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The paper presents an approach to mesh adaptation suitable for scale-

resolving simulations. The methodology is based on the entropy adjoint

approach, which corresponds to a standard output-based adjoint method

with the output functional targeting areas of spurious generation of en-

tropy. The method shows several advantages over standard output-based

error estimation: i) it is computationally inexpensive, ii) it does not re-

quire the solution of a fine-space adjoint problem, and iii) it is nonlinearly

stable with respect to the primal solution for chaotic dynamical systems.

In addition, the work reports on the parallel efficiency of the solver, which

has been optimized through a multi-constraint domain decomposition algo-

rithm available within the Metis 5.0 library. The reliability, accuracy, and

efficiency of the approach are assessed by computing three test cases: the
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two-dimensional, laminar, chaotic flow around a square at Re = 3000, the

implicit Large Eddy Simulation (LES) of the flow past a circular cylinder

at Re = 3900 and past the a square cylinder at Re = 22 000. The results

show a significant reduction in the number of DoFs with respect to uniform

order-refinement with a good agreement with experimental data.

I. Introduction

The growing need for highly accurate flow simulations for the prediction of problem-

specific output quantities has paved the way for higher-order methods such as the discontin-

uous Galerkin (DG) methods. Although for many flow problems, with typical engineering

error tolerances, DG methods are still generally less efficient than standard codes, the in-

dustrial interest in high-fidelity simulation tools is strongly fostering research on efficient

high-order CFD solvers.

Previous works contributed to the development of efficient high-order numerical methods

for steady and unsteady flow problems involving adaptation of the spatial discretization by

varying the order of polynomial approximation throughout the domain1,2 or by performing

mesh adaptation.3–6 In this paper, a p-adaptation strategy has been adopted to increase the

computational efficiency of a DG solver7 for scale-resolving simulations performed according

to the Implicit Large Eddy Simulation (ILES), or under-resolved Direct Numerical Simula-

tion (uDNS), approach. The proposed strategy allows changing the polynomial order of the

solution representation within each element according to an error estimate, thus reducing

the CPU time and memory usage, while not spoiling the spectral resolution required by this

class of simulations. In the ILES approach,8–14 the unfiltered Navier-Stokes equations are

solved, and the numerical dissipation introduced by the discretizaton itself, e.g., by the Rie-

mann interface fluxes and the viscous stabilization, plays the role of an explicit subgrid-scale

(SGS) model that dissipates the smallest scale eddies.

As the work concerns unsteady flow simulations, an adaptation procedure suitable for

time-dependent problems must be devised. Many error indicators have been proposed for

adaptation in a LES context, which are based on energy dissipation,15 small-scale kinetic

energy,16 and on more comprehensive definitions including all sources of error (discretization

and modelling) in the LES framework.17,18 In addition, recently published algorithms, e.g.

ensemble-adjoint19,20 and the Least Square Shadowing (LSS)21 approaches, allow to com-

pute accurately the sensitivities of target output quantities with respect to given parameters

for flows exhibiting chaotic regimes, where standard unsteady adjoint methods provide un-

bounded flow sensitivities which diverge backwards in time. The ensemble-adjoint approach

involves the computation of the sensitivity as the ensemble-average of those obtained using
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standard adjoint-based techniques applied over a short enough time window that prevents

divergence phenomena. Despite showing mathematically consistent results, theoretical es-

timates22 reveal that the computational complexity of the method makes it unfeasible for

relevant engineering applications. On the other hand, implementations of the LSS approach

demonstrated to be able to compute bounded and accurate sensitivities for turbulent flow

simulations,23,24 but the computational cost is extremely high, as the solution of an op-

timization problem within the adjoint problem is required. For these reasons, alternative

and more practical approaches to mesh adaptation for turbulent flows are still of interest to

improve the computational efficiency of simulations involving chaotic dynamics.

Our previous research efforts25,26 aimed at adapting the polynomial degree by combining

two simple element-wise indicators based on interface pressure jumps and on the decay of

the coefficients of the modal expansion as in.27 These sensors are coupled to guarantee a

reasonable behavior both for high- and low-degree polynomial approximations. Despite not

targeting any output quantity, the strategy performed reasonably well in the solution of

statistically steady turbulent flows.

The objective of the present work is to extend the previous approach by using error

estimates provided by the so called entropy-adjoint approach introduced by Fidkowski and

Roe.28 The main idea of the method is to measure the balance of entropy throughout the

domain, including the inflow, outflow, and generation. The output functional is associated

to the adjoint problem, whose solution is the set of entropy variables associated with the

state. By targeting the source of spurious entropy generation, which is closely related to the

numerical error (the only source of error in the ILES context), the approach overcomes the

drawback of many heuristic sensors, which are generally not robust for controlling numerical

discretization errors. The approach is able to target areas of spurious entropy generation,

which mainly affect the scalar output that measures net entropy balance throughout the

domain. The method shows several advantages over standard, output-based adaptive sim-

ulations for steady flows,29,30 since the adjoint solution is easily obtained by manipulating

the state vector. This property can be exploited also for unsteady flow problems, avoiding

an often prohibitively expensive backward-in-time integration, typical of unsteady adjoint

applications. Moreover, the adjoint solution is nonlinearly stable, meaning that the accuracy

of the error estimate is not spoiled by the chaotic nature of the flow.

Output-based error estimation typically involves the computation of a fine-space adjoint

solution6,17,18,31–34 which can be accomplished by solving an approximate fine-space prob-

lem35,36 using few smoothing iterations. However, building the fine space problem can be

considerably expensive for a three dimensional LES case. Therefore, with the idea of mini-

mizing the costs associated with the fine space solution on three dimensional cases, we here

implement a higher-order reconstruction approach. The method, hereby called patch recon-
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struction, consists of interpolating the variables from an extended stencil, made of each mesh

element and its neighbours, into an enriched polynomial space.

The reliability, accuracy and efficiency of the approach are assessed by computing two

and three dimensional test cases involving compressible, low Mach number, unsteady flows.

We first report numerical experiments to show the optimal parallel efficiency of the method

on multi-core machines, which is obtained through a dynamic load balancing based on the

Metis library and its capability of generating weighted graphs. Such an implementation

handles imbalances in the degrees of freedom on each partition due to the application of the

adaptation algorithm, and provides a nearly optimal scalability, comparable to that obtained

using a fixed number of degrees of freedom. Secondly, we assess the implementation on a two-

dimensional test case, the laminar chaotic flow past a square atRe = 3000. Finally, we report

ILES of two span-wise periodic turbulent cases, i.e., the flow around the circular cylinder

at Re = 3900 and around a square cylinder at Re = 22 000. The results show a significant

reduction in the overall number of DoFs with respect to uniform order approximations while

delivering a good agreement with the literature.

