
A compositional simulation framework for Abstract State Machine

models of Discrete Event Systems

SILVIA BONFANTI , University of Bergamo, Bergamo, Italy

ANGELO GARGANTINI, University of Bergamo, Bergamo, Italy

ELVINIA RICCOBENE, Università degli Studi di Milano, Milano, Italy

PATRIZIA SCANDURRA, University of Bergamo, Bergamo, Italy

Modeling complex system requirements often requires specifying system components in separate models, which can be

validated and veriied in isolation from each other, and then integrating all components’ behavior in order to validate the

operation of the whole system. If models are executable, as for state-based formal speciications, engines to orchestrate the

simulation of separate component operational models are extremely useful.

This paper presents an approach for the co-simulation, according to predeined orchestration schemas, of state-based

models of separate components of a Discrete Event System. More precisely, we exploit the Abstract State Machine (ASM)

formal method as state-based formalism, and we (�) deine a set of operators to compose ASMs that communicate with each

other through I/O events, and (��) present an engine to execute the compositional simulation of the ASMs as a whole assembly.

As proof of concepts, we use a set of model examples of Discrete Event Systems of increasing complexity to show the

application of our approach and to evaluate its efectiveness in co-simulating models of real systems.

CCS Concepts: · Software and its engineering → Software as a service orchestration system; Formal methods; ·

Computing methodologies→ Discrete-event simulation.

Additional Key Words and Phrases: Models composition, Models co-simulation, Abstract State Machines, ASMETA

1 INTRODUCTION

Modern software-intensive systems are reaching unprecedented levels of complexity. Their modeling requires
managing large-scale models, and the analysis and simulation of such models is often unmanageable and
quite infeasible. Thus, to keep requirements complexity under control and to efectively manage large system
speciications, it is necessary to decompose the conceptual model into components, each of which can be separately
modeled, validated, and veriied in isolation from the rest. Then all component models have to be integrated and
possibly simulated as a whole [7, 27]. This decomposition approach is widely used for modeling and prototyping
Discrete Event Systems (DESs), and the only alternative available in practice for understanding the behavior of
such complex and large systems [5, 29].
Towards this research line and inspired by the well-known principles of decentralization and separation

of concerns, this paper presents an approach for the co-simulation of state-based models of independent and
interacting components of a DES. Speciically, we exploit the Abstract State Machine (ASM) [4, 11] formal method
as state-based formalism. We deine a set of coordination/orchestration operators, which allow the deinition of
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patterns for compositional simulation of ASM models that communicate with each other through I/O events. We
present the AsmetaComp simulation composer engine, which executes the compositional simulation of the I/O
ASMs as living models at runtime [6, 25, 28].

The contributions of this paper can be summarized as follows:
• we propose a rigorous compositional modeling and simulation method for DESs through formal state-based
models (as ASMs) supported by V&V (validation and veriication) tools (like the ASMETA toolset for
ASMs [1, 4]);

• we provide the concept of I/O ASM and deine a compositional execution semantics of orchestrated I/O
ASMs;

• we present the simulation composer engine AsmetaComp for the compositional simulation of I/O ASMs;
• we present the application of the proposed framework to safety-critical case studies;
• we compare the proposed compositional approach with a monolithic one where diferent component models
are imported and scheduled in a unique model; comparison is given in terms of well-known principles of
software architectural design and simulation results.

The paper extends the results presented in [8]. More precisely, (�) we expand the deinition of the composition
operators, enriching how I/O ASM models can be assembled, and (��) we present the architecture and the usage
of the AsmetaComp tool. Moreover, besides our experience reported in [8] in validating the proposed approach
on the Mechanical Ventilator Milano (MVM), a mechanical lung ventilator developed for Covid-19 patients, (���)
we here present the compositional model simulation by a set of examples spanning from simple models used to
show the application of the composition operators, to a classical software engineering case study, the traic light
system, which is easy to follow by the reader, to another real case study from the medical domain, to show the
efectiveness of our framework. Finally, (��) we discuss the advantages of a compositional model simulation w.r.t.
the simulation of a monolithic composition of models.
This paper is organized as follows. Section 2 provides basic concepts about ASMs and the ASMETA toolset.

Section 3 presents the proposed compositional model-based simulation technique. Section 4 introduces the
architecture and the usage of the AsmetaComp tool. Section 5 shows the application of the proposed technique to
three case studies. Section 6 discusses the comparison between monolithic and composed simulations, and reports
the threats to validity of our approach. Section 7 discusses the related works, and inally Section 8 concludes the
paper.

