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A B S T R A C T

Increasing intermittent renewable generation to meet the climate goals entails a deep transformation of current
power systems. The transmission system must adapt to ensure a rapid and flexible response to the changes
in the energy flows. Flexibility can be provided by reinforcing the interconnection among all the market
agents and/or by installing facilities with fast response to the changes. In this work, we study the investment
problem of a central planner that seeks to expand the transmission network and install storage units considering
decarbonizing measures. We propose a two-stage stochastic problem with uncertainty on the demand growth
and including representative days to characterize the hourly demand and renewable power variability. To
obtain better expansion strategies according to a limit on the carbon emissions, second-order stochastic
dominance constraints are imposed. Numerical analyses based on the power system of the Canary island (Spain)
are provided. The results show that to install storage units is key to efficiently integrate renewable generation.
The investments in the transmission system are mostly in lower-voltage lines. The formulation with stochastic
dominance constraints results in higher second-stage investments, allowing a better adaptation to the demand
growth evolution.
1. Introduction

1.1. Motivation

Experts have stated that July 2023 has been the hottest month ever
registered and this is due to human’s economic development.1 To meet
the climate goals agreed by most of the countries around the world, it
is urgent to keep on increasing the electrification of energy systems and
the use of renewable sources to generate such electricity. However, the
intermittency of wind and solar energy is one of the major challenges
that planners are facing nowadays. Thus, it becomes fundamental to
adapt existing power systems to facilitate the increasing penetration
of renewable energy in future power systems. This is also a relevant
problem from the transmission system operator (TSO) point of view.
The transmission systems of current power systems were designed to
transport electricity from a reduced set of buses, where large thermal
units were located, to demand buses. However, in future decarbonized
power systems, most existing large thermal units will be replaced by a
large number of small-sized renewable units spread over the network.

∗ Corresponding author at: University of Bergamo, Department of Economics, Via dei Caniana 2, 24147 Bergamo, Italy.
E-mail addresses: Ruth.Dominguez@unibs.it (R. Domínguez), miguel.carrion@uclm.es (M. Carrión), sebastiano.vitali@unibg.it (S. Vitali).

1 https://www.nasa.gov/press-release/nasa-clocks-july-2023-as-hottest-month-on-record-ever-since-1880

This will inevitably modify the values of the power flows in future
power systems with respect to the current ones. Then, when designing
the network system, the TSO must simultaneously consider that future
demand is uncertain and that it must be supplied as much as possible
by intermittent renewable production.

In this context, global planners, such as the European Commis-
sion (European Commission, 2020), have defined the energy strategy
toward flexible energy systems, where the communication between
electricity producers and consumers must flow rapidly. This entails
a big challenge for TSOs since they must expand the transmission
system ensuring the connection among the agents and having available
tools to respond quickly to the changes in the energy flows. Storage
units represent a valid instrument to provide flexibility to the system
operation although the investment cost of building large facilities is still
very high, e.g. Luburić et al. (2018).

In this paper, we tackle this problem. We present an investment
model in transmission lines and storage units to expand an existing
power system in order to accommodate a large intermittent renewable
generation considering the uncertainty of the demand growth.
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Moreover, to make the best investment decisions toward a decar-
bonized energy system, we want to achieve a solution that guarantees
a level of carbon emissions produced by thermal power plants that is
lower than another given decision, typically referred to as a bench-
mark. Within a stochastic optimization model, a common approach to
compare two decisions is to confront their expected value. However, in
some problems, this simplification could bring to an extremely risky sit-
uation because the optimal solution could have a better expected value
of the benchmark but, at the same time, it could generate some extreme
effect much worse than the benchmark in some scenarios. In such cases,
it would be safer to compare the whole distributions generated on the
considered scenarios by the optimal decision and by the benchmark.
To tackle this issue the use of Stochastic Dominance (SD) is gaining
ground and we also include stochastic dominance constraints in our
model to consider a limit to carbon emissions produced by fossil-fuel
power plants.

1.2. Literature review

The research landscape in developing investment models for the
decarbonization of electric energy systems has witnessed significant
contributions. Boffino et al. (2019) proposed a two-stage stochastic
programming problem addressing investment decisions in generating,
transmission, and storage capacity. Notably, their work includes an
exploration of storage capacity expansion. Similarly, Chao and Wilson
(2020) focused on coordinating investments in generating and trans-
mission capacity under uncertainty. Notably, their work considers the
diverse economic criteria within regional wholesale markets.

Allard et al. (2020) presented an energy model assessing invest-
ments in the transmission system to integrate intermittent renewable
generation, with a specific application to the European system. Their
model determines the necessary enlargement of the transmission net-
work to meet climate goals. Domínguez et al. (2020) investigated the
expansion of generating and storage capacity in the European power
system towards 2050 using a multi-stage stochastic problem, providing
insights into the operation of the resulting power system.

Gonzalez-Romero et al. (2021) introduced a bi-level framework
where a central-social planner makes investment decisions in the trans-
mission network, incorporating the perspectives of other market agents.
Their study compares outcomes with those obtained from a merchant
transmission investor. Grimm et al. (2021) delved into the impact of
market design on investments in generation and transmission capacity,
evaluating the German market.

Muñoz et al. (2023) analyzed the influence of price control on
investments in renewable generating capacity in power systems with
strong cross-border constraints. In Xie et al. (2023), a distributionally
robust optimization method was proposed to guide expansion deci-
sions in generating, transmission, and storage capacity, albeit without
considering short- and long-term uncertainties in the decision plan.

Qiu et al. (2017), Dvorkin et al. (2017), Zhang and Conejo (2018),
and Wang et al. (2019) put forth various approaches to determine
investment decisions in transmission and storage capacity. Qiu et al.
(2017) tackled a multi-stage stochastic problem, considering factors
such as planning method, storage units, demand growth, and renewable
generation. Dvorkin et al. (2017) analyzed the problem of a merchant
storage investor through a tri-level model. Zhang and Conejo (2018)
utilized an adaptive robust optimization framework, while Wang et al.
(2019) employed robust optimization to address the investment prob-
lem. Notably, none of these works incorporated a risk measure to
capture and mitigate solution risks concerning the uncertainty of the
model.

The notion of SD is well-known in statistics, see Quirk and Saposnik
(1962), and was typically used to check ex-post whether a distribution
was able to dominate or not another distribution. There exists several
types of SD relations, for a complete review see Levy (2006). The
2

most used ones in empirical applications are the First-order Stochastic i
Dominance (FSD) and the Second-order Stochastic Dominance (SSD).
More recently, SD constraints were used directly within an optimization
model to ensure that the optimal solution was also able to dominate a
given benchmark. FSD constraints lead to a mixed-integer model, while
SSD constraints can be formulated as linear constraints and, thus, their
usage spread much more, see Dentcheva and Ruszczynski (2003), Post
(2003), Dupačová and Kopa (2012), and Kopa and Post (2015). The
SD constraints outperform other approaches to establish preferences be-
tween distributions since they consider the whole distributions and not
only some statistics or some moments. For instance, the expected value
of a distribution does not provide any information about the variance,
or about the maximum and the minimum; similarly, the Value-at-Risk
(𝑉@𝑅) and the Conditional Value-at-Risk (𝐶𝑉@𝑅) give information
about the tail of the distribution but losing the view about the expected
value. SD is able to consider jointly all the mentioned statistics. In
particular, SSD is consistent with the 𝐶𝑉@𝑅 as shown in Ma and
Wong (2010) because if a strategy 𝐴 SSD dominates a strategy 𝐵 then
𝑉@𝑅𝛼(𝐴) is better than 𝐶𝑉@𝑅𝛼(𝐵), for any level 𝛼. The meaning
f ‘‘better’’ relies on the type of distribution (profit vs loss), as it is
iscussed in Section 3.7. Clearly, in a stochastic optimization model in
hich the stochasticity is represented by a discrete set of scenarios, it
ould be possible to impose as many 𝐶𝑉@𝑅 constraints as the number
f scenarios to guarantee the SSD dominance but the computing cost
ould be much higher.