II. The numerical framework

In this work two different DG solvers have been used for the 2D and 3D computations, i.e.,

the XFLOW solver28 and the code MIGALE,7 respectively.

A. Space and time discretization

The compressible Navier-Stokes equations for m variables in d dimensions can be written in

compact form as

P (w)
∂w

∂t
+∇ · Fc (w) +∇ · Fv (w,∇w) = 0, (1)

where w ∈ Rm is the unknown solution vector, Fc,Fv ∈ Rm ⊗ Rd are the convective

and viscous flux functions, and P (w) ∈ Rm ⊗ Rm is a transformation matrix that takes

into account the possible use of a set of unknowns w different from the conservative set

wc = [ρ, ρui, ρE]T . Both XFLOW and MIGALE discretize in space the governing equa-

tions according to the DG approach7,37 but with some differences in the implementation

of the method. For example, the XFLOW solver relies on the set of conservative variables

(P = I) while code MIGALE uses a primitive set given by w = [p, ui, T ]
T . To perform

the spatial discretization, the weak form of the governing equations is first obtained by

multiplying Eq. (1) by an arbitrary, smooth test function and integrating by parts. The

solution and the test function are then replaced with a finite-element approximation and a
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discrete test function, both belonging to the finite-dimensional set Vh := [Pkd(Th)]m, where
Pkd(Th) := {vh ∈ L2(Ω) | vh|K ∈ Pkd(K), ∀K ∈ Th} is the discrete polynomial space and Pkd(K)

denotes the restriction of the polynomial functions of d = 2, 3 variables and total degree k

to the element K belonging to a tessellation Th = {K} of the computational domain. While

the XFLOW solver uses a set of Lagrange basis functions defined in reference elements that

can be mapped onto the cells of the triangulation, MIGALE employs a set of hierarchical

and orthonormal functions computed in the physical (mesh) space according to Bassi et

al.38 As the functional approximation space is discontinuous, the flux functions over mesh

faces are not uniquely defined and the convective and viscous fluxes need to be replaced

with numerical counterparts. In this work, both solvers use the BR2 scheme of Bassi and

Rebay39 for the viscouos flux discretization, while for the convective part XFLOW uses the

approximate Riemann solver of Roe40 and MIGALE implements the exact Riemann solver

of Gottlieb and Groth.41

By assembling together all the elemental contributions of the DG discretization, the

system of ordinary differential equations governing the evolution in time of the discrete

solution can be written as

dW

dt
+ R̃ (W) = 0, with R̃ (W) = MP

−1 (W)R (W) , (2)

whereW is the global vector of unknown degrees of freedom, MP is the global block diagonal

mass matrix, and R (W) is the vector of spatial residuals. Both the solvers implement

several highly accurate time integration schemes.7,37 For the computations presented in

this paper the XFLOW solver uses a fifth-order Explicit Singly Diagonal Implicit Runge-

Kutta (ESDIRK) scheme while MIGALE uses a multi-stage, linearly implicit, Rosenbrock-

type, Runge-Kutta scheme with three stages and third-order accuracy (ROS3P).42,43 In

both implementations, the Jacobian matrix is computed analytically and a preconditioned

GMRES algorithm is used to solve the linear systems arising from the temporal discretization.

Code MIGALE exploits the PETSc library for linear algebra and to deal with distributed

arrays and communication.44

B. Efficient adaptive quadrature rules

A key aspect of solver efficiency is represented by a proper choice of the degree of exactness

(DOE) of the quadrature rules. In fact, the number of integration points rapidly increases

when dealing with high-degree polynomial approximations and curved mesh elements. It is

worth noting that the use of curved mesh elements is typically limited to the proximity of

a curved solid boundary, while in the remainder of the domain straight-sided cells and faces

are employed. To avoid over-integration on those elements, it is of primary importance to
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recognize the minimum quadrature requirements of each element and face.

Inspired by Bassi et al.,38 a simple indicator for the integration error, which allows for

identification of the actual curved-sided elements in a mesh, is defined as

εi,K =
|m∗

ii −mex
ii |

|mex
ii |

, ∀K ∈ Kh, (3)

wheremex
ii andm∗

ii are the values of the i-th diagonal entry of the local mass matrix computed

using quadrature rules with an exact and a “reduced” DOE, respectively. According to this

definition and to a user-defined tolerance tolq, for each element K, an integration rule with

the minimum degree of exactness that satisfies

max
i∈1,...,NK

DoFs

εi,K ≤ tolq, ∀K ∈ Kh, (4)

is used with significant CPU time savings. A similar procedure, considering the surface

integrals of the same term is used to reduce the DOE for the mesh faces. The DOE adaptation

process is performed only once during pre-processing and after each adaptation step during

the solution.

III. Adaptation strategy

The adaptation of the elemental polynomial degree is driven by an error estimator that

identifies regions of the domain that lack/exceed a required resolution. These regions can

be refined/coarsened by increasing/decreasing the degree of the polynomial approximation

of the solution. Regardless of the adopted error estimator and CFD solver, the pseudo

code of the adaptation procedure is reported in Algorithm 1. Here, k̂ is the polynomial

degree at the beginning of the computation, Ncyc is the total number of time steps of the

simulation, kmax is the maximum allowable polynomial degree defined by the user, N is the

number of time steps between two adaptation cycles or between the simulation beginning

and the first adaptation cycle, Gr is the percentage of the total number of elements that

will be marked for refinement, Gc is the percentage of the total number of elements that

will be marked for coarsening, nadp is the number of adaptation cycles to be performed,

POSK is the position of the element numbered from zero and sorted in increasing order

according to the estimator η
ψ

K (see Eq. (9)). The algorithm has been written in a general

form, considering refining and coarsening. However, the simulations have been performed

starting from coarse meshes, where coarsening is not necessary. This strategy, as shown

by some numerical investigations, improves the computational efficiency of the simulation.

The value of Gr has been set to 0.15 for the XFLOW code (2D simulations) and to 0.2
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Algorithm 1 Adaptation algorithm

1: l = 0
2: kK = k̂ ∀K ∈ Th
3: for icyc = 1 to Ncyc do
4: integrate the governing equation in time
5: evaluate the time-averaged solution, W
6: if mod(icyc,N ) = 0 and l ≤ nadp then
7: l← l + 1
8: compute the estimators η

ψ

K ∀K ∈ Th
9: for K ∈ Th do
10: if POSK ≥ (1− Gr)card(Th) then
11: kK ← min(kK + 1, kmax)
12: else if POSK ≤ (Gc)card(Th) then
13: kK ← max(kK − 1, 1)
14: end if
15: end for
16: balance the load among processors via re-partitioning
17: L2 projection of the solution on the new space
18: end if
19: end for

for the MIGALE code (3D simulations). Higher values could refine zones not necessary to

capture the main fluid dynamic features, increasing only the computational cost. We remark

that orthonormal and hierarchical modal bases greatly simplify the L2 projection operators:

the DoFs of the restricted solution are equal to the low-order subset of their high-order

representations, while the DoFs of the prolongated solution are the same as the low-order

solution with zero high-order components.