2 BACKGROUND OF THE ASM FORMAL METHOD AND THE ASMETA TOOL-SET

The Abstract State Machine (ASM) is a formal method to specify behaviour in a state-based manner [10].
ASMs extend Finite State Machines (FSMs) where unstructured FSM control states are replaced by mathematical
algebras comprising arbitrary complex data (i.e., domains of objects with functions deined on them), and state
transitions are expressed by transition rules describing how the data (state function values saved into locations)
change from one state to the next. ASMETA (ASM mETAmodeling) [1, 4] is a modeling tool-set based on the
ASMs. In the following, we refer to an ASMETA model as an ASM encoded in the ASMETA tool-set.

Codes 1, 2, and 3 show three examples of simple ASMETA models that are here used to introduce the necessary
preliminary concepts of ASMETA models and, in the following sections, to describe the compositional simulation
of ASMETA models. The irst model asmInc.asm (see Code 1) increases the sum of inputs by two and saves the
maximum value between the two inputs, the second model asmDec.asm (see Code 2) decreases the sum of inputs
by one, and the last model asmMulti.asm (see Code 3) multiplies the sum of inputs by two.
From these examples, you can see that an ASMETA model is composed by the following sections:

Form. Asp. Comput.
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1 asm asmInc
2 import StandardLibrary
3 signature:
4 monitored funcMulti: Integer
5 monitored funcDec: Integer
6 controlled maxFunction: Integer
7 out funcInc: Integer
8 definitions:
9 macro rule r_max =
10 par
11 if funcMulti >= funcDec then
12 maxFunction := funcMulti endif
13 if funcDec > funcMulti then
14 maxFunction := funcDec endif
15 endpar
16 main rule r_Main =
17 par
18 funcInc := (funcMulti + funcDec) + 2
19 r_max[]
20 endpar
21
22 default init s0:
23 function maxFunction = 0

Code 1. ASMETA model asmInc.asm

1asm asmDec
2import StandardLibrary
3signature:
4monitored funcInc: Integer
5monitored funcMulti: Integer
6out funcDec: Integer
7derived sumOfFunctions: Prod(Integer,Integer)−> Integer
8definitions:
9function sumOfFunctions($f1 in Integer, $f2 in Integer) = $f1 + $f2
10main rule r_Main =
11funcDec := sumOfFunctions(funcInc, funcMulti) − 1

Code 2. ASMETA model asmDec.asm

1asm asmMulti
2import StandardLibrary
3signature:
4monitored myinput: Integer //unbound input
5out funcMulti: Integer
6definitions:
7main rule r_Main =
8funcMulti := myinput ∗2

Code 3. ASMETA model asmMulti.asm

• The signature section, where domains and functions are declared1. The model interface with its envi-
ronment is speciied by monitored functions (e.g. function funcMulti in Code 1) that are written by the
environment and read by the machine, and by out functions (e.g. function funcDec in Code 2) that are
written by the machine and read by the environment; controlled functions (e.g. function maxFunction in
Code 1) are the internal functions used by the machine (read in the current state and updated by the
machine in the next state); derived functions (e.g. function sumOfFunctions in Code 2) are deined in terms
of other (dynamic) functions.

• The definitions section where derived functions, all transition rules, and possible invariants are speciied.
Transition rules have diferent constructors depending on the structure of the updates they express, e.g,
guarded updates (if-then, switch-case), simultaneous parallel updates (par), sequential updates (seq),
etc. E.g., Code 1 makes use of if-then and par transition rules: at the same time all the guards (mutually
exclusive) are evaluated, and the corresponding update rule is executed when the condition is true. The
update rule f (t1, . . . , tn) := � , being � an n-ary function, �� terms, and � the new value of f (t1, . . . , tn) in the
next state, is the basic unit of rules construction. State invariants are irst-order formulas that must be true
in each computational state.

• The main rule that is, at each state, the starting point of the computation; it, in turns, call all the other
transitions rules, if any. For example, as shown in Code 1, the rule r_max, called by the main rule (in parallel
to the update rule that assigns a new value to funcInc), assigns to the function maxFunction the maximum
between the functions functMulti and funcDec, zero if they are equal.

• The default init section where initial values for the controlled functions are deined. An example is
shown in Code 1, where the controlled function maxFunction is initialized to 0.

