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Abstract: Existing literature on model-based filter design for stochastic LTI systems assumes
complete correspondence between the system and its model. When the system is not completely
known, the standard indirect model-based (two-steps) filtering solution consists of: (i) identify
a model of the system from measured input/output data; (ii) design a Kalman filter based
on the estimated model. The performance of this indirect approach are limited by the model
and noise covariance matrices accuracy. To overcome such limitations, this paper investigates
a direct (one-step) solution to the filtering problem for SISO LTI systems in the Prediction
Error Method (PEM) identification framework. Simulation results indicate the effectiveness of
the direct filtering approach, especially when the noise covariance matrices are misspecified.

1. INTRODUCTION

Consider a discrete-time SISO LTI stochastic system:

S:
xk+1 = Axk +Buk +wk,

yk = Cxk +Duk + vk,

zk = Fxk +Guk,

(1a)
(1b)
(1c)

where xk ∈ Rnx is the system state at time k ∈ N,
uk ∈ R is the input, yk ∈ R is the output and zk ∈ Rnz

is a set of variables to be estimated. Let WN denote a
white noise stochastic process, with A,B,C,D,F,G the
system matrices with proper dimensions. The noises wk ∼
WN (0nx

,Q) , vk ∼ WN (0, R), with Q ∈ Rnx×nx ,Q ⪰ 0,
and R ∈ R>0, are independent so that wk ⊥ vk ⊥ x0. The
notation 0nx

∈ Rnx denotes the zero vector.

The filtering problem for the system (1) consists in provid-
ing a possibly optimal estimate ẑk of zk given a set of past
measurements {uτ , yτ}kτ=1 with τ ≤ k. The specific mean-
ing of zk varies according to application. For instance, the
well known full state estimation problem is recovered by
setting F = Inx

, with Inx
∈ Rnx×nx the identity matrix,

and G = 0 (Anderson and Moore, 1979, Chapter 3). Set-
ting F = C and G = D leads to full a output estimation
problem commonly employed for fault diagnosis purposes
(Ding, 2013, Chapter 5). In these examples, optimal (e.g.
minimum estimation error variance in the case of Kalman
filtering) estimates of zk are obtained when a model of
the system is perfectly known. When the system is not
completely known, a two-steps rationale, that we denote
as model-based (indirect) filtering, is commonly employed:

(S1) a model Ŝ of the system S in (1) is identified from
a set of N input/output data {uk, yk}Nk=1 collected
from (1);

(S2) a Kalman filter K(Ŝ) for S is designed using Ŝ.

The filtering performance of K(Ŝ) degrades rapidly when
the model Ŝ identified in step (S1) is not well representa-
tive of the system S in (1), especially regarding the noise
covariance matrices Q and R that often are manually set.
In this case, existing approaches consider the design of
filters that are robust to model/system mismatches, often
assuming a bounded magnitude for the model uncertainty
(Voulgaris, 1995; Shaked and Theodor, 1992; Mazzoleni
et al., 2023; Boni et al., 2024).

An alternative paradigm, denoted as direct (data-driven)
filtering, has been studied in a parametric set membership
(Milanese et al., 2010; Ruiz et al., 2010) and stochastic
(Novara et al., 2012) frameworks. In this rationale, the
aim is to directly identify a filter D̂ from data. To this
end, consider noisy measurements ℓk of zk as

ℓk = zk + ek = Fxk +Guk + ek, (2)
where ek ∼ WN (0nz

,Σ) and Σ ∈ Rnz×nz ,Σ ⪰ 0
ek ⊥ (wk, vk,x0). Given a dataset of N observations
{uk, yk, ℓk}Nk=1, the direct data-driven design of filters for
system (1) is a system identification problem where the
inputs of the filter model are (uk, yk) and the output is ℓk.
Notice that in the direct framework the noise covariance
matrices are implicitly learnt from data in an optimized
way. Moreover, the availability of (2) is generally feasible,
as a set of state measurement is usually acquired to val-
idate traditional model-based indirect filter designs. The
dataset (2) is thus here assumed to be available for offline
identification purposes. In the stochastic framework, the
direct filter design approach has been shown to generally
possess optimal performance in terms of minimizing the
variance of state estimation error, even in presence of
undermodeling and for unstable systems (Novara et al.,
2012). However, in (Novara et al., 2012), an investigation
of the effect of uncertainty in the noise covariance matrices
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The filtering performance of K(Ŝ) degrades rapidly when
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,Σ) and Σ ∈ Rnz×nz ,Σ ⪰ 0
ek ⊥ (wk, vk,x0). Given a dataset of N observations
{uk, yk, ℓk}Nk=1, the direct data-driven design of filters for
system (1) is a system identification problem where the
inputs of the filter model are (uk, yk) and the output is ℓk.
Notice that in the direct framework the noise covariance
matrices are implicitly learnt from data in an optimized
way. Moreover, the availability of (2) is generally feasible,
as a set of state measurement is usually acquired to val-
idate traditional model-based indirect filter designs. The
dataset (2) is thus here assumed to be available for offline
identification purposes. In the stochastic framework, the
direct filter design approach has been shown to generally
possess optimal performance in terms of minimizing the
variance of state estimation error, even in presence of
undermodeling and for unstable systems (Novara et al.,
2012). However, in (Novara et al., 2012), an investigation
of the effect of uncertainty in the noise covariance matrices
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Abstract: Existing literature on model-based filter design for stochastic LTI systems assumes
complete correspondence between the system and its model. When the system is not completely
known, the standard indirect model-based (two-steps) filtering solution consists of: (i) identify
a model of the system from measured input/output data; (ii) design a Kalman filter based
on the estimated model. The performance of this indirect approach are limited by the model
and noise covariance matrices accuracy. To overcome such limitations, this paper investigates
a direct (one-step) solution to the filtering problem for SISO LTI systems in the Prediction
Error Method (PEM) identification framework. Simulation results indicate the effectiveness of
the direct filtering approach, especially when the noise covariance matrices are misspecified.

