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Abstract: Wearable technologies are often indicated as tools that can enable the in-field collection of
quantitative biomechanical data, unobtrusively, for extended periods of time, and with few spatial
limitations. Despite many claims about their potential for impact in the area of injury prevention and
management, there seems to be little attention to grounding this potential in biomechanical research
linking quantities from wearables to musculoskeletal injuries, and to assessing the readiness of these
biomechanical approaches for being implemented in real practice. We performed a systematic scoping
review to characterise and critically analyse the state of the art of research using wearable technologies
to study musculoskeletal injuries in sport from a biomechanical perspective. A total of 4952 articles
were retrieved from the Web of Science, Scopus, and PubMed databases; 165 were included. Multiple
study features—such as research design, scope, experimental settings, and applied context—were
summarised and assessed. We also proposed an injury-research readiness classification tool to gauge
the maturity of biomechanical approaches using wearables. Five main conclusions emerged from this
review, which we used as a springboard to propose guidelines and good practices for future research
and dissemination in the field.

Keywords: biomechanics; exercise; athlete; movement analysis; prevention; injury mechanisms;
rehabilitation; accelerometer; inertial sensors; force transducers

1. Introduction

Sport and physical exercise are increasingly promoted as part of a healthy lifestyle [1].
However, increased participation in physical activity and sport specialisation [2] may raise
the risk of injury, especially in younger individuals [3], for whom sport-related accidents
are a leading cause of medical attention and emergency department attendance [4–6]. The
burden of sports injuries and their potential impact on quality of life and societal costs
call for research and effective interventions in all of the areas associated with sports injury:
prevention [3], assessment, and recovery [3,7].

Several strategies for the prevention of [8,9] and recovery from [7] injury have been
proposed, alongside models of injury causation [10–12], classifications of injury factors
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(e.g., intrinsic vs. extrinsic; modifiable vs. not modifiable) [13], and reviews of the different
approaches that could be adopted to study injury mechanisms [12].

From a mechanical perspective, musculoskeletal injuries occur when the load applied
to a tissue goes beyond the maximum amount of mechanical energy that bodily elements
can accept without compromising their structure and function [14,15]. Several theories
have been developed to explain the occurrence of injuries [11]; all recognise the complexity
and multifactorial nature of injury causation, and distinguish between acute and overuse
injuries. In acute events, the inciting energy exceeds the maximum tolerated by the tissues
involved. In overuse injuries [16], the repetitive nature of the demands sustained by the
body may reduce its tolerance levels to a point where normally acceptable loads can cause
micro- or macro-failures. Repetitive submaximal microtraumas can lead to a cascade of
alterations to structural proprieties, function, and behaviour, which eventually establish a
vicious loop of degeneration, adaptation, and pain [17–19].

Biomechanical approaches can contribute substantially to the study of sports injuries
and their prevention. For example, they can describe injury mechanisms and characterise
inciting events, or can assess the effects of interventions on movement behaviours and
the ability to withstand mechanical loads. Biomechanical tools also have the potential to
help monitor compliance, quality, and progress of movement performance when an injury-
prevention or return-to-activity programme is implemented [3,14,20]. In vivo, in vitro,
and in silico methods have been used to quantify the biomechanical demands generated
by sports actions [15], together with the responses of bodily tissues that are subjected to
those loads. However, measuring mechanical quantities in real-world settings—either
directly or indirectly—is extremely difficult, and sometimes impossible, because of ethical
considerations and lack of adequate technology or sports regulations. In most cases, the
assessment is confined to controlled lab conditions [21].

The ongoing development and increased use of wearable technologies, either in isola-
tion or as part of integrated approaches, offers an opportunity to collect quantitative data
“in the field”, less obtrusively, for extended periods of time, and with fewer spatial limi-
tations than conventional motion-capture technologies [22–46]. New-generation sensors
are small, portable, minimally obtrusive, affordable, and easy to use; they may provide
real-time feedback [36], as well as enable prospective studies on large cohorts [47].

Several review articles have assessed the use of such devices in different areas of sport
science, when applied to the characterisation of sport-specific movements [22,24,34,40,42,45];
performance analysis and enhancement [23,26–28,44,46]; the evaluation of tactical vari-
ables [33,48]; the monitoring of load and inertial forces [29,30,37]; the trends and pro-
jections in the consumer sports sector [49]; the description of specific disciplines such
as running [35,50], sprinting [27], swimming [28,51], combat sports [52], or Paralympic
sports [26]; and the assessment of rehabilitative interventions [32,39]. Injury risk mitigation
has been addressed within specific sport and injury domains, such as that of running-related
injuries [35,36,39], head impacts [31], anterior cruciate ligament reconstruction [53–55], and
dynamic stability in return to sport [41]. However, it appears that no work has systemati-
cally investigated the current state of the art on the role of wearable sensors in the different
stages of injury assessment, including the characterisation of injury mechanisms, and the
provision of information to support preventive or rehabilitative interventions.

The use of wearable sensors in movement science and sport is widespread; however,
their application is still in an “exploratory phase” [22], and is not free from pitfalls [23,25,38],
suggesting that both the technology and the associated methods still require further de-
velopment and careful analysis [43]. Indeed, some of the features that make wearables
attractive can also limit their applied impact. For example, the possibility to collect data
continuously in an uncontrolled environment can generate the problem of handling large
datasets affected by measurement noise, which generates the need for adequate aware-
ness of data quality (e.g., prior validation, care in calibration procedures) and for the
use of appropriate processing methods, such as machine learning, for key performance
indicator estimates [56,57], or advanced data science techniques for data synthesis or



Sensors 2022, 22, 3225 3 of 33

prediction [58]. Moreover, there is still little evidence on the causal relationships be-
tween specific biomechanical assessments, quantities derived thereof, and injury or injury
risks [36,59,60], which can result in many studies being descriptive of the potential of new
technologies rather than fully exploiting that potential to unveil the relationships between
biomechanics (e.g., movement technique) and injury-related features (e.g., inciting factors,
recovery status).

We present a systematic scoping review [61] on the use of wearable technologies
for the study of musculoskeletal sports injuries, with the aim to discuss (a) the current
literature contributing to the identification and description of the biomechanical factors
and mechanisms associated with injury, as well as the biomechanical evaluation of pre-
ventive or rehabilitative interventions; (b) the strength of evidence brought about by the
experimental approaches used by those studies; (c) the time setting in relation to injury,
primary scope, and features of the experiments; and (d) the characteristics of the technolo-
gies and types of measures used. In analysing these items, we highlight strengths and
weaknesses of the current state of the art, identify existing guidelines and common pitfalls,
and discuss current trends and future directions. With a view to outlining the maturity of
the research in the area and guiding initiatives aiming to fill existing gaps of knowledge,
we also propose (e) a simple tool for the classification of biomechanical methods employing
wearable technologies in the musculoskeletal injury area. This framework, which we called
the Injury-research Readiness Level (IrRL), is inspired by the technology readiness level [62]
and system readiness level [63] frameworks; it aims to capture the maturity, functionality,
and environmental readiness of biomechanical approaches to be effectively deployed in
the field.

2. Materials and Methods
2.1. Protocol, Search Strategy, and Inclusion Criteria

The PRISMA-ScR [64] framework guided the systematic scoping review, which was
registered in PROSPERO (registration no. CRD42021140485) on 26 March 2021. Three main
stages were followed to identify and filter studies: (1) definition of databases for article
retrieval, search terms, and selection rules; (2) screening based on article titles and abstracts;
and (3) final selection based on full-text examination (Section 3.1).