An ASMETA model can be understood as executable pseudo-code or virtual machine working over abstract
data structures at any desired level of abstraction.

1External libraries of a predeined (part of the) signature can be imported into a model asmodule, like the StandardLibrary containing

built-in domains and functions to simplify the user declarations.
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A model run is a inite or ininite sequence �0, �1, . . . , �� , . . . of states: starting from an initial state �0, a run step

from �� to ��+1 consists of the parallel execution of all transition rules, which are directly or indirectly called from
the main rule and are enabled to ire, and leads to simultaneous updates of a number of locations.

In case of an inconsistent update (i.e., the same location is updated to two diferent values by iring transition
rules) or invariant violations, the model execution fails, but the model is kept alive by restoring the state in which
it was before the failing step (model roll-back). In the sequel, we shortly write model succeeds or fails to mean a
model performing either a successful run step or a failing one.

The development process from formal requirement speciication to code generation is supported by theASMETA
set of tools [1], which provides the user with amodeling notation (as already shown in the code examples), diferent
analysis (V&V) techniques, and automatic source code and test generators for models to be applied at design-,
development-, and operation- time [4]. In particular, a runtime simulation engine, AsmetaS@run.time [26], has
been developed within ASMETA as an extension of the oline simulator AsmetaS [14] to handle an ASM as a
living model [6, 28] to run in tandem with a real software system.

3 COMPOSITIONAL SIMULATION OF ASM MODELS

When considering the decomposition of a conceptual system model into separate subsystems or components
that interact to share resources, one has to analyze input/output events, since they represent the communication
mechanism among components.

ASMs are a state-based formalism that relies on the current state and inputs of a machine to determine outputs.
To deine behavioral models of subsystems/components of a whole system, one can specify a set of ASMs, each
with its own input (representing the monitored locations of the ASM), current state (representing the controlled
locations of the ASM), and output (representing the out locations of the ASM). These component models, denoted
here as I/O ASMs, are deined as follows:

Deinition 3.1 (I/O ASM). An I/O ASM is an ASM model� with a set �� of input (or monitored) functions and
a set �� of output (or out) functions in its signature, where �� and �� cannot be both empty. We denote by
(��,�,��) an I/O ASM, and by curr_state(�) the set of its locations values.

We assume that I/O ASMs can interact in a black-box manner by binding input and output functions with
the same symbol name and interpretation. Take, for instance, the standard arrangement or progression of two
machines � and �, wherein the output of machine � serves as the input for machine �. We may view the cascade
of these two machines as a single compound machine that reacts to an external input � by propagating the efect
of � through the cascade of � and � at each step (� reacts to � , then � reacts to the output of �). So we focus
on ASMs having a well-deined I/O interface represented by (possibly parameterized) input and output ASM
functions, which are, in fact, the interaction ports (or points) with the environment or other ASMs. We formally
deine the binding between I/O ASMs as follows:

Deinition 3.2 (I/O ASM binding). Given two I/O ASMs,�� and� � , an I/O binding exists from�� to� � if

���
∩ �� �

≠ ∅. We denote by��

��,�

===⇒ � � the I/O binding from�� to� � , where ��, � = ���
∩ �� �

is the set of

binding functions.

We assume that if an I/O ASM binding exists for the model�� to� � , then at least one function symbol � must
occur in both the two models’ signatures and is used as output function for�� and as input function for� � , with
the same domain and codomain and same interpretation.

The asmMulti speciication shown in Code 3 is an example of I/O ASM, having input function � = {myInput}

and output function � = {funcMulti}. Fig.1 provides a graphical view of the bindings among all component
models, asmInc.asm, asmDec.asm, and asmMulti.asm, as wires (the solid lines with arrows) labeled with the

Form. Asp. Comput.
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asmMulti asmDec

asmInc

myInput funcMulti

funcInc
funcDec

Fig. 1. I/O ASM assembly of simple components

name of the interface representing the binding functions (the exchanged signals values): an arrow incoming is
the input for the component, an arrow outgoing is an output for the component.

Several I/O ASMs can execute and communicate over I/O bindings to form a whole ASM assembly.

Deinition 3.3 (I/O ASM assembly). An I/O ASM assembly is a set of I/O ASMs bound together by I/O ASM
bindings.

Fig.1 illustrates, for example, an I/O ASM assembly consisting of the I/O ASMmodels asmInc.asm, asmDec.asm,
and asmMulti.asm.