1. INTRODUCTION

Consider a discrete-time SISO LTI stochastic system:

S:
xk+1 = Axk +Buk +wk,

yk = Cxk +Duk + vk,

zk = Fxk +Guk,

(1a)
(1b)
(1c)

where xk ∈ Rnx is the system state at time k ∈ N,
uk ∈ R is the input, yk ∈ R is the output and zk ∈ Rnz

is a set of variables to be estimated. Let WN denote a
white noise stochastic process, with A,B,C,D,F,G the
system matrices with proper dimensions. The noises wk ∼
WN (0nx

,Q) , vk ∼ WN (0, R), with Q ∈ Rnx×nx ,Q ⪰ 0,
and R ∈ R>0, are independent so that wk ⊥ vk ⊥ x0. The
notation 0nx

∈ Rnx denotes the zero vector.

The filtering problem for the system (1) consists in provid-
ing a possibly optimal estimate ẑk of zk given a set of past
measurements {uτ , yτ}kτ=1 with τ ≤ k. The specific mean-
ing of zk varies according to application. For instance, the
well known full state estimation problem is recovered by
setting F = Inx

, with Inx
∈ Rnx×nx the identity matrix,

and G = 0 (Anderson and Moore, 1979, Chapter 3). Set-
ting F = C and G = D leads to full a output estimation
problem commonly employed for fault diagnosis purposes
(Ding, 2013, Chapter 5). In these examples, optimal (e.g.
minimum estimation error variance in the case of Kalman
filtering) estimates of zk are obtained when a model of
the system is perfectly known. When the system is not
completely known, a two-steps rationale, that we denote
as model-based (indirect) filtering, is commonly employed:

(S1) a model Ŝ of the system S in (1) is identified from
a set of N input/output data {uk, yk}Nk=1 collected
from (1);

(S2) a Kalman filter K(Ŝ) for S is designed using Ŝ.

The filtering performance of K(Ŝ) degrades rapidly when
the model Ŝ identified in step (S1) is not well representa-
tive of the system S in (1), especially regarding the noise
covariance matrices Q and R that often are manually set.
In this case, existing approaches consider the design of
filters that are robust to model/system mismatches, often
assuming a bounded magnitude for the model uncertainty
(Voulgaris, 1995; Shaked and Theodor, 1992; Mazzoleni
et al., 2023; Boni et al., 2024).

An alternative paradigm, denoted as direct (data-driven)
filtering, has been studied in a parametric set membership
(Milanese et al., 2010; Ruiz et al., 2010) and stochastic
(Novara et al., 2012) frameworks. In this rationale, the
aim is to directly identify a filter D̂ from data. To this
end, consider noisy measurements ℓk of zk as

ℓk = zk + ek = Fxk +Guk + ek, (2)
where ek ∼ WN (0nz

,Σ) and Σ ∈ Rnz×nz ,Σ ⪰ 0
ek ⊥ (wk, vk,x0). Given a dataset of N observations
{uk, yk, ℓk}Nk=1, the direct data-driven design of filters for
system (1) is a system identification problem where the
inputs of the filter model are (uk, yk) and the output is ℓk.
Notice that in the direct framework the noise covariance
matrices are implicitly learnt from data in an optimized
way. Moreover, the availability of (2) is generally feasible,
as a set of state measurement is usually acquired to val-
idate traditional model-based indirect filter designs. The
dataset (2) is thus here assumed to be available for offline
identification purposes. In the stochastic framework, the
direct filter design approach has been shown to generally
possess optimal performance in terms of minimizing the
variance of state estimation error, even in presence of
undermodeling and for unstable systems (Novara et al.,
2012). However, in (Novara et al., 2012), an investigation
of the effect of uncertainty in the noise covariance matrices
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on both indirect and direct filter performance has not been
specifically evaluated.

So, this work focuses on a comparison between the in-
direct and direct data-driven designs of full state filters
for stochastic SISO LTI systems (1), studying the effect
of noise covariance estimates on the state filtering perfor-
mance. To obtain such estimates for the noise covariance
matrices, we rely on Autocovariance Least Square (ALS)
method (Odelson et al., 2006; Kost et al., 2021). The
Prediction Error Method (PEM) approach is employed
for the identification of the model of the direct filter.
Simulation results in this paper show how the direct
approach avoids the separate steps of model and noise
matrices identification, directly optimizing in a single step
the filtering performance (and thus directly searching for
the optimal noise covariance matrices that optimize the
state prediction performance).

The remainder of the paper is as follows. Section 2 defines
the problem statement for both filter design rationales.
Section 3 discusses the model-based filter design. Section
4 discusses the direct filter design. Section 5 shows a simu-
lation comparison between the two filter design rationales.
Section 6 is devoted to final remarks.

2. PROBLEM STATEMENT

We start defining a set of assumptions common to both
model-based and direct data-driven filter design rationales.
Assumption 1. (System order). The order nx of (1) is
known. In filtering applications, the user has often a phys-
ical knowledge of the system states, so this assumption is
less critical than in identification problems.
Assumption 2. (Measured data). A set of N observations
D := {uτ , yτ , ℓτ}Nτ=1 has been collected from (1)-(2).
Assumption 3. (Observability). (C,A) is observable.

