
Theoretical Computer Science 969 (2023) 114040
Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Untangling temporal graphs of bounded degree ✩,✩✩

Riccardo Dondi

Università degli Studi di Bergamo, Bergamo, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 December 2022
Received in revised form 12 June 2023
Accepted 14 June 2023
Available online 19 June 2023

Keywords:
Temporal graphs
Vertex cover
Graph algorithms
Computational complexity

In this contribution we consider a variant of the vertex cover problem in temporal graphs 
that has been recently introduced to summarize timeline activities in social networks. The 
problem is NP-hard, even when the time domain considered consists of two timestamps. 
We further analyze the complexity of this problem, focusing on temporal graphs of 
bounded degree. We prove that the problem is NP-hard when (1) each vertex has degree 
at most one in each timestamp and (2) each vertex is connected with at most three 
neighbors, has degree at most two in each timestamp and the time domain consists of 
three timestamps. On the other hand, we prove that the problem is in P when each vertex 
is connected with at most two neighbors. Then we present a fixed-parameter algorithm 
for the restriction where we bound the number of interactions in each timestamp and the 
length of the interval where a vertex has incident temporal edges.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Network analysis has recently extended several classic problems on static graphs to temporal graphs. Temporal graphs 
describe dynamics of edge activity in a discrete time domain [14,12,17], while the vertex set is not changing. Several prob-
lems for finding paths and analyzing graph connectivity has been considered in the literature [14,19,20,5,8,21,9,4,15,1,7]. 
Recently, one of the most relevant problem in graph theory and theoretical computer science, Vertex Cover, has been ex-
tended to temporal graphs [2,18]. In this paper we analyze a variant of Vertex Cover, called Network Untangling, that has been 
introduced in [18] for discovering event timelines and summarizing temporal networks. Given a sequence of interactions 
between entities (for example users of a social network platform), the proposed problem looks for an explanation of the 
observed interactions with few (and short) activity covering intervals of entities, such that each interaction is covered by 
at least one of the two entities involved (at least one of the two entities is active when an interaction between them is 
observed). This can be seen as a variant of Vertex Cover, where the temporal edges have to be covered with vertex activities 
of minimum length, called span. The span of a vertex is defined as the difference between the ending and starting interval 
endpoints where the vertex is defined to be active. A consequence of this definition is that when a vertex is active in a 
single timestamp, it has a span equal to 0.

Four formulations of the problem have been considered in [18], depending on the fact that a vertex activity is defined 
as a single interval or k ≥ 2 intervals and that the objective function is the minimization of the sum of vertex spans or the 
minimization of the maximum vertex span. In this paper we consider the formulation, denoted by MinTimelineCover, that 
asks for the definition of a covering interval for each vertex, so that (1) for each temporal edge {u, v, t} at least one of the 
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covering intervals of u and v includes t and (2) the overall span is minimized. Given a temporal graph, MinTimelineCover
looks for a cover of the temporal edges that has minimum span and such that each vertex is active in one time interval.

Other variants of Vertex Cover in temporal graphs have been introduced in [1]. A first variant asks for the minimum 
number of timestamps where vertices are defined to be active, such that each (non-temporal) edge e = {u, v} is temporally 
covered, that is there exists a timestamp t where e is defined and one of (u, t) and (v, t) belongs to the cover. A second 
variant asks for each temporal edge to be temporally covered at least once for every interval of a given length. The two vari-
ants are NP-hard, also in very restricted cases [1]. Further results on the problem variants, including their approximability, 
have been given in [1,11].

The MinTimelineCover problem is known to be NP-hard [18], even in the restriction where the time domain consists of 
two timestamps [10] (when the time domain consists of a single timestamp, the problem is trivially in P, since any solution 
of the problem has span 0). For this restriction, MinTimelineCover is fixed-parameter tractable, when parameterized by the 
span of the solution [10]. The work in [10] has analyzed the parameterized complexity of the variants of Network Untangling
proposed in [18], considering as parameters the number of vertices of the temporal graph, the length of the time domain, 
the number of intervals of vertex activity and the span of a solution.

In this paper, we consider the complexity of the MinTimelineCover problem when we bound the local degree (maximum 
number of interactions of a vertex in a timestamp) and the total degree (maximum number of neighbors of a vertex in the 
overall time domain). We prove in Section 3 that the problem is NP-hard even when there exists at most one interaction in 
each timestamp, and thus the local degree is bounded by 1. In Section 4 we consider the complexity of MinTimelineCover
when we bound the total (and possibly the local) degree of the temporal graph. We show that, while the problem is in 
P when the total degree is bounded by two, it is NP-hard when the total degree is bounded by three, the local degree 
is bounded by two and the time domain consists of three timestamps. Finally, in Section 5 we prove that the problem is 
fixed parameter tractable when the parameter is the size of the time window that bounds (1) the number of vertices with 
temporal edges in a timestamp (thus also the local degree) and (2) the length of the interval where a vertex has incident 
temporal edges. The idea of considering a time window has been applied before on temporal graphs, for example a sliding 
time window has been considered in the context of graph coloring [16] and for the graph covering formulation defined in 
[2].

We conclude the paper with some open problems in Section 6. In Section 2 we present some definitions and we formally 
define the MinTimelineCover problem.

2. Preliminaries

We start this section by defining the discrete time domain over which is defined a temporal graph.

Definition 1. A discrete time domain T = [1, . . . , tmax] is a sequence of timestamps. An interval T = [ti, t j] over T , where 
ti, t j ∈ T and ti ≤ t j , is the sequence of timestamps between ti and t j .

Two intervals T1 = [ta,1, tb,1], T2 = [ta,2, tb,2] are disjoint if they do not share any timestamp, that is ta,1 ≤ tb,1 < ta,2 ≤ tb,2
or ta,2 ≤ tb,2 < ta,1 ≤ tb,1.

Given a set of pairwise disjoint intervals T1 = [ta,1, tb,1], T2 = [ta,2, tb,2], . . . , Tq = [ta,q, tb,q], where ta,1 ≤ tb,1 < ta,2 ≤
tb,2 < · · · < ta,q ≤ tb,q , and tb,i = ta,i+1 − 1, 1 ≤ i ≤ q − 1, we can define the concatenation of these intervals:

T1 · T2 · · · · · Tq = [ta,1, tb,q].
We present now the definition of temporal graph. The vertex set is not changing in the time domain, that is the vertex 

set is identical in each timestamp (see the example of Fig. 1).