The execution of an assembly of I/O ASMs can be orchestrated (or coordinated) in accordance with a worklow
expressible through diferent types of coordination constructs, deined below, with a speciic semantics. Intuitively,
a pipe connection�1 | �2 means that the output of�1 is used as input to�2, assuming a directional I/O binding
exists between the two models, namely some input functions of�2 are a subset of the output functions of�1.
Similarly, a bidirectional pipe�1 < |> �2 is like having two pipes where one is used for the reverse direction, i.e.
the output (or a subset) from�2 becomes the input of�1 in addition to external input from the environment or
other machines bound to�1. In both these two series compositions, we assume a cascade synchrony in reacting
to external input from the environment. In a parallel connection�1 ∥ �2, both the two models react to external
input from the environment or from other machines separately. Such coordination constructs allow for the
following (recursive) deinition of a composition formula of I/O ASMs.

Deinition 3.4 (I/O ASM composition formula). A composition formula � over an ASM assembly � is a single I/O
ASM� belonging to � or �1 | �2 or �1 < |> �2 or �1 <∥> �2 or �1 ∥ �2 or � � � �ℎ�� �1 ���� �2 or�ℎ��� � �1, where
�1 and �2 are composition formulas and {|, < |>, <∥>, ∥, � � − �ℎ�� − ���� ,�ℎ���} are composition operators.

The composition formula � = (�1 < |> (�2 ∥ �3)) | �4 denotes, for example, the execution schema of four
ASM models, where the output of the bidirectional pipe between m1 and the parallel of m2 and m3, is given as
input tom4 connected through a pipe. As another example, the I/O ASM assembly shown in Fig.1 can be executed
using a composition formula made by a pipe between asmMulti and a half-duplex bidirectional pipe between
asmInc and asmDec: �������� .��� | (asmInc.asm < |> ������.���). The intuitive meaning of this composition
formula is that asmMulti is executed irst, then it passes its output to both asmInc and asmDec. asmInc starts
and passes its output to asmDec which executes its rules and gives back the result to asmInc for the next step.
Note that in case of a composition formula of the form ��op � � , we assume that if a model� occurs in �� and

also in � � , two diferent instances of the same model� are instantiated.
Before providing the operational semantics of the composition operators, we extend the deinition of I/O ASM

binding at the level of a composition formula, as follows:

Deinition 3.5 (I/O ASM composition binding). Given two I/O ASM composition formulas, �1 and �2, for a given

I/O ASM assembly, an I/O composition binding �1
�1,2

===⇒ �2 exists from �1 to �2 if ∃ at least an I/O ASM�1� occurring

in �1 and an I/O ASM�2� occurring in �2 such that an I/O binding�1�

�1�,2�

====⇒�2� exists from�1� to�2� . �1,2 is

Form. Asp. Comput.
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the union of all existing binding functions between models�1� in �1 and models�2� in �2:

�1,2 =

⋃

�1� ∈�1,�2� ∈�2

�1�,2�

As an example, consider the two composition formulas �1 = �������� .��� and �2 = ������.��� < |>

������.��� for the assembly shown in Fig.1. �1 and �2 are bound by the binding �1,2 = ���������,������ ∪

���������,������ where ���������,������ = {funcMulti} and ���������,������ = {funcMulti}.

Deinition 3.6 (I/O ASM composition operators). Let � be an I/O ASM composition formula. The operational
semantics of � is deined as follows:

Single model: � = (��,�,��). A step of � is an execution step of the ASM� on the inputs �� provided by
the I/O bindings and by the environment.

(Simplex) pipe or sequence: � = �1 | �2. We assume �1
�
=⇒ �2. First execute �1 on inputs ��1 provided by the

I/O bindings and by the environment, and if �1 succeeds, subsequently execute �2 on the inputs ��2 provided
by the I/O binding � with �1, and by the environment, and return the results as outputs.

Half-duplex bidirectional pipe: � = �1 < |> �2. We assume �1
�1,2

===⇒ �2 and �2
�2,1

===⇒ �1. First execute �1 on the

inputs ��1 provided by its I/O bindings and by the environment, and if �1 succeeds, subsequently execute �2
on the inputs ��2 provided by the I/O binding �1,2 with �1 and by the environment; then, return the outputs
for the I/O binding �2,1 with �1.