In the context of adaptive LES we can distinguish two different sources of error: one

arising from the numerical discretization, and the other from the subgrid-scale model.17

Minimizing the errors, as already pointed out by Sagaut,45 would yield asymptotically a DNS

resolution, and would remove the advantage of performing an under-resolved simulation. In

fact, the objective of adaptive LES should be to adapt the resolution and the size of the

LES filter so as to resolve only a prescribed amount of the turbulent scales, while modelling

the others. According to these observations, many error indicators have been proposed for

LES adaptation, which are based on energy dissipation,15 small-scale kinetic energy,16 and

on more comprehensive definitions including all sources of error in the LES framework.17,18

However, when an error indicator specifically designed for LES is combined with adaptive

ILES, we obtain at the same time a finer space resolution and a smaller LES filter that will

lead to a different corresponding LES with more resolved turbulent scales, but not necessarily

with lower error. This behaviour will lead to further refinement, reaching asymptotically a

DNS resolution. To avoid the resolution of all turbulent scales, the use of an indicator
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based only on the numerical error, such as spurious entropy generation, can represent a

viable solution. Whereas more sophisticated indicators, based on adjoint solutions, have

been successfully applied to non-chaotic problems, their suitability for LES is not yet clear,

as these problems elicit more fundamental questions of convergence of adaptive methods.

A. Output-adjoint sensitivity

Techniques based on output-adjoint sensitivity proved to be efficient and reliable for the

analysis of some classes of unsteady flow problems.4,46 However, it has been shown that ad-

joint approaches compute very large sensitivities when applied to chaotic dynamical systems

such as those arising from scale resolving simulations. Such behaviour is not only driven by

turbulence itself, but it is also observed in two dimensional flow simulations. The reason for

this resides in the very high sensitivity with respect to the initial conditions in the context

of chaotic dynamical systems,20,47,48 leading to sensitivity parameters and error estimates

which are not anymore effective. Additionally, backward time integration increases consid-

erably the computational costs of the the procedure, which then drastically increases the

overall CPU time of the simulation.

To circumvent those problems, we propose to compute the unsteady adjoint equation

by neglecting the unsteady term and following a steady-state approach, being interested in

adapting for time-integrated statistically-steady quantities. The idea of using a steady-state

method to target adaptation of quasi-stationary governing equations was already employed

in the literature, see for example Braak et al.49 This approach shows favorable results for

mesh adaptation, i.e. when an accurate error estimator is not required but rather relative

magnitudes are used for error localization. The adjoint in this case is obtained through the

solution of the following linear system

RΨ(Ŵ,Ψ) =

(
∂̂R

∂W

)T

Ψ+

(
∂̂J

∂W

)T

= 0, (5)

where J is a functional of the unsteady state vector W(t), and the residual Jacobian and

the output linearization are evaluated using a pre-computed time-averaged solution Ŵ. We

remark that this approach reduces the computational cost as the steady-state adjoint is

obtained through the solution of a single linear system. However, it does not provide exact

sensitivities with respect to the output, since the average field Ŵ is not a solution of the

space-time problem, R(W(t), t) = 0.
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B. Entropy-adjoint sensitivity

The entropy-adjoint approach can be derived from the unsteady adjoint differential equation

by choosing an output functional such that

J =

∫
∂Ω

fe · ndσ +

∫
Ω

∇vT · FvdΩ−
∫
∂Ω

vTFv · ndσ, (6)

where fe is the entropy flux associated with an entropy function U(wc), and we are the

entropy variables associated with U . The main idea behind this approach is to choose

entropy variables that symmetrize inviscid and viscous terms of the compressible Navier–

Stokes equations. This can be achieved by setting

U = − ρS

γ − 1
, S = cp ln p− cv ln ρ, (7)

where S is the physical entropy, and cp and cv are the heat capacities at constant pressure and

volume, respectively. The entropy variables are obtained by differentiating U with respect

to the conservative state wc,

we = UT
wc =

[
γ

γ − 1
− S

R
− 1

2

ρuiui
p

,
ρui
p

,−ρ

p

]T
(8)

while the corresponding entropy flux is fe,i = uiU .

The three integrals appearing in Eq. (6) can be associated to the flow physics by noting

that the first represents the convective outflow of entropy across the domain boundary, the

second term is the generation of entropy due to the viscous dissipation, and the third is

the entropy diffusion across the boundary. Since U has opposite sign from S, the first

term measures the net convective inflow of physical entropy across the boundary, while the

third term computes the net diffusive inflow of physical entropy into the domain. Since the

second integral evaluates the generation of entropy inside the domain, the theoretical value

of the functional J for an exact solution should be zero, meaning that the production of

entropy is balanced from the entropy flux throughout the boundaries. Since the balance is

not strictly enforced in a discrete sense, the output functional J targets areas of spurious

entropy production by the numerical discretization.

The choice of such output functional and entropy variable is particularly attractive. First,

it is worth pointing out that, under the assumption of limited entropy generation over the

domain ∆S/R ≪ 1, where R is the gas constant coefficient, adapting using the objective

function defined in Eq. (6) can be connected to a drag-adaptation, where the objective

function is calculated integrating entropy as proposed by Oswatitsch.50 Second, Fidkowski

and Roe28 demonstrated that the solution Ψ is obtained from the state variable directly, and
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hence at extremely low computational cost. The residual’s linearization is not required for its

computation, meaning that the adjoint solution remains bounded for chaotic flow problems.

Finally, the average adjoint value can be obtained directly from the average state, such that

Ψ̂ = ŵe.

As demonstrated by Fidkowski et al.,29 adapting using entropy variables can be consid-

ered equivalent to a farfield drag output adjoint for inviscid cases. For viscous cases, the

equivalence of the error estimate can be recovered through an additional fine space residual

evaluation involving inviscid terms, which is however neglected in the current study.