The literature search and management were conducted using Covidence [65]. The Web
of Science, Scopus, and PubMed electronic databases were browsed up to 8 January 2021.
Only peer-reviewed journal articles published in English were considered for inclusion,
with no a priori removal based on study design or publication date. The search strategy
was based on the PICOS tool [66], and search terms were chosen to scan the literature
and identify studies that used wearable technology to perform biomechanical analyses of
sports activities and contribute to the area of musculoskeletal injuries (see Table S1 in the
Supplementary Materials for a full description of the Boolean search terms used).

Although no restriction was imposed on the types of technology used, we primarily
focused our search terms on wearable magneto-inertial sensors and force or pressure
transducers. Articles reporting exclusively on activity monitoring from global navigation
satellite systems, injury surveillance without biomechanical measurements, metabolic
behaviours (e.g., energy expenditure), or neuromuscular activity from electromyography
were excluded. All levels of sport participation were accepted, but studies on clinical
populations or not including human participants (e.g., with anthropomorphic test dummies
or simulators) were excluded. Injuries affecting the nervous system, such as mild traumatic
brain injuries, were not considered.

Items in Stage 1 were discussed and agreed by the whole group of authors. The reference
list generated by the initial search, with titles and abstracts, was stored in Covidence and
screened independently by two researchers (S.F. and G.V.), who identified additional rele-
vant studies, eliminated duplicate sources, and then performed Stage 2 selection, reporting
no disagreement. Review papers were initially considered to better analyse the wider
context of the state of the art, but no review paper was included for more detailed analy-
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sis past Stage 2, because they did not explicitly report original findings. For each article
reaching Stage 3, the description of the relationship between biomechanical quantities
and musculoskeletal injury was evaluated by two independent reviewers (E.B. and V.C.).
Only articles directly investigating or making explicit reference to existing evidence of the
relationship between the biomechanical quantities presented and musculoskeletal injury
mechanisms or risk factors were included. Because of the large number of articles passing
through to Stage 3, the final full-text examination was shared equally between authors, and
weekly consensus meetings were held to discuss and resolve any uncertainty about the
eligibility of a study. Summary statistics concerning journal and year of publication were
reported, both in absolute terms (number of articles or articles per year), and normalised
to the overall number of manuscripts published in the broader field of biomechanics of
sport injuries. To estimate the normalising factors, we carried out a MeSH term search in
PubMed, using the following query: ((sport[MeSH Terms]) AND (injury[MeSH Terms]))
AND (biomechanics[MeSH Terms])), and then exporting values between 1968 (i.e., the first
year available) and 2020.

2.2. Study Classification and Assessment

We assessed and reported on multiple feature domains of the studies selected (Table S2
in the Supplementary Materials): (1) strength of evidence, time setting, and primary scope;
(2) study characterisation in terms of experimental conditions and setting, injury of interest,
type and location, population tested, type of sport and motor task, and level of sporting
participation; and (3) characteristics of the technologies and types of wearable device and
measures used. We also defined and assessed (4) the injury-research readiness level (IrRL).

2.2.1. Strength of Evidence, Time Setting, and Scope

Two independent researchers (L.G. and E.P.) assessed the strength of evidence of each
article and assigned them to three main categories in decreasing order of strength, based on
the experimental design used: experimental, i.e., meeting the requirements of randomised
controlled trials; quasi-experimental, i.e., including a manipulation of the experimental
conditions under which participants perform sport, but lacking random assignment or
group comparison; and observational, i.e., without assessing the effects of an intervention,
and only describing participant behaviour [67]. A separate class was used for studies
looking exclusively at the validation of new equipment or methods. The opportunity to
use a finer classification of observational studies (e.g., cross-sectional, case–control, cohort,
case series) and include the assessment of the risk of bias of individual studies [67,68] was
considered. However, given the scoping nature of the review, and in light of the large extent
of literature covered by the topic, and of the variety of outcome measures and experimental
approaches, we deemed this impractical and unnecessary. Indeed, our review aimed at
characterising the current state of the art in a specific area of sports biomechanics and, thus,
did not require formalisation of a specific experimental question, nor assessment of the
quality of the studies attempting to answer such a question [61].

A pre/at/post classification was used to express the chronological relationship between
the experimental data collected and the injuries studied. Studies were classified as pre if data
were collected without any injury occurring, or without a direct attempt to establish a causal
relationship between biomechanics and injury. These studies typically relied on findings
from the existing literature to construct their rationale and hypothesis, and then discussed
injury prevention implications starting from those assumptions. Articles were allocated
to the at category if the scope of the experiment was to identify and characterise injury
factors or mechanisms, and therefore attempted to capture or track injury occurrences
(e.g., cohort studies with biomechanical screening and in-field injury events recorded
during a sports season). It should be noted that these studies did not necessarily use
wearables to identify, count, or depict injury events. Lastly, studies were recorded as post if
data collection was performed after the injurious event, during the recovery phase, and
aimed to advise rehabilitation and reduce the likelihood of injury reoccurrence. For clarity,
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articles on participants who had already returned to full activity (e.g., comparisons between
healthy individuals and people with a history of a specific musculoskeletal problem) were
classified as pre, because they were not centred on the recovery process that goes from
injury occurrence (or medical intervention, if relevant) to being able to return to full activity.

The classification according to the primary scope was carried out based on the fol-
lowing categories: studies analysing sport-related injury mechanisms; studies assessing
sport-related injury factors or injury risks; studies attempting to establish injury threshold
criteria from a mechanical perspective; studies characterising protective devices; and stud-
ies focusing on post-injury monitoring or return-to-play assessment. Validation studies
were classified according to the primary aim for which the method or tool tested had been
devised, as stated by the authors. Articles addressing multiple issues were reported in
more than one category, where appropriate.

2.2.2. Study Characterisation

To describe experimental conditions, we extracted information about the settings in
which data were collected, i.e., laboratory- vs. field-based. Specifically, studies were labelled
as field-based if data were acquired during training, simulated training, or competition in
a sport-specific setting. Conversely, investigations carried out within a laboratory, or in
the field but using instrumentation typically adopted in the laboratory—such as obtrusive
motion-capture setups or force platforms—were labelled as laboratory-based.

The injuries addressed by the works reviewed were classified as caused by overuse
or acute events [16], and listed by the tissue affected (soft vs. skeletal) and body location.
Furthermore, we annotated the type of sport and motor task addressed by each study and
the level of sport participation of the people partaking in the tests (i.e., sedentary, recre-
ationally active, trained/developmental, highly trained/national level, elite/international,
world-class, or not specified/insufficient data to be classified) [69].

2.2.3. Technical Features and Validation

The following features were taken into account when discussing wearable devices:
type of measurement system (e.g., accelerometer, gyroscope, magnetometer, force or pres-
sure transducers); brand; physical and technical characteristics (e.g., mass, dimension,
full-scale capacity, resolution, buffer, voltage sensitivity, sampling frequency); number of
units used to collect data; locations (on body segments or equipment); and fixing technique
(e.g., pocket in a vest/belt/tape, bi-adhesive on the skin, tape, elastic strap, rigid frame). We
also reported on the quantities measured via wearable sensors being essential (i.e., primary
outcome), complementary (i.e., part of the analysis but not fundamental), or marginal
(i.e., used for other experimental needs, e.g., equipment synchronisation) for answering
the research questions, as well as the information reported about previous validations of
the measurement used.