Definition 2. A temporal graph G = (V , E, T ) consists of

1. A set V of vertices
2. A time domain T
3. A set E = {{u, v, t} : u, v ∈ V , t ∈ T }.

A temporal graph G = (V , E, T ) is associated with a static graph, called union graph Gu = (V , Eu), over the same vertex 
set V , where the set of edges Eu is defined as follows (see the example of Fig. 1):

Eu = {{u, v} : {u, v, t} ∈ E, for some timestamp t of the time domain T }.
Notice that a slightly different definition of temporal graphs is sometimes considered in the literature (for example in 

[2,11]). A temporal graph is defined as a labeled graph, more precisely as a pair (G , λ), where G = (V , E) is the underlying 
graph (Gu in our notation) and λ is a labeling function that associates with every edge the timestamps where it is defined. 
So if {u, v, t} is a temporal edge, in this notation the edge {u, v} will be labeled by t .
2
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Fig. 1. An example (in the upper part) of a temporal graph G consisting of four vertices (v1, v2, v3, v4) and three timestamps (1, 2, 3) and the corresponding 
underlying static graph Gu (in the lower part). For each timestamp, the active temporal edges of G are represented. For example for t = 1, the active edges 
are {v1, v3, 1}, {v2, v3, 1}, {v2, v4, 1}. Notice that the local degree �L

G = 2, while the total degree �T
G = 3 (v2 and v3 have degree three in Gu ).

Given an interval I of T , E(I) denotes the set of active edges in the timestamps of I , that is:

E(I) = {{u, v, t}|{u, v, t} ∈ E ∧ t ∈ I}.
E(t) = E([t, t]) denotes the set of active edges in timestamp t ∈ T .

Given a vertex v ∈ V , a covering interval of v is defined as an interval I v = [lv , rv ], with 1 ≤ lv ≤ rv ≤ tmax , of the time 
domain where v is defined to be active; an edge {v, u, t}, with lv ≤ t ≤ rv , is covered by I v , that is a vertex v active in a 
covering interval I v = [lv , rv ] covers the temporal edges incident in v and defined in a timestamp between lv and rv . In any 
timestamp not in I v , v is considered inactive and does not cover temporal edges incident in it. Notice that if I v = [lv , rv ]
is a covering interval of v , there may exist temporal edges {u, v, t}, with t < lv or t > rv (see the example in Fig. 2). An 
activity timeline A is a set of covering intervals, one for each vertex of the temporal graph, defined as follows:

A = {I v : v ∈ V }.
Given a temporal graph G = (V , E, T ), an activity timeline A covers G if for each temporal edge {u, v, t} ∈ E , t belongs 

to Iu or to I v , where Iu (I v , respectively) is the covering interval of u (of v , respectively) defined by A. It follows that, for 
a temporal edge {u, v, t}, at least one of u, v is active in an interval that includes t .

The span of an interval I v = [lv , rv ], with v ∈ V , is defined as follows:

s(I v) = |rv − lv |.
Notice that for a covering interval I v = [lv , rv ] consisting of a single timestamp, that is where lv = rv , the span is equal 

to 0, that is it holds that s(I v ) = 0. The overall span of an activity timeline A is equal to

s(A) =
∑

I v∈A
s(I v).

Now, we are ready to define the problem we are interested into (see the example of Fig. 2).

Problem 1. (MinTimelineCover)
Input: A temporal graph G = (V , E, T ).
Output: An activity timeline of minimum span that covers G .

Next, we introduce the concept of local and total degree (illustrated in Fig. 1). Given a temporal graph G = (V , E, T ) and 
a vertex v ∈ V , the local degree of v in a timestamp t , denoted by �L

G (v, t), is defined as follows:

�L
G(v, t) = |{{v, u, t} ∈ E}|,

that is the number of temporal edges {v, u, t}. The total degree of a vertex v ∈ V , denoted by �T
G (v), is the degree of v in 

the underlying static graph Gu , that is
3
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Fig. 2. An example of MinTimelineCover on a temporal graph G , where the gray rectangles represent the covering intervals of each vertex; v1 is active in 
timestamp 3, with span equal to 0, v2 and v3 are active in interval [1, 2], each one with span equal to 1, v4 is active in timestamp 3, with span equal to 
0. The activity timeline defined by the vertex covering intervals covers each temporal edge of the temporal graph with total span equal to 2.

Fig. 3. A sketch of the time domain T built by the reduction. For each of the nine disjoint intervals of T , we present in the upper part a temporal edge 
defined in that interval or − when no temporal edge is defined.

�T
G(v) = |{{v, x} ∈ Eu}|.

The local degree �L
G of G is the maximum over v and t of �L

G(v, t); the total degree �T
G of G is the maximum over v

of �T
G(v).

Given an interval I of the time domain T , the time window associated with I (denoted by W (I)) is defined as

W (I) = {(v, t) : {v, u, t} ∈ E ∧ t in I}
that is the set of pairs consisting of vertices v ∈ V and timestamps t of I , such that there exists a temporal edge incident 
in v in timestamp t . We define a temporal graph to be (w, h)-window-constrained if (1) the temporal edges incident in 
each vertex belong to an interval of length at most w and (2) in each timestamp there are at most h vertices with incident 
temporal edges.

3. Hardness of MinTimelineCover for bounded local degree

In this section we consider the MinTimelineCover problem when each timestamp contains at most a single active edge, 
and thus the local degree �L

G of G is also bounded by 1. We denote this restriction by 1-MinTimelineCover. We prove that
1-MinTimelineCover is NP-hard by giving a reduction from the Vertex Cover problem. Next, we recall the definition of Vertex 
Cover:

Problem 2. (Vertex Cover)
Input: A graph Gc = (V c, Ec).
Output: A minimum cardinality set V ′

c ⊆ V c such that for each {u, v} ∈ Ec , u ∈ V ′
c or v ∈ V ′

c .

Consider an instance Gc = (V c, Ec) of Vertex Cover, where |V c| = n and |Ec | = m, we define a corresponding instance of
MinTimelineCover, that is a temporal graph G = (V , E, T ), as follows (a sketch of the temporal graph is given in Fig. 3). We 
assume in what follows that m is large enough so that m4 > n(m2 + m + 2n).