The SSD has as natural field of application the financial problem
here the aim of the model is to define a portfolio that is better than
given benchmark, see e.g. Kopa et al. (2018), Moriggia et al. (2019)

nd Consigli et al. (2020). However, several works explored the use
f SSD constraints also within power system models. Lesser (1990)
roposes to use stochastic dominance tests to compare the planning
lternatives of an electricity utility. Cheong et al. (2007) analyzes the
nvestment problem of an electricity company and applies SSD con-
traints to manage the risk within the objective function. Carrión et al.
2009) imposes SSD constraints in the problem of an electricity retailer
hat wants to determine the forward contracting purchases and the
elling prices offered to its potential clients considering as uncertain pa-
ameters the future pool prices and the client demands. Jamshidi et al.
2018) focuses on a similar problem, whereas Zarif et al. (2013) studies
he problem of the self-scheduling of large consumers. Escudero and
onge (2018) generally discusses modeling approaches to the capacity

xpansion planning considering SD to control the risk. Domínguez
t al. (2021) presents a multi-stage investment model in generating
nd storage capacity and applies SSD to define the optimal investment
trategies able to dominate the decarbonizing pathways proposed by
he European Commission toward 2050.

.3. Contributions

In this study, we consider the decision-making problem of a TSO
hat seeks to expand the transmission system to allow an efficient
ntegration of intermittent renewable production. To do this, the TSO
onsiders to install new transmission lines and/or storage units. The
ransmission lines can be built in new corridors, which requires a longer
nstallation period, or in existing ones, which means to increase the
apacity of existing lines. The proposed decision-making problem is
ormulated through a two-stage stochastic problem, where the future
emand growth is considered uncertain.

In addition, we suggest to limit the maximum carbon emissions
roduced by non-renewable units fed by fossil fuels using Second-order
tochastic Dominance constraints (SSD). Imposing SSD constraints al-
ows to obtain a better decision strategy with respect to an acceptable,
r just known, strategy considering the whole distributions of both the
ptimal and the acceptable strategies and not only some scenarios as,
or instance, the Conditional Value-at-Risk or some statistics as, for

nstance, the average.
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Therefore, the contributions of this work are threefold: (i) to pro-
pose an investment model in transmission lines and storage units for
TSOs considering the uncertainty of the demand growth and a limit
to the carbon emissions produced by fossil-fuel units; (ii) to include
SSD constraints in the optimization model to obtain better investment
strategies in terms of carbon emissions; (iii) to apply the proposed
model to a realistic case study based on the transmission system of
Canary island and to compare the numerical results with those of a
model that just limits the average carbon emissions.

2. Decision framework

The objective of this study is to obtain the optimal transmission and
storage investment decisions made by the TSO to satisfy the demand.
Additionally, one of the objectives of the TSO is to expand the network
reducing carbon emissions from non-renewable production under a
given generation capacity scenario. Observe that the TSO cannot decide
the investments in new power plants, but can decide which lines and
storage units can be installed to favor the procurement of the demand
using as much renewable production as possible. This problem is of
utmost importance for TSOs considering the increasing capacity of
new renewable units that are being installed in most power systems
worldwide.

This is a long-term planning problem modeled using a target year.
The target year is represented by a set of representative days divided
into hourly periods. Note that using an hourly characterization allows
for proper capture of variabilities in demand and renewable energy
throughout the year. Days are denoted by index 𝑑 ∈ 𝐷, whereas hourly
periods are represented by index 𝑡 ∈ 𝑇 .

Transmission and storage investment decisions were made under
different degrees of uncertainty. The construction of new transmission
lines in new corridors spans several years. We refer to lines installed in
new corridors as new lines that link two buses that are not currently
linked by a single line. The bureaucracy and necessary preliminary
technical studies for carrying out the installation of this type of lines
usually require significant time. However, building new lines using
existing corridors is comparatively faster. In addition, the installation
of energy storage systems based on battery systems is also rapid.
Investments in new lines using existing corridors and in storage units
can be made as required by the necessity of the system operation.

The main uncertain parameter in the problem faced by the TSO is
the future demand in the target year. Considering the high construction
times of transmission lines in new corridors, the TSO must decide which
lines should be installed before knowing the actual demand of the
system. Subsequently, we propose to formulate the problem faced by
the TSO as a two-stage stochastic programming problem. The uncertain
demand for each day and hour is modeled as a stochastic process
and characterized by a set of scenarios. Observe that the investment
decisions in lines in new corridors must be unique for all possible
realizations of uncertain demand. Therefore, in this study, we propose
to consider the installation of transmission lines in new corridors as
here-and-now decisions made before uncertainty is disclosed, whereas
investments in transmission lines located in existing corridors and
storage units are assumed to be wait-and-see decisions made after
uncertainty is revealed.

Fig. 1 illustrates the decision-making approach graphically. The
operation of the resulting system was simulated in the second stage to
model the influence of investment decisions on system operation.

3. Transmission and storage expansion formulation using second-
order stochastic dominance constraints

The SD approach of the transmission and storage expansion problem
considering SSD constraints is provided in this section. For the sake of
3

clarity, the notation used in this section is provided in Appendix A.
Fig. 1. Decision-making tree.

3.1. Objective function

The objective function of the transmission and storage investment
problem faced by TSOs is formulated as follows:

Minimize𝛩
∑

𝓁∈𝐿C,N

𝐶L,N
𝓁 𝑦L,N𝓁 +

∑

𝜔∈𝛺
𝜋𝜔

(

∑

𝓁∈𝐿C,E

𝐶L,E
𝓁 𝑦L,E𝓁𝜔 +

∑

𝑠∈𝑆

(

𝐶 I,SP
𝑠 𝑝I,S𝑠𝜔 + 𝐶 I,SE

𝑠 𝑒I,S𝑠𝜔
)

)

. (1)

This objective function aims to minimize the total investment cost
ncurred by the TSO, and is equal to the sum of the investment
osts in the new transmission lines and storage units. Set 𝛩 contains
he optimization variables. As described in Section 2, investments in
ransmission lines installed in new corridors, 𝑦L,N𝓁 , are first-stage binary
ariables independent of the scenario index, whereas decisions on
nvestments in lines placed in existing corridors, denoted by binary
ariables 𝑦L,E𝓁𝜔 , can be delayed in time and are second-stage variables
ependent on the scenario index, 𝜔. Note that each value of index 𝓁
epresents a specific line (length, voltage, power capacity, origin and
estiny) that can be built. On the other hand, investments in energy
torage systems are second-stage variables and comprise two terms,
ower and energy components, which are denoted by continuous and
on-negative variables 𝑝I,S𝑠𝜔 and 𝑒I,S𝑠𝜔, respectively. The power component
imits the maximum power that can be charged to and discharged from
torage units, whereas the energy component refers to the maximum
mount of energy stored in a given time period.

.2. Technical constraints of generating units

The technical constraints of generating units are formulated by
xpressions (2)–(6):
G
𝑔𝑑𝑡𝜔 ≤ 𝑃 I,G

𝑔 , ∀𝑔 ∈ 𝐺D,∀𝑑 ∈ 𝐷,∀𝑡 ∈ 𝑇 ,∀𝜔 ∈ 𝛺, (2)

𝑝G𝑔𝑑𝑡𝜔 + 𝑝G,S𝑔𝑑𝑡𝜔 = 𝐴D
𝑔𝑑𝑡𝑃

I,G
𝑔 , ∀𝑔 ∈ 𝐺I,∀𝑑 ∈ 𝐷,∀𝑡 ∈ 𝑇 ,∀𝜔 ∈ 𝛺, (3)

𝑝G𝑔𝑑𝑡𝜔 − 𝑝G𝑔𝑑𝑡−1,𝜔 ≤ 𝑃G
up,𝑔𝑃

I,G
𝑔 , ∀𝑔 ∈ 𝐺D,∀𝑑 ∈ 𝐷,∀𝑡 ∈ 𝑇 ,∀𝜔 ∈ 𝛺, (4)

𝑝G𝑔𝑑𝑡−1,𝜔 − 𝑝G𝑔𝑑𝑡𝜔 ≤ 𝑃G
dw,𝑔𝑃

I,G
𝑔 , ∀𝑔 ∈ 𝐺D,∀𝑑 ∈ 𝐷,∀𝑡 ∈ 𝑇 ,∀𝜔 ∈ 𝛺, (5)

{𝑝G𝑔𝑑𝑡𝜔, 𝑝
G,S
𝑔𝑑𝑡𝜔} ≥ 0, ∀𝑔 ∈ 𝐺,∀𝑑 ∈ 𝐷,∀𝑡 ∈ 𝑇 ,∀𝜔 ∈ 𝛺. (6)

Constraints (2) and (3) establish the limits of the power gener-
ated by the thermal and renewable generating units, respectively. The
maximum power production of each generator must be lower than
its installed capacity. It is also considered that the power output of
renewable units is bounded by the availability of renewable resources,
which are characterized by parameter 𝐴D

𝑔𝑑𝑡 ∈ [0, 1]. Observe that
D I,G
the available renewable production, 𝐴𝑔𝑑𝑡𝑃𝑔 , is equal to the power
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generated, 𝑝G𝑔𝑑𝑡𝜔, plus surplus energy, 𝑝G,S𝑔𝑑𝑡𝜔. Surplus energy is a part
of the available production that cannot be used to satisfy the demand
because of the congestion of the transmission network or the lack of
flexibility in the operation of thermal units. One of the objectives of the
TSO is to design the transmission system in such a way that renewable
surpluses are as low as possible to minimize the production of non-
renewable units. The power ramps of the thermal units are formulated
using (4) and (5). The positive nature of the power output and surplus
is established by (6).