Under Assumptions 1-3, the problem of filter design for
system (1) can be stated as follows.
Problem 1. (Full state filter design). Consider the case F =
Inx

, G = 0, so that zk = xk and so nz = nx. Design
a causal LTI filter using measurements in D that, given
{uτ , yτ}kτ=1, τ ≤ k, gives an estimate ẑk of zk.

2.1 Indirect filter design problem

The two-step design consists first in the identification
of a parametric model Ŝ of (1a)-(1b) and Kalman filter
design K(Ŝ) from the identified model. Consider first the
identification of system model. Let M(θM) be a family
of parametric models for S, with θM ∈ Rd a parameters
vector. Define 1

θ̂M := [vec(Â)⊤ vec(B̂)⊤ vec(Ĉ)⊤ vec(D̂)⊤ vec(Q̂)⊤ R̂]⊤

=
[
Âs B̂s Ĉs D̂s Q̂s R̂

]
(3)

as the estimated parameters for the model M(θM), with
d = 2n2

x + 2nx + 2 and Â, B̂, Ĉ, D̂, Q̂, R the estimate
of the respective system matrices, so that Ŝ := M(θ̂M).

1 The operator vec(A) is the vectorization of the columns of the
matrix A into a column vector. Throughout the paper, we denote
the vectorization of A as As.

The estimates of (Â, B̂) in (3) can be obtained using the
dataset

DAB
M := {uk, ℓk} k = 1, . . . , N. (4)

Similarly, the estimates of (Ĉ, D̂) in (3) can be obtained
using

DCD
M := {(ℓk, uk) , yk} k = 1, . . . , N. (5)

The estimates of (Q, R) in (3) can be obtained using

DQR
M := {uk, yk} k = 1, . . . , N. (6)

In the filter design step, a steady-state Kalman filter K is
designed from the identified model Ŝ so that

K̂ := K(θ̂M). (7)

Given {uτ , yτ}kτ=1 , τ ≤ k, the filter (7) produces an
estimate ẑM

k of zk. Note that the structure and order of
the filter have not been chosen, as they depend on the
identified model.

2.2 Direct filter design problem

In the direct design of filters from data, instead of a model
M(θM) for (1a)-(1b), a parametric model family D(θD) is
selected for the filter to be designed. An estimate θ̂D of
θD can be obtained using the dataset

DD := {(uk, yk) , ℓk} k = 1, . . . , N. (8)
where (uk, yk) are used as inputs and ℓk as outputs. The
estimated direct filter

D̂ := D(θ̂D) (9)

takes (uk, yk) as inputs and provides an estimate ẑD
k of

zk. Differently from the model-based case, in the direct
approach the filter structure must the chosen.

Note that the dataset (8) differs from (4)-(6) although they
contain the same data, since different sets of signals are
considered to be the inputs and the outputs of the models.

3. INDIRECT FILTER DESIGN

3.1 Estimation of A and B

By substituting (2) into (1a) we get
ℓk+1 = Aℓk +Buk + ηk = [A B]φk + ηk, (10a)

φk :=
[
ℓ⊤k uk

]⊤ ∈ Rnx+1 ηk := ek+1 −Aek +wk (10b)

with E [ηk] = 0nx , Var [ηk] = Σ+AΣA⊤+Q, where E [·]
and Var [·] are the expectation and variance operators, re-
spectively. Inspection of (13) shows a correlation between
φk and ηk. Unbiased estimates of (Â, B̂) are obtained in a
least squares sense starting from a multi-targets regression

min
A,B

N∑
k=1

∥ℓk+1 − [A B]φk∥
2

2
(11)

using the dataset (4) and relying on an instrumental
variable ξk :=

[
ℓ⊤k−1 uk

]⊤ ∈ Rnx+1 so that

[Â, B̂] =

(
N∑

k=2

ℓk+1 ξ⊤k

)
·

(
N∑

k=2

φk ξ⊤k

)−1

. (12)

3.2 Estimation of C and D

By substituting (2) into (1b) we get



 M. Mazzoleni  et al. / IFAC PapersOnLine 58-15 (2024) 133–138 135

on both indirect and direct filter performance has not been
specifically evaluated.

So, this work focuses on a comparison between the in-
direct and direct data-driven designs of full state filters
for stochastic SISO LTI systems (1), studying the effect
of noise covariance estimates on the state filtering perfor-
mance. To obtain such estimates for the noise covariance
matrices, we rely on Autocovariance Least Square (ALS)
method (Odelson et al., 2006; Kost et al., 2021). The
Prediction Error Method (PEM) approach is employed
for the identification of the model of the direct filter.
Simulation results in this paper show how the direct
approach avoids the separate steps of model and noise
matrices identification, directly optimizing in a single step
the filtering performance (and thus directly searching for
the optimal noise covariance matrices that optimize the
state prediction performance).

The remainder of the paper is as follows. Section 2 defines
the problem statement for both filter design rationales.
Section 3 discusses the model-based filter design. Section
4 discusses the direct filter design. Section 5 shows a simu-
lation comparison between the two filter design rationales.
Section 6 is devoted to final remarks.

2. PROBLEM STATEMENT

We start defining a set of assumptions common to both
model-based and direct data-driven filter design rationales.
Assumption 1. (System order). The order nx of (1) is
known. In filtering applications, the user has often a phys-
ical knowledge of the system states, so this assumption is
less critical than in identification problems.
Assumption 2. (Measured data). A set of N observations
D := {uτ , yτ , ℓτ}Nτ=1 has been collected from (1)-(2).
Assumption 3. (Observability). (C,A) is observable.