2.2.4. Injury-Research Readiness Level

Building on the system readiness level (SRL, [63]) framework, we modelled the Injury-
research Readiness Level (IrRL) to capture the maturity, functionality, and environmental
readiness of the studies aiming to contribute to preventing, assessing, or recovering from
sport-related musculoskeletal injuries. According to the SRL model, technology and system
development follow similar maturation paths, whereby technology is inserted into a system
and interacts with it via a proposed architecture. Knowing about the system components
and their integration [70] is essential, and this knowledge allows a classification of the
system as being in its research, development, or deployment stage.

In the context of research on sport-related injuries, we propose that a method is deemed
mature for deployment only when it relies on measuring tools that are characterised by
high ecological validity (i.e., fully wearable and unobtrusive or markerless), can be applied
directly in the field, and is supported by validation studies against an established gold
standard or, when validation is not practicable (e.g., tibial peak accelerations), adheres to
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standardised experimental procedures. Moreover, the approach must be integrated into a
testing scenario to justify its validity for preventing, assessing, or informing the recovery
from injury. Specifically, the biomechanical quantities used should demonstrate evidence
of a causal relationship with the investigated injury, and their interpretation should be
driven by specific guidelines (e.g., individual- or population-based normative bound-
aries, thresholds, or trends). Therefore, we defined and used the following classification
(Figure 1):

• IrRL1—research studies not relying on established causal relationships or set guide-
lines, but rather aiming to find and demonstrate them;

• IrRL2—studies progressing knowledge and building upon demonstrated causal re-
lationships, either in a laboratory or in the field, possibly complementing wearables
with lab-based instrumentation;

• IrRL3—studies in which the proposed methods and/or findings are ready for field-
based deployment, do not rely on any lab-based or obtrusive technology undermining
ecological validity, and use or formalise specific guidelines; the measures indicated
as relevant for the study of a specific injury have also been demonstrated to have a
causal relationship with the injury itself.
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maturity (IrRL1-3, in columns) are mapped against the following feature domains (rows): knowledge
of causal relationship, experimental settings, testing technology, and normative guidelines.

3. Results and Discussion
3.1. Article Selection and Identification

The screening process (Figure 2) started from 4952 potentially relevant articles, re-
trieved from the three main databases accessed (Scopus = 2263; Web of Science = 1624;
PubMed = 1065). After removing 1538 duplicate items, 3180 publications were excluded
based on title and abstract, leaving 234 manuscripts for full-text examination. Discussion
in weekly consensus meetings led to a further 77 articles being discarded (most frequent
reasons: not including wearables; not including human participants or sport-related activi-
ties; and not describing the relationship between biomechanical quantities from wearables
and musculoskeletal injury, or not citing references to support that link) and the addition
of 8 relevant records from other sources, yielding a total of 165 studies to be considered for
the review (Table S2 in the Supplementary Materials) [47,71–234].
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Figure 2. The PRISMA-ScR flowchart, showing the search and selection process.

Fifty-five percent of the included studies either aimed to establish a relationship
between biomechanical quantities and injury (~14%), or included (typically in the introduc-
tion) an explanation of this connection by building on evidence from the existing literature
(~41%). The remaining 45% did not openly discuss the link between the measures they
used and the associated injury, but only mentioned such relationships as possible or hy-
pothetical, citing previous research to justify their choices (Table S2: causal relationship).
It therefore appears that nearly half of the studies meeting the primary inclusion criteria
and using biomechanical quantities from wearable technologies in the wider context of
musculoskeletal sport-related injuries were partly speculative in the construction of their
rationale. Indeed, these studies often justified the choice of their measurements by briefly
citing the work of other authors, but without discussing the strength of evidence from the
previous literature, and rather accepting it even when only hypothetical. Building on robust
evidence of the association between specific tests, measures derived thereof, and injury, or
trying to establish this relationship, should instead be the starting point for any research
in this area, and the basis upon which further evidence is built. This is a crucial element
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that is not adequately addressed in many of the works scrutinised, and should be better
promoted in the design of research programmes and checked during manuscript reviews.

3.2. Journals and Years

The 165 original manuscripts included in the scoping review appeared in 60 different
journals, with 11 journals publishing nearly half of the total, and at least 5 relevant articles
each (Table S2: journal). The number of articles in the area under scrutiny appears to
increase over time (Figure 3), even when publication numbers are normalised to the total
of articles published every year in the broader domain of biomechanics of sports injuries.
The use of wearables in the area of musculoskeletal sports injuries seems to be increasing
in popularity, as also demonstrated by the 22 review papers published between 2011 and
January 2021 (Figure 3).
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(white), ordered by publication year. The graph also reports the number of original articles published,
normalised (%) to the overall number of manuscripts published in the same year in the broader area of
sport injury biomechanics, where this quantity was retrieved using the following MeSH term search
in PubMed: ((sport[MeSH Terms]) AND (injury[MeSH Terms])) AND (biomechanics[MeSH Terms])).

3.3. Study Classification and Assessment
3.3.1. Strength of Evidence, Time Setting, and Scope

More than half of the 165 studies scrutinised were observational (96, 58.2%), 51 were
quasi-experimental (30.9%), and none could be classified as fully experimental. About
10% (18) attempted validating new methods or protocols against existing standards. Most
of the investigations (137, 83%) were at the pre stage (44.8% observational, 30.9% quasi-
experimental, and 7.3% validation). Considerably fewer (24, 14.5%) attempted to capture
actual injuries and could be classified in the at group (12.7% observational, 1.8% validation),
and only four (2.4%) directly addressed the injury recovery stage and were allocated to
the post category (0.6% observational, 1.8% validation) (Figure 4 and Table S2: strength of
evidence, time setting). The primary focus of the reviewed literature was assessing sport-
related injury factors or injury risk in a large majority of studies (124 out of 165), followed by
characterising protective devices (15), analysing sport-related injury mechanisms, and gait
retraining (11 items each). Few articles addressed post-injury monitoring or return-to-play
assessment (4), or attempted to establish injury threshold criteria (2). Two had multiple
focuses (Table S2: scope).
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Figure 4. The distribution of studies at different time settings in relation to injury, reported from
different perspectives: (a) experimental setting; (b) strength of evidence; (c) injury type; (d) level
of sport participation. Multiple counts are allowed for injury type and level of sports, since some
articles analysed multiple types of injuries and/or tested athletes at different levels of sport.

Of the 24 retrieved articles classified as at (i.e., observing actual injuries
as part of the experimental protocol), a majority (54%) focused on workload
metrics [75,100,104,126,150,151,160,175,189,197,202,203,234], and often used inertial mea-
surement units (IMUs) to complement information coming from other sources (e.g., global
positioning systems, RPE scales). Six articles (25%) adopted a baseline screening ap-
proach, whereby biomechanical tests were followed up with injury surveillance over a
relatively long period (1 year/season or longer) [47,76,97,143,204]. Only two works—both
analysing running—looked into the short-term association between biomechanical quan-
tities and running-related injuries [117] or biomarkers of muscle and kidney injury [232].
Similarly, but only discussing the experimental protocol for a prospective cohort study, one
study [118] aimed to use wearables to inform training personalisation and reduce the risk
of hamstring injuries in soccer. The only return-to-sport (i.e., post) article retrieved [228]
that was not a validation study used a single IMU located on the lumbar spine to monitor
the recovery from hamstring injury of a single professional soccer player. This case report
observed force–velocity interlimb differences, and discussed the sensitivity of the reported
metrics in relation to the phase of the competitive season and the occurrence of the injury.