3.3. Technical constraints of storage units

The investment and operation of storage units are formulated as
follows:

0 ≤ 𝑝I,S𝑠𝜔 ≤ 𝑃 I,S
max,𝑠, ∀𝑠 ∈ 𝑆,∀𝜔 ∈ 𝛺, (7)

0 ≤ 𝑒I,S𝑠𝜔 ≤ 𝐸I,S
max,𝑠, ∀𝑠 ∈ 𝑆,∀𝜔 ∈ 𝛺, (8)

𝑒I,S𝑠𝜔 = 𝛾S𝑠 𝑝
I,S
𝑠𝜔 , ∀𝑠 ∈ 𝑆,∀𝜔 ∈ 𝛺, (9)

≤ 𝑝S,D𝑠𝑑𝑡𝜔 ≤ 𝑝I,S𝑠𝜔 , ∀𝑠 ∈ 𝑆,∀𝑑 ∈ 𝐷,∀𝑡 ∈ 𝑇 ,∀𝜔 ∈ 𝛺, (10)

≤ 𝑝S,C𝑠𝑑𝑡𝜔 ≤ 𝑝I,S𝑠𝜔 , ∀𝑠 ∈ 𝑆,∀𝑑 ∈ 𝐷,∀𝑡 ∈ 𝑇 ,∀𝜔 ∈ 𝛺, (11)

𝛾S,min
𝑠 𝑒I,S𝑠 ≤ 𝑒S𝑠𝑑𝑡𝜔 ≤ 𝑒I,S𝑠𝜔 , ∀𝑠 ∈ 𝑆,∀𝑑 ∈ 𝐷,∀𝑡 ∈ 𝑇 ,∀𝜔 ∈ 𝛺, (12)

𝑒S𝑠𝑑𝑡𝜔 = 𝛾S,0𝑠𝑑 𝑒I,S𝑠𝜔 , ∀𝑠 ∈ 𝑆, 𝑡 = 0,∀𝑑 ∈ 𝐷,∀𝜔 ∈ 𝛺, (13)

𝑒S𝑠𝑑𝑡𝜔 ≥ 𝛾S,F𝑠𝑑 𝑒I,S𝑠𝜔 , ∀𝑠 ∈ 𝑆, 𝑡 = 𝑇𝑑 ,∀𝑑 ∈ 𝐷,∀𝜔 ∈ 𝛺, (14)

𝑒S𝑠𝑑𝑡𝜔 = 𝑒S𝑠𝑑𝑡−1,𝜔 + 𝜂S𝑝S,C𝑠𝑑𝑡𝜔 − 1
𝜂S

𝑝S,D𝑠𝑑𝑡𝜔, ∀𝑠 ∈ 𝑆,∀𝑑 ∈ 𝐷,∀𝑡 ∈ 𝑇 ,∀𝜔 ∈ 𝛺. (15)

As mentioned earlier, the investments in the power and energy
components of the storage units are characterized by variables 𝑝I,S𝑠𝜔 and
𝑒I,S𝑠𝜔. The limits on investments in the power and energy components are
established by constraints (7) and (8). The relationship between energy
and power components is defined in (9). The charged and discharged
power are bounded by the installed power component in constraints
(10) and (11). Constraint (12) establishes the limits of the energy stored
in each day, time period, and scenario. The initial and final daily states
of storage units are enforced by constraints (13) and (14). Finally, the
energy balance of the storage units is formulated using (15).

3.4. Constraints of existing transmission lines

The power flows in existing transmission lines are formulated using
the DC model as follows:

𝑝L𝓁𝑑𝑡𝜔 = 1
𝑋𝓁

(

𝜃𝑂(𝓁)𝑑𝑡𝜔 − 𝜃𝐹 (𝓁)𝑑𝑡𝜔
)

, ∀𝓁 ∈ 𝐿E,∀𝑑 ∈ 𝐷,∀𝑡 ∈ 𝑇 ,∀𝜔 ∈ 𝛺,(16)

𝑃 L
max,𝓁 ≤ 𝑝L𝓁𝑑𝑡𝜔 ≤ 𝑃 L

max,𝓁 , ∀𝓁 ∈ 𝐿E,∀𝑑 ∈ 𝐷,∀𝑡 ∈ 𝑇 ,∀𝜔 ∈ 𝛺. (17)

Constraint (16) computes the power flows as a function of the
ifference in the voltage angles at both ends of the transmission lines,
hereas the limits of the power flows are established by (17).

.5. Constraints of candidate transmission lines

Next, we present the mathematical formulation of power flows in
andidate lines. It is important to note that the formulation for power
lows in candidate transmission lines differs from that of existing lines
ecause it must avoid imposing unrealistic limitations on voltage angles
hen these transmission lines are not installed. To address this, the
roposed formulation is the following:
1
𝑋𝓁

(

𝜃𝑂(𝓁)𝑑𝑡𝜔 − 𝜃𝐹 (𝓁)𝑑𝑡𝜔
)

−
(

1 − 𝑦L,N𝓁

)

𝑀 ≤ 𝑝L𝓁𝑑𝑡𝜔 ≤

1
𝑋𝓁

(

𝜃𝑂(𝓁)𝑑𝑡𝜔 − 𝜃𝐹 (𝓁)𝑑𝑡𝜔
)

+
(

1 − 𝑦L,N𝓁

)

𝑀,

𝓁 ∈ 𝐿C,N,∀𝑑 ∈ 𝐷,∀𝑡 ∈ 𝑇 ,∀𝜔 ∈ 𝛺, (18)
𝑃 L 𝑦L,N ≤ 𝑝L ≤ 𝑃 L 𝑦L,N, ∀𝓁 ∈ 𝐿C,N,∀𝑑 ∈ 𝐷,∀𝑡 ∈ 𝑇 ,∀𝜔 ∈ 𝛺, (19)
4

max,𝓁 𝓁 𝓁𝑑𝑡𝜔 max,𝓁 𝓁
1
𝑋𝓁

(

𝜃𝑂(𝓁)𝑑𝑡𝜔 − 𝜃𝐹 (𝓁)𝑑𝑡𝜔
)

−
(

1 − 𝑦L,E𝓁𝜔

)

𝑀 ≤ 𝑝L𝓁𝑑𝑡𝜔 ≤

1
𝑋𝓁

(

𝜃𝑂(𝓁)𝑑𝑡𝜔 − 𝜃𝐹 (𝓁)𝑑𝑡𝜔
)

+
(

1 − 𝑦L,E𝓁𝜔

)

𝑀,

∀𝓁 ∈ 𝐿C,E,∀𝑑 ∈ 𝐷,∀𝑡 ∈ 𝑇 ,∀𝜔 ∈ 𝛺, (20)
−𝑃 L

max,𝓁𝑦
L,E
𝓁𝜔 ≤ 𝑝L𝓁𝑑𝑡𝜔 ≤ 𝑃 L

max,𝓁𝑦
L,E
𝓁𝜔 , ∀𝓁 ∈ 𝐿C,E,∀𝑑 ∈ 𝐷,∀𝑡 ∈ 𝑇 ,∀𝜔 ∈ 𝛺. (21)

Constraint (18) computes the power flow through newly installed
lines in the new corridors. In this constraint, parameter 𝑀 is a suf-
ficiently large value, which is greater than the maximum line power
capacity, and is used to prevent the enforcement of limits on voltage
angle differences if candidate lines are not installed. Constraint (19)
states the upper and lower limits of the power flow in the candidate
lines in the existing corridors. In this manner, if a line 𝓁 is installed,
then binary variable 𝑦L,N𝓁 is equal to 1, constraint (18) states that
𝑝L𝓁𝑑𝑡𝜔 = 1

𝑋𝓁

(

𝜃𝑂(𝓁)𝑑𝑡𝜔 − 𝜃𝐹 (𝓁)𝑑𝑡𝜔
)

and constraint (19) limits the power
flow in the line, −𝑃 L

max,𝓁 ≤ 𝑝L𝓁𝑑𝑡𝜔 ≤ 𝑃 L
max,𝓁 . However, if the transmission

ines is not installed, 𝑦L,N𝓁 = 0, constraint (18) does not bind the
alue of the voltage angles because it forces the power flow 𝑝L𝓁𝑑𝑡𝜔 to

be greater than a small negative value and less than a large positive
value, whereas constraint (19) fixes the value of 𝑝L𝓁𝑑𝑡𝜔 to zero, 0 ≤
𝑝L𝓁𝑑𝑡𝜔 ≤ 0. Constraints (20) and (21) are equivalent to constraints
(18) and (19) for candidate lines in the existing corridors. Considering
that the investments in lines placed in existing corridors are wait-and-
see variables, constraints (20) and (21) are defined for each possible
scenario.