C. Error localization

In the results, we compare entropy-adjoint and output-adjoint adaptive indicators for a two-

dimensional problem. These indicators take the following form for element K

ηψK ≡
∣∣∣δΨ̂T

K,hR̂h(W
H
h )
∣∣∣ , (9)

where δΨ̂T
K,h is the steady-state, fine-space entropy or output adjoint solution computed from

the coarse-space, time-averaged primal solution injected into the fine-space. The δ indicates

that the coarse-space projection of this output or entropy adjoint is removed prior to error

estimation. R̂h(W
H
h ) is the time-averaged unsteady residual, computed during the unsteady

primal solution by injecting the coarse-space solution into the fine-space and calculating

the residual. The residual is then averaged in time, and cancellations between residuals

at different times are allowed. The purpose of using an averaged, unsteady residual is to

obtain an accurate representation of the extent to which the fine-space unsteady equations

are not satisfied using the coarse-space solution. A static sensitivity field computed from

the steady-state entropy and output adjoint then provides the weight on this residual. The

error indicator drives a fixed-fraction adaptive strategy, and a burn-time is used prior to each

unsteady simulation to remove the transient phase from the average process. We remark

that this strategy, which computes the error estimate on the average quantities, is preferred

to compute the average of the instantaneous error estimate. In fact, the latter approach,

even if more rigorous from a mathematical point of view, increases the computational cost

per time step, as a fine space reconstruction of the solution needs to be computed at each

iteration.

Equation (9) shows that a fine space adjoint solution is necessary to compute δΨ̂K,h =

Ψ̂K,h − Ψ̂K,H . In general, two methods are commonly used to this end:31,51

• the computation of a fine space adjoint Ψ̂K,h on a finer space or using higher order

polynomials, Vh ∈ VH , and then subtracting Ψ̂K,H obtained through standard Galerkin

projection operators;
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• the interpolation of the finer space solution through interpolation on a wider patch,

also known as patch reconstruction, as Ψ̂K,h = IhHΨ̂Kp,h, where Kp is the union of the

elements sharing a face with K.

In this work we solve the auxiliary problem on a finer space only for the two dimensional test

cases. For the computationally intensive three dimensional flow problems, a time-averaged

solution on a higher polynomial degree (kK + 1, ∀K ∈ Th) is reconstructed element-by-

element using information on the patch. The global vector of degrees of freedom of entropy

variables is then computed on the reconstructed fine space.

Code MIGALE implements the simple procedure reported in the following. For any

K ∈ Th, let Kp be a set of elements, a patch, consisting of the cell K itself and the nn

elements Kn sharing a face with K. To locally reconstruct each component g of the solution

vector w, e.g., pressure, to a higher polynomial degree kK + 1, we simply L2-project the

numerical solution available at any cell Kn ∈ Kp onto the local polynomial space PkK+1
d (Kp).

As a basis for this space, we employ a continuous extension overKp of the shape functions ϕ
K
i

of K, directly defined on the mesh space according to Bassi et al.38 The set of coefficients Ĝ

for the reconstructed solution ĝ(x) =
∑nv

i=1 ϕ
K
i (x)Ĝi, where nv = card(PkK+1

d (Kp)), is then

computed from∫
Kp

ϕKi ĝ(x) dΩ =

∫
K

ϕKi g(x) dΩ +
nn∑
n=1

∫
Kn

ϕKi g(x) dΩ, ∀ i = 1, . . . , nv. (10)

Although the set of basis functions ϕKi is orthonormal in the physical space over the element

K, we remark that the mass matrix arising from the LHS term in Eq. (10) is not an identity

matrix and a local linear system needs to be solved for any of the m = 5 components of the

solution vector w. To maintain the solution’s mean value fixed through the reconstruction

process, the first coefficient of the reconstructed polynomial expansion is set to be equal to

the first coefficient of the numerical solution over K.

IV. Load balancing approach

Any adaptation algorithm applied to parallel simulations generally induces a strong im-

balance of the load per partition and a drastic reduction of the parallel efficiency. In such

cases, an effective re-decomposition of the computational grid is mandatory to retain good

computational efficiency. The proposed approach is based on the Metis52 library. It exploits

Metis’s capabilities to optimize the partition of a weighted graph (graph vertices correspond

to the mesh elements), enforcing multiple constraints, and to minimize the number of faces

of the partition boundaries.
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The multi-constrained mesh partitioning approach has a significant impact on the parallel

efficiency of simulations, as the floating-point operation count in different phases of the

solution scales differently with the polynomial degree. For instance, the Jacobian matrix

evaluation and factorization scales approximately as k3d while the residual evaluation as k2d.

However, a naive partitioning approach which balances those two components is likely to not

be optimal: the reason lies in the missing information about quadrature rules, which scale

differently with the polynomial order according to the volume and face integrals. It turns out

that taking into account additional and simultaneous balancing of the operation count related

to the volume and surface integrals evaluation improves the parallel efficiency. For the three

dimensional cases on hybrid meshes, a good balance of the computational cost related to the

different solution phases was achieved by using five constraints. The first four constraints

aim at balancing the floating point operations of residual evaluation and Jacobian assembly

on different element and face types, which require different numbers of Gauss integration

points for a given polynomial order. The last constraint balances the computational cost of

matrix-vector products. The weights wi used to enforce these constraints are reported in

Appendix A.

The parallel efficiency of the p-adaptation strategy has been assessed on two different 3D

test cases to demonstrate the effectiveness of the load balancing strategy. In the first test

case, a grid with 768 elements was used to perform the simulations on a small Linux cluster

consisting of four AMD Opteron 6276 sixteen core CPUs. The solutions were advanced in

time using the backward-Euler scheme, which requires the solution of one nonlinear system

per time step. The solution of the linear system required in the Newton-Raphson approach

was obtained using a block-Jacobi preconditioned GMRES iterative solver. Figure 1 com-

pares how the DoFs per processor are distributed across the MPI processes without load

balancing (left) and with the multi-constraint algorithm (right). As expected, the result of

the proposed optimal load balancing procedure is not a purely uniform distribution of DoFs.

Figure 2 (left) shows the strong scalability for the AMD Opteron 6276 CPUs, up to 64

cores. The curves labelled k = 1 and k = 4 refer to the integration of solutions for 10

time steps using first- and fourth-degree polynomials, and serve as reference. For a mesh

with a small number of elements, the lowest-order computations scale poorly (see the k = 1

curve), as expected. The p-adaptive solutions were advanced in time for 100 time steps by

using the backward-Euler scheme, starting from a k = 1 approximation and performing 6

adaptation cycles (each time adapting 20% of the elements marked for adaptation), every 10

time steps and setting to k = 4 the maximum polynomial degree. In the last 40 time steps

no further p-adaptation was performed. The scalability of the p-adaptive solver, running on

the unweighted partition of the grid and without load balancing (Adp), is clearly quite poor.
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Figure 1: Load of the processors without (left) and with (right) the use of the load balancing
approach after six p-refinements, AMD Opteron 6276 (sixteen core) CPUs, up to 64 cores

Activating the load balancing (LB−Adp), the scalability improves and the curve gets closer

to the uniform k = 4 polynomial degree case computed on the unweighted partitioned grid,

even if the final number of DoFs is more than three times smaller for the adaptive computa-

tion. The graph in this case was obtained using the multi-constraint partitioning strategy.

