of $E_{t, 3}$ are covered by z_{i}; the temporal edges $\left\{u_{i, x}, u_{j, y}, 3\right\}$ are covered by one of $u_{i, x}, u_{j, y}$.

Now, the span of \mathcal{A} is 1 for each $\left\{v_{i}, v_{j}\right\} \in E_{c}$, where $v_{i}, v_{j} \in V_{c}^{\prime}$. Consider now an edge $\left\{v_{i}, v_{j}\right\} \in E_{c}$, where either $v_{i} \in V_{c} \backslash V_{c}^{\prime}$ or $v_{j} \in V_{c} \backslash V_{c}^{\prime}$ (notice that both v_{i}, v_{j} cannot be in $V_{c} \backslash V_{c}^{\prime}$) assume without loss of generality that $v_{i} \in V_{c} \backslash V_{c}^{\prime}$. Then \mathcal{A} has a span of 2 for the set U_{i} (both $w_{i, a}$ and $w_{i, b}$ have a span 1) for the three edges incident in v_{i} in G_{c}. Hence the overall span of \mathcal{A} is $\left|E_{c}\right|-\left|V_{c} \backslash V_{c}^{\prime}\right|=\left|E_{c}\right|+k-\left|V_{c}\right|$, thus concluding the proof.

Based on Lemma 7, we can prove the following result.
Lemma 9. Given an instance G_{c} of Cubic Vertex Cover let G be the corresponding instance of MinTimelineCover. If there exists a solution of MinTimelineCover on instance G of span $\left|E_{c}\right|+k-\left|V_{c}\right|$, then there exists a solution of Cubic Vertex Cover on instance G_{c} of size at most k.

Proof. Let \mathcal{A} be a solution of MinTimelineCover on instance G. First, by Lemma 7, each vertex z_{i}, with $1 \leq i \leq\left|V_{c}\right|$, is defined active in \mathcal{A} only in timestamp 3 (with span 0). This implies that $w_{i, a}, w_{i, b}$ must be active in timestamps 1.

Consider the vertices $w_{i, a}$ or $w_{i, b}$, with $1 \leq i \leq\left|V_{c}\right|$, that are active in interval [1,2]. First, assume that exactly one of $w_{i, a}, w_{i, b}$ is active in timestamp 2, without loss of generality $w_{i, a}$. Then $w_{i, a}$ has a span 1 , and $u_{i, 2}, u_{i, 3}$ must be active in timestamp 2, in order to cover temporal edges $\left\{u_{i, 2}, w_{i, b}\right\},\left\{u_{i, 3}, w_{i, b}\right\}$. Now, we can modify the solution \mathcal{A}, by defining $u_{i, 1}$ active in timestamp 2, thus increasing its span by at most 1 , and defining $w_{i, a}$ active only in timestamp 1 , thus decreasing the span of \mathcal{A} by 1 . We can conclude that we can compute in polynomial time a solution \mathcal{A}^{\prime} of MinTimelineCover on instance G such that either $w_{i, a}, w_{i, b}$ are both covering interval $[1,2]$ or they are both active only in timestamp 1 .

Now, consider the case that $w_{i, a}, w_{i, b}$ are both active in interval [1, 2], since all the temporal edges defined in timestamp 2 that are incident in vertices $u_{i, 1}, u_{i, 2}, u_{i, 3}$ are covered by $w_{i, a}$ and $w_{i, b}$, we can assume that $u_{i, 1}, u_{i, 2}, u_{i, 3}$ are active in timestamp 3 (each one with span 0).

Now, assume that, for some v_{i}, v_{j} with $\left\{v_{i}, v_{j}\right\} \in E_{c}, w_{i, a}, w_{i, a}, w_{j, a}, w_{j, b}$ are all active in interval [1,2]. Consider the temporal edge $\left\{u_{i, p}, u_{j, q}, 3\right\}$ and notice that it is covered by both $u_{i, p}$ and $u_{j, q}$. Now, we modify \mathcal{A} by making $w_{j, a}, w_{j, b}$ active only in timestamp 1 (thus decreasing the span of each of $w_{j, a}, w_{j, b}$ by 1), by making $u_{j, p}$ active in timestamp 2 (with span of 0) and by making the other two vertices of U_{j}, active in timestamp 2 and possibly 3 (thus increasing the span of U_{j} by at most 2). Notice that the span of \mathcal{A} is not increased. Thus we obtain a solution of MinTimelineCover on G such that, for each $\left\{v_{i}, v_{j}\right\} \in E_{c}$, if $w_{i, a}, w_{i, b}$ are active in timestamps 1 and 2 , then $w_{j, a}, w_{j, b}$ are active only in timestamp 1 .