Full-duplex bidirectional pipe: � = �1 <∥> �2. We assume �1
�1,2

===⇒ �2 and �2
�2,1

===⇒ �1. First execute both �1

and �2 simultaneously on their inputs ��1 and ��2 provided by their I/O bindings and by the environment; if
both succeed, then return their outputs for their I/O bindings.

Synchronous parallel split (or fork-join): � = �1 ∥ �2 Execute both �1 and �2 separately on their inputs ��1
and ��2 , respectively, provided by their I/O bindings and by the environment, then return their outputs.

Conditional execution: � = if � then �1 else �2 First evaluate the boolean expression � on the current state
of the I/O ASMs �1 and �2. If � is true then execute �1 on the inputs ��1 provided by its I/O bindings and by
the environment, and if �1 succeeds, return its result; otherwise, if �1 fails, return fail and backtrack �1 to its
previous state. Else (� is false) execute the I/O ASM �2 on the inputs ��2 provided by its I/O bindings and by
the environment, and if �2 succeeds, return its result; otherwise, if �2 fails, return fail and backtrack �2 to its
previous state.

Iterative execution: � = while � �1 Execute repeatedly the I/O ASM �1 on the inputs ��1 provided by its I/O
bindings and by the environment, so long as the boolean expression � is true on the current state of �1. If
�1 fails, return fail and backtrack �1 to its original state before executing the loop.

In case an I/O ASM model fails, the composition expression fails and the faulty ASM model and all models already
executed in the composition are rolled back.

The simulation of an I/O ASM assembly is the result of the compositional simulation of its I/O ASM components
according to the execution semantics of a precise composition formula. Concretely, it can be represented and
managed in memory in terms of an expression tree, as given by the following deinition.

Deinition 3.7 (Compositional Simulation Tree of I/O ASMs). Given a composition formula � of I/O ASMs�� ,
� = 1, ..., �, a Compositional Simulation Tree (CST) of � is a binary tree �� = (�� , �� ), where a leaf node in �� is
labelled by an ASM�� together with its curr_state(�� ), and an internal node in �� is labeled by a composition
operator chosen from the set {|, < |>, <∥>, ∥, if-then-else, while}.

Form. Asp. Comput.
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Intuitively, a step of an I/O ASM composition (i.e., a single compositional simulation step) is a recursive
pre-order traversal of the corresponding CST to visit nodes (from the root to leaves) and evaluates them according
to their type. The execCST in Algorithm 1 is the pseudocode of a simpliied version of a CST traversal without
considering the roll-back of models in case a failure occurs during model execution. Given a CST �� for a
composition � , the output of the algorithm is the set�� of ASM out functions values in the (inal) current state of
the I/O ASM models (executed at each leaf node of �� ). The recursive traversal exec in Algorithm 2 is initially
invoked (see line 2 of Algorithm 1) on the root node of a not empty CST with an empty set ��

2 of ASM input
functions values for the I/O ASM models occurring in � . �� will be populated during the tree traversal (when a
model at a leaf node is executed) with function values provided externally by the environment or computed by
other previously executed models in the tree. Algorithm 2 uses the subroutine put(�1, �2, �1,2) to copy the values

of the binding functions in �1
�1,2

===⇒ �2 from �1,2 ⊆ ��1 to �1,2 ⊆ ��2 . An intuitive graphical representation of the

execution steps of the various composition operators is depicted on the left side of Algorithm 2.

Deinition 3.8 (Runstep of an I/O ASM composition). Given a composition formula � for an assembly � of I/O
ASMs �� , � = 1, ..., �, a runstep of the composition � is the depth (pre-order) traversal, given by Algorithm 1:
execCST, of the compositional simulation tree �� , which updates the current states of the component models��

at the leaves of �� .

As an example, Fig. 2 depicts the depth visit of the CTS of the composition � = (�1 < | > (�2 ∥ �3)) | �4:
an execution step of the ASM models at leaf nodes of the tree updates the model’s current state on the inputs
provided by the I/O bindings (plus those provided by the environment but not shown in the picture). Labels 1, 4,
and 7 denote the steps of the models to update their location values, while labels 2, 3, 5, 6, and 8 denote copying
of the binding function values according to the composition operators.

2We assume �� is concretely realized as a map (or dictionary) that associates ASM function symbols (the keys) with their values.