3.6. Energy balance

The energy balance is enforced by constraint (22). This constraint
ensures for each bus, time period, and scenario that the summation
of the production of the generation units located in the considered
bus, the energy discharged from the storage, and the energy coming
from the set of lines connected to other buses must be equal to the
sum of the bus demand, the energy charged to the batteries, and the
energy injected to other buses connected by lines to the considered bus.
The only parameter in this constraint is demand, 𝑃D

𝑏𝑑𝑡𝜔. Demand is an
uncertain parameter modeled using a set of scenarios 𝜔 ∈ 𝛺. Because
the demand must be satisfied in every considered scenario, the power
production of the generating units, the power discharged and charged
from batteries, and the power flows through transmission lines are
second-stage variables that depend on the scenario index, 𝜔. Note also
hat the power flows simultaneously consider existing and candidate
ines. As previously mentioned in Section 3.5, the power flows of the
on-built candidate lines are equal to zero by constraints (18)–(21).
∑

∈𝐺𝑏

𝑝G𝑔𝑑𝑡𝜔 +
∑

𝑠∈𝑆𝑏

𝑝S,D𝑠𝑑𝑡𝜔 +
∑

𝓁∈𝐿F
𝑏

𝑝L𝓁𝑑𝑡𝜔 = 𝑃D
𝑏𝑑𝑡𝜔 +

∑

𝑠∈𝑆𝑏

𝑝S,C𝑠𝑑𝑡𝜔 +
∑

𝓁∈𝐿O
𝑏

𝑝L𝓁𝑑𝑡𝜔,

∀𝑏 ∈ 𝐵,∀𝑑 ∈ 𝐷,∀𝑡 ∈ 𝑇 ,∀𝜔 ∈ 𝛺. (22)

3.7. Maximum carbon emissions produced by fossil-fuel units using second-
order stochastic dominance constraints

As previously stated, in this study SSD constraints are used to
determine the best investment strategies according to the maximum
carbon emissions produced by non-renewable units fed by fossil fuels.
Because future demand is uncertain, the carbon emissions produced
by non-renewable units is also an uncertain variable that depends
on the investment decisions made by the TSO. Note that insufficient
development of the transmission network may lead to a situation
where a portion of the energy generated by renewable units cannot be
injected into the network due to line congestion, potentially resulting
in undesirable higher-than-necessary production from fossil-fuel units
and increased carbon emissions.
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To represent the carbon emissions from non-renewable production,
the following auxiliary variable is used:

𝑝FF,Tot𝜔 =
∑

𝑑∈𝐷
𝑊𝑑

∑

𝑔∈𝐺D

∑

𝑡∈𝑇
𝐵G
𝑔 𝑝

G
𝑔𝑑𝑡𝜔, ∀𝜔 ∈ 𝛺, (23)

where variable 𝑝FF,Tot𝜔 represents the total carbon emissions generated
by non-renewable units in each scenario 𝜔 ∈ 𝛺, and parameter 𝐵G

𝑔
denotes the amount of carbon emissions per MWh produced by unit
𝑔. Therefore, our objective is to determine the optimal investment
decisions for TSOs limiting the carbon emissions from non-renewable
production considering a benchmark that represents the maximum
acceptable quantity of carbon emissions produced by the pollutant
units. This benchmark is also a random parameter that can be denoted
as 𝑃 FF,Ben

𝜉 , ∀𝜉 ∈ 𝛯Ben. Then for each scenario 𝜉, 𝑃 FF,Ben
𝜉 represents the

maximum carbon emissions linked to that scenario, with an assigned
probability of 𝜏𝜉 .

Observe that the number of scenarios 𝜉 ∈ 𝛯Ben selected to charac-
terize the benchmark can be different to the number of scenarios used
to represent the demand. In order to reduce the computational size of
the resulting optimization problem it would be desirable to keep the
number of benchmark scenarios as low as possible.

Considering that the carbon emissions from non-renewable units
is a random variable that depends on the considered scenario, the
limitation of this production can be performed in terms of expected
values as follows:
∑

𝜔∈𝛺
𝜋𝜔𝑝

FF,Tot
𝜔 ≤

∑

𝜉∈𝛯Ben

𝜏𝜉𝑃
FF,Ben
𝜉 . (24)

Then, constraint (24) limits the expected carbon emissions from
non-renewable units to the expected value of the benchmark 𝑃 FF,Ben

𝜉 ,
∀𝜉 ∈ 𝛯Ben. Observe that 𝑝FF,Tot𝜔 is a variable depending on the TSO
investment decisions that represents the carbon emissions from non-
renewable production in scenario 𝜔. Considering constraint (24), ob-
serve that undesirably carbon emission values might occur in some sce-
narios, even though the expected carbon emissions are acceptable. One
alternative manner to limit the carbon emissions from non-renewable
units is by means of stochastic dominance theory. As described in
Section 1, stochastic dominance allows the comparison of two random
variables in terms of a desired acceptability (big or small outcomes).
In the case of carbon emissions, where small values are preferred, the
SSD can be formulated as follows:
∑

𝜔∈𝛺
𝜋𝜔𝑠𝜔𝜉′ ≤

∑

𝜉∈𝛯Ben

𝜏𝜉𝑆
Ben
𝜉𝜉′ , ∀𝜉′ ∈ 𝛯Ben, (25)

𝑠𝜔𝜉 ≥ 𝑝FF,Tot𝜔 − 𝑃 FF,Ben
𝜉 , ∀𝜔 ∈ 𝛺,∀𝜉 ∈ 𝛯Ben, (26)

𝑠𝜔𝜉 ≥ 0, ∀𝜔 ∈ 𝛺,∀𝜉 ∈ 𝛯Ben. (27)

The formulation (25)–(27) is based on that used, for instance,
in Carrión et al. (2009). Variables 𝑠𝜔𝜉 formulate equivalently the func-
tion max

{

𝑝FF,Tot𝜔 − 𝑃 FF,Ben
𝜉 , 0

}

using linear expressions. Similarly, pa-
rameter 𝑆Ben

𝜉𝜉′ is computed as:

𝑆Ben
𝜉𝜉′ = max{𝑃 FF,Ben

𝜉 − 𝑃 FF,Ben
𝜉′ , 0}, ∀𝜉, 𝜉′ ∈ 𝛯Ben. (28)

Based on the values of 𝑠𝜔𝜉′ and 𝑆Ben
𝜉𝜉′ , constraint (25) establishes,

for each benchmark scenario 𝜉′ ∈ 𝛯, that the expected carbon emis-
sions greater than the benchmark scenario 𝜉′,

(

∑

𝜔∈𝛺 𝜋𝜔max
{

𝑝FF,Tot𝜔

−𝑃 FF,Ben
𝜉′ , 0

})

, has to be less than the acceptable carbon emissions

greater than benchmark scenario 𝜉′,
(

∑

𝜉∈𝛯Ben 𝜏𝜉max{𝑃 FF,Ben
𝜉 − 𝑃 FF,Ben

𝜉′ ,

0}
)

. Then, this constraint ensures for all benchmark scenarios that the
expected carbon emissions greater than them is acceptable.

Therefore, the main advantage of using stochastic dominance con-
straints with respect to considering only the expected value of the
5

carbon emissions is that the entire distribution function determines the
acceptability of investment solutions, not only its expected value. In
this way, we avoid the possibility that the solution generates scenarios
with carbon emissions remarkably higher than the benchmark, i.e., a
situation that can happen to impose the expected value constraint.