We start by defining the time domain T that consists of 2m4 + m2 + m + n + 2 timestamps and is defined starting from 
the following disjoint intervals:
4
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– I V ,1 = [1, n] I V ,1 consists of n timestamps
– I S,1 = [n + 1, m2 + n] I S,1 consists of m2 timestamps
– I V ,2 = [m2 + n + 1, m2 + 2n] I V ,2 consists of n timestamps
– I E = [m2 + 2n + 1, m2 + m + 2n] I E consists of m timestamps
– I V ,3 = [m2 + m + 2n + 1, m2 + m + 3n] I V ,3 consists of n timestamps
– I S,2 = [m2 + m + 3n + 1, m4 + m2 + m + 3n] I S,2 consists of m4 timestamps
– I A,1 = [m4 + m2 + m + 3n + 1, m4 + m2 + m + 3n + 1] I A,1 consists of 1 timestamp
– I S,3 = [m4 + m2 + m + 3n + 2, 2m4 + m2 + m + 3n + 1] I S,3 consists of m4 timestamps
– I A,2 = [2m4 + m2 + m + 3n + 2, 2m4 + m2 + m + 3n + 2] I A,2 consists of 1 timestamp

The time domain T is the concatenation of the disjoint intervals defined previously:

T = I V ,1 · I S,1 · I V ,2 · I E · I V ,3 · I S,2 · I A,1 · I S,3 · I A,2

The set V is defined as follows:

V = {ui, u′
i : vi ∈ V c,1 ≤ i ≤ n} ∪ {u0} ∪ {u′

0}
Now, we define the set E of temporal edges in each interval of the time domain T . In each interval I S,x , x ∈ {1, 2, 3}, no 

temporal edge is active. We assume that there are no self-loops and that the edges of Gc are ordered as follows: for two 
edges {vi, v j}, {vx, v y} ∈ Ec , where i < j and x < y, {vi, v j} < {vx, v y} if i < x, or i = x and j < y. We refer to the p-th edge 
of Gc as the edge in position p based on this order. Recall that E(I) denotes the set of temporal edges active in interval I . 
Next, we define the sets of temporal edges in I V ,1, I V ,2, I E , I V ,3, I A,1 and I A,2:

– E(I V ,1) = {{ui, u0, t} : 1 ≤ t ≤ n}
– E(I V ,2) = {{u′

i, u0, t} : t = m2 + n + i, 1 ≤ i ≤ n}
– E(I E) = {{ui, u j, t} : t = m2 + 2n + p, 1 ≤ p ≤ m, {vi, v j} is the p-edge of Gc}
– E(I V ,3) = {{ui, u′

i, t} : t = m2 + m + 2n + i, 1 ≤ i ≤ n}
– E(I A,1) = {{u0, u′

0, t} : t = m4 + m2 + m + 3n + 1}
– E(I A,2) = {{u0, u′

0, t} : t = 2m4 + m2 + m + 3n + 2}.

We start by proving some properties of G . First, notice that by construction in each timestamp there exists at most one 
active temporal edge, thus G is an instance of 1-MinTimelineCover. Now, we present a property of vertices u0 and u′

0.

Lemma 1. Given an instance Gc of Vertex Cover, let G be the corresponding instance of 1-MinTimelineCover. Let A be a solution of 
1-MinTimelineCover on instance G of span at most n(m2 + m + 2n), then each of the vertices u0 and u′

0 is active in exactly one of the 
timestamps of intervals I A,1 and I A,2 .

Proof. Consider a solution A of 1-MinTimelineCover on instance G of span at most n(m2 + m + 2n). Notice that, by con-
struction, each of u0, u′

0 is active in exactly one of the intervals I A,1 and in I A,2, as otherwise A has a span of at least 
m4 > n(m2 + m + 2n). Since temporal edges incident in u′

0 are defined only in the timestamps of I A,1 and I A,2, we can 
assume that u′

0 is active in a timestamp of I A,1 or of I A,2. Now, consider vertex u0. There exist temporal edges incident in 
u0 in intervals I A,1, I A,2, I V ,1 and I V ,2. Since u0 has to be active in one of I A,1, I A,2, if u0 is active in a timestamp of I V ,1
or I V ,2, it has a span of at least m4 > n(m2 +m + 2n), hence A has a span of at least m4 > n(m2 +m + 2n). Hence A defines 
u0 active only in a timestamp of I A,1 or I A,2, thus concluding the proof. �

We show next how to relate a vertex cover of Gc and a solution of MinTimelineCover on G .

Lemma 2. Consider an instance Gc of Vertex Cover, let G be the corresponding instance of 1-MinTimelineCover. If there exists a vertex 
cover of Gc consisting of k vertices, then there exists a solution of 1-MinTimelineCover on instance G of span at most k(m2 +m + 2n) +
(n − k)(n + m).

Proof. Given a vertex cover V ′
c ⊆ V c of G , with |V ′

c | = k, we define a solution A of 1-MinTimelineCover as follows:

– Vertex u0 (u′
0, respectively), is active in the unique timestamp of interval I A,1 (of interval I A,2, respectively); u0 and u′

0
have a span equal to 0.

– For each vertex vi ∈ V c \ V ′
c , 1 ≤ i ≤ n, vertex ui is active in timestamp i and has a span equal to 0, vertex u′

i is active 
in interval [m2 + n + i, m2 + m + 2n + i], and has a span equal to m + n.

– For each vertex vi ∈ V ′
c , 1 ≤ i ≤ n, ui is active in interval [i, m2 + m + 2n + i], and has a span equal to m2 + m + 2n; 

vertex u′ is active in timestamp m2 + n + i, and has a span equal to 0.
i
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Consider the activity timeline A, we show that it covers every temporal edge of G . Indeed, the temporal edges of I A,1
and I A,2 are covered by u0 and u′

0, respectively. The temporal edges in I V ,1 are covered by vertices ui , 1 ≤ i ≤ n, since ui is 
active in timestamp i. The temporal edges of I V ,2 are covered by u′

i , 1 ≤ i ≤ n, since u′
i is active in timestamp m2 + n + i. 

Consider a temporal edge {ui, u j, t} defined in interval I E . Since V ′
c is a vertex cover of Gc , by construction ui is active in 

interval Iui = [i, m2 + m + n + i] or u j is active in interval Iu j = [ j, m2 + m + 2n + j]; both intervals include I E , thus at least 
one of Iui or Iu j covers the temporal edge {ui, u j, t}. Finally, the edges of I V ,3 are covered either by ui , if vi ∈ V ′

c , since 
ui in this case is active in interval [i, m2 + m + 2n + i], or by u′

i , if vi ∈ V c \ V ′
c , since u′

i in this case is active in interval 
[m2 + n + i, m2 + m + 2n + i]. It follows that all the temporal edges are covered, thus A covers G .