Under Assumptions 1-3, the problem of filter design for
system (1) can be stated as follows.
Problem 1. (Full state filter design). Consider the case F =
Inx

, G = 0, so that zk = xk and so nz = nx. Design
a causal LTI filter using measurements in D that, given
{uτ , yτ}kτ=1, τ ≤ k, gives an estimate ẑk of zk.

2.1 Indirect filter design problem

The two-step design consists first in the identification
of a parametric model Ŝ of (1a)-(1b) and Kalman filter
design K(Ŝ) from the identified model. Consider first the
identification of system model. Let M(θM) be a family
of parametric models for S, with θM ∈ Rd a parameters
vector. Define 1

θ̂M := [vec(Â)⊤ vec(B̂)⊤ vec(Ĉ)⊤ vec(D̂)⊤ vec(Q̂)⊤ R̂]⊤

=
[
Âs B̂s Ĉs D̂s Q̂s R̂

]
(3)

as the estimated parameters for the model M(θM), with
d = 2n2

x + 2nx + 2 and Â, B̂, Ĉ, D̂, Q̂, R the estimate
of the respective system matrices, so that Ŝ := M(θ̂M).

1 The operator vec(A) is the vectorization of the columns of the
matrix A into a column vector. Throughout the paper, we denote
the vectorization of A as As.

The estimates of (Â, B̂) in (3) can be obtained using the
dataset

DAB
M := {uk, ℓk} k = 1, . . . , N. (4)

Similarly, the estimates of (Ĉ, D̂) in (3) can be obtained
using

DCD
M := {(ℓk, uk) , yk} k = 1, . . . , N. (5)

The estimates of (Q, R) in (3) can be obtained using

DQR
M := {uk, yk} k = 1, . . . , N. (6)

In the filter design step, a steady-state Kalman filter K is
designed from the identified model Ŝ so that

K̂ := K(θ̂M). (7)

Given {uτ , yτ}kτ=1 , τ ≤ k, the filter (7) produces an
estimate ẑM

k of zk. Note that the structure and order of
the filter have not been chosen, as they depend on the
identified model.

2.2 Direct filter design problem

In the direct design of filters from data, instead of a model
M(θM) for (1a)-(1b), a parametric model family D(θD) is
selected for the filter to be designed. An estimate θ̂D of
θD can be obtained using the dataset

DD := {(uk, yk) , ℓk} k = 1, . . . , N. (8)
where (uk, yk) are used as inputs and ℓk as outputs. The
estimated direct filter

D̂ := D(θ̂D) (9)

takes (uk, yk) as inputs and provides an estimate ẑD
k of

zk. Differently from the model-based case, in the direct
approach the filter structure must the chosen.

Note that the dataset (8) differs from (4)-(6) although they
contain the same data, since different sets of signals are
considered to be the inputs and the outputs of the models.

3. INDIRECT FILTER DESIGN

3.1 Estimation of A and B

By substituting (2) into (1a) we get
ℓk+1 = Aℓk +Buk + ηk = [A B]φk + ηk, (10a)

φk :=
[
ℓ⊤k uk

]⊤ ∈ Rnx+1 ηk := ek+1 −Aek +wk (10b)

with E [ηk] = 0nx , Var [ηk] = Σ+AΣA⊤+Q, where E [·]
and Var [·] are the expectation and variance operators, re-
spectively. Inspection of (13) shows a correlation between
φk and ηk. Unbiased estimates of (Â, B̂) are obtained in a
least squares sense starting from a multi-targets regression

min
A,B

N∑
k=1

∥ℓk+1 − [A B]φk∥
2

2
(11)

using the dataset (4) and relying on an instrumental
variable ξk :=

[
ℓ⊤k−1 uk

]⊤ ∈ Rnx+1 so that

[Â, B̂] =

(
N∑

k=2

ℓk+1 ξ⊤k

)
·

(
N∑

k=2

φk ξ⊤k

)−1

. (12)

3.2 Estimation of C and D

By substituting (2) into (1b) we get

yk = Cℓk +Duk + ζk = [C D]φk + ζk, (13a)
ζk := vk −Cek, (13b)

with E [ζk] = 0 and Var [ζk] = CΣC⊤ + R. Unbiased
estimates of (Ĉ, D̂) can be obtained in a least squares sense
using the dataset (5) similarly to (11)-(12) as

[Ĉ, D̂] =

(
N∑

k=2

yk ξ⊤k

)
·

(
N∑

k=2

φk ξ⊤k

)−1

. (14)

3.3 Estimation of Q and R

The design of a full state Kalman filter K̂ for (1) under
Assumptions 1-3 based on (12)-(14) requires an estimate
Q̂, R̂ of the noise covariances Q, R, so that the model-
based state estimate ẑM

k = x̂k|k is given by

x̂k|k−1 = Âx̂k−1|k−1 + B̂uk−1, x̂1|0 = x0, (15a)

ŷk|k−1 = Ĉx̂k|k−1 + D̂uk−1, εk := yk − ŷk|k−1, (15b)

Pk|k−1 = ÂPk−1|k−1Â
⊤
+ Q̂, P1|0 = P0, (15c)

Pk|k = (I−KkĈ)Pk|k−1, ŷ1|0 = y0, (15d)

KQR
k = Pk|k−1Ĉ

⊤
(ĈPk|k−1Ĉ

⊤
+ R̂)−1, (15e)

ẑM
k := x̂k|k = x̂k|k−1 +KQR

k εk, (15f)

νM
k = xk − ẑM

k , (15g)
where x̂k|k−1 ∈ Rnx and Pk|k−1 ∈ Rnx×nx are the one-
step state and state covariance matrix predictions at time
k − 1, x̂k|k and Pk|k are the filtered state estimate and
state covariance matrix at time k, x0, y0 and P0 are
initialization values, yk|k−1 is the predicted output at time
k − 1, εk is the innovation, KQR

k ∈ Rnx is the filter gain
(that depends on the noise covariance matrices Q̂, R̂) and
νM
k is the filtering error (Anderson and Moore, 1979).