Now, we construct a vertex cover V_{c}^{\prime} of G_{c} as follows:

- For each i with $1 \leq i \leq\left|V_{c}\right|$, if $w_{i, a}, w_{i, a}$ are active only in timestamp 1 , define $v_{i} \in V_{c}^{\prime}$

By construction, for each $\left\{v_{i}, v_{j}\right\} \in E_{c}$, at most one of the sets $\left\{w_{i, a}, w_{i, b}\right\}\left\{w_{j, a}, w_{j, b}\right\}$ is active in timestamp [1, 2]. It follows that V_{c}^{\prime} covers each edge in E. Now, we claim that $\left|V_{c}^{\prime}\right| \leq k$. Indeed, each temporal edge $\left\{u_{i, p}, u_{j, q}, t\right\}$ is covered by one of $u_{i, p}, u_{j, q}$ with span equal to 1 , except when $w_{i, a}, w_{i, b}$ are both active in timestamps 1 and 2 . In this case, three edges are covered by $w_{i, a}, w_{i, b}$ with a span equal to one for each of these vertices. Since the solution \mathcal{A} has a cost of $\left|E_{c}\right|+k-\left|V_{c}\right|$, it follows that there exist $\left|V_{c}\right|-k$ sets $\left\{w_{i, a}, w_{i, b}\right\}$ active in interval [1,2], thus by construction $\left|V_{c}^{\prime}\right| \leq\left|V_{c}\right|-\left(\left|V_{c}\right|-k\right)=k$.

Now, we can prove the main result of this section.
Theorem 2. MinTimelineCover is NP-hard (and the decision version of MinTimelineCover is NP-complete) when the total degree Δ_{G}^{T} is equal to 3, the local degree Δ_{G}^{L} is equal to 2 and the time domain consists of three timestamps.

Proof. The reduction from Cubic Vertex Cover defines a temporal graph G on a time domain of three timestamps and such that, by Lemma 6 , its total degree Δ_{G}^{T} is equal to 3 and its local degree Δ_{G}^{L} is equal to 2 .

By Lemma 8 and Lemma 9, it follows that we have designed a polynomial-time reduction from Cubic Vertex Cover to MinTimelineCover. Since Cubic Vertex Cover is NP-hard [3], it follows that also MinTimelineCover is NP-hard when the total degree Δ_{G}^{T} is equal to 3 , the local degree Δ_{G}^{L} is equal to 2 and the time domain consists of three timestamps.

Notice that the decision version of MinTimelineCover is in NP, since giving a solution of MinTimelineCover we can check in polynomial time that it covers G and that has at most a given span.

5. Bounding the time window

In this section we consider the parameterized complexity of MinTimelineCover for (w, h)-window constrained temporal graphs, when the parameters is the product of w and h (the size of the time window). Notice that when exactly one of w, h is the parameter, the problem is not in the class XP (in particular if $h=2$ for the result in Section 3, if $w=2$ for the hardness of MinTimelineCover on a time domain of two timestamps [10]).

We denote by W_{j} a time window $W([j-w+1, j])$ of length w that ends in a timestamp j and that consists of the set of pairs (v, t) such that $v \in V$ has a temporal edge defined in some timestamp t, with $j-w+1 \leq t \leq j$.

An activity assignment F_{j} for a time window W_{j} is a function that establishes, for each pair (v, t) of W_{j}, if v is active in timestamp t. Formally, an activity assignment F_{j} is a function

$$
F_{j}: W_{j} \rightarrow\{0,1\}
$$

such that, for each pair (v, t), it holds that:

1. v is active in timestamp t if and only if $F_{j}(v, t)=1$ (thus v is not active in timestamp t if and only if $\left.F_{j}(v, t)=0\right)$
2. if $F_{j}\left(v, t_{1}\right)=1$ and $F_{j}\left(v, t_{2}\right)=1$, with $j-w+1 \leq t_{1} \leq t_{2} \leq j$, then $F_{j}(v, t)=1$ for each t with $t_{1} \leq t \leq t_{2}$.