Finally, we would like to highlight that the application of stochastic
dominance constraints in the transmission expansion problem may not
be limited solely to addressing carbon emissions. Instead, if desired,
these constraints can be flexibly employed to ensure the acceptability
of transmission expansion plans in the presence of other stochastic
variables. For instance, a critical aspect of managing the transmission
network is preventing unserved demand resulting from line congestion.
While our proposed approach takes a conservative stance by disal-
lowing unserved demand, alternative and less conservative strategies
may be explored. For example, in the context of the Spanish power
system, a maximum interruption time of 15 min per year is permissible,
ensuring 99.997% satisfaction of demand. By incorporating stochastic
dominance constraints, we can guarantee that the resulting investment
plan is robust enough to meet 99.997% of uncertain demand. It is
also interesting to enhance this approach by considering unserved
demand caused by failures of generating units and transmission lines.
This would necessitate expanding the set of uncertain parameters to
include scenarios involving failures of generation and transmission
assets. Furthermore, stochastic dominance constraints can also be ap-
plied to other variables, such as specifying the minimum or maximum
acceptable production levels for a given technology, driven by strategic
or security considerations. Additionally, constraints may be imposed
on the maximum power flow through specific lines in the system. In
summary, the use of stochastic dominance constraints can significantly
enhance the adaptability of the transmission expansion plan to diverse
uncertainties.

4. Case study

The SD approach is tested on a realistic case study based on the Gran
Canaria power system in Spain. This is an isolated power system with
a high renewable-energy potential that procures the electricity demand
of a population of around 850 thousand people. The objective of this
case study is to determine transmission-line and storage investments for
2050. Then, the transmission planner must decide which transmission
lines must be built from a set of candidate lines and storage units
to ensure the procurement of future demand with acceptable carbon
emissions. The expected configuration of the generation mix in 2050
is input data for this problem and does not depend on transmission
planner decisions. Based on this system, a base case has been solved and
two additional sensitivity analyses have been performed to analyze the
impact on the investment decisions of (i) the number of scenarios of the
benchmark used to limit the carbon emissions and (ii) the congestion
of the transmission network.

4.1. Input data

The characterization of the Gran Canaria power system was based
on the representation presented in Cañas-Carretón et al. (2021). The
considered representation of this power system comprised 29 buses and
47 generating units. The technologies for generating units are Open-
Cycle Gas Turbines (OCGT), wind, and solar PV. Fig. 2 shows the power
system topology. As observed in this figure, the transmission network
is operated at two different voltage levels: 66 and 132 kV. The existing
transmission lines are represented in blue, whereas the candidate lines
are depicted using dashed lines in red.

A set of 36 candidate lines are considered. The parameters that
characterize the set of candidate lines are included in Tables B.12 and
B.13 in Appendix B. The power base is 100 MVA, and the voltage bases
are 66 and 132 kV. Capital costs are annualized using the capital

𝑟(1+𝑟)𝑥 , where 𝑥 is the plant life of the unit,
recovery factor, CRF = (1+𝑟)𝑥−1
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Fig. 2. Single-line diagram of Gran Canaria power system.

Table 1
Demand growth scenarios.
Scenario Annual demand Probability

growth (%)

1 0.091 0.007
2 0.229 0.066
3 0.365 0.241
4 0.500 0.373
5 0.635 0.241
6 0.771 0.066
7 0.908 0.007

and 𝑟 the interest rate. In this paper, the considered interest rate is 9%
and the life of the assets is equal to 25 years.

The target year was represented by fifteen characteristic days. These
days were selected using the procedure proposed in Gröwe-Kuska et al.
(2003) considering the series of demand and wind and solar PV avail-
ability. Therefore, a total of 15 ⋅ 24 = 360 hourly periods were consid-
ered. The following data were obtained from actual values of the Gran
Canaria power system in 2018.2. Fig. 3 shows the hourly values of wind
and solar PV availability.

The future demand of the system in 2050 is an uncertain parameter
that is characterized as a stochastic process. For this, it is considered
that the annual growth is normally distributed with a mean of 0.5% and
a standard deviation equal to 0.15%. These values are consistent with
the expected annual demand growth as described in IRENA (2019).
This probability distribution was then discretized using seven scenarios.
Note that the usage of a normal distribution is not mandatory for gen-
erating scenarios, and a different probability distribution may be used
if desired. Table 1 includes the annual demand growth and probability
per scenario. Then, considering the annual demand of 2018 and the
demand growth of Table 1, the resulting demand values per period and
scenario are shown in Fig. 4. The total demand per bus is allocated
using the share factors listed in Table 2.

Table 3 lists the nominal capacities of the generating units that are
scheduled to be in operation during the target year. These capacities are
based on the current power capacities and renewable energy potentials
described by Gils and Simon (2017). The operational cost of the OCGT
units is 288.2 e/MWh, whereas it is equal to 0 for the wind and solar
PV units. The OCGT units emit 510 gCO2/kWh in average.

2 https://www.ree.es/es
6

A total of 10 candidate Li-ion storage facilities are considered, which
can be located in buses 4, 5, 14, 15, 16, 19, 22, 23, 24 and 27. A typical
ratio between power and energy of a storage unit of 6 h was considered.
The total investment cost of this type of storage unit, including the
energy and power terms, is 148 e/MWh. The maximum energy storage
capacity that could be installed in each candidate location was 1800
MWh. The costs of charging and discharging energy in the day-ahead
market are null.

Considering that demand is an uncertain parameter, the maximum
acceptable value of carbon emissions is also uncertain. In this case, the
maximum carbon emissions were modeled using two benchmarks com-
prising five scenarios each. Applying the same methodology outlined
for demand characterization, both benchmarks are derived with the as-
sumption that the annual demand growth follows a normal distribution
𝑁(0.5, 0.15), and the acceptable carbon emissions are determined based
on supplying 30% and 25% of the future demand through OCGT units.
These percentages were chosen considering the specific renewable
potential of the analyzed power system. In Table 4, the probabilities
of the scenarios defining the benchmarks are presented. The carbon
emissions associated to each scenario are computed considering that
the amount of carbon emissions per kWh produced by OCGTs is equal
to 510 gCO2/kWh and that the average annual demand is equal to 4.04
TWh. Notably, the benchmark scenarios allowing emissions associated
with 30% of non-renewable production exhibit higher values than
those generated for the benchmark involving only 25% non-renewable
production. This implies that the benchmark allowing carbon emissions
related to 25% of non-renewable production is more restrictive com-
pared to the other benchmark. Please note that defining benchmarks is
a subjective decision for the decision-maker, and as such, there exist
numerous ways to establish benchmarks for specific problems.

All simulations were performed with CPLEX 12.6.3, using a server
with four 3.0 GHz processors and 250 GB of RAM and a HPE ProLiant
DL560 Gen11 server, equipped with four 2.2 GHz 18-core processors
and 512 GB of RAM. The number of constraints and continuous vari-
ables in the base case are 2.6 and 1 millions, respectively. The number
of binary variables is 379, and the maximum solution time attained is
30 h.

4.2. Results: base case

The case described above was solved considering benchmarks as-
suming maximum acceptable carbon emissions related to non-
renewable productions of 30 and 25% as well as stochastic dominance
(SD) and expected value (Exp) formulations. The stochastic dominance
formulation corresponds to constraints (1)–(22) and (25)–(27); while,
the expected value formulation comprises (1)–(22) and (24).

The main results for the different cases are listed in Tables 5 and
6. These tables include the objective function value, transmission and
storage investment costs, and the solution time in each case. Note that
the transmission costs are divided into first- and second-stage costs. The
second-stage costs have been already discounted.

First, Table 5 shows that the objective functions of Exp and SD
formulations are identical. This result is a consequence of the fact
that the constraints limiting the maximum carbon emissions of non-
renewable units are not active when the maximum non-renewable
production is 30% or higher. Therefore, the resulting solution times
are significantly low. By contrast, Table 6 shows that the investment
decisions obtained for the case with the maximum carbon emissions of
25% production of non-renewable units are different for the Exp and
SD cases. In particular, we observe that the total investment cost in
the SD case is 2.2% greater than that in Exp. This result indicates that
the investment decisions obtained in the SD case are more conservative
than those in the Exp case, which yields higher investment costs. Note
that the benchmark used in the SD case contains scenarios with smaller
maximum carbon emissions than the Exp formulation, which further

constrains the operation of the system. Additionally, observe that the

https://www.ree.es/es
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Fig. 3. Renewable availabilities.
Fig. 4. Demand scenarios.
Table 2
Demand share factor (%).

Bus

1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 18 23 27 28 29

3.5 3.4 4.5 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 3.7 3.7 12.1 8.6 6.3 6.4 2.4 0.9
c

investment decisions in the Exp and SD cases are significantly different.
For example, investments in storage and second-stage transmission
lines are much higher in the SD case than in the Exp case. The opposite
result was observed for first-stage investments in transmission lines.
Note that investment in second-stage assets allows the TSO to adapt
to each demand scenario. Finally, we observe that the investments in
storage in cases with a maximum carbon emissions associated with
25% of non-renewable production are significantly greater than those
in the case with a maximum production of non-renewable units equal
to 30%. This result reveals that investments in storage are more useful
than investments in transmission lines if it is desirable to reduce the
production of non-renewable units.