Now, consider the span of A. Since k vertices ui , with vi ∈ V ′
c , have a span of m2 + m + 2n and n − k vertices u′

i , with 
vi ∈ V c \ V ′

c , have a span of n + m, the overall span of A is k(m2 + m + 2n) + (n − k)(n + m), thus concluding the proof. �
Based on Lemma 1, we can prove the following result.

Lemma 3. Given an instance Gc of Vertex Cover, consider the corresponding instance G of 1-MinTimelineCover. Let A be a solution of 
1-MinTimelineCover on instance G having span k(m2 + m + 2n) + (n − k)(n + m), then there exists a vertex cover of Gc consisting of 
at most k vertices.

Proof. Consider a solution A of 1-MinTimelineCover on instance G that has a span k(m2 + m + 2n) + (n − k)(n + m) ≤
n(m2 + m + 2n)). By Lemma 1, we can assume that each of u0 and u′

0 is active in one of the timestamps of I A,1, I A,2. This 
implies that in any solution of 1-MinTimelineCover on instance G , each vertex ui , with 1 ≤ i ≤ n, must be active in timestamp 
i and each vertex u′

i , with 1 ≤ i ≤ n, must be active in timestamp m2 + n + i. Since each temporal edge {ui, u j, t} in I E must 
be covered by one of ui , u j , it follows that A defines a span of at least m2 + n for a subset U ⊆ {ui : 1 ≤ i ≤ n} of vertices. 
Furthermore, for each i with 1 ≤ i ≤ n, the temporal edge {ui, u′

i, m
2 + m + 2n + i} of interval I V ,3 must be covered by ui or 

by u′
i .

Now, we claim that, for each vertex ui ∈ U , ui covers the temporal edge {ui, u′
i, m

2 + m + 2n + i}. Assume it is not the 
case, then the temporal edge {ui, u′

i, m
2 + m + 2n + i} is covered by u′

i . Then ui has a span of at least m2 + n, while u′
i has 

a span of m + n. If we modify the solution A so that ui is active in interval [i, m2 + m + 2n + i] and thus it covers also the 
temporal edge {ui, u′

i, m
2 + m + 2n + i}, while u′

i is active only in timestamp m2 + n + i, we obtain that ui has a span of 
m2 + m + 2n, while u′

i has a span of 0, thus we obtain a solution that does not increase the span with respect to A.
Since A has a span of k(m2 + m + 2n) + (n − k)(m + n), it follows that the set U contains at most k vertices. Define the 

following subset V ′
c of vertices of V c :

V ′
c = {vi : ui ∈ U }.

By construction, it holds that |V ′
c | ≤ k. Furthermore, we claim that V ′

c is vertex cover of Gc . Indeed, assume that there exists 
an edge {vi, v j} ∈ Ec such that vi /∈ V ′

c and v j /∈ V ′
c . Then, by construction ui, u j /∈ U , thus the temporal edge {ui, u j, t} of 

I E would not be covered by A, thus leading to a contradiction. It follows that V ′
c is a vertex cover of Gc of size at most k, 

thus concluding the proof. �
Now, we are able to prove the main result of this section.

Theorem 1. 1-MinTimelineCover is NP-hard and the decision version of 1-Min TimelineCover is NP-complete.

Proof. It follows from Lemma 2 and Lemma 3 that we have designed a polynomial-time reduction from Vertex Cover to
1-MinTimelineCover. Since Vertex Cover is NP-hard [13], it follows that also 1-MinTimelineCover is NP-hard.

Notice that the decision version of 1-MinTimelineCover is in NP, since giving a solution of 1-MinTimelineCover we can 
check in polynomial time that it covers G and that has at most a given span. �
4. MinTimelineCover for bounded total degree

In this section we analyze another restriction of the MinTimelineCover problem, in particular we consider a bound on 
the total degree of the input temporal graph. We start by showing that MinTimelineCover is polynomial-time solvable when 
the total degree �T

G is bounded by 2. Then we show that the problem is NP-hard when the total degree �T
G is equal to 

3 and, furthermore, the following restrictions hold: (1) the local degree �L
G = 2 and (2) the time domain consists of three 

timestamps.

4.1. Total degree �T
G bounded by 2

We start by showing that when �T
G ≤ 2, MinTimelineCover is solvable in polynomial time. Consider the underlying static 

graph Gu associated with G and let H = (V H , E H ) be a connected component of Gu . Since �T ≤ 2, it follows that H =
G

6



R. Dondi Theoretical Computer Science 969 (2023) 114040
(V H , E H ) is either a simple cycle (that is, it contains no chord) or a path. We present a polynomial algorithm that defines 
an activity timeline A of minimum span when H is a cycle (if H is a path then the algorithm can be easily adapted).

First, define a vertex of H as h1, and define vertices h2, . . . , hz according to a depth first search of H that starts 
from h1. Notice that, since H is a simple cycle, hz is adjacent to h1 in H . Now, we consider two timestamps a, b, with 
1 ≤ a ≤ b ≤ tmax , where h1 must be active and we define function Da,b[i, ti,1, ti,2] as follows. Da,b[i, ti,1, ti,2] is the minimum 
span of an activity timeline A of vertices h1, . . .hi that covers each temporal edge between vertices h1, . . . , hi such that hi
is defined to be active in interval [ti,1, ti,2] and vertex h1 is defined to be active in interval [a, b].

Next, we present a recurrence to compute Da,b[i, ti,1, ti,2]. For 2 ≤ i ≤ z, Da,b[i, ti,1, ti,2] is defined as follows:

Da,b[i, ti,1, ti,2] = min
ti−1,1,ti−1,2: ti−1,1≤ti−1,2

Da,b[i, ti−1,1, ti−1,2] + ti,2 − ti,1 (1)

such that the following conditions hold:

1. Each temporal edge between hi−1 and hi is defined in a timestamp contained in interval [ti−1,1, ti−2,2] or in interval 
[ti,1, ti,2].

2. If i = z, each temporal edge between h1 and hz is defined in a timestamp that belongs to interval [tz,1, tz,2] or [a, b].

If condition 1 and 2 defined above do not hold, Da,b[i, ti,1, ti,2] = −∞.
For i = 1, Da,b[1, t1,1, t1,2] is defined as follows:

Da,b[1, t1,1, t1,2] = t1,2 − t1,1 (2)

if ti,1 = a and ti,2 = b, else Da,b[1, t1,1, t1,2] = −∞.
Next, we prove the correctness of the recurrence (Equation (1) and Equation (2)).