The span of F_{j}, denoted by $s\left(F_{j}\right)$, is the span induced by the activity assignment F_{j}.
Consider two time windows W_{j} and W_{i}, with $1 \leq i-w+1 \leq i<j \leq t_{\max }$, and two assignment functions F_{j} and $F_{i} . F_{j}$ and F_{i} are in agreement if the following holds:

$$
F_{j}(v, t)=F_{i}(v, t) \text { for each }(v, t) \in W_{j} \cap W_{i}
$$

An activity timeline \mathcal{A} is in agreement with an activity assignment F_{j} if the activity defined by \mathcal{A} for the pairs in W_{j} is identical to F_{j}.

Next, we describe a dynamic programming algorithm to compute a solution of MinTimelineCover parameterized by w and h. Given two assignment functions F_{j} and F_{j-1} that are in agreement, define the value $D\left(F_{j}, F_{j-1}\right)$ as the span added by F_{j} (in timestamp j) with respect to F_{j-1}. Formally, $D\left(F_{j}, F_{j-1}\right)$ is defined as follows:

$$
\begin{align*}
& D\left(F_{j}, F_{j-1}\right)= \\
& \quad\left|\left\{v:(v, j-1) \in W_{j-1} \wedge(v, j) \in W_{j} \wedge F_{j}(v, j)=F_{j-1}(v, j)=1\right\}\right| \tag{3}
\end{align*}
$$

Given an activity assignment F_{j} of a time window W_{j}, define the function $C\left[F_{j}\right]$ as the minimum span of an activity timeline of the temporal graph G on interval $[1, j]$, such that:

1. The activity of vertices in the time window W_{j} is defined by F_{j}
2. Each temporal edge $\{u, v, t\}$ of G, with $1 \leq t \leq j$, is covered
3. Each vertex active in timestamp j is not active in interval $[1, j-w]$ (since G is (w, h)-window constrained)

Now, $C\left[F_{j}\right]$ is computed with the following recurrence:

- If $j>w$, then $C\left[F_{j}\right]$ is the minimum, over F_{j-1} in agreement with F_{j}, of

$$
C\left[F_{j-1}\right]+D\left(F_{j}, F_{j-1}\right)
$$

- If $j=w, C\left[F_{w}\right]=s\left(F_{w}\right)$, that is the span of F_{w}.

Next, we prove the correctness of the recurrence.
Lemma 10. $C\left[F_{j}\right]=q$, if and only if there exists an activity timeline that covers G in interval $[1, j]$ and that has span q.
Proof. We prove the lemma by induction on j. In the base cases, when $j=w$, if $C\left[F_{w}\right]=q$, then $C\left[F_{w}\right]=s\left(F_{w}\right)$ and F_{w} defines an activity timeline that covers G on interval $[1, w]$ of span q. Given an activity timeline \mathcal{A} that covers G on interval $[1, w]$ and has span q, then by considering the activity assignment F_{w} that is in agreement with \mathcal{A}, it follows that $C\left[F_{w}\right]=s\left(F_{w}\right)=q$.

Now, we prove that the lemma holds for $j>w$, assuming by induction hypothesis that it holds for $j-1$. Consider an activity timeline \mathcal{A} that covers G on interval $[1, j]$ such that \mathcal{A} is an activity timeline of minimum span q in agreement with F_{j}. We prove that $C\left[F_{j}\right]=q$. Since \mathcal{A} is an activity timeline of G on interval $[1, j]$, it follows that it covers also the temporal edges active in $[1, j-1]$, with span $q^{\prime} \leq q$, and that \mathcal{A} defines an activity of vertices in $[j-w, j-1]$ defined by an assignment function F_{j-1} that is in agreement with F_{j}. Then, by induction hypothesis $C\left[F_{j-1}\right]=q^{\prime}$ and by construction $D\left(F_{j}, F_{j-1}\right)=q-q^{\prime}$. By the definition of recurrence, since F_{j-1} and F_{j} agree and \mathcal{A} is an activity timeline of minimum span in agreement with F_{j}, it follows that $C\left[F_{j}\right]=q$.