Amongst the methods proposed in literature to estimate
the noise covariance matrices, correlation methods can
be derived analytically with minimal assumptions on the
model, and provide, under mild assumptions, consistent
and unbiased estimates of the noise covariance matrices
(Duník et al., 2017a). In this work we employ a specific
one-step correlation approach known as the Autocovari-
ance Least-Square (ALS) method (Odelson et al., 2006;
Kost et al., 2021), leveraging the dataset (6). Consider a
generic LTI state estimator for (1a)-(1b) under Assump-
tions 1-3, further assuming known system matrices:

x̂L
k|k−1 = Ax̂L

k−1|k−1 +Buk−1, (16a)

x̂L
k|k = x̂L

k|k−1 + LεL
k , (16b)

εL
k := yk −Cx̂L

k|k−1 −Duk−1, (16c)

δL
k := xk − x̂L

k|k−1, (16d)

where δL
k ∈ Rnx is the one-step state prediction error and

L ∈ Rnx is the filter gain, not necessarily the optimal one
that necessitates the knowledge of Q, R. The dynamics of
δL
k evolves according to

δL
k = (A−ALC)δL

k−1 + [Inx
−AL]

[
wk−1

vk−1

]
, (17a)

= ĀδL
k−1 +Hw̄k−1. (17b)

The state prediction error δk is related to the innovation
εL
k by

εL
k = CδL

k + vk. (18)
Given the steady-state covariance matrix of δL

k described
by the Lyapunov equation

P̄δ = ĀP̄δĀ
⊤
+

[
Q 0

0nx×nx R

]
, (19)

the autocovariance of the innovation sequence reads as
P̄εL,0 := E

[
(εL

k )
2
]
= CP̄δC

⊤ +R, (20a)

P̄εL,j := E
[
εL
kε

L
k+j

]
= CĀ

j
P̄δC

⊤ −CĀ
j−1

ALR, (20b)
where j = 1, 2, . . . ,m−1 and m is a user-defined parameter
that defines the maximum considered lag.

The solution to (19) and its substitution into (20) gives
the linear system

AϱM = b, (21)
where

A := [D D(AL⊗AL) + (Inx ⊗ Γ)] , (22a)

D := (C⊗O)
(
In2

x
− Ā⊗ Ā

)−1
, (22b)

O :=
[
C⊤ (CĀ)⊤ . . . (CĀ

m−1
)⊤

]⊤
, (22c)

Γ :=
[
1 −(CAL)⊤ . . . −(CĀ

m−2
AL)⊤

]⊤
, (22d)

and
ϱM := [Q⊤

s R]⊤, b := (Cε(m))s (23a)
with

CεL(m) :=
[
P̄εL,0 P̄εL,1 . . . P̄εL,m−1

]⊤
. (24)

The solution to (21) can be practically computed in a least
square sense as

ϱ̂M = [Q̂
⊤
s R̂]⊤ = (A⊤A)−1A⊤b̂, (25)

employing (12) and (14) into (22) and with b̂ = ĈεL(m) =

[ ˆ̄PεL,0
ˆ̄PεL,1 . . . ˆ̄PεL,m−1]

⊤ estimated from

ˆ̄PεL,j =
1

N − j

N−j∑
k=1

(εL
k · εL

k+j), j = 0, 1, . . . ,m− 1. (26)

The design of an optimal gain L in (16b), in terms
of a minimum upper bound of the estimate covariance
matrices, has been studied in (Duník et al., 2017b), while
strategies to enforce the semidefinite positiveness of ϱ̂ in
(25) are considered in (Rajamani and Rawlings, 2009).

4. DIRECT FILTER DESIGN

4.1 Identification approach with Prediction Error Methods

The aim of direct data-driven design of filters for the
system (1) is to identify, in a one-step fashion, a stable
LTI model D(θD) that given (uk, yk) in input produces
an estimate ẑk of zk, using the dataset (8). Clearly,
identifying a model with guaranteed stability is not trivial.
The identification problem can be solved resorting to a
PEM formulation

θ̂D = arg min
θD

1

N

N∑
k=1

∥∥∥ℓk − ℓ̂k|k−1(θD)
∥∥∥
2

2
(27)

where ℓ̂k|k−1 is the one-step prediction from model D(θD).
Under Assumptions 1, the system (and thus the full state
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filter) order is known. Thus, we are left selecting an
appropriate parametric structure for D(θD).

4.2 Choice of the model structure for the direct filter
Assume that the system (1) is completely known. In this
case, the Kalman filter recursions (15) provide the best
linear unbiased estimator, with minimum variance of the
state prediction error. Consider the steady-state filter with
P̄ the solution of

P̄
◦
= AP̄

◦
A⊤+Q−AP̄

◦
C⊤(CP̄

◦
C⊤+R)−1CP̄

◦
A⊤

and K̄
QR the steady state filter gain

K̄
QR

:= P̄
◦
C⊤(CP̄

◦
C⊤ +R). (28)

Substitution of (15a) into (15f) leads to a dynamic expres-
sion for the Kalman filtered state, with ◦ denoting the fact
the perfect model is used

x̂◦
k|k = (A− K̄

QR
CA)x◦

k−1|k−1+

+ (B− K̄
QR

D− K̄
QR

CB)uk−1 + K̄yk. (29)

Writing (29) in operational form and denoting z−1 the lag
operator so that yk−1 = z−1yk , we get

x̂◦
k|k = A(z)−1Bu(z)uk +A(z)−1By(z)yk, (30a)

= G◦
u(z)uk +G◦

y(z)yk, (30b)

A(z) := Inx − (A− K̄
QR

CA)z−1,

Bu(z) := (B− K̄
QR

D− K̄
QR

CB)z−1, By(z) := K̄
QR

.