Bringing together the outcomes related to timing with respect to injury, the design
of the experiments, and their scope, it appears that currently (a) there is no field-based
investigation attempting to detect and capture musculoskeletal injury mechanisms through
wearables; (b) there exists little research that exploits wearable technologies to characterise
movement behaviours associated with musculoskeletal injuries; and (c) the strength of
evidence brought about by the literature is generally not high. As a consequence, a large
proportion of studies appear to rely on previous works to discuss injury factors and compare
movement behaviours in different groups of participants, but do not directly characterise
nor even observe injuries within their experiments. Unfortunately, as outlined in Section 3.1,
nearly half of these works—with an even higher prevalence in the pre class—did not discuss
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the validity of the studies they cited to construct their rationale, which in turn affects the
validity of their findings and makes them appear more as exploratory investigations of
the potential of methods and technologies, rather than as a substantial means to progress
knowledge and generate impact on injury factors, mechanisms, or the effectiveness of
interventions. For example, amongst the quasi-experimental studies that investigated the
effects of interventions, only 29 out of 51 (~56%) (Table S2: causal relationship) clearly
introduced the existing evidence of the relationship between the biomechanical quantities
chosen as outcome measures and the musculoskeletal injury addressed.

3.3.2. Study Characterisation
Experimental Setting

Field-based studies analysing athletes during training, simulated training, or competi-
tions comprised 79 (48%) of the total reviewed, whereas 71 (43%) investigations were per-
formed in laboratory settings; 12 (7%) articles included both settings, and 3 (2%) did not pro-
vide enough information to understand where the study was performed (Table S2: setting).

No clear difference was observed in terms of scope between field- and laboratory-based
investigations (Table S2: scope), with the majority focusing on the assessment of injury
factors (60 (76%) of the field-based and 51 (72%) of the lab-based studies). The remaining
laboratory-based studies focused on characterising protective devices (9), primarily in
running (5) and basketball (3), gait retraining (8), and understanding running-related injury
mechanisms (3). Interestingly, only one of the works dealing with gait retraining was field-
based, which may be partly explained by the need to integrate wearable sensors with other
equipment (e.g., instrumented treadmill, force plates) and with a pre- vs. post-intervention
design relying on ad hoc lab-based sessions. The other field-based studies aimed at
understanding sport-related injury mechanisms (8) and characterising protective devices
(5) in a large variety of sports disciplines (both individual and team sports), with three
studies focusing on post-injury monitoring, and two on setting injury threshold criteria.

When considering the different sport activities (Table S2: sport), 58% of studies per-
formed in laboratory settings focused primarily on running (41), 19 included other in-
dividual sports, and only 11 addressed team sport situations. Conversely, field-based
investigations considered a wider spectrum of sports, with 43 of them analysing team
sports (i.e., soccer, American football, rugby, baseball, Australian football, basketball, hand-
ball, and volleyball), 16 on running, and 20 including other individual activities, with a
prevalence of winter sports (8 studies out of 11). Studies including both settings primarily
focused on running (7 studies out of 15), and the remainder were equally distributed
between team and individual sports (4 each).

In 81% (64) of field-based studies, wearable devices were used as the exclusive means
to answer the primary research question, or were in any case essential when used in
combination with other instrumentation. Conversely, laboratory-based studies were less
reliant on wearable technologies, which were classified as essential in only 33 (46%) of them
(Table S2: role of IMU-based measurement).

When taking into account the type of injury investigated (Table S2: injury type, tissue
affected and body region), in relation to the experimental setting, 79% of laboratory-based
studies considered overuse injuries (56), and 83% of them (59) were about lower-limb
injuries. Only a few laboratory-based studies focused on upper limbs or spine-related
injuries (4 and 5, respectively). Three studies did not provide any information about the type
and location of the investigated injury. On the other hand, 39% of field-based investigations
addressed acute injuries (31), while 61% looked at overuse injuries (48) and considered a
wider variety of injury locations. About half of the articles focused on the lower limbs (38),
14 on the spine, and 9 on the upper limbs. Interestingly, 10 (13%) field-based investigations
did not consider a specific body area but, rather, analysed injuries in any body region
during rugby, American football, soccer, and volleyball competitions. The remaining eight
field-based studies did not specify the type and location of the investigated injury.
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Injury Type and Location

The majority of the studies focused on overuse injuries (105, 64%), most of which
were located in the lower limbs (65) and the spine (17) (Figure 5a). Acute injuries were
addressed in 42 (25%) of the investigations, with a net prevalence of knee (14), ankle (7),
and general lower-limb injuries (10) (Figure 5b). The remaining 18 (11%) articles included
both acute and overuse injuries primarily related to the lower limbs (6) or any body location
(8) (Table S2: injury type and body region).
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When considering the type of tissue affected (Table S2: tissue affected), 55 studies
(33%) focused on soft-tissue injuries and, among them, 32 were acute, 16 were overuse, and
the remaining 7 included both types of injury. Among studies focusing on acute soft-tissue
injuries, more than half targeted anterior cruciate ligament tears (12) and ankle sprains (6).
Only 25 works out of 165 (15%) considered skeletal injuries, of which a large majority (21)
were classified as overuse, and were about stress tibial fractures in running. The rest of the
studies (85, 52%) either considered both types of tissues (82) or did not explicitly specify
the type of tissue considered (3). Interestingly, about half of the investigations including
both soft-tissue and skeletal injuries were on running (38), and used the definition of
“running related injury” to refer to them. Running-related injuries were typically described
as overuse injuries affecting both soft and skeletal tissues, and located in the lower limbs or,
in some cases, the spine.

Acute injuries were investigated primarily in contact team sports (26) or jump/
performance tests (12), whereas overuse injuries were observed more during running (63),
and in both team and individual sports (42) (e.g., baseball, basketball, volleyball, tennis,
cycling, fencing, skating, and skiing). Almost all articles dealing with contact sports (43 out
of 48, 90%) focused either on soft-tissue or both soft and skeletal tissue injuries in the lower
limbs or at any body region. On the other hand, 96% of studies considering cyclic sports
(70 out of 73) analysed overuse leg- (64 dealing with stress tibial fracture) or spine-related
(6) injuries. A total of 16 studies out of the 165 reviewed (10%) explicitly dealt with knee
injury. All of them considered soft-tissue injuries, and the large majority focused on anterior
cruciate ligament tears (12). Only 13 articles focused on upper-limb injuries. Soft-tissue
shoulder, elbow, or wrist injuries were considered in studies dealing with baseball (7),
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tennis (4), and swimming (2). Only one study focused on skeletal injury in the wrist during
snowboarding. Finally, vertebral or spine injuries, either in soft or skeletal tissues, were
investigated in 22 studies (13%) dealing with different disciplines such as skiing, skydiving,
gymnastics, cycling, and rugby (Figure 5c).

Population

Ten articles tested multiple types of cohorts (Table S2: participants level of sport,
participants number, participants injury history). Over the total of 178 cohorts tested,
the majority of articles included in this review analysed recreationally active athletes
(28%) and trained/developmental athletes (21%), with highly trained/national level,
elite/international, and world-class athletes in 17%, 16%, and 1% of them, respectively. A
considerable portion (15%) of works did not specify the level of sport participation.