Table 7 provides the transmission and storage costs per scenario
for Exp and SD cases if carbon emissions are less than those in the
case with 25% of non-renewable production. Note that the first-stage
transmission investments are independent of the scenario index and
identical for all scenarios. As mentioned above, the first investments
7

in transmission lines placed in the new corridors are higher in the Exp
ase. However, the second-stage investment costs were higher in SD for

most scenarios. Note that because the investment decisions of the SD
case rely more on the second stage, it is possible to adapt the investment
decisions to each particular demand scenario. For instance, observe that
the total costs in scenarios 1–3, which are associated with low demand,
are lower in SD than in Exp, whereas they are higher in the rest of the
scenarios. Then, the solution obtained by the SD case may lead to a low
cost in favorable scenarios at the expense of experiencing larger costs in
high-demand scenarios, where the limitation of low carbon emissions is
more difficult to satisfy. In fact, the total investment cost in the scenario
with the highest demand is 6.2 times higher than that in the lowest
demand scenario.

Table 8 lists the number of installed transmission lines per type and
its length, as well as the storage capacity installed in each bus, for
each scenario and for each case. In this table, FS refers to first-stage
investments. In accordance with the results provided in Table 7, the
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Table 3
Technical characteristics of generating units.

Techn. Unit Node Nominal Techn. Unit Node Nominal
capacity capacity
(MW) (MW)

OCGT

1–5 13 32.0

Solar PV

32 12 23.2
6–10 13 32.0 33 14 235.6
11–15 18 32.0 34 15 190.2
16–20 18 32.0 35 16 302.9

Wind

21 1 22.8 36 1 22.3
22 6 165.8 37 2 6.0
23 7 2.4 38 3 38.4
24 8 1.8 39 4 23.2
25 10 111.1 40 5 23.2
26 15 143.6 41 6 23.2
27 21 0.6 42 7 23.2

Solar PV

28 8 23.2 43 18 12.0
29 9 23.2 44 23 50.8
30 10 23.2 45 27 8.7
31 11 23.2 46 28 18.5

47 29 5.4

Table 4
Benchmark scenarios.

Scenario Carbon emissions related to Carbon emissions related to Probability
maximum non-renewable maximum non-renewable
production of 30% (kTon) production of 25% (kTon)

1 550.8 459.0 0.020
2 586.5 489.6 0.227
3 617.1 515.1 0.504
4 652.8 545.7 0.227
5 693.6 576.3 0.020

Table 5
Base case: Results (30% non-renewable).

Case Obj. function Transmission cost (Me) Sto. Cost Sol. time

(Me) 1st stage 2nd stage (Me) (h)

Exp 2.871 2.187 0.343 0.341 0.9
SD 2.871 2.187 0.343 0.341 0.9

Table 6
Base case: Results (25% non-renewable).

Case Obj. function Transmission cost (Me) Sto. Cost Sol. time

(Me) 1st stage 2nd stage (Me) (h)

Exp 6.801 2.420 0.051 4.330 6.1
SD 6.950 2.187 0.292 4.471 4.0

Table 7
Base case: Investment costs per scenario (25% non-renewable).

Case Scenario Transmission cost (Me) Sto. Cost Total cost

1st stage 2nd stage (Me) (Me)

Exp

1 2.422 0.000 0.434 2.856
2 2.422 0.000 1.496 2.918
3 2.422 0.000 2.937 5.359
4 2.422 0.000 3.979 6.401
5 2.422 0.161 6.081 8.664
6 2.422 0.161 7.699 10.282
7 2.422 0.161 10.164 12.747

SD

1 2.189 0.344 0.000 2.533
2 2.189 0.344 0.000 2.533
3 2.189 0.234 1.887 4.310
4 2.189 0.234 4.239 6.662
5 2.189 0.395 6.703 9.287
6 2.189 0.395 11.185 13.769
7 2.189 0.395 13.095 15.679

number of lines installed in the first stage is smaller in the SD case.
In contrast, in scenarios 6 and 7 with higher demand, the total length
8

O

of the installed lines is similar in both cases, 63.4 km. However, in
scenarios 1 and 2 with small demand, the length of the newly built
lines in the SD case is 1.2% less than that in Exp. It is also interesting
o note that all newly built lines correspond to a low-voltage network
f 66 kV. Thus, the 132 kV network does not need to be expanded
o accommodate the increase in demand and renewable generation.
onsidering the configuration of the existing power system network
epresented in Fig. 2 and the location of the generating units provided
n Table 3, it can be observed that the main purpose of the existing
32 kV network connecting buses 13, 18, and 22 is to facilitate the
vacuation of the energy produced by the OCGT units located in buses
3 and 18. However, by 2050, it is expected that the production of these
nits will decrease as the installed capacity of new renewable units will
ncrease. For this reason, it is not necessary to increase the transmission
apacity of the 132 kV system. In contrast, the expected increase in
he production of renewable units that are distributed over most of the
ower system buses (see Table 3) requires a significant strengthening of
he 66 kV transmission system, which is spread over the entire power
ystem.

Additionally, we observe that the storage capacities installed are
arger in high-demand scenarios and that the capacity installed in the
D case is higher than that in the Exp case. Note that storage units are
nstalled only at three particular locations in all cases and scenarios:
uses 4, 15, and 19. The selection of the storage locations was based on
ifferent reasons. As shown in Fig. 2, bus 4 is located in the northeast of
he system where the largest city on the island is placed, and according
o Table 2, high values of demand exist in neighboring buses. The
urpose of this storage may be to provide the demand for buses located
n this part of the system when renewable energy is not available. It can
e observed that the installed capacity of this storage is the largest in all
he scenarios. Note also that the power capacity installed in the scenario
ith the highest demand was 45.7% higher in the SD case with respect

o Exp. On the other hand, bus 15 is placed in a strategic location that is
onnected to four buses of the system and, additionally, two large-sized
enewable units are connected to this bus: a wind farm with 143.6 MW
nd a solar PV farm with 190.2 MW. This bus is an adequate location
or installing a storage unit because it can store the surplus production
f the renewable units connected to it, and it can easily evacuate the
tored energy owing to its good connectivity with the rest of the system.
inally, bus 19 is also a good location for installing storage because it
s connected to bus 18, which belongs to the 132 kV network. Then,
t can profit from the high-power transfer of this network to withdraw
nd inject power when needed.

Fig. 5 graphically represents the investments in transmission lines
nd storage in the SD case for scenarios with the lowest and highest
emands. The difference between the two systems is that in the sce-
ario with the highest demand, three additional storages of 102/612,
7/102, and 26/156 MW/MWh are installed in buses 4, 15, and 19,
espectively, and that lines 14–20 and 18–19 are built.

Table 9 provides the expected energy production of each generation
echnology for each case and for maximum non-renewable production
qual to 30 and 25%. The production of each technology is provided
s absolute values and as a percentage of the total demand (system
emand plus energy charged by storage). As mentioned above, maxi-
um the carbon emissions associated with a non-renewable production

qual to 30% of the demand does not constrain the problem; there-
ore, the expected energy production of the different technologies is
dentical for the Exp and SD cases. We then observed that wind power
s a technology that provides most of the system demand. The non-
enewable generating technology, OCGT, provides almost 30% of the
emand, whereas the participation of storage is rather small. However,
hen the limit of maximum carbon emissions is associated with 25%
f non-renewable production, the expected production of OCGTs is
ignificantly reduced by 16.7%. The reduction in the production of

CGTs was approximately 203 GWh in both cases and was mainly
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Table 8
Base case: Investments in transmission lines and storage capacity - (25% non-renewable).
Case Scenario Lines Power capacity storage (MW)

132 kV 66 kV Length (km) Bus 4 Bus 15 Bus 19

Exp

FS 0 8 57.40 – – –

1 0 0 0.00 2 3 0
2 0 0 0.00 11 5 0
3 0 0 0.00 25 8 0
4 0 0 0.00 32 11 1
5 0 1 6.00 41 8 18
6 0 1 6.00 52 12 21
7 0 1 6.00 70 17 25

SD

FS 0 6 49.00 – – –

1 0 1 7.70 0 0 0
2 0 1 7.70 0 0 0
3 0 2 8.40 21 0 0
4 0 2 8.40 32 13 3
5 0 2 13.70 41 8 18
6 0 3 14.40 91 12 21
7 0 3 14.40 102 17 26
Fig. 5. Transmission and storage investments using the stochastic-dominance formulation.
Table 9
Base case: Expected energy production (GWh).
Percentage Case Technologies

non-renewable (%) OCGT Wind Solar PV Storage

30 Exp 1215.0 ( 29.9%) 1542.3 ( 38.0%) 1294.3 ( 31.9%) 8.0 ( 0.2%)
SD 1215.0 ( 29.9%) 1542.3 ( 38.0%) 1294.3 ( 31.9%) 8.0 ( 0.2%)