Equation (30a) can be related to state filtering error
ν◦
k := xk − x̂◦

k|k and the state measurements (2) as

ℓk = x̂◦
k|k + ν◦

k + ek = x̂◦
k|k + γk, (31a)

= G◦
u(z)uk +G◦

y(z)yk + γk, (31b)
γk := ν◦

k + ek, (31c)
where G◦

u(z), G
◦
y(z) are nx × 1 transfer function matrices.

Note that γk ∈ Rnx in (31c) is not a white process as ν◦
k

contains the terms wk and wk−1. Thus, the model D(θD)
for the data-driven filter must be parametrized with both
exogenous and noise models as in Figure 1:

ℓk = Gu(z;θD)uk +Gy(z;θD)yk +H(z;θD)ρk (32)
where ρk is a white noise process and Gu(z;θD), Gu(z;θD),
H(z;θD) ̸= 1nx

are nx×1 transfer matrices that represent
the parameterized models for the exogenous inputs uk, yk
and noise ρk, respectively.

Gu(z;θD)

Gy(z;θD)

uk

yk

+

+

γk

+

+

ℓk

H(z;θD)
ρk ∼ WN

Fig. 1. Data-driven filter stochastic parametric model.
Blue quantities denote the measured signals.

The state estimates provided by the direct data-driven
approach can be computed by a simulation of the identified
direct filter D̂ as

ẑD
k = Gu(z; θ̂D)uk +Gy(z; θ̂D)yk. (33)

Remark 2. Model (32) can also be parameterized so that
the exogenous part and the noise part are independently
parameterized, so leveraging Box-Jenkins structures.
Remark 3. The direct filter estimate (33) can not be com-
puted using the one-step model prediction, as this would
require measurements of ℓk that are assumed available
only offline for the identification of (32).

5. NUMERICAL RESULTS

Consider a system (1) of order nx = 3 sampled at Ts =
0.01 s and measurements (2) with

A =

[
0.610 0.084 −0.536
−0.139 0.270 0.763
0.124 0.279 −0.245

]
, B =

[−0.558
−0.028
−1.476

]
, (34)

C = [0.259 −2.018 0.199] , D = 0, R = 1,

Q = diag (0.025, 0.05, 0.1) , Σ = diag (0.067, 0.1, 0.2) ,
where diag(·) indicates a diagonal matrix.

We simulate N = 1000 data {yk, ℓk} from (34) using a
white noise input uk ∼ WN(0, 1). These data are used to
define the datasets (4)-(5)-(6). The Signal to Noise Ratio
(SNR) between the noiseless states x̃k of (34) and the
state noise wk is defined as

SNRx̃(i) =
Var[x̃(i)

k ]

Var[w(i)
k ]

≈ 25, i ∈ {1, 2, 3}, (35)

with x̃
(i)
k , w

(i)
k are the i-th elements of the noiseless and

noise state vectors x̃k,wk respectively. The SNR between
the noisy states xk and the their measurements ℓk is

SNRℓ(i) =
Var[x(i)

k ]

Var[e(i)k ]
≈ 11, i ∈ {1, 2, 3}, (36)

while SNR between the noiseless output ỹk and the output
noise vk is

SNRy =
Var[ỹk]
Var[vk]

≈ 6. (37)

We compare the following four approaches:

(1) Nominal KF: a Kalman Filter (15) with all system
(A,B,C,D) and covariance matrices (Q, R) known.
This is the best possible linear filtering approach for
systems of type (1).

(2) Indirect KF (Q,R): a Kalman Filter (15) employing
estimates of the system matrices (12) and (14), but
with known covariance matrices Q, R.

(3) Indirect KF: a Kalman Filter (15) employing es-
timates of the system matrices (12) and (14), and
estimates of covariance matrices (25). This is the
typical situation in practical scenarios.

(4) Direct filter: a direct filter of a proper order and
structure (32) is identified from the data (8).

We run MC = 100 Monte-Carlo simulations, varying the
realization of the noises wk, vk, ek at each run. For each
run, the designed filters are evaluated on a test dataset
(fixed for each simulation) of Ntest = 1000 data generated
with a white noise input utest

k ∼ WN(0, 1). The test dataset
is different from the identification one, both regarding the
input and the realizations of the noises affecting the test
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filter) order is known. Thus, we are left selecting an
appropriate parametric structure for D(θD).