It is worth noting that the parallel efficiency of the p-adaptive computation, evaluated over

the last 40 time-steps, when the solution is already adapted, is even higher, as shown by the

LB − Adp(40) curve.

In the second test case we evaluate the strong scalability of the p-adaptive solver per-

forming ILES on the circular cylinder testcase described in Sec. V. The grid consists of 38 320

elements and the time integration scheme was the third-order ROS3P scheme of Lang and

Verwer.43 The starting point of our investigation was a solution already adapted and char-

acterized by a polynomial degree distribution k ≤ 6. The parallel performance is evaluated

over 10 time steps without performing any further adaptation. For this problem we used up

to 32 Intel KNL nodes (up to 2178 cores) of the MARCONI A2 HPC system and the results

are shown in Fig. 2 (right). In all the p-adaptive computations, we use the best single node

performance as reference, obtained using a weighted LB − Adp algorithm on 68 cores. The

multi-constraint partitioning algorithm guarantees a behaviour similar to that achieved by

the k = 3 fixed polynomial order computation which involves almost the same total number

of DoFs. On the other hand, it is worth noting that a naive algorithm balancing only the

number of DoFs of each partition (labelled LB − Adp(DoFs)) scales very poorly, together

with the unbalanced Adp algorithm.

13 of 35



1 2 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Cores

P
ar
al
le
l
effi

ci
en
cy

k = 1
k = 4
Adp
LB − Adp
LB − Adp (40)

68 136 272 544 1,080 2,180
0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
ar
al
le
l
effi

ci
en
cy

k = 3
Adp
LB − Adp
LB − Adp(DoFs)

1 2 4 8 16 32

Cores

Nodes

Figure 2: Parallel efficiency of the solver on AMD Opteron 6276 CPUs (left) and MARCONI
A2 HPC system (right). k = const stands for the fixed-p solver, Adp stands for the adaptive
solution without employing the load balancing algorithm, LB − Adp refers to the adaptive
solution with multi-constraint load balancing, LB − Adp(DoFs) refers to load balancing of
only the DoFS, LB − Adp(40) refers to parallel efficiency evaluated over the last 40 time-
steps

V. Numerical results

Numerical experiments are performed to assess the robustness, accuracy and efficiency

of the proposed methodology in the context of unsteady, chaotic flow problems. First, we

consider the two-dimensional flow around a square at Re = 3000, where the performances

of the averaged entropy and output adjoint sensors are compared. Second, we validate the

entropy-adjoint adaptive strategy on the implicit LES of the flow around a circular cylinder

at Re = 3900. Third, as proof of concept, we report results of a higher-Reynolds number

test case, the implicit Large Eddy Simulation of the flow around a rectangular cylinder at

Re = 22 000.

A. Two-dimensional square test case

In this section, we compare the performance of the averaged entropy and output adjoint

indicators for a two-dimensional simulation. The problem of interest is a unit square in

horizontal flow at Mach number M = 0.1 and Reynolds number Re = 3000. The flow

is initialized to free-stream and allowed to develop into a statistically-steady regime, as

illustrated in Fig. 3, which also shows the mesh used for all of the runs with 4454 elements.
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The output of interest is the time-averaged drag coefficient on the square, defined as

J =

∫
T

∫
∂Ωw

(−pn+T · n) · xdσdt, (11)

where T is the stress tensor, n and x are the wall-normal and free-stream directions, respec-

tively. We remark that standard unsteady adjoint solutions for this output quickly grows

without bound and becomes impossible to use for adaptation, as shown in Fig. 4.

(a) Mesh (b) Mach contours (0, 0.2)

Figure 3: Flow around a square - Mesh and instantaneous Mach contours

(a) Adjoint norm time history (b) Conservation of mass component of the adjoint
at t = 0. Scale is O(1017).

Figure 4: Flow around a square - Growth of the adjoint for the time-averaged drag output
in reverse time

Order-adaptive simulations are performed starting from p = 1 on every element. At each

adaptive iteration, 15% of the elements with the highest error indicator have their order

incremented by 1. A burn time of 10 convective time units (here CTU, where 1 CTU is the
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(a) Averaged state (x-momentum) (b) Steady adjoint (conservation of x-momentum)

Figure 5: Flow around a square - Averaged state and the steady-state adjoint computed
about this state

time taken by the flow at free-stream speed to traverse the length of the square) is used prior

to the averaging for each unsteady run. The averaging time is also 10 CTU. A sufficiently

small time-step (.05 CTU) and high-order time-stepping scheme (ESDIRK5) are used to

minimize temporal errors, so that the dominant source of error is spatial. The temporal

discretization is therefore not adapted.

Figure 5 shows the time-averaged state and corresponding steady-state adjoint solution

from the last adjoint-based adaptive simulation. Note the lack of symmetry, particularly

in the adjoint solution, which can be addressed to some extent by increasing the averaging

time.

Five adaptive iterations were run using three indicators: the entropy-adjoint weighted

residual, the output-adjoint weighted residual, and an unweighted residual. The latter was

computed by using the L1 norm of the time-averaged residual on each element as the indi-

cator, without any adjoint weight. The other adaptive indicators also use the time-averaged

residual, but with entropy or output adjoint weights. Figures 6 and 7 show the order dis-

tributions on the final adapted meshes for each indicator. We see that a common area

to refine includes the corners of the square, particularly in the front and extending along

the dominant flow direction towards the rear of the square, where a shear layer is present.

The entropy-adjoint indicator additionally targets elements behind the square, whereas the

output-adjoint indicator targets elements ahead of the square. This difference is caused by

the opposite orientation of the primal versus adjoint wake – the adjoint wake extends ahead

of the square.

Once the adapted order fields were obtained, they were tested in long-time simulations.