Lemma 4. Given a connected component H of Gu, there exists an activity timeline A for vertices h1, . . . , hi , with 1 ≤ i ≤ z, such that 
(1) it covers each temporal edge between vertices h1, . . . , hi (2) it has a span of k and (3) it defines hi active in interval [ti,1, ti,2] and 
h1 active in interval [a, b] if and only if Da,b[i, ti,1, ti,2] = k.

Proof. We prove the lemma by induction on i ≥ 1. If i = 1, since there is no temporal edge connecting h1 with itself, it 
follows by the definition of Da,b[1, t1,1, t1,2] that Da,b[1, t1,1, t1,2] = t1,2 − t1,1 = k if and only if there exists an activity 
timeline A that has a span of b − a = k and defines h1 active in interval [a, b].

Now, assume that the lemma holds for i − 1, we show that it holds for i. Assume that Da,b[i, ti,1, ti,2] = k, then it 
follows that there exist two timestamps ti−1,1, ti−1,2, with ti−1,1 ≤ ti−1,2 such that Da,b[i, ti−1,1, ti−1,2] = k − (ti,2 − ti,1). By 
induction hypothesis there exists an activity timeline A′ for the vertices h1, . . . , hi−1 such that (1) it covers each temporal 
edge between vertices h1, . . . , hi−1 (2) it has a span of k − (ti,2 − ti,1) and (3) it defines hi−1 active in interval [ti−1,1, ti−1,2]
and h1 active in interval [a, b]. By the definition of Da,b[i, ti,1, ti,2], it follows that the activity timeline A defined from A′
by adding hi active in interval [ti,1, ti,2] covers each temporal edge between vertices hi−1 and hi , since by definition of 
Da,b[i, ti,1, ti,2] every temporal edge between hi and hi−1 must belong to a timestamp in interval [ti,1, ti,2] or [ti−1,1, ti−1,2]. 
Furthermore if i = z, by the definition of Da,b[z, tz,1, tz,2], every temporal edge between h1 and hz is defined in a timestamp 
that belongs to interval [a, b] or [tz,1, tz,2]. Finally, A has a span of k and defines hi active in interval [ti,1, ti,2] and h1 active 
in interval [a, b].

Assume that there exists an activity timeline A of minimum span for vertices h1, . . . , hi such that (1) it covers each 
temporal edge between vertices h1, . . . , hi (2) it has a span of k and (3) it defines hi active in interval [ti,1, ti,2] and h1
active in interval [a, b]. Consider the activity timeline A′ for vertices h1, . . . , hi−1 such that (1) it covers each temporal edge 
between vertices h1, . . . , hi−1 (2) it has a span of k1 and (3) it defines hi−1 active in interval [ti−1,1, ti−1,2] and h1 active in 
interval [a, b]. By induction hypothesis, Da,b[i − 1, ti−1,1, ti−1,2] = k1. Consider the covering interval defined for vertex hi as 
[ti,1, ti,2]. Notice that it covers each temporal edge between vertices hi−1 and hi not covered by vertex hi−1. Furthermore if 
i = z, every temporal edge between h1 and hz is defined in a timestamp that belongs to interval [a, b] or [tz,1, tz,2]. Thus 
Da,b[i, ti,1, ti,2] = Da,b[i − 1, ti−1,1, ti−1,2] + ti,2 − ti,1 = k. �
Lemma 5. MinTimelineCover is solvable in polynomial time when �T

G ≤ 2.

Proof. MinTimelineCover can be solvable in polynomial time when �T
G ≤ 2 by applying the dynamic programming recurrence 

Da,b[z, tz,1, tz,2] on each connected component of Gu . The correctness of the recurrence follows from Lemma 4. In particular, 
consider a connected component H of Gu consisting of vertices h1, . . . , hz . There exists an activity timeline A that covers 
the temporal edges of H such that it has a span of k and it defines hz active in interval [tz,1, tz,2] and h1 active in interval 
[a, b] if and only if Da,b[z, tz,1, tz,2] = k.

The time complexity of the algorithm on each connected component H = (V H , E H ), with |V H | = z, is O (z t6
max). Indeed, 

fixed two timestamps a and b, there are O (z t2
max) entries of Da,b[i, ti,1, ti,2], as 1 ≤ i ≤ z and 1 ≤ ti,1 ≤ ti,2 ≤ tmax . Each 

entry Da,b[i, ti,1, ti,2] can be computed in O (t2
max) time, since we have to consider two possible timestamps ti−1,1, ti−1,2, 
7
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Fig. 4. The structure of the temporal graph G builds by the reduction from Cubic Vertex Cover. Et,1, Et,2, Et,3 are the sets of temporal edges defined in the 
three timestamps 1, 2 and 3, respectively.

with 1 ≤ ti−1,1 ≤ ti−1,2 ≤ tmax . Thus the entries of Da,b[i, ti,1, ti,2] can be computed in O (z t4
max) time. Since there are 

O (t2
max) choices of values a and b, the overall time complexity is O (z t6

max) for each connected component H . The overall 
time complexity of the algorithm on input G = (V , E, T ) is O (|V |t6

max). �
4.2. Total degree �T

G = 3

We prove that MinTimelineCover is NP-hard when the total degree �T
G = 3, the time domain consists of three timestamps 

and the local degree �L
G = 2, by giving a reduction from Vertex Cover on cubic graphs (a variant of Vertex Cover denoted by

Cubic Vertex Cover). We recall that a graph is cubic when each of its vertex has degree equal to three.
Given an instance Gc = (V c, Ec) of Cubic Vertex Cover, we build a corresponding temporal graph G = (V , E, T ) as follows 

(a sketch of G is given in Fig. 4). First, the time domain T = [1, 2, 3].
The vertex set V is defined as follows. For each vi ∈ V c (1 ≤ i ≤ |V c|), define the set Ui of vertices:

Ui = {ui,1, ui,2, ui,3, wi,a, wi,b, zi : vi ∈ V c}.
The set V is then defined as:

V =
|Vc |⋃

i=1

Ui .