4.2 Choice of the model structure for the direct filter
Assume that the system (1) is completely known. In this
case, the Kalman filter recursions (15) provide the best
linear unbiased estimator, with minimum variance of the
state prediction error. Consider the steady-state filter with
P̄ the solution of

P̄
◦
= AP̄

◦
A⊤+Q−AP̄

◦
C⊤(CP̄

◦
C⊤+R)−1CP̄

◦
A⊤

and K̄
QR the steady state filter gain

K̄
QR

:= P̄
◦
C⊤(CP̄

◦
C⊤ +R). (28)

Substitution of (15a) into (15f) leads to a dynamic expres-
sion for the Kalman filtered state, with ◦ denoting the fact
the perfect model is used

x̂◦
k|k = (A− K̄

QR
CA)x◦

k−1|k−1+

+ (B− K̄
QR

D− K̄
QR

CB)uk−1 + K̄yk. (29)

Writing (29) in operational form and denoting z−1 the lag
operator so that yk−1 = z−1yk , we get

x̂◦
k|k = A(z)−1Bu(z)uk +A(z)−1By(z)yk, (30a)

= G◦
u(z)uk +G◦

y(z)yk, (30b)

A(z) := Inx − (A− K̄
QR

CA)z−1,

Bu(z) := (B− K̄
QR

D− K̄
QR

CB)z−1, By(z) := K̄
QR

.

Equation (30a) can be related to state filtering error
ν◦
k := xk − x̂◦

k|k and the state measurements (2) as

ℓk = x̂◦
k|k + ν◦

k + ek = x̂◦
k|k + γk, (31a)

= G◦
u(z)uk +G◦

y(z)yk + γk, (31b)
γk := ν◦

k + ek, (31c)
where G◦

u(z), G
◦
y(z) are nx × 1 transfer function matrices.

Note that γk ∈ Rnx in (31c) is not a white process as ν◦
k

contains the terms wk and wk−1. Thus, the model D(θD)
for the data-driven filter must be parametrized with both
exogenous and noise models as in Figure 1:

ℓk = Gu(z;θD)uk +Gy(z;θD)yk +H(z;θD)ρk (32)
where ρk is a white noise process and Gu(z;θD), Gu(z;θD),
H(z;θD) ̸= 1nx

are nx×1 transfer matrices that represent
the parameterized models for the exogenous inputs uk, yk
and noise ρk, respectively.

Gu(z;θD)

Gy(z;θD)

uk

yk

+

+

γk

+

+

ℓk

H(z;θD)
ρk ∼ WN

Fig. 1. Data-driven filter stochastic parametric model.
Blue quantities denote the measured signals.

The state estimates provided by the direct data-driven
approach can be computed by a simulation of the identified
direct filter D̂ as

ẑD
k = Gu(z; θ̂D)uk +Gy(z; θ̂D)yk. (33)

Remark 2. Model (32) can also be parameterized so that
the exogenous part and the noise part are independently
parameterized, so leveraging Box-Jenkins structures.
Remark 3. The direct filter estimate (33) can not be com-
puted using the one-step model prediction, as this would
require measurements of ℓk that are assumed available
only offline for the identification of (32).

5. NUMERICAL RESULTS

Consider a system (1) of order nx = 3 sampled at Ts =
0.01 s and measurements (2) with

A =

[
0.610 0.084 −0.536
−0.139 0.270 0.763
0.124 0.279 −0.245

]
, B =

[−0.558
−0.028
−1.476

]
, (34)

C = [0.259 −2.018 0.199] , D = 0, R = 1,

Q = diag (0.025, 0.05, 0.1) , Σ = diag (0.067, 0.1, 0.2) ,
where diag(·) indicates a diagonal matrix.

We simulate N = 1000 data {yk, ℓk} from (34) using a
white noise input uk ∼ WN(0, 1). These data are used to
define the datasets (4)-(5)-(6). The Signal to Noise Ratio
(SNR) between the noiseless states x̃k of (34) and the
state noise wk is defined as

SNRx̃(i) =
Var[x̃(i)

k ]

Var[w(i)
k ]

≈ 25, i ∈ {1, 2, 3}, (35)

with x̃
(i)
k , w

(i)
k are the i-th elements of the noiseless and

noise state vectors x̃k,wk respectively. The SNR between
the noisy states xk and the their measurements ℓk is

SNRℓ(i) =
Var[x(i)

k ]

Var[e(i)k ]
≈ 11, i ∈ {1, 2, 3}, (36)

while SNR between the noiseless output ỹk and the output
noise vk is

SNRy =
Var[ỹk]
Var[vk]

≈ 6. (37)

We compare the following four approaches:

(1) Nominal KF: a Kalman Filter (15) with all system
(A,B,C,D) and covariance matrices (Q, R) known.
This is the best possible linear filtering approach for
systems of type (1).

(2) Indirect KF (Q,R): a Kalman Filter (15) employing
estimates of the system matrices (12) and (14), but
with known covariance matrices Q, R.

(3) Indirect KF: a Kalman Filter (15) employing es-
timates of the system matrices (12) and (14), and
estimates of covariance matrices (25). This is the
typical situation in practical scenarios.

(4) Direct filter: a direct filter of a proper order and
structure (32) is identified from the data (8).

We run MC = 100 Monte-Carlo simulations, varying the
realization of the noises wk, vk, ek at each run. For each
run, the designed filters are evaluated on a test dataset
(fixed for each simulation) of Ntest = 1000 data generated
with a white noise input utest

k ∼ WN(0, 1). The test dataset
is different from the identification one, both regarding the
input and the realizations of the noises affecting the test

data. Filtering performance is evaluated, for each Monte-
Carlo simulation and state x

(i)
k , i ∈ {1, 2, 3} of xk, by

computing the root mean square error (RMSE) between
noisy states xk and the filtered ones, i.e. (15f) for the
Kalman-based approaches and (33) for the direct filter,
as

Filtering RMSEi =

√√√√ 1

Ntest

Ntest∑
k=1

(
x(i) − ẑ

(i)
k

)2

, (38)

where ẑ
(i)
k is the i-th element of the state estimate ẑk,

that assumes the definition (15f) or (33) according to the
considered Kalman-based of direct filter approach.