In each such simulation, a burn time of about 100 CTU was first run starting with the final

solution from the adaptation sequence. Then, an averaging time of about 300 CTU was
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Figure 6: Flow around a square - Polynomial degree distribution (1–5) on the final adapted
meshes with the entropy adjoint
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Figure 7: Flow around a square - Polynomial degree distribution (1–5) on the final adapted
meshes with the drag adjoint

17 of 35



simulated to compute the average drag coefficient.
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Figure 8: Flow around a square - Convergence of the average drag coefficient output on
adapted and uniformly-refined order fields

Finally, Fig. 8 compares the average drag coefficient results for all of the adaptive simula-

tions and plots them versus the spatial degrees of freedom of the order field. In this plot the

convergence of uniform order refinement is also included. Note that this plot shows the drag

coefficient itself, not the error. We see that both the entropy and output adjoint adaptations

yield order fields that quickly converge to an average drag coefficient in the vicinity of what

appears to be the true value (which is lower than the starting point). The unweighted resid-

ual, on the other hand, does not converge well, and this is due to the lack of a weight that

cuts off adaptation far away from the square: many of those areas still have high residuals

due to large elements and passing transient/acoustic waves, even though their order has

little impact on the output. These results suggest that for this class of simulations involving

bluff bodies and separated flow regions, there exist a similarity between entropy and output

adjoint indicators for statistically-steady, yet chaotic simulations. We note however that

although the outputs are similar, the order fields differ in certain regions, suggesting that

the subset of the given order refinements common to both fields is the principally-important

region for refinement.

B. Three dimensional test cases

Here, we report the results obtained by computing the implicit LES of two test cases: i) the

three-dimensional flow past a circular cylinder at Re = 3900 and Mach number M = 0.1,

and ii) the turbulent flow over a square cylinder at α = 0◦, Reynolds number Re = 22 000

and Mach number M = 0.1. Span-wise periodicity is in both cases assumed. The meshes

used in this work have been generated with a 2D high-order version of a fully-automated
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hybrid mesh generator based on the advancing-Delaunay strategy53 and extruded in the

span-wise direction.

In both computations, coarsening was disabled, i.e., Gc = 0, and Gr was set to 0.2 to

refine the 20% of elements with the highest estimated error. Both simulations were performed

using 15 KNL nodes on the MARCONI A2 HPC system at CINECA.

1. Turbulent flow around a circular cylinder

The transitional turbulent flow around a circular cylinder at ReD = 3900, where D is the

diameter of the cylinder, has been analyzed in several papers and was also part of the test

case suite of the International Workshop on High-Order Methods.54 In this section we report

adaptive DG computations for this flow problem on two grids made of 67 466 (mesh A) and

44 856 (mesh B) elements, respectively, with quadratic edges near the solid walls. The grids

were generated by extruding two-dimensional meshes with a circular (50D) farfield boundary

for a 2D length along the direction perpendicular to the plane. Both meshes enforce span-

wise periodicity and discretize the span-wise direction with 14 cells. Note that Mesh A

includes a refinement in the wake region with respect to Mesh B, see Figure 10(a). Details of

the computational grids are shown in Figure 9 together with the isosurfaces of the Q-criterion

coloured with the vorticity magnitude.

(a) mesh A (b) mesh B

Figure 9: Flow around a circular cylinder - Mesh details and instantaneous isosurfaces of
the Q-criterium coloured with the vorticity magnitude

The adaptation process has been performed 6 times for both simulations. The compu-

tations have been initialized from freestream values with a piece-wise constant polynomial

representation of the solution. During the first adaptive cycle all elements were refined from

DG-P0 to DG-P1. The maximum polynomial degree allowed to the process was set to DG-

P5. The polynomial degree distribution resulting from the sixth adaptation cycle was finally

used to compute an average solution over 100 shedding cycles. Adaptation led to an overall
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number of DoFs of 6.61×105 for mesh A and 5.56×105 for mesh B, corresponding to roughly

one order of magnitude lower than other LES computations.55 Similarly to what happens in

the two-dimensional case of Sec. A, the approach based on the averaged entropy variables

and the averaged residual vector increases the spatial resolution at the shear layer and in the

wake region, as shown in Figures 10 and 11. The polynomial degree distributions over the

two grids, i.e., Mesh A and Mesh B, are significantly different due to the different mesh den-

sities. In Mesh B (Figs. 10(c) and 10(d)) the algorithm almost uniformly places high-order

polynomials elements along the wake to compensate for the original lack of spatial resolution

due to the use of very large cells downstream the body. Over Mesh A (Figs. 10(a) and 10(b))

the error indicator is more selective, and is still able to localize high-order elements in the

wake region and in the shear layer. On both grids, the spanwise direction refinement is

mainly driven by the streamwise resolution.

(a) mesh A (b) mesh A (zoom)

(c) mesh B (d) mesh B (zoom)

Figure 10: Flow around a circular cylinder - Polynomial degree distribution on the midspan
plane perpendicular to the cylinder axis

Figure 12 shows the span-wise and time-averaged pressure coefficient cp and non-dimensional

wall vorticity Ω/2Re0.5 distributions on the cylinder. The cp is in good agreement with the
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(a) mesh A (b) mesh B

Figure 11: Flow around a circular cylinder - Polynomial degree distribution on the planes
passing trough the origin (center of the circular cylinder) and perpendicular to the x- and
y-axis

experimental measurements of Norberg56 and two numerical simulations published in the

literature: an LES from Lysenko et al.55 with k-eq. and Smagorinsky subgrid scale model,

and a DNS from Ma et al.57 Although the vorticity profile is quite different in the first

half of the cylinder when compared to the experimental data from Son and Hanratty,58 the

distribution is almost superimposed with the DNS from Ma et al.57
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Figure 12: Flow around a circular cylinder - Span-wise and time-averaged pressure coeffi-
cients cp (left) and non-dimensional wall vorticity Ω/2Re0.5 (right) along the cylinder

Figure 13 shows the span-wise and time-averaged stream-wise ux/uref and cross-wise

uy/uref velocity profiles at different locations in the near wake of the cylinder x/D =

{1.06, 1.54, 2.02}. The computations are compared with experimental data of Parnaudeau et

al.,59 DNS data of Wissink and Rodi,60 and LES from Lysenko et al.55 with k-equation and

Smagorinsky subgrid scale models (SGS). For both the meshes the velocity profiles ux/uref
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are in good agreement with experimental data, DNS and LES k-equation/Smagorinsky re-

sults. The profiles for uy/uref compare very well with LES k-equation/Smagorinsky results

but show some discrepancy with respect to experiments at x/D = 1.54, where the shape of

the profile is similar but the magnitude is slightly different.
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Figure 13: Flow around a circular cylinder - Span-wise and time-averaged stream-wise
ux/uref and cross-wise uy/uref velocity at different locations in the wake of the cylinder
x/D = {1.06, 1.54, 2.02}. Parnaudeau et al. exp,59 Lysenko et al. LES k-eq.,55

Lysenko et al. LES Smag.,55 Wissink and Rodi DNS,60 DG-Pn eadj mesh A,
DG-Pn eadj mesh B

Figure 14 extends the comparison to the span-wise and time-averaged stream-wise u′
xu

′
x/u

2
ref

and cross-wise u′
yu

′
y/u

2
ref velocity fluctuations. The computations are in good agreement with

the experimental data from Parnaudeau for both distributions, although some discrepancies

with respect the Lysenko results, regardless of the adopted SGS model, are observed.