25 Exp 1012.0 ( 24.3%) 1616.8 ( 38.8%) 1431.6 ( 34.4%) 100.6 ( 2.4%)
SD 1012.0 ( 24.3%) 1587.7 ( 38.1%) 1460.3 ( 35.1%) 102.8 ( 2.5%)
compensated by wind power units in the Exp case and by solar PV in
the SD case. It can be observed that the installed capacity of storage is
higher in the SD case, and the daily charging and discharging cycles of
storage coordinate very well with the daily production of the solar PV
units. This is illustrated in Fig. 6. This figure represents the expected
power production of each generation technology for each hour on the
considered set of characteristic days for SD case. In this figure, it is
observed that for most days, storage is charged during the central hours
of the day in which higher solar PV production is obtained. The stored
energy is discharged during hours with low solar PV and wind-power
production.
9

Finally, Fig. 7 represents the cumulative distribution functions of
the carbon emissions for Exp and SD cases associated with 25% of non-
renewable production. For the sake of clearness, the benchmark used
to impose stochastic dominance constraints is also depicted. However,
note that in Exp case it is enforced that the expected carbon emissions
be less than the expected value of the benchmark, which is equal to
516.1 kTon. For this reason, Fig. 7(a) shows that the highest carbon
emission scenario resulting in the Exp case is significantly greater than
the maximum benchmark scenario. Specifically, in the scenario with
highest demand, the total amount of carbon emissions in Exp case is
603.3 kTon, that is 4.1% higher than the maximum carbon emissions
in SD case. In other words, the solution obtained by the SD case for the
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Fig. 6. Base case: Expected energy production in SD case (25% non-renewable).
Fig. 7. Base case: Carbon emission distributions (25% non-renewable production).
highest-demand scenario saves the emissions of 25 kTon per year with
respect to the solution obtained in Exp case.

.3. Sensitivity analysis: number of benchmark scenarios

This section analyzes the influence of the number of benchmark
cenarios on the obtained results. To do so, a different number of
cenarios (from 1 to 12) is considered to discretize the benchmark
robability distribution of the carbon emissions in the case with 25%
on-renewable production of the demand. Demand growth is character-
zed by a normal distribution 𝑁(0.5, 0.15). Table 10 lists the objective

function, investment costs, and solution times for different numbers of
benchmark scenarios in the SD case. Observe that the solution of the
Exp case only depends on the expected value of the benchmark and not
on the particular scenarios considered. The results indicate that first-
stage decisions are independent of the number of benchmark scenarios.
However, the second-stage decisions depend on the number of bench-
mark scenarios. We observe that the costs associated with investments
in transmission lines and storage decrease significantly as the number
of benchmark scenarios increases. The reason for this result is that if the
number of benchmark scenarios is low, the probability associated with
each benchmark scenario is high, and it is difficult to satisfy the second-
10

order dominance constraints. Therefore, it is necessary to increase
Table 10
Number of benchmark scenarios: Results (25% non-renewable).

# Benchmark Obj. function Transmission cost (Me) Sto. Cost Sol. time

scenarios (Me) 1st stage 2nd stage (Me) (h)

1 7.466 2.187 0.319 4.960 2.1
3 6.958 2.187 0.325 4.446 2.6
5 6.950 2.187 0.292 4.471 4.0
9 6.884 2.187 0.292 4.405 4.0
12 6.874 2.187 0.292 4.395 4.0

investments in transmission and storage assets in specific scenarios. The
opposite effect occurs when the number of benchmark scenarios is high.
In other words, the total investment cost is overestimated if the number
of benchmark scenarios is low. For instance, the total investment cost
decreases by 7.9% if the number of benchmark scenarios increases from
1 to 12.

4.4. Sensitivity analysis: transmission line congestion

This subsection explores the impact of the configuration of ex-
isting transmission networks on investment decisions. Subsequently,
the power capacities of the existing lines listed in Table B.12 were
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Table 11
Transmission line congestion: Results (25% non-renewable).
Reduction tran. Case Obj. function Transmission cost (Me) Sto. Cost Sol. time

capacity (%) (Me) 1st stage 2nd stage (Me) (h)

−30 Exp 6.416 2.187 0.069 4.159 6.4
SD 6.593 2.238 0.066 4.289 5.0

0 Exp 6.801 2.420 0.051 4.330 6.1
SD 6.950 2.187 0.292 4.471 4.0

30 Exp 7.960 3.153 0.188 4.619 78.6
SD 8.111 3.127 0.217 4.767 58.9
multiplied by 0.7 and 1.3, respectively. In this manner, two new
transmission systems are simulated such that the transmission capacity
is reduced/increased by 30%, respectively. Table 11 presents the ob-
jective function and investment costs for the Exp and SD cases for the
two new transmission systems and the base case. As expected, the main
result is that the investment costs increase rapidly as the transmission
capacity decreased. If the transmission capacity is increased by 30%
with respect to the base case, the total investment costs decrease by
6.2 and 4.1% in the Exp and SD cases, respectively. However, if the
transmission capacity is reduced by 30% with respect to the base case,
the total investment costs increase by 16.4 and 18.0% in the Exp and
SD cases, respectively. It is also observed that the solutions obtained
by SD cases are more conservative than those resulting from Exp cases
because the total costs in SD cases are always higher than those of Exp
cases. Similarly, investments in storage units are higher in all the SD
ases.

. Summary and conclusions

This paper formulates the problem faced by a transmission system
lanner that desires to determine the optimal investments in transmis-
ion lines and storage to satisfy the demand in a future target year.
dditionally, the planner intends to enhance the existing network to

acilitate demand procurement using renewable energy sources. Con-
idering that future demand is uncertain and that can be characterized
s a random variable, the mathematical enforcement of the maximum
arbon emissions requires a comparison between two probability distri-
utions. In this situation, the concept of stochastic dominance allows us
o mathematically establish the preference of the decision-maker for a
istribution function over others. Based on future uncertain demand,
benchmark has been defined to represent the acceptable quantity

f carbon emissions. Subsequently, considering that small amounts of
arbon emissions are preferred in this problem, using second-order
tochastic dominance, it has been ensured that the resulting carbon
missions dominate the carbon emissions of the benchmark.

The proposed formulation is applied to a realistic case study based
n an actual isolated power system. The obtained results indicate
hat the enforcement of second-order stochastic dominance constraints
aintains the carbon emissions at an acceptable level compared with

he established benchmarks. The performance of the SD approach was
ompared with that of an alternative formulation in which the stochas-
ic dominance constraints were replaced by a condition establishing
hat the expected carbon emissions must be smaller than a given value.
he obtained results indicate that the stochastic dominance formulation

s able to maintain carbon emissions under the desired levels in all
cenarios used to characterize the demand, and not only at their
xpected values. Specific conclusions over the application of stochastic
ominance constraints to the considered problem are as follows:

• The solution times required to solve the SD approach are equiva-
lent to those obtained by the formulation using the expected value
of the demand.

• The solution of the SD approach is more conservative than that
obtained by the Exp formulation in the sense that it results in
11

comparatively higher investments, specially in storage units. The
total expected cost resulting from the SD approach is 2.2% higher
in the analyzed base case.

• The SD approach is able to reduce carbon emissions in high
demand scenarios, whereas the formulation that considers the
expected value is not able to do that.

• The investments in second-stage assets (new lines in existing
corridors and storage units) are higher in the SD approach. This
facilitates the adaptation of the system to the considered demand
scenario.

• First-stage decisions exhibit independence from the number of
benchmark scenarios, whereas second-stage decisions are scena-
rio-dependent.

• The usage of a small number of scenarios for characterizing
the carbon emissions benchmark overestimates the second-stage
investments and the total cost.

The conclusions derived from the resolved case study that could
provide valuable insights for transmission system operators and poli-
cymakers are as follows:

• Investments in storage and second-stage transmission lines are
significantly higher in the proposed formulation. Investing in
second-stage assets allows the TSO to dynamically adapt to vary-
ing demand scenarios.

• Examining the current power system network configuration and
generator unit locations reveals that the existing 132 kV net-
work’s primary function is to facilitate energy evacuation from
large thermal units in specific buses. However, considering the
expected decrease in production from these units by 2050 due to
increased renewable capacity suggests no necessity for augment-
ing the 132 kV system. Conversely, the expected rise in renewable
unit production across various buses necessitates substantial rein-
forcement of the 66 kV transmission system spanning the entire
power system.