The set E consists of three subsets Et,1 (Et,2, Et,3, respectively) representing temporal edges active in timestamp 1
(2, 3, respectively). As in the reduction of Section 3, we assume that the edges of Gc are ordered based on lexicographic 
order. Since Gc is cubic, based on this order we refer to the edges incident on a vertex v ∈ V c as the first (second, third, 
respectively) edge of v . The set Et,1, Et,2, Et,3 are defined as follows:

Et,1 = {{wi,a, zi,1}, {wi,b, zi,1} : vi ∈ V c,1 ≤ i ≤ |V c|}
Et,2 = {{ui,1, wi,a,2}, {ui,2, wi,a,2}, {ui,2, wi,b,2}, {ui,3, wi,b,2} : vi ∈ V c,1 ≤ i ≤ |V c|}
Et,3 = {{wi,a, zi,3}, {wi,b, zi,3} : vi ∈ V c} ∪
{{ui,x, u j,y,3} : {vi, v j} ∈ Ec and {vi, v j} is the x-th edge of vi

and the y-th edge of v j , 1 ≤ i ≤ |V c|,1 ≤ x, y ≤ 3}
By construction, G is defined over a time domain consisting of three timestamps. We prove now that G has total degree 

equal to three and local degree equal to two.
8
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Lemma 6. Given an instance Gc of Cubic Vertex Cover, let G be the corresponding instance of MinTimelineCover. Then the local degree 
�L

G of G is equal to 2 and the total degree �T
G of G is equal to three.

Proof. We start by proving that the local degree �L
G of G is equal to 2. By construction, for the set Et,1 of temporal 

edges, each vertex is incident in two temporal edges (vertex zi) or one temporal edge (vertices wi,a , wi,b), for each i with 
1 ≤ i ≤ |V c|. For the set Et,2 of temporal edges, each vertex is incident in two temporal edges (vertices wi,a , wi,b , ui,2) or 
one temporal edge (vertex ui,1, ui,3), for each 1 ≤ i ≤ |V c|. For the set Et,3 of temporal edges, each vertex is incident in at 
most two edges (vertex zi ) or one edge (vertex ui,1, ui,2, ui,3, wi,a , wi,b), for each i with 1 ≤ i ≤ |V c|.

Now, we consider the total degree �T
G of G . Each vertex zi , 1 ≤ i ≤ |V c|, is adjacent to vertices wi,a , wi,b , hence it has a 

total degree of two. Vertices wi,a , wi,b , 1 ≤ i ≤ |V c|, are adjacent to three vertices in Gu and in G (that is zi , ui,x , ui,y , for 
some x, y ∈ {1, 2, 3}). Finally, each vertex ui,x , with 1 ≤ i ≤ |V c| and 1 ≤ x ≤ 3, is adjacent to at most three vertices in Gu

and in G (wi,a , wi,b and u j,y , for some j with 1 ≤ j ≤ |V c|, y ∈ {1, 2, 3}). �
Next, we prove that we can restrict ourselves to solutions where each vertex zi , 1 ≤ i ≤ |V c|, is active only in times-

tamp 3.

Lemma 7. Given an instance Gc of Cubic Vertex Cover, let G be the corresponding instance of MinTimelineCover. Then, given a solution 
A of MinTimelineCover on instance G, we can compute in polynomial time a solution A′ of MinTimelineCover on instance G such that 
each vertex zi , 1 ≤ i ≤ |V c|, is active only in timestamp 3 and the span of A′ is at most the span of A.

Proof. Consider the solution A of MinTimelineCover on instance G . Assume that A defines zi , for some i with 1 ≤ i ≤ |V c|, 
active in interval [1, 3] (notice that the temporal edges incident in zi are defined in timestamps 1 and 3). Then the temporal 
edges {zi, wi,a, 1}, {zi, wi,b, 1}, {zi, wi,a, 3}, {zi, wi,b, 3} are covered by zi , hence we can assume that wi,a , wi,b are active 
only in timestamp 2. It follows that zi has a span of 2, while wi,a , wi,b have a span of 0. We can define an activity timeline 
A′ so that wi,a , wi,b are both active in interval [1, 2] (each one having span 1) and zi is active only in timestamp 3 (with 
span 0), thus the span of wi,a , wi,b , zi in A′ is not increased with respect to A.

Assume that zi , 1 ≤ i ≤ |V c|, is active only in timestamp 1, it follows that wi,a , wi,b must be active in timestamp 3 (and 
possibly in timestamp 2). Then we can define an activity timeline A′ where zi is active only in timestamp 3, wi,a , wi,b are 
active in timestamp 1 (and possibly in timestamp 2 if they are defined active in timestamp 2 by A). In this case the span 
of wi,a , wi,b , zi in A′ is not increased with respect to A, thus concluding the proof. �

Now, we show how to relate a solution of Cubic Vertex Cover on Gc and a solution of MinTimelineCover on G .

Lemma 8. Given an instance Gc of Cubic Vertex Cover, let G be the corresponding instance of MinTimelineCover. Let V ′
c be a solution 

of Cubic Vertex Cover, with |V ′
c| = k, then there exists a solution of MinTimelineCover on instance G of span at most |Ec| + k − |V c|.

Proof. Consider a solution V ′
c of Cubic Vertex Cover on instance G , we define a solution A of MinTimelineCover on instance 

G as follows. For each set Ui , 1 ≤ i ≤ |V c|, associated with vi ∈ V c \ V ′
c , A is defined as follows:

– wi,a , wi,b are active in interval [1, 2], each one with span 1
– For each {vi, v j} ∈ E , which is the p-th edge of vi and the q-th edge of v j , ui,p is active in timestamp 3 with span 0
– Vertex zi is active in timestamp 3, with span 0.

For each set Ui , 1 ≤ i ≤ |V c|, associated with vi ∈ V ′
c , A is defined as follows:

– Vertices wi,a , wi,b are active in timestamp 1, each one with span 0
– Each vertex ui,p , 1 ≤ p ≤ 3, is active in timestamp 2 (the span of ui depends on the next point)
– For each {vi, v j} ∈ Ec , with vi, v j ∈ V ′

c , which is the p-th edge of vi and the q-th edge of v j : if i < j, then ui,p is active 
in interval [2, 3] (with span 1), else u j,q is active in interval [2, 3] (with span 1).

– Vertex zi is active in timestamp 3, with span 0.