Figure 15 shows the comparison of stream- and cross-wise velocities, and velocity fluc-

tuations distributions in the wake up to x/D = 10. We compare the results to the DNS

from Wissink and Rodi60 at the following locations: x/D = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. An

almost perfect agreement with the reference DNS is observed, where only small differences

between the profiles obtained on mesh A and B can be seen for the velocity fluctuations at

x/D = {1, 2}, due to a slightly different local spatial resolution. In general, the results on

the two grids are very similar, and possibly suggest the capability of the present adaptation

strategy to deliver almost “mesh independent” average solutions.

We finally report the assessment of the computational performance gain due to the use of

the adaptive algorithm for the choice of degree of exactness of the quadrature rules. Table 1
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Figure 14: Flow around a circular cylinder - Span-wise and time-averaged stream-wise
u′
xu

′
x/u

2
ref and cross-wise u′

yu
′
y/u

2
ref velocity fluctuations at different locations in the wake

of the cylinder x/D = {1.06, 1.54, 2.02}. Parnaudeau et al. exp,59 Lysenko et al. LES
k-eq.,55 Lysenko et al. LES Smag.,55 DG-Pn eadj mesh A, DG-Pn eadj mesh B

Table 1: Flow around a circular cylinder (Mesh B, 10 time steps) - Impact on the computa-
tional performance of the p-adaptive computation Pn (5.56×105 DoFs) when using (aDOE)
or not (fDOE) the automatic algorithm for the choice of the quadrature rules degree of
exactness (see Sec. B).

[%]
100 · CPU time

aDOE

CPU time
fDOEaDOE fDOE

residuals assembly 4.9 5.9 12.4

matrices assembly 76.1 90.7 12.6

GMRES solution 19.0 3.4 84.5

execution 100.0 100.0 15.0

shows, in terms of percentage (“% execution”), how the overall execution time is split over

the different computational tasks, i.e., residual and matrix assembly and solution time. The

CPU time ratio between a 10 time steps simulation that uses (aDOE) or not (fDOE)

the DOE adaptation technique is reported in the same table. The tolerance value for the

reduction process is tolq = 10−10, see Sec. B. The computational gain in using the adaptive

DOE algorithm is clear and is measured by a reduction of the overall CPU time of 85%. As

expected the main saving is related to the assembly of the implicit operator.

2. Turbulent flow around a square cylinder

The performance of the averaged entropy adjoint approach as an adaptive indicator was also

assessed by computing the flow past a square cylinder for the relatively high Reynolds num-
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Figure 15: Flow around a circular cylinder - Span-wise and time-averaged stream-wise
and cross-wise velocity, ux/uref and uy/uref , and stream-wise and cross-wise velocity
fluctuations, u′

xu
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2
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ber ReD = 22 000, where D is the edge of the square, an angle of attack α = 0◦, and a Mach

number M = 0.1. An hybrid 3D mesh consisting of 83 016 elements with linear edges was

used. The farfield is rectangular of extension [−10.5D, 20D]×[−21D, 21D]. The mesh was

extruded in the span-wise direction of 4D using 12 elements and enforcing span-wise period-

icity. Details of the computational mesh are shown in Figures 16(a) and 16(b) together with

the instantaneous pressure and Mach number contours and the isosurfaces of the Q-criterion

coloured with the vorticity magnitude, respectively. During the simulation, 5 polynomial

(a) (b)

Figure 16: Flow around a square cylinder - Instantaneous Mach number and pressure con-
tours (a), and isosurfaces of the Q-criterion coloured with the vorticity magnitude contours
(b)

adaptations were performed. The computation has been initialized from freestream values

with a piece-wise constant polynomial representation of the solution. During the first adap-

tive cycle all the elements were refined from DG-P0 to DG-P1. The maximum polynomial

degree allowed to the algorithm was set to DG-P3. The final number of DoFs obtained from

the adaptation process and used to compute the average solution over 20 shedding cycles is

7.34× 105 and roughly 20% of the elements are P3. The polynomial degree distribution over

the domain is shown in Fig. 17. We remark that high-order polynomials are used in the shear

layer and in the wake, which is shifted upstream with respect to the circular cylinder test case

due to the higher Reynolds number. In the spanwise direction, as observed for the circular

cylinder test case, the refinement is driven by the resolution in the streamwise direction. To

assess the accuracy of the solution delivered by the proposed adaptation algorithm (Pn), we
compare the results to those of a uniform DG-P2 discretization resulting in a comparable

number of DoFs, i.e., 8.30× 105. Figure 18 shows the span-wise and time-averaged pressure

coefficient cp distribution on the body. The result compares favourably, except for the rear

part, with experimental data from Bearman and Obasaju61 and the DNS from Trias et al.62

The discrepancy on the downstream side, as reported by Sohankar et al.63 for a LES with

25 of 35



Figure 17: Flow around a square cylinder - Polynomial degree distribution in the plane
perpendicular to the cylinder axis and on the planes passing for the origin (center of the
square cylinder) and perpendicular to the x- and y-axis
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Figure 18: Flow around a square cylinder - Span-wise and time-averaged pressure coefficient
cp along the cylinder

dynamic Smagorinsky, can be ascribed to a different predicted stream-wise velocity distri-

bution in the near wake along the centerline, as shown in Fig. 20. The comparison between

adapted DG-Pn and uniform DG-P2 solution demonstrates a better accuracy provided by

the adaptation algorithm.