• Investments in storage prove to be more effective than invest-
ments in transmission lines, particularly in scenarios aiming to
reduce high carbon emissions.

• Storage units strategically locate near high-consumption buses,
buses with significant renewable unit capacity, or robust trans-
portation capabilities.

• Investment costs demonstrate an increase inversely proportional
to the decrease in transmission capacity.

Finally, we conclude this paper listing future lines of research:

• To consider investment decisions in generating capacity. This
extension aims to cater not only to determining transmission
expansion decisions by a TSO but also to encompass a more global
approach for a regulator aiming to make informed decisions on
generation capacity investments to meet decarbonization goals.

• To solve the capacity expansion problem with stochastic dom-
inance constraints using a bilevel approach so that the mar-
ket clearing organized by the Power Exchange is represented

independently of the TSO expansion decisions.
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• To apply stochastic dominance constraints to other variables im-
portant for the TSOs, such as, the maximum unserved demand or
the production level of specific technologies.
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Appendix A. Notation

The notation used to formulate the problem presented in Section 3
is described below.

Sets and indices

𝐵 Set of buses, indexed by 𝑏.

Set of characteristic days, indexed by 𝑑.

Set of generating units, indexed by 𝑔.

𝑏 Subset of 𝐺 comprising generating units located in bus 𝑏.

D Subset of 𝐺 comprising dispatchable fossil-fuel generating units.

I Subset of 𝐺 comprising intermittent and renewable generating
units.

Set of transmission lines, indexed by 𝓁.

C,E Subset of 𝐿 comprising candidate transmission lines located in
existing corridors.

C,N Subset of 𝐿 comprising candidate transmission lines located in
new corridors.

E Subset of 𝐿 comprising the existing transmission lines.

Set of candidate storage units, indexed by 𝑠.

𝑏 Subset of 𝑆 comprising storage units located in bus 𝑏.

𝑇 Set of time periods, indexed by 𝑡.

𝛺 Set of scenarios, indexed by 𝜔.

Ben Set of benchmark scenarios, indexed by 𝜉.

arameters

D
𝑔𝑑𝑡 Availability of intermittent unit 𝑔 in characteristic day 𝑑 and

period 𝑡 (pu).

𝐵G
𝑔 Amount of carbon emissions per MWh produced by unit 𝑔

(kg/MWh).

𝐶L,N
𝓁 Annualized capital cost of transmission line 𝓁 built in a new
12

corridor (e).
𝐶L,E
𝓁 Annualized capital cost of transmission line 𝓁 built in an existing

corridor (e).

𝐶 I,SE
𝑠 Annualized capital cost of the energy component of storage unit

𝑠 (e/MWh).

𝐶 I,SP
𝑠 Annualized capital cost of the power component of storage unit

𝑠 (e/MW).

𝐸I,SE
max,𝑠 Maximum energy capacity that can be installed from candidate

storage unit 𝑠 (MWh).

𝑀 Large enough constant (MW).

𝑃D
𝑏𝑑𝑡𝜔 Demand in bus 𝑏, characteristic day 𝑑, period 𝑡, and scenario 𝜔

(MWh).

𝑃 FF,Ben
𝜉 Scenario 𝜉 of the benchmark used to limit the maximum allow-

able production generated by fossil-fuel units (MWh).

𝑃G
up,𝑔 Upper ramp factor of generating unit 𝑔 (pu).

G
dw,𝑔 Down ramp factor of generating unit 𝑔 (pu).

I,G
𝑔 Capacity of generating unit 𝑔 (MW).

I,SP
max,𝑠 Maximum power capacity that can be installed from candidate

storage unit 𝑠 (MW).

L
max,𝓁 Capacity of transmission line 𝓁 (MW).

Ben
𝜉𝜉′ Auxiliary parameter used to formulate second-order stochastic

dominance constraints (MW).

𝑑 Weight of characteristic day 𝑑 (h).

𝓁 Reactance of line 𝓁 (Ω).

S,O
𝑠 Factor used to model the initial status of the storage unit 𝑠 (pu).

S,F
𝑠 Factor used to model the final status of the storage unit 𝑠 (pu).

S
𝑠 Relationship between energy and power capacities in storage unit

𝑠 (h).

S,min
𝑠 Factor used to model the minimum energy that must contain

storage unit 𝑠 (pu).

S Efficiency of charging/discharging storage units (pu).

𝜔 Probability of scenario 𝜔 (pu).

𝜉 Probability of benchmark scenario 𝜉 (pu).

ariables

FF
𝜔 Total carbon emissions produced by fossil-fuel units in each sce-

nario 𝜔 (kg).

G
𝑔𝑑𝑡𝜔 Power output of generating unit 𝑔 in characteristic day 𝑑, period

𝑡, and scenario 𝜔 (MW).

G,S
𝑔𝑑𝑡𝜔 Power spillage of intermittent generating unit 𝑔 in characteristic

day 𝑑, period 𝑡, and scenario 𝜔 (MW).

S
𝑠𝑑𝑡𝜔 Energy stored by storage unit 𝑠 in characteristic day 𝑑, period 𝑡,

and scenario 𝜔 (MWh).

𝑒I,S𝑠 Energy capacity built of storage unit 𝑠 (MWh).

𝑝I,S Peak power installed of storage unit 𝑠 (MW).
𝑠
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𝑝

𝑝

𝑠

𝑦

𝑦

𝜃

Table B.12
Candidate transmission line parameters.
Line Origin bus Destination bus Length (km) Voltage (kV) Capacity (MW) # circuits

1 1 2 9.0 66 160 3
2 1 29 17.0 66 160 1
3 2 3 10 66 80 1
4 2 27 17.54 66 80 1
5 3 4 10.0 66 160 1
6 3 5 11 66 80 1
7 4 5 9.0 66 160 1
8 4 7 4.0 66 160 1
9 5 13 6.0 66 80 1
10 6 11 2.0 66 80 1
11 6 13 7.7 66 80 1
12 6 13 7.7 66 160 1
13 6 13 7.7 66 240 1
14 7 8 2.0 66 80 1
15 10 11 2.0 66 160 1
16 10 11 2.0 66 240 1
17 13 16 8.1 66 80 2
18 13 17 8.70 66 80 1
19 13 18 35 220 260 1
20 13 27 16 66 80 1
21 14 15 8.0 66 80 1
22 14 17 7.00 66 80 1
23 14 18 12.8 66 80 1
24 15 16 9.0 66 80 1
25 15 16 9.0 66 160 1
26 18 19 0.7 66 80 1
27 18 20 7.3 66 80 1
28 18 22 33 220 323 1
29 19 20 6.72 66 80 1
30 19 23 15.0 66 80 1
31 20 14 6.0 66 80 1
32 20 23 15.0 66 80 1
33 22 28 20.9 66 80 1
34 23 25 9.6 66 80 1
35 25 28 12.0 66 80 1
36 28 29 20.0 66 80 1
Table B.13
Characteristics of candidate lines.
Capacity (MW) Voltage (kV) Reactance (Ω/km) Existing corridor Cost (ke/km)

80 66 0.3616 No 373
Yes 264

160 66 0.1808 No 621
Yes 439

240 66 0.1205 No 812
Yes 703

220 132 0.4015 No 714
Yes 506
A

t

R

A

B

C

C

C

𝑝L𝓁𝑑𝑡𝜔 Power flow through line 𝓁 in characteristic day 𝑑, period 𝑡, and
scenario 𝜔 (MW).

S,C
𝑠𝑑𝑡𝜔 Consumption power of storage unit 𝑠 in characteristic day 𝑑,

period 𝑡, and scenario 𝜔 (MW).

S,D
𝑠𝑑𝑡𝜔 Discharged power of storage unit 𝑠 in characteristic day 𝑑, period

𝑡, and scenario 𝜔 (MW).

𝜔𝜉′ Auxiliary positive variable used to formulate second-order stochas-
tic dominance constraints (MW).

L,E
𝓁𝜔 Binary variable that is equal to 1 if candidate line 𝓁 located in an

existing corridor is built in scenario 𝜔, being 0 otherwise.

L,N
𝓁 Binary variable that is equal to 1 if candidate line 𝓁 located in a

new corridor is built, being 0 otherwise.

𝑏𝑑𝑡𝜔 Voltage angle of bus 𝑏 in characteristic day 𝑑, period 𝑡, and
scenario 𝜔 (rad).
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ppendix B. Input data

This section includes Tables B.12 and B.13 with technical data used
o characterize the case study presented in Section 4.
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