By construction, A covers each temporal edge of G . Indeed, for each i with 1 ≤ i ≤ |V c|, the following properties hold. 
The temporal edges in Et,1 are covered by wi,a, wi,b . The temporal edges in Et,2 are either covered by wi,a, wi,b , if vi ∈
V c \ V ′

c , or by ui,1, ui,2, ui,3, if vi ∈ V ′
c . The temporal edges {wi,a, zi, 3} and {wi,b, zi, 3} of Et,3 are covered by zi; the 

temporal edges {ui,x, u j,y, 3} are covered by one of ui,x , u j,y .
Now, the span of A is 1 for each {vi, v j} ∈ Ec , where vi, v j ∈ V ′

c . Consider now an edge {vi, v j} ∈ Ec , where either 
vi ∈ V c \ V ′

c or v j ∈ V c \ V ′
c (notice that both vi, v j cannot be in V c \ V ′

c) assume without loss of generality that vi ∈ V c \ V ′
c . 

Then A has a span of 2 for the set Ui (both wi,a and wi,b have a span 1) for the three edges incident in vi in Gc . Hence 
the overall span of A is |Ec| − |V c \ V ′

c| = |Ec| + k − |V c|, thus concluding the proof. �
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Based on Lemma 7, we can prove the following result.

Lemma 9. Given an instance Gc of Cubic Vertex Cover let G be the corresponding instance of MinTimelineCover. If there exists a 
solution of MinTimelineCover on instance G of span |Ec| + k − |V c|, then there exists a solution of Cubic Vertex Cover on instance Gc
of size at most k.

Proof. Let A be a solution of MinTimelineCover on instance G . First, by Lemma 7, each vertex zi , with 1 ≤ i ≤ |V c|, is defined 
active in A only in timestamp 3 (with span 0). This implies that wi,a , wi,b must be active in timestamps 1.

Consider the vertices wi,a or wi,b , with 1 ≤ i ≤ |V c|, that are active in interval [1, 2]. First, assume that exactly one of 
wi,a , wi,b is active in timestamp 2, without loss of generality wi,a . Then wi,a has a span 1, and ui,2, ui,3 must be active in 
timestamp 2, in order to cover temporal edges {ui,2, wi,b}, {ui,3, wi,b}. Now, we can modify the solution A, by defining ui,1
active in timestamp 2, thus increasing its span by at most 1, and defining wi,a active only in timestamp 1, thus decreasing 
the span of A by 1. We can conclude that we can compute in polynomial time a solution A′ of MinTimelineCover on instance 
G such that either wi,a , wi,b are both covering interval [1, 2] or they are both active only in timestamp 1.

Now, consider the case that wi,a , wi,b are both active in interval [1, 2], since all the temporal edges defined in timestamp 
2 that are incident in vertices ui,1, ui,2, ui,3 are covered by wi,a and wi,b , we can assume that ui,1, ui,2, ui,3 are active in 
timestamp 3 (each one with span 0).

Now, assume that, for some vi, v j with {vi, v j} ∈ Ec , wi,a , wi,a , w j,a , w j,b are all active in interval [1, 2]. Consider the 
temporal edge {ui,p, u j,q, 3} and notice that it is covered by both ui,p and u j,q . Now, we modify A by making w j,a , w j,b
active only in timestamp 1 (thus decreasing the span of each of w j,a , w j,b by 1), by making u j,p active in timestamp 2
(with span of 0) and by making the other two vertices of U j , active in timestamp 2 and possibly 3 (thus increasing the span 
of U j by at most 2). Notice that the span of A is not increased. Thus we obtain a solution of MinTimelineCover on G such 
that, for each {vi, v j} ∈ Ec , if wi,a , wi,b are active in timestamps 1 and 2, then w j,a , w j,b are active only in timestamp 1.

Now, we construct a vertex cover V ′
c of Gc as follows:

– For each i with 1 ≤ i ≤ |V c|, if wi,a , wi,a are active only in timestamp 1, define vi ∈ V ′
c

By construction, for each {vi, v j} ∈ Ec , at most one of the sets {wi,a , wi,b} {w j,a , w j,b} is active in timestamp [1, 2]. It 
follows that V ′

c covers each edge in E . Now, we claim that |V ′
c | ≤ k. Indeed, each temporal edge {ui,p, u j,q, t} is covered 

by one of ui,p , u j,q with span equal to 1, except when wi,a , wi,b are both active in timestamps 1 and 2. In this case, 
three edges are covered by wi,a , wi,b with a span equal to one for each of these vertices. Since the solution A has a 
cost of |Ec | + k − |V c|, it follows that there exist |V c | − k sets {wi,a , wi,b} active in interval [1, 2], thus by construction 
|V ′

c| ≤ |V c| − (|V c| − k) = k. �
Now, we can prove the main result of this section.

Theorem 2. MinTimelineCover is NP-hard (and the decision version of MinTimelineCover is NP-complete) when the total degree �T
G is 

equal to 3, the local degree �L
G is equal to 2 and the time domain consists of three timestamps.

Proof. The reduction from Cubic Vertex Cover defines a temporal graph G on a time domain of three timestamps and such 
that, by Lemma 6, its total degree �T

G is equal to 3 and its local degree �L
G is equal to 2.

By Lemma 8 and Lemma 9, it follows that we have designed a polynomial-time reduction from Cubic Vertex Cover to
MinTimelineCover. Since Cubic Vertex Cover is NP-hard [3], it follows that also MinTimelineCover is NP-hard when the total 
degree �T

G is equal to 3, the local degree �L
G is equal to 2 and the time domain consists of three timestamps.

Notice that the decision version of MinTimelineCover is in NP, since giving a solution of MinTimelineCover we can check 
in polynomial time that it covers G and that has at most a given span. �
5. Bounding the time window

In this section we consider the parameterized complexity of MinTimelineCover for (w, h)-window constrained temporal 
graphs, when the parameters is the product of w and h (the size of the time window). Notice that when exactly one of 
w, h is the parameter, the problem is not in the class XP (in particular if h = 2 for the result in Section 3, if w = 2 for the 
hardness of MinTimelineCover on a time domain of two timestamps [10]).

We denote by W j a time window W ([ j − w + 1, j]) of length w that ends in a timestamp j and that consists of the set 
of pairs (v, t) such that v ∈ V has a temporal edge defined in some timestamp t , with j − w + 1 ≤ t ≤ j.

An activity assignment F j for a time window W j is a function that establishes, for each pair (v, t) of W j , if v is active in 
timestamp t . Formally, an activity assignment F j is a function

F j : W j → {0,1}
such that, for each pair (v, t), it holds that:
10
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1. v is active in timestamp t if and only if F j(v, t) = 1 (thus v is not active in timestamp t if and only if F j(v, t) = 0)
2. if F j(v, t1) = 1 and F j(v, t2) = 1, with j − w + 1 ≤ t1 ≤ t2 ≤ j, then F j(v, t) = 1 for each t with t1 ≤ t ≤ t2.