Figure 19 show the span-wise and time-averaged velocity profiles, ux/uref and uy/uref , on

the cylinder and in the near wake at different locations x/D. The agreement with the DNS

from Trias62 and with the experimental measurements of Lyn64 is in general good. However,

some discrepancies are observed for the ux/uref profile at wall in proximity of the upstream

corner. These differences can be ascribed to a zone near the corner where the adaptation

algorithm places P1 cells, which are probably not enough in terms of spatial resolution. In the

near wake, ux/uref profiles for the adaptive DG solution are similar to the reference DNS,
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while experimental data shows slightly lower values approaching the centerline. uy/uref

profiles are almost coincident with DNS data near wall, while some discrepancy is observed

at x/D = 1, the first location in the near wake. In particular the profile has higher values

near the downstream corner, probably due to a lack of local resolution. Figure 20 shows
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Figure 19: Flow around a square cylinder - Span-wise and time-averaged stream-wise ux/uref
and cross-wise uy/uref velocity at different locations on the cylinder and in the wake x/D =
{−0.5,−0.4,−0.3,−0.2,−0.125,−0.1, 0, 0.1, 0.125, 0.2, 0.3, 0.4, 0.5, 1, 1.5, 2}

the stream-wise velocity ux/uref along the centerline in the wake of the cylinder. For the

adaptive simulation the peak location and its value is well predicted, if compared to DNS

data,62 while the distribution shows some discrepancy with both experimental64 and DNS

data. The velocity along the centerline reaches a plateau, which is slightly delayed, i.e.

the length of rear recirculation bubble is higher, and overpredicted with respect to DNS

and experiment. However the predicted distribution seems to be globally better than other

LES results.63 The uniform DG-P2 solution predicts a different peak position and value.

Moreover, the distribution is far from the DNS profile. Figure 21 extends the comparison
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Figure 20: Flow around a square cylinder - Span-wise and time-averaged stream-wise velocity
ux/uref along the centerline (y/D = 0) in the wake of the cylinder

to the span-wise and time-averaged velocity fluctuations, u′
xu

′
x/u

2
ref , on the square body

and in the near wake. The profiles from adaptive DG correctly capture the peak location,

but overpredict the values of DNS62 and experimental64,65 data. However, a reasonable

agreement with the LES from Minguez65 is observed. In general, the comparison between

the adapted DG-Pn and the uniform DG-P2 solutions reveal a better accuracy delivered by

the adaptation algorithm.
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Figure 21: Flow around a square cylinder - Span-wise and time-averaged stream-wise
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ref velocity fluctuations at different locations on the cylinder and in the wake

x/D = {−0.5,−0.4,−0.3,−0.2,−0.125,−0.1, 0, 0.1, 0.125, 0.2, 0.3, 0.4, 0.5, 1, 1.5, 2}. Lyn
and Rodi exp.,64 Minguez et al. exp.,65 Trias et al. DNS,62 Minguez et al. LES,65

DG-Pn eadj.

Finally, in Table 2 the performance of the adaptive DG algorithm are compared with
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Table 2: Flow around a square cylinder (10 time steps) - Comparison of the performance of
the solver: adaptive Pn (7.34× 105 DoFs), uniform P2 (8.3× 105 DoFs) and P3 (1.66× 106

DoFs) solutions

Pn P2 P3

execution [%] execution [%] Pn [%] execution [%] Pn [%]

residuals assembly 6.2 7.2 91.9 5.5 305.8

matrices assembly 64.7 60.3 74.2 60.0 322.8

GMRES solution 29.1 32.5 89.0 34.6 414.8

execution 100.0 100.0 79.6 100.0 350.0

uniform P2 and P3 discretizations. For each of the main task of the computations, i.e.,

residuals and matrices assembly and time spent in the iterative linear solver, the percentage

CPU time with respect to the adaptive computation is shown (column Pn [%]). Results

show that the less accurate P2 simulation is only 20% faster than the adaptive one, while the

uniform P3 computation results in a computational effort which is almost four times larger.

In this work, due to the high computational cost required by the simulation, we were not able

to compute a statistically converged uniform P3 solution. For each run we also tabulated

in terms of percentage how the CPU time splits across the main tasks (column “execution

[%]”). The values are quite similar for the different polynomial approximation and are well

in line with those reported in Table 1.

VI. Conclusions

In this work, a strategy based on an adjoint p-adaptation approach is presented to in-

crease the computational efficiency of a high-order DG solver in the context of unsteady

compressible flows simulations. In particular, the entropy-adjoint approach28 is applied to

run-time averaged field to drive the adaptation. For the scale-resolving simulations, the fine-

space adjoint solution is computed using a patch reconstruction approach, which avoids the

need of assembling a finer space problem and keeps the computational costs low. A dynamic

load balancing strategy after each adaptation iteration is also proposed, based on a multi-

constraint domain decomposition algorithm. The approach, applied to the two-dimensional

flow around a square cylinder, performs similarly to a drag-based averaged adjoint adap-

tation method at a cheaper computational cost, demonstrating the benefits of using the

proposed adaptation method. Three dimensional simulations involving the implicit LES of

compressible turbulent flows show the suitability of the solver to reduce the computational

costs of scale-resolving simulations involving bluff bodies and separated flows using massively

parallel platforms. Comparisons of output quantities of engineering interest are also consid-
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ered, highlighting the accuracy of the adapted discretization. Future work will be devoted

to the extension of the current methodologies for the simulation of incompressible flows, the

use of matrix-free iterative solution strategies66 and preconditioners67,68 to further increase

the computational efficiency.

Appendix A

In this work, load balancing is obtained via an optimized re-partitioning of the mesh

performed by the Metis library.52 Metis allows to drive the graph partitioning according

to user-defined constraints that can be applied as weights at the graph vertices, here corre-

sponding to computational elements. This Appendix includes the definition of the weights.

1. w1 = Nv
2, where Nv = Πd

i=1 (k + i) /i is the number of DoFs related to the polynomial

degree k, local to the mesh element, and thus to the vertex of the graph. The w1

estimate represents the leading-order term in the operation count for the matrix-vector

product required by an iteration of the GMRES linear solver.

2. w2 = NvNg,v, where Ng,v is the number of Gauss points involved in the computation

of the volume integrals (see Secs. II and B) part of the residuals vector R (W).

The w2 estimate represents the leading-order term in the operation count for the as-

sembly of the volume contribution to the residuals vector.

3. w3 =
∑Nf

s=1NvNg,s, where Nf is the number of faces belonging to one element and Ng,s

is the number of Gauss points involved in the computation of the surface integrals (see

Secs. II and B) part of the residuals vector R (W). The w3 estimate represents the

leading-order term in the operation count for the assembly of the surface contribution

to the residuals vector.

4. w4 = N2
vNg,v represents the leading-order term in the operation count for for the

assembly of the volume contribution to the Jacobian J = ∂R/∂W.

5. w5 =
∑Nf

s=1N
2
vNg,v. w5 represents the leading-order term in the operation count for the

surface contribution to the Jacobian J = ∂R/∂W. Notice that Ng,v is used instead of

Ng,s in the definition of w5. This choice is motivated by the evaluation of the volume

lift term in a loop over all the faces, see Crivellini and Bassi 69 for a discussion about

the computational cost of this contribution.

An extended derivation of the operation count here reported can be found in Renac et

al.70
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