A grand total of 4674 healthy (747 females, 2874 males, 1053 without description of
their gender) and 365 injured (46 females, 41 males, 284 without description) athletes were
studied across the 165 reviewed works (Figure 6a). A large majority (75%) of the articles
studied fewer than 30 participants (median for the grand total: 17 healthy and 8 athletes
post-injury), and as few as 22 studies with a sample size from 46 to 432 (median of these
22 studies: 80 athletes) accounted for half of the overall number of participants assessed
(Figure 6b). Eight of these 22 investigations tallied up a total of 770 runners of both gen-
ders [47,103,124,182,195,209,214,230], whilst 13 studies analysed 1639 male and 70 female
players practicing team sports (i.e., basketball [71], American football [104,118,213,234], soc-
cer [185,191], Australian football [160,202], baseball [94,178], and rugby [81,179]) (Figure 6c).
These articles on team sports primarily generated the larger prevalence of male athletes in
the overall sample analysed in our review. Many articles studying male-dominated team
sports did not explicitly specify the gender of their participants; making an implicit assump-
tion that the participants were males would cause an even more unbalanced distribution in
the current numbers of male and female populations analysed in the existing literature.
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Sport and Task

Cyclic and team sports comprised 43% and 36% of the studies analysed, respectively
(Figure 7). Winter and racquet sports as well as motor-capacity testing and non-cyclical
individual sports all yielded a similar share of interest (5–6%) (Table S2: sport).
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The specific motor tasks investigated covered a wide spectrum of gross motor skills
(Tables 1 and S2: motor-task), in many cases with a special focus on tasks more frequently
associated with injury events, such as lateral shuffling and sidestep cutting manoeuvres,
landing actions with one or two legs, tackling and sustaining physical collisions, overarm
throwing, actions simulating injury mechanisms, or sport-specific actions in a variety of
disciplines. Articles also focused on actions commonly used in both static (for flexibility,
balance, joint mobility, and muscle strength) and dynamic tests.

3.3.3. Technical Features and Validation

Most of the reviewed studies (161, 98%) used inertial sensors, with 104 (63%) employ-
ing only 1D or 3D accelerometers, 16 (10%) integrating measures of the accelerometer with
those from the gyroscope, and 15 (9%) adding both gyroscope and magnetometer measure-
ments. In three studies (2%), 1D or 3D gyroscopes were used in isolation (Table S2: device
type). Nine articles stated that they used IMUs, but did not provide enough information to
establish the type of the sensors embedded in the IMU, nor which transducers were used
in their investigation. A large majority of articles (75, 45%) did not report any technical
information about the technology employed (e.g., mass, dimension, full scale capacity, reso-
lution, buffer, voltage sensitivity; Table S2: device characteristics). In 23 studies (14%), the
authors did not even report the sampling frequency at which their sensors were operating
(Table S2: device sampling frequency). In the remaining 47 works (28%) describing these
specifications, the full-scale capacity of the accelerometers spanned between 6 and 500 g.
Thirty (18%) articles reported a full scale for linear accelerations of ≤50 g, whereas most of
the gyroscopes reached a maximum of 2000 deg/s for angular velocities.
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Table 1. Breakdown of motor tasks investigated, classified by different gross motor skills or aims of
the motor task.

Locomotion

Agility runs (lateral shuffling and sidestep cutting manoeuvres);
Bicycling (road climb and single-track climb, downhill);

Jumping (vertical drop jump, landing with one or two legs,
countermovement jump, standing long jump, double-legged hops,

rebound jumps, single-leg drift jump);
Skating (short-track speed, treadmill inline);

Running (overground, trail and treadmill, level/uphill/downhill,
outdoor distance running, jogging, Nordic walking, walking);

Skiing and snowboarding (alpine skiing, ski jumping, carved turns);
Gymnastics routines (back walkover and back handsprings);

Swimming (freestyle);
Sport-specific actions: rugby, soccer matches and training sessions,

volleyball, baseball, basketball, American and Australian football tasks,
flamenco, ballet dance steps

Accelerating or
decelerating masses

Tackling and sustaining physical collisions (scrummaging, shoulder
charge tackles, strikes, hit-ups and impacts/ collisions)

Throwing or hitting
Overarm movements (tennis serve/one-hand or backhand drive,

pitching, cricket bowling, baseball and volleyball throws and serves);
Sidearm movements (fencing lunge)

Simulating injury
mechanisms

Ankle sprain motion;
Falls

Testing

Static tests for flexibility, balance, joint mobility, and muscle strength
(single-limb stance, modified Star Excursion Balance Test, lunge, sit-

and-reach, adductor squeeze, planar and multiplanar single-leg hopping);
Dynamic tests (shuttle run, sidestep, change of direction and acceleration,
agility T-Test, drills designed to reflect the mechanism of ankle sprain injury)

The most popular commercial systems were Xsens (MVN suit, MTx Sensor, and
Awinda; Xsens Technologies B.V., Enschede, The Netherlands) and Catapult (MinimaxX,
including all the different versions produced, and OptymEye; Catapult Innovations, Mel-
bourne, Australia), followed by Physilog (Gait Up, Lausanne, CH, Switzerland), Noraxon
(Scottsdale, AZ, USA), and Motus Global (Rockville Centre, NY, USA) (Table S2: device
brand). In 49 (30%) studies, custom-made or general-purpose devices were adopted, and
in 28 (17%) no information was reported about the transducers employed. Little research
used pressure (12, 7%) or force (3, 2%) transducers; in some cases (7, 4%), pressure sen-
sors were combined with inertial units. The commercial systems used for pressure and
force measurements were mainly produced by Novel (München, Deutschland) and Kistler
(Winterthur, Switzerland).

In 152 studies (93%), sensors were attached directly to the athlete’s body (Table S2:
device number of units): 85 (52%) employed a single-sensor configuration, 53 (32%) used
between 2 and 5 sensors, and 10 (6%) utilised more than 5 devices. The tibia was the
most popular location (80, 48%), followed by the pelvis (43, 26%) and the trunk (40, 24%)
(Table S2: device position). In many articles, the description of body location where the
device was placed was too vague to understand the point within the body segment area
(e.g., “thigh”, “shank”, “chest”, “upper arm”). Various practices were observed in terms
of methods to secure the measuring unit, which also depended on the area of attachment
(Table S2: device fixing technique); a lodging pocket was more frequently used for the upper
trunk and arm, whereas no preferred fixing technique emerged for tibia and head locations
(Figure 8). In 27 studies, the sensors were embedded in or attached to the equipment used
(e.g., shoes, tennis racket, boot, ski, bicycle, barbell bar). This was done with glue or tape,
or by inserting the transducers into the device, such as for shoe insoles.
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Figure 8. The most used body positions (head, trunk, arm, pelvis, and tibia) and the associated
methods of sensor attachment (pocket in a vest/belt/tape, double-side tape directly on the skin,
tape above the sensor, elastic strap, and rigid frame). The numbers represent how many studies
implemented that type of sensor attachment for each specific location.

Although describing the technical features of the sensor is key to the correct interpre-
tation of data quality and of the meaningfulness of the changes that an intervention may
induce, most studies did not report this information in enough detail. As highlighted by re-
cent systematic reviews on inertial sensors for sport performance evaluation [23], and on ac-
celerometry of impact loading in runners [35], reporting the features of the wearable device
used—as well as information on the attachment location and fixing methods—is essential.

The sampling frequency should be chosen considering the features of the signal
captured and of the noise superimposed. For instance, 99% of the tibial acceleration power
during running is below 60 Hz, which led Sheerin et al. [35] to suggest that the sampling
frequency of running-related quantities from wearables should be between 300 and 600 Hz.
Similarly, it is essential to select the appropriate filtering frequencies, as incorrect filtering
can lead to inaccurate interpretation of data [35].