The span of F j , denoted by s(F j), is the span induced by the activity assignment F j .
Consider two time windows W j and W i , with 1 ≤ i − w + 1 ≤ i < j ≤ tmax , and two assignment functions F j and Fi . F j

and Fi are in agreement if the following holds:

F j(v, t) = Fi(v, t) for each (v, t) ∈ W j ∩ W i .

An activity timeline A is in agreement with an activity assignment F j if the activity defined by A for the pairs in W j is 
identical to F j .

Next, we describe a dynamic programming algorithm to compute a solution of MinTimelineCover parameterized by w
and h. Given two assignment functions F j and F j−1 that are in agreement, define the value D(F j, F j−1) as the span added 
by F j (in timestamp j) with respect to F j−1. Formally, D(F j, F j−1) is defined as follows:

D(F j, F j−1) =
|{v : (v, j − 1) ∈ W j−1 ∧ (v, j) ∈ W j ∧ F j(v, j) = F j−1(v, j) = 1}| (3)

Given an activity assignment F j of a time window W j , define the function C[F j] as the minimum span of an activity 
timeline of the temporal graph G on interval [1, j], such that:

1. The activity of vertices in the time window W j is defined by F j
2. Each temporal edge {u, v, t} of G , with 1 ≤ t ≤ j, is covered
3. Each vertex active in timestamp j is not active in interval [1, j − w] (since G is (w, h)-window constrained)

Now, C[F j] is computed with the following recurrence:

– If j > w , then C[F j] is the minimum, over F j−1 in agreement with F j , of

C[F j−1] + D(F j, F j−1)

– If j = w , C[F w ] = s(F w), that is the span of F w .

Next, we prove the correctness of the recurrence.

Lemma 10. C[F j] = q, if and only if there exists an activity timeline that covers G in interval [1, j] and that has span q.

Proof. We prove the lemma by induction on j. In the base cases, when j = w , if C[F w ] = q, then C[F w ] = s(F w) and 
F w defines an activity timeline that covers G on interval [1, w] of span q. Given an activity timeline A that covers G on 
interval [1, w] and has span q, then by considering the activity assignment F w that is in agreement with A, it follows that 
C[F w ] = s(F w) = q.

Now, we prove that the lemma holds for j > w , assuming by induction hypothesis that it holds for j − 1. Consider an 
activity timeline A that covers G on interval [1, j] such that A is an activity timeline of minimum span q in agreement 
with F j . We prove that C[F j] = q. Since A is an activity timeline of G on interval [1, j], it follows that it covers also the 
temporal edges active in [1, j − 1], with span q′ ≤ q, and that A defines an activity of vertices in [ j − w, j − 1] defined by 
an assignment function F j−1 that is in agreement with F j . Then, by induction hypothesis C[F j−1] = q′ and by construction 
D(F j, F j−1) = q − q′ . By the definition of recurrence, since F j−1 and F j agree and A is an activity timeline of minimum 
span in agreement with F j , it follows that C[F j] = q.

Now, assume that C[F j] = q. By definition of the recurrence, it follows that there exists an activity assignment F j−1 such 
that F j−1 and F j are in agreement and C[F j−1] = q′ , with q′ ≤ q and q − q′ = D(F j, F j−1). Since C[F j−1] = q′ , by induction 
hypothesis there exists an activity timeline A′ that covers G on interval [1, j − 1] such that (1) A′ has span q′ and (2) 
the activity timeline of vertices in [ j − w, j − 1] specified by A′ agrees with F j−1. Now, by definition of C[F j], it follows 
that by adding the activity specified by F j in timestamp j to A′ , we obtain an activity timeline A of G on interval [1, j]
that covers each temporal edge of G defined in interval [1, j]. Notice that A defines for each vertex one covering interval. 
Indeed, this holds by induction for A′ . Now, if a vertex v is defined active by F j in position j, then since F j and F j−1 are 
in agreement, either v is defined active also by F j−1 in position j − 1, or v is defined not active by F j−1 in all positions i
with j − w ≤ i ≤ j − 1 and thus also in each positions in [1, j − 1], since there is no temporal edge incident in v defined in 
interval [1, j − w − 1]. Finally, A has span q, since D(F j, F j−1) = q − q′ , thus concluding the proof. �

Based on Lemma 10, we can prove the main result of this section.

Theorem 3. A solution of MinTimelineCover on instance G can be computed in O (2h(w+1)h tmax) time.
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Proof. The correctness of the recurrence follows from Lemma 10, thus the span of an optimal solution of MinTimelineCover
on instance G is computed in entry C[F |T |,w ].

Next, we consider the time complexity of the algorithm. The base case C[F w ] can be computed in O (2hw ) time, as there 
exist at most h vertices with active temporal edges in each timestamp of interval [1, w]. Now, we consider the case j > w . 
First, notice that there exist O (h tmax) values of j and w . For each j and w , there exists at most 2hw activity assignments 
F j . Each entry C[F j] is computed starting from the values C[F j−1] (where F j and F j−1 are in agreement) This requires the 
definition of the activity timeline of vertices in timestamp j (recall that at most h vertices have temporal edges in each 
timestamp) in O (2h) time and, for each of them, the computation of D(F j, F j−1), which requires O (h) time. Hence the 
overall time complexity of the dynamic programming algorithm is O (2h(w+1)h tmax). �
6. Conclusion

We have considered a variant of Vertex Cover, called MinTimelineCover, on temporal graphs that has been recently intro-
duced to deal with event summarization. We have shown that the problem is NP-hard even when: (1) the local degree is 
bounded by one and (2) the total degree is three, the local degree is two and the time domain consists of three timestamps. 
On the other hand, we have shown that MinTimelineCover is in P for total degree equal to 2. Moreover, we have shown that
MinTimelineCover is fixed-parameter tractable when the size of the time window is the parameter.

There are several interesting future directions related to MinTimelineCover. First, the parameterized complexity of
MinTimelineCover is open when the problem is parameterized by the span of the solution (recall that in this case the 
problem is fixed-parameter tractable when the time domain consists of two timestamps [10]). It would be interesting to 
study the complexity of the problem when the local degree is equal to one and the global degree is bounded by a constant 
and the approximation complexity of the problem. Moreover, it would be interesting to study the complexity of deciding 
whether there exists an activity timeline that covers the set of temporal edges when every vertex has a bounded span.
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