Now, assume that $C\left[F_{j}\right]=q$. By definition of the recurrence, it follows that there exists an activity assignment F_{j-1} such that F_{j-1} and F_{j} are in agreement and $C\left[F_{j-1}\right]=q^{\prime}$, with $q^{\prime} \leq q$ and $q-q^{\prime}=D\left(F_{j}, F_{j-1}\right)$. Since $C\left[F_{j-1}\right]=q^{\prime}$, by induction hypothesis there exists an activity timeline \mathcal{A}^{\prime} that covers G on interval $[1, j-1]$ such that (1) \mathcal{A}^{\prime} has span q^{\prime} and (2) the activity timeline of vertices in $\left[j-w, j-1\right.$] specified by \mathcal{A}^{\prime} agrees with F_{j-1}. Now, by definition of $C\left[F_{j}\right]$, it follows that by adding the activity specified by F_{j} in timestamp j to \mathcal{A}^{\prime}, we obtain an activity timeline \mathcal{A} of G on interval [1, j] that covers each temporal edge of G defined in interval $[1, j]$. Notice that \mathcal{A} defines for each vertex one covering interval. Indeed, this holds by induction for \mathcal{A}^{\prime}. Now, if a vertex v is defined active by F_{j} in position j, then since F_{j} and F_{j-1} are in agreement, either v is defined active also by F_{j-1} in position $j-1$, or v is defined not active by F_{j-1} in all positions i with $j-w \leq i \leq j-1$ and thus also in each positions in $[1, j-1]$, since there is no temporal edge incident in v defined in interval $[1, j-w-1]$. Finally, \mathcal{A} has span q, since $D\left(F_{j}, F_{j-1}\right)=q-q^{\prime}$, thus concluding the proof.

Based on Lemma 10, we can prove the main result of this section.
Theorem 3. A solution of MinTimelineCover on instance G can be computed in $O\left(2^{h(w+1)} h t_{\text {max }}\right)$ time.

Proof. The correctness of the recurrence follows from Lemma 10, thus the span of an optimal solution of MinTimelineCover on instance G is computed in entry $C\left[F_{|\mathcal{T}|, w}\right]$.

Next, we consider the time complexity of the algorithm. The base case $C\left[F_{w}\right]$ can be computed in $O\left(2^{h w}\right)$ time, as there exist at most h vertices with active temporal edges in each timestamp of interval $[1, w]$. Now, we consider the case $j>w$. First, notice that there exist $O\left(h t_{\max }\right)$ values of j and w. For each j and w, there exists at most $2^{h w}$ activity assignments F_{j}. Each entry $C\left[F_{j}\right]$ is computed starting from the values $C\left[F_{j-1}\right]$ (where F_{j} and F_{j-1} are in agreement) This requires the definition of the activity timeline of vertices in timestamp j (recall that at most h vertices have temporal edges in each timestamp) in $O\left(2^{h}\right)$ time and, for each of them, the computation of $D\left(F_{j}, F_{j-1}\right)$, which requires $O(h)$ time. Hence the overall time complexity of the dynamic programming algorithm is $O\left(2^{h(w+1)} h t_{\max }\right)$.

6. Conclusion

We have considered a variant of Vertex Cover, called MinTimelineCover, on temporal graphs that has been recently introduced to deal with event summarization. We have shown that the problem is NP-hard even when: (1) the local degree is bounded by one and (2) the total degree is three, the local degree is two and the time domain consists of three timestamps. On the other hand, we have shown that MinTimelineCover is in P for total degree equal to 2 . Moreover, we have shown that MinTimelineCover is fixed-parameter tractable when the size of the time window is the parameter.