The dimensions, mass, and fixing technique of the sensor should be evaluated in
the context of the motor task under analysis and the physical quantities of interest. For
sport evaluation in general [23], (1) fixing that restricts the range of movement should be
avoided, (2) movement between body segments and sensors should be limited by securing
them firmly, (3) the use of elastic belts is not recommended for tasks entailing impacts,
and (4) areas close to joints and with soft tissues “wobbling” should be avoided. More
specifically, in running [35], (1) a measuring unit with an integrated accelerometer, gyro-
scope, and magnetometer has higher mass and, thus, the estimation of tibial acceleration
is less accurate; (2) measurement error is influenced by the interface between the trans-
ducer and the accelerometer-mounting system, where the preload generated by straps or
tapes influences the signal (e.g., the tensioning “as much as tolerable” is operator- and
participant-dependent). Inserting the sensor in a specially designed pocket of a sport gar-
ment is a frequently used solution, which offers an ecologically valid and easily accessible
attachment, even in competition settings. However, the use of a pocket may be suboptimal
in terms of creating an acceptable attachment of the unit to the participant’s body, and
could cause excessive movement artefacts, especially with highly dynamic movements.

Twelve articles in this review contributed to reinforcing the body of methodological
guidelines for data acquisition to better capture the content of relevance for risk evalua-
tion. For example, the position and alignment within the body segment, together with
the number of measurement axes of the sensor, were found to influence the quality of the
investigation for running analysis. (1) Tibial accelerations occur along three directions,
and measurements limited to one or two axes may misrepresent the mechanics of the
phenomenon [209,235] which, in addition to the calculation of vertical stiffness [144], gen-
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erally support the use of the resultant acceleration as a quantity less sensitive to alignment
problems [209]. (2) Proximal tibial attachments lead to outcomes that are not comparable to
those derived from distal locations, due to the influence of the tibial angular velocity and
the distance of the device from the ankle [109]. (3) Similarly, shoe-mounted sensors measure
higher peak positive accelerations, and are less related to vertical loading rates compared
to shank-mounted devices, suggesting that they should not be relied upon if the aim is to
monitor modulations of loading rates with changes in running technique (typical of gait
retraining) [165]. The comparison of outcomes of known importance for injury research
between lab- and field-based conditions highlighted the importance of a research setting
specific to the application, suggesting that certain lab constraints may not be appropriate to
investigate field-based injuries (e.g., higher intensity of cutting tasks in real games com-
pared to lab-based tests [218]; higher accelerations peaks in field- compared to lab-based
running [87]). Findings support measuring tibial impact acceleration in a natural, outdoor
environment [124] and, since fatigue may contribute to altering behaviour and variables
with time, call for the development of thresholds associated with an increased likelihood
of injuries that are specific to field-based conditions [87]. Other specificity concerns have
been raised for the interpretation of research results; sex-specific running injuries require
sex-specific monitoring to reduce injury risk [47], and differences in sports collisions require
sport-specific tackling detection systems [142].

Reporting on the validation of the measurements used, or at least referring to former
studies discussing the validity of the approach taken, appears to be relatively widespread
(81% of the studies) (Table 2 and Table S2: assessment of measurement quality). However,
a considerable portion of the reviewed literature (29 articles, 19%) did not explicitly refer to
former validations of the measuring systems and the protocols used within their experi-
ments, or did not assess the absolute and relative repeatability of the measures collected
(64, 39%).

Table 2. Breakdown of approaches used for sensor validation.

Perform sensors’ validation within
the cited article (22)

- Compared to gold standards
(e.g., stereophotogrammetry, force platforms,
high-speed video, or photocells) (16);

- Comparing classification results against
human\validated software classification (6).

Perform pilot studies (8) - Improving fixing or accuracy;

Refer to former validation
studies (42)

- Referring to accuracy and/or reliability of the same
sensors as obtained in other validation studies.

Refer to ad hoc procedures for the
performed measures (64)

- Describing procedures for tibial acceleration or
shock propagation measures (48);

- Referring to procedures other than tibial shock in the
literature (6);

- Referring to international ISO standards (3);
- Referring to vendors’ procedures (6).

3.3.4. Injury-Research Readiness Level

The classification of the articles according to the proposed injury-research readiness
level framework identified 75 studies at the research level (IrRL1), 70 at the development level
(IrRL2), and only 20 ready for field-based deployment (IrRL3) (Table S2: IrRL). Among the
IrRL3 works, few articles (3) fully exploited the potential of biomechanics to detect increased
risk of injury (setting injury thresholds [151,213]) or to monitor the effect of interventions
(return to play [106]), and none investigated the biomechanics of injury mechanisms.
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Of the 20 articles at the deployment level (IrRL3) (Table 3), 8 were pre, 11 captured
real injuries (i.e., classified as at), and 1 dealt with return to sport (post), forming a time
setting distribution that was notably different from that of the overall sample (83%, 14.5%,
and 2.4%, respectively). This is consistent with the definition of the deployment stage,
which requires the ability to perform field-based measures without lab-based technol-
ogy, to build on established causal relationships between measures and injury mech-
anisms or risk factors, and to use set guidelines. These requirements are particularly
important in the at stage, to be able to capture an increase in injury risk at the time of
occurrence [75,100,126,143,151,160,197,202,203,213,234], and to guide return to sport post-
injury based on appropriate biomechanical quantities [106].

Table 3. Studies at the deployment level (IrRL3), divided by time setting and scope. Icons represent
the body region related to the injury and the sport involved.

PRE AT POST
assessing sport-related injury factors or injury risk
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Research at IrRL1 is fundamental to identify the cause–consequence relationship be-
tween biomechanical factors and injury, which represents the foundations to transition from
IrRL1 to IrRL2. Using or establishing guidelines is one of the three key aspects for a study
to move from IrRL2 to IrRL3. Within IrRL3, only two articles used or established normative
bands or injury threshold criteria. They identified the following quantities as a measure
of risk: (1) internal and external training load, provided by accelerometry measures, and
perceived wellness, for muscle damage in volleyball players [151]; and (2) symmetry of the
region of limb stability (ROLS) for lower-limb injuries of collegiate football players [213].
The potential of these quantities as preventive tools within a surveillance system remains
to be assessed. Nine other articles assessing sport-related risk of injury/predictive factors
have been building knowledge in this direction, although not providing thresholds:

1. Global navigation satellite systems and accelerometry quantities have been used
to obtain workload measures that, despite being widely cited in injury-prevention
research, are still considered controversial [23,236–239]—especially in relation to
the ratio between acute and chronic workloads. Daily monitoring of several load-
related measures, such as player load—both internal and external—and its variability
has been suggested for different sports (i.e., American football [203,234], Australian
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football [160], baseball [100], soccer [126,197], volleyball [151]), alongside overuse
complaints [151] and wellness monitoring to understand the effect of training work-
loads on injury (American football [75]). Providing individual risk estimates on a
daily basis could support practitioners to take better informed decisions while balanc-
ing the need to minimize injury risk and maximize athletic performance (Australian
football [202]). Similar accelerometry parameters have also been used to describe
whole-body vibrations to investigate their severity and transmissibility from the skis to
the lower back and to the head for different skiing disciplines [207,219].

2. Symmetry reduction has been investigated as a measure of potential risk for lower-
limb injuries. Baseline values were analysed in relation to injury history to characterise
the region of limb stability, during single-limb stance of basketball players (construct
validation [143]).