The approach reviewed in Section 3.3 is applied for the
estimation of the noise covariance matrices for Indirect
KF approach. As suggested in (Odelson et al., 2006; Duník
et al., 2017b), usually a low value of the hyperparameter
m in (20) is employed and gives satisfactory results. Thus,
we set m = 4 in the simulations. A second hyperparameter
regards the definition of the observer gain L in (16).
As this gain influences the variance of the estimates
(Duník et al., 2017b), we fixed the same gain L for all
Monte-Carlo simulations. The gain L is set close to the
optimal Kalman gain (i.e. when considering as known the
system and noise matrices). Furthermore, we used the
information that Q is diagonal in the resolution of (25)
with a semidefinite program solver. Notice that the last
two settings represent an advantage for the Indirect KF
approach in the simulations, as these prior information are
usually not available.

Regarding the Direct filter approach, we choose a MIMO
Box-Jenkins model structure, with 2 inputs (the input uk

and the output yk of the system) and 3 outputs (the states
measurements ℓk). For each of the input-output transfer
functions of the direct filter model, we have the following
relation

ℓ
(i)
k =

bu,i0 + bu,i1 z−1 + . . . bu,inb
z−nb

1 + fu,i
1 z−1 + . . . fu,i

nf z
−nf

uk+

+
by,i0 + by,i1 z−1 + . . . by,inb

z−nb

1 + fy,i
1 z−1 + . . . fy,i

nf z
−nf

yk+

+
1 + ci1z

−1 + . . . cinc
z−nc

1 + di1z
−1 + . . . dind

z−nd
ρk, i ∈ {1, 2, 3}, (39)

where {bu,i0 , . . . , bu,inb
} , {fu,i

1 , . . . , fu,i
nf

} are the coefficients
of the transfer function from uk to the i-th state mea-
surement ℓ

(i)
k , {by,i0 , . . . , by,inb

} , {fy,i
1 , . . . , fy,i

nf
} are the co-

efficients of the transfer function from yk to ℓik, and
{ci1, . . . , cinc

} , {di1, . . . , dind
} are the coefficients of the

transfer function from the white noise ρk to ℓ
(i)
k , for

i ∈ {1, 2, 3}. The orders nb, nf , nc, nd are fixed for all the
three outputs of the direct filter model. In particular, we
set nb = nf = nc = nd = nx. The parameters vector θD
for the direct filter model is defined as

θ
(i)
D :=

[
bu,i0 , . . . , bu,i3 , fu,i

1 , . . . , fu,i
3 , by,i0 , . . . , by,i3 ,

fy,i
1 , . . . , fy,i

3 , ci1, . . . , c
i
3, di1, . . . , d

i
3

]
∈ R1×20,

i ∈ {1, 2, 3}, (40a)

θD :=
[
θ
(1)
D θ

(2)
D θ

(3)
D

]⊤
∈ R60. (40b)

The adequacy of these setting is evaluated on the test
dataset by residual correlation analysis of the one-step
prediction error ℓk − ℓ̂k|k−1(θ̂D) of the direct filter model.

The first step in the Indirect KF (Q,R) and Indirect
KF approaches is the estimation of a model for the system
(34), using the instrumental variable estimates (12)-(14).
Figure 3 depicts the estimates of the elements of of the
matrix A in (34) as an example: the estimates of the other
matrices have similar properties.

Fig. 2. Estimates of the matrix A in (34). Each Aij is the
(ij)-th element of A. The vertical black line represents
the true values of the parameters.

Fig. 3. Estimates of the noise covariance matrices. (Left)
Estimates of Q. The Qii represents the i-th diagonal
element of Q. (Right) Estimates of R. The vertical
black line represents the true values of the parameters.

Figure 3 reports the estimation results of the noise covari-
ance matrices Q, R following the approach of Section 3.3
solving (21) in a least-square sense using the MOSEK op-
timizer via YALMIP with semipositive definite constraints
on the covariance matrices and information about the
diagonality of Q (ApS, 2022; Löfberg, 2004).

Figure 4 shows a comparison of the filtering performance
of the four approaches, on the test dataset. The Direct
Filter is superior to both the Indirect KF (Q,R) and
Indirect KF approaches, as it directly (and implicitly)
optimizes for the unknown covariance and system matri-
ces. On the other side, the Indirect KF (Q,R) is sensitive
to the estimation uncertainty of system matrices, and the
Indirect KF approach is sensitive to the uncertainty in
both system and noise covariance matrices. We recall that
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Fig. 4. Filtering error of the four approaches as measured by (38) (the lower the better). Each plot represents the
filtering error of a single state of system (34). The vertical black line denotes the performance of the Nominal KF
approach. The numbers close the plot border denote the number of outliers.

the Indirect KF has, in these simulations , the advantage
of knowing the diagonality of the Q matrix and the setting
of the observer gain L which is close to the optimal Kalman
one. Both these aspects are unknown in practical scenarios:
nonetheless, its results are worse than the direct filter ones,
that does not make use of such information.

6. CONCLUSIONS

This paper presented a comparison of traditional indirect
(two-steps) and direct (one-step) data-driven approaches
for the state estimation of linear stochastic systems. In
particular, is has been shown how the uncertainty in the es-
timation of the noise covariance matrices impacts the most
on the filtering performance, even if prior knowledge about
such matrices is leveraged. If a set of state measurements is
available, the design of a direct filter can be beneficial with
respect to the two-stage designs. Future work is devoted to
study the application of the direct filter to MIMO systems
and the choice of the appropriate model structure for the
direct filter, and applications to real datasets.
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