There are several interesting future directions related to MinTimelineCover. First, the parameterized complexity of MinTimelineCover is open when the problem is parameterized by the span of the solution (recall that in this case the problem is fixed-parameter tractable when the time domain consists of two timestamps [10]). It would be interesting to study the complexity of the problem when the local degree is equal to one and the global degree is bounded by a constant and the approximation complexity of the problem. Moreover, it would be interesting to study the complexity of deciding whether there exists an activity timeline that covers the set of temporal edges when every vertex has a bounded span.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] E.C. Akrida, G.B. Mertzios, P.G. Spirakis, C.L. Raptopoulos, The temporal explorer who returns to the base, J. Comput. Syst. Sci. 120 (2021) $179-193$.
[2] E.C. Akrida, G.B. Mertzios, P.G. Spirakis, V. Zamaraev, Temporal vertex cover with a sliding time window, J. Comput. Syst. Sci. 107 (2020) $108-123$.
[3] P. Alimonti, V. Kann, Some APX-completeness results for cubic graphs, Theor. Comput. Sci. 237 (1-2) (2000) 123-134.
[4] B.M. Bumpus, K. Meeks, Edge exploration of temporal graphs, in: P. Flocchini, L. Moura (Eds.), Combinatorial Algorithms - 32nd International Workshop, IWOCA 2021, Ottawa, ON, Canada, July 5-7, 2021, Proceedings, in: Lecture Notes in Computer Science, vol. 12757, Springer, 2021, pp. $107-121$.
[5] P. Crescenzi, C. Magnien, A. Marino, Approximating the temporal neighbourhood function of large temporal graphs, Algorithms 12 (10) (2019) 211, https://doi.org/10.3390/a12100211.
[6] R. Dondi, Insights into the complexity of disentangling temporal graphs, in: U.D. Lago, D. Gorla (Eds.), Proceedings of the 23rd Italian Conference on Theoretical Computer Science, ICTCS 2022, Rome, Italy, September 7-9, 2022, in: CEUR Workshop Proceedings, vol. 3284, CEUR-WS.org, 2022, pp. 1-13.
[7] R. Dondi, M.M. Hosseinzadeh, Finding colorful paths in temporal graphs, in: Complex Networks \& Their Applications X - Volume 1, Proceedings of the Tenth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2021, Madrid, Spain, November 30 - December 2, 2021, in: Studies in Computational Intelligence, vol. 1015, 2021, pp. 553-565.
[8] T. Erlebach, M. Hoffmann, F. Kammer, On temporal graph exploration, J. Comput. Syst. Sci. 119 (2021) 1-18.
[9] T. Fluschnik, H. Molter, R. Niedermeier, M. Renken, P. Zschoche, Temporal graph classes: a view through temporal separators, Theor. Comput. Sci. 806 (2020) 197-218.
[10] V. Froese, P. Kunz, P. Zschoche, Disentangling the computational complexity of network untangling, in: L.D. Raedt (Ed.), Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, ijcai.org, 2022, pp. 2037-2043.
[11] T. Hamm, N. Klobas, G.B. Mertzios, P.G. Spirakis, The complexity of temporal vertex cover in small-degree graphs, in: Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, AAAI Press, 2022, pp. 10193-10201.
[12] P. Holme, Modern temporal network theory: a colloquium, Eur. Phys. J. B 88 (9) (2015) 234.
[13] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller, J.W. Thatcher (Eds.), Proceedings of a Symposium on the Complexity of Computer Computations, Held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, in: The IBM Research Symposia Series, Plenum Press, New York, 1972, pp. 85-103.
[14] D. Kempe, J.M. Kleinberg, A. Kumar, Connectivity and inference problems for temporal networks, J. Comput. Syst. Sci. 64 (4) (2002) $820-842$.
[15] A. Marino, A. Silva, Königsberg sightseeing: Eulerian walks in temporal graphs, in: P. Flocchini, L. Moura (Eds.), Combinatorial Algorithms - 32nd International Workshop, IWOCA 2021, Ottawa, ON, Canada, July 5-7, 2021, Proceedings, in: Lecture Notes in Computer Science, vol. 12757, Springer, 2021, pp. 485-500.
[16] G.B. Mertzios, H. Molter, V. Zamaraev, Sliding window temporal graph coloring, J. Comput. Syst. Sci. 120 (2021) 97-115.
[17] O. Michail, An introduction to temporal graphs: an algorithmic perspective, in: C.D. Zaroliagis, G.E. Pantziou, S.C. Kontogiannis (Eds.), Algorithms, Probability, Networks, and Games - Scientific Papers and Essays Dedicated to Paul G. Spirakis on the Occasion of His 60th Birthday, in: Lecture Notes in Computer Science, vol. 9295, Springer, 2015, pp. 308-343.
[18] P. Rozenshtein, N. Tatti, A. Gionis, The network-untangling problem: from interactions to activity timelines, Data Min. Knowl. Discov. 35 (1) (2021) 213-247.
[19] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, Y. Xu, Path problems in temporal graphs, Proc. VLDB Endow. 7 (9) (2014) 721-732.
[20] H. Wu, J. Cheng, Y. Ke, S. Huang, Y. Huang, H. Wu, Efficient algorithms for temporal path computation, IEEE Trans. Knowl. Data Eng. 28 (11) (2016) 2927-2942.
[21] P. Zschoche, T. Fluschnik, H. Molter, R. Niedermeier, The complexity of finding small separators in temporal graphs, J. Comput. Syst. Sci. 107 (2020) 72-92.

[^0]: 动 This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.
 动 A preliminary version of this paper appeared in the proceedings of ICTCS 2022 [6].
 E-mail address: riccardo.dondi@unibg.it.
 https://doi.org/10.1016/j.tcs.2023.114040
 0304-3975/© 2023 Elsevier B.V. All rights reserved.