Many IrRL3 articles contributed to guideline finalisation, providing specific indications
of how to assess and use data for monitoring and personalising feedback to prevent injuries
or to guide rehabilitation. Running studies at the deployment level have typically focused
on crucial factors for the assessment of loading capacity and joint stability, including the
type of running (treadmill vs. real-word running [124]), running surface [192], and level of
fatigue [74]. Baseline values have been obtained for ankle-specific biomechanical measures
in runners, in relation to their chronic ankle instability history [157]. Some contributions
have focused on developing instruments for personalised feedback with ecological equip-
ment, such as haptic feedback for gait retraining to reduce runners’ tibial acceleration [229],
or radar guns to modulate throwing intensity and protect the reconstructed elbow from
excess medial torque during rehabilitation [106].

Zooming out to the three readiness levels (Figure 9), it can be noted that validation
studies were mainly classified as being at the research level, quasi-experimental and ob-
servational studies were more equally distributed between the research and development
levels, and observational studies were the most common design at the deployment level
(Figure 9a). Studies aiming to understand the biomechanics of injury mechanisms and
characterising the role of protective devices were allocated to IrRL1 (3 and 9, respectively)
and IrR2 (8 and 6, respectively), whereas the two articles setting injury threshold criteria
were at the deployment level [151,213] (Figure 9b). All but one article on gait retraining
were at IrR2 (10), whereas assessment of sport-related risk of injury/predictive factors was
found at all three levels of readiness. The role of wearable-based measures in the different
studies ranged from being of marginal importance to being crucial (Figure 9c). This last
condition was required for studies to be allocated to the deployment level.

Looking at injury-related readiness levels from the perspective of specific injuries
(Figure 10), we found both research and development to be similarly represented at the pre
time setting (72 and 57 articles), and an important share of the deployment level articles (8),
with a prevalence of studies on running-related injuries [74,124,130,157,192,229]. Research
on running-related injuries (74 articles) had nearly double the number of articles at the
development level compared to the research level (44 and 23, respectively). Most were at
the pre time setting (63), and only four allowed the detection of dangerous changes at
the time of occurrence and before an injury would eventually occur. The literature on
anterior cruciate ligament tears (12) was not extensive, and was predominantly at the
research level, typically testing different types of jumps and landings to investigate their
potential for predicting acute knee injuries; only symmetry of the region of limb stability,
at the IrRL3 level, presented a good predictive accuracy [213]. Research on upper-limb
injuries (14) focused on baseball- and tennis-related injuries, and included one of the
few deployment studies at the post time setting, with the work focusing on quantitative
ecological supervision of throwing rehabilitation of baseball players [106]. A manuscript
on measuring acute-to-chronic valgus workload in the upper limbs [100] was also at IrRL3;
it appeared to be consistent with seven other articles investigating the effect of workload on
any type of injury in team sports. This approach represents the most common at scenario,
arguably with the highest potential for large-scale deployment.
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4. Conclusions

In this systematic scoping review, we described and discussed the state of the art of
biomechanical research using wearable technologies to study musculoskeletal injuries in
sport. We aimed to characterise key features of the existing knowledge, identify research
trends, and analyse common practices in the design, implementation, and dissemination
of experiments. Finally, we proposed a taxonomy to gauge the maturity of sensors and
methods in relation to being used in applied settings. This classification framework is a
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simple yet novel tool that may help drive the efforts of the scientific community towards
improving the applied impact of wearables in injury prevention, monitoring, and recovery.

As a potential limitation, the very recent papers published in this area were not
included in the temporal range of this scoping review. This was motivated by the very
high publication rate that made their inclusion infeasible. As a matter of fact, we can
confirm that this potential limitation did not alter the key points raised in the large number
of papers included in this review and presented in the Discussion section. The selected
articles undoubtedly testify to the widespread interest in the area and an increasing trend
in popularity over the last decade.

The analysis led to some key conclusions, which we report, examine as main reflec-
tion points, and use to propose some guidelines and good practices for future research
and dissemination.

(1) Articles should explicitly state what the rationale for choosing and analysing specific
biomechanical quantities is, and include a justification of what relationship may exist with the injury
of interest. When previous literature is cited to support the choice made, the strength of evidence of
previous studies should be discussed, together with the context from which that evidence emerged.

Of the 165 works examined, just over half of them explicitly declared their intention to
discover new relationships between biomechanical quantities and injuries, or reported well-
formulated arguments built on existing knowledge, to justify the collection and analysis of
specific biomechanical quantities. Unfortunately, a sizeable part of the literature failed to
include this information, or any critical analysis of the sources supporting their rationale.
Many studies simply cited previous research as a justification of their work, even if this
literature was only hypothesising—not establishing—links to injury. Failing to build on
robust evidence may generate a daisy chain of speculative research, which typically ends
in identifying findings or approaches that are of potential interest, yet not demonstrating
value for injury-related research. This type of investigation should be called upon to
provide a stronger rationale through careful scrutiny during the peer-review process. An
in-depth critique of existing knowledge and of the strength of the evidence should instead
be the starting point for progressing our biomechanical knowledge and its applied impact
for the prevention, characterisation, or management of musculoskeletal injuries.

(2) More effort should be spent to fully exploit the potential of wearable technologies to detect
and characterise injuries when and where they happen, and to monitor and quantify the effects of
interventions (preventive or rehabilitative) more regularly.

Indeed, a small proportion of studies actually aimed to capture musculoskeletal
injuries. None attempted to detect or depict injurious events through wearables, with one
accidentally capturing an ankle sprain [86], and a single-subject case report describing the
process of recovering from a hamstring injury [228]. Most investigations that observed
injuries were focused on the quantification of training load, or of acute–chronic workload
ratios during training sessions or competition. These metrics, their construction, and
their use in different sporting contexts have generated a lively debate in the scientific
community [23,236–239] and should therefore be considered very carefully. Regardless of
current concerns as to their use and validity, which go beyond the scope of this review,
these load measures only report a summary of the whole-body demands experienced
by athletes, and arguably do not fully exploit the potential of wearable technologies
to monitor movement behaviour and help identify factors or mechanisms associated
with specific injuries of a body location or a tissue. Few studies performed pre-season
biomechanical assessment, followed by longer-term injury surveillance, in an attempt to
identify movements that may increase injury risk. This experimental design could raise
questions about the repeatability of biomechanical quantities over time and, hence, their
causal link to injury; at the same time, it could facilitate the early detection of a lack of
adaptability to ever-changing task and environment constraints (sports injury forecasting),
in association with the concepts and tools used to study the behaviour of self-organising
systems [240]. Only two articles—both on running—analysed the relationship between
mechanical variables and injury in a shorter timeframe, but were still at an exploratory stage.
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Finally, there is a large prevalence of observational studies over experimental (no study)
and quasi-experimental studies (53 out of 165), which keeps research at a more descriptive
level, and does not favour the unveiling of cause–consequence evidence (Figure 4).

(3) More attention should be paid to selecting an appropriate sample size and type, and to
describing it thoroughly.

Although it is natural to expect that fewer studies on smaller groups are available for
elite populations, the disproportion between the number of male and female participants
included in the existing literature clearly emerged, and should be carefully considered
when designing future experiments. Moreover, studies should systematically report com-
plete information about their population of interest, including gender—which was missing
in some articles on male-prevalent disciplines—and level of participation, for which stan-
dardised classifications (e.g., [241]) could be adopted, thus simplifying the comparison
and summary of outcomes from different works. The great proportion of studies with
less than 30 participants is reflective of research designs that do not attempt to capture
actual injuries; rather, they typically compare smaller groups of healthy individuals versus
athletes who are either prone to recurrent injury or reporting past injury, but considered
to be fully recovered at the time of testing. Following up on Conclusion (2), with a view
to increasing the effort to collect real injuries or assess the effectiveness of interventions,
researchers should more carefully consider the appropriateness of their sample sizes, as
opposed to the frequency of the injuries analysed. Since access to participants, resources
(e.g., number of sensors, data collection capacity, funding), or both may be complex for
biomechanical studies, the opportunity and effectiveness of multicentre studies should be
explored and better promoted.

(4) The quality of the methods, tools, and measures used should be clearly reported, as it is
fundamental for the interpretation of the quantities collected. With great power (of the sensors)
comes great responsibility (for the researcher) [242].

A non-negligible part of the studies reviewed did not carry out nor report on existing
validations of their measuring equipment, protocols, or settings. Two works included infor-
mation about former validation studies, but without making sure that these tests had been
performed on sensors of the same type, making them clearly inappropriate. Discussing
aspects such as accuracy, reliability, existing guidelines, and the possible influence of exper-
imental choices on outcome measures (e.g., physical characteristics of the measuring unit;
settings such as frequency, resolution, sensitivity, and full-scale capacity; exact attachment
location of the sensors; fixing methods, as far as sensors are concerned, but also running
surface, fatigue, and measurement protocols) is an essential yet often overlooked element,
and should be better taken care of. Indeed, it impacts the interpretation of results, the ability
to replicate a study, and the possibility to compare results from different articles. For exam-
ple, in some cases, we even found it difficult to understand what sensor or element of an
integrated system (e.g., in magneto-inertial units with embedded global navigation satellite
systems) was used to extract the outcome metrics selected. Finally, results obtained under
controlled lab conditions should be handled with care; for example, field-based demands
such as fatigue or high-intensity drills may prove difficult to replicate in a laboratory, and
it is impossible to investigate acute injuries with lab-based testing. Conversely, guidance
and thresholds identified in a lab may be difficult to transfer to field-based situations.

The continuous progress in wearable sensors offers many opportunities to collect
data on many athletes simultaneously, non-obtrusively, for long periods, and in field-
based situations. However, the great “power” that even consumer-level technologies
(e.g., smart phones, watches, pods) currently offer does not come free of problems, such
as those associated with the management and processing of large datasets affected by
noise. Improvement in data quality and the ability to extract meaningful information from
large databases affected by noise are issues that researchers need to carefully consider and
address. The advances in data science techniques (e.g., machine learning approaches) could
play a great role in this perspective; however, an appropriate and effective use of wearable
technologies should be informed by a thorough awareness of sensor limitations, in terms
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of both measurement quality and range of suitable applications. The following list includes
some of the most critical issues, but the reader is referred to the recent recommendations
in [23,35,43,243] for more complete guidance on countermeasures:

a. Noise can be assumed to be proportional to task dynamics, which suggests reducing
the mass and dimensions of the devices to the minimum possible;

b. Appropriate full-scale ranges should be selected according to the measure of inter-
est [244,245];

c. The estimation of displacement (linear and angular) in magneto-inertial measurement
units (MIMUs) is influenced by drift caused by the combination of MEMS physical
properties and finite integration [246], which should be spot-checked (e.g., [247,248])
and requires compensation through ad hoc algorithms [247,249];

d. Errors in orientation estimation can originate from ferromagnetic disturbances when
the magnetometer is exploited—particularly indoors [250,251];

e. Soft-tissue artefacts and fixation techniques affect the validity of measurements, as
they can reduce or accentuate the real movement of the body segments that the
sensors are attached to [252–254]. Soft-tissue artefacts are particularly problematic
and complex to deal with, as they are strongly sensitive to task [235], participant [255],
site and method of unit attachment [256,257], and unit removal and replacement [258],
calling for recommendations of sensor types and placements specific to sports and
parameters of interest (e.g., [259]);

f. Bespoke calibration techniques may be required to guarantee enough accuracy and
reliability throughout the movement of interest and the environmental conditions
under which it is performed [260];

g. Anatomical calibration should be carefully performed to ensure interpretation and
comparison within and between athletes, at least through alignment with gravity dur-
ing a neutral standing posture, or alternatively functional or point-based—especially
when assessing joint kinematics [261,262];

h. Practically, splitting data collection into short trials of less than 30 s, collecting as
many trials as possible per condition tested, and performing a pose calibration for
each of those conditions typically leads to better measures [79].

(5) The road towards applied impact offers many opportunities . . . but is long and difficult,
take “the one less travelled by, [ . . . ]” and it will make “all the difference” [263]!

The injury-related readiness level classification system we outlined and applied to
the selected article database showed that only few investigations are at a stage of maturity
where their findings could be deployed for field-based use. This taxonomy allows the iden-
tification of applications, sports, and bodily tissues/areas for which more biomechanical
research would be beneficial. Indeed, the highest class of readiness relies on the findings
from the lower levels of maturity, and mapping the extent of work and knowledge available
at the different stages will help to direct research endeavours and appreciate the distance
from final knowledge transfer. Sport biomechanics can offer a fundamental contribution to
the prevention, assessment, and recovery from musculoskeletal injury and, through the use
of wearables, can also play a key role in multiple elements of the many models of injury
prevention [3,8,9] and injury causation [10–12] that have been proposed in the literature.
For example, it can help identify the factors predisposing an athlete to injury or the events
inciting an injury. It can describe and quantify the mechanisms of an injury and the move-
ment behaviours associated with it. It could contribute to the creation of decision-support
systems based on quantitative analysis, and help with monitoring interventions and the
compliance of athletes and practitioners to those interventions. Our readiness analysis has
shown that this last area is particularly lacking.

Performing real-time predictions based on machine learning and providing real-
time feedback has a huge potential to both enhance the athlete’s performance, through
movement recognition [264] and technique correction [23], and to assess injury predictive
factors [265] and evaluate them within long-term monitoring of injury-forecasting sys-
tems [240]. This is particularly relevant for athletes with disabilities, where personalised
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monitoring systems can be developed to anticipate injuries specific to their disability [26].
It also challenges the research community to develop more intelligent, real-time, accurate
information, making it user-friendly and offering coaches and athletes actionable insights
based on context-specific evaluation frameworks and on the ability to identify correct
forms and common deviations of specific movements according to an agreed-upon clinical
consensus [266]. Indeed, personalised and effective wearable technology should be rooted
in a thorough understanding of the user’s experience, attitudes, and opinions which, if not
properly considered, can severely hamper the potential of applications [267].

To enable and maximise the contribution of wearable technology and biomechanics,
more coordinated efforts should be spent so that a systematic and sound progression from
basic research to knowledge transfer is generated. Discovering biomechanical relationships
with injuries and their mechanisms is difficult, and often requires prospective analysis of
large cohorts of athletes; this is typically costly, lengthy, and overall difficult to implement
for a single research group. Multicentre studies would most likely facilitate this process.
That being said, the ever-increasing availability of wearable technologies and smart tex-
tiles [268] able to measure a large spectrum of biomechanical and physiological quantities
would conceivably boost the research in the abovementioned desirable direction. The
integration of multiple sensors of different types, together with a systemic rather than a
local approach when studying injury in sports, represents two crucial elements that deserve
attention for future research.
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