Form. Asp. Comput.
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Algorithm 1: execCST
Input :T: a CST

1 Function execCST(� ):
2 if T.root ≠ NULL then
3 exec(T.root,∅);

exec�1

���

exec�2

exec�1

���

exec�2

���

exec�1
exec�2

��� ���

exec�1
exec�2

�

�

� exec�2

exec�1

�
� exec�1

Algorithm 2: exec

Input :node: a CST node
Input : � : object that maps ASM monitored functions to their

values.
Output :� : an object that maps ASM out functions to their

values.
1 Function exec(���� , �):
2 if node.isLeaf() then
3 run a step of node.model on input I ;

4 return node.model.getOutLocations();

5 else
6 �1 = node.left;

7 if node.operator != while then
8 �2 = node.right;

9 switch node.operator do
10 case | do
11 �1 = exec(�1 ,� );

12 put(�1 ,�2 ,�1,2);

13 �2 = exec(�2 ,� );

14 return�1 ∪�2 ;

15 case < | > do
16 �1 = exec(�1 ,� );

17 put(�1 ,�2 ,�1,2);

18 �2 = exec(�2 ,� );

19 put(�2 ,�1 ,�2,1);

20 return�1 ∪�2 ;

21 case < | | > do
22 �1 = exec(�1 ,� );

23 �2 = exec(�2 ,� );

24 put(�1 ,�2 ,�1,2);

25 put(�2 ,�1 ,�2,1);

26 return �1 ∪�2 ;

27 case | | do
28 �1 = exec(�1 ,� );

29 �2 = exec(�2 ,� );

30 return�1 ∪�2 ;

31 case � � _�ℎ��_���� do
32 if � then� = exec(�1 ,� );

33 else� = exec(�2 ,� );

34 return� ;

35 case �ℎ��� do
36 while � do
37 � = exec(�1 ,� );

38 return� ;

4 TOOL SUPPORT

AsmetaComp is a simulation composer engine for I/O ASMs. It has been developed using the Java OO programming
language and is available as part of the ASMETA (ASM mETAmodeling) analysis toolset[1] for ASMs.

In this section, we show the general architecture and the use of the AsmetaComp tool.
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Fig. 2. Visit of a Compositional Simulation Tree for (�1 < |> (�2 ∥ �3)) | �4

4.1 AsmetaComp Sotware Architecture

AsmetaComp is part of the AsmetaS@run.time [26] (see Fig. 3). AsmetaS@run.time supports simulation as-a-
service features (the interface IModelExecution) of the conventional ASMETA simulator AsmetaS, including
model roll-back to the previous safe state after a failure of the model execution (e.g., invariant violations,
inconsistent updates, ill-formed inputs, etc.) while processing an input event. It also allows the dynamic adaptation
of a running ASMETA model (the interface IModelAdaptation) to change model invariants (representing, for
example, system safety assertions). These functionalities are conveniently accessible by the user/modeler through
the provided interfaces of AsmetaS@run.time and the dashboards for the Human-Model-Interaction (both in a
graphical and in a command-line way) (the subsystem SimulationUI).
AsmetaComp is realized by the sub-component CompositionManager and by a CLI (see Subsection 4.2). The

sub-component CompositionManager is responsible for implementing the new interface IModelComposition
exposed by AsmetaS@run.time for allowing compositional simulation of ASMETA models. Fig. 4 shows the class
diagram for the internal details of such a component. CompositionManager is the core class of the component
implementing the provided interface with all methods for managing the execution of a composition of ASMETA
models (the attribute compositionTree of type Composition), and eventual exceptions that may arise during
the compositional simulation, such as the rollback in case of a model execution fails (as represented by classes
CompositionException and CompositionRollbackException).
Fig. 5 shows an excerpt3 of the class hierarchy introduced for representing the entities of a CST as (Java)

OOP objects. The abstract class Composition is the root class for a generic node of the CST representing a
composition (sub-)formula. Its direct subclass BiComposition is abstract and represents a generic node for
a binary composition operator; its concrete subclasses (BiPipeHalfDup, BiPipeFullDup, etc.) represent the
nodes for the binary composition operators. The class LeafAsm represents a leaf node of a CST, namely a
living I/O ASM; it includes a name, a reference object to the run-time simulator instance (attribute of type
SimulatorRT) where the ASM is running, and a driver (attribute object of type MFReaderWithSettableMon) for
the interaction with the environment during the input reading. All these classes expose the methods eval() and
copyMonitored(UpdateSet) representing the recursive traversal ���� and the subroutine ��� , respectively, used

3For the sake of simplicity, Fig. 5 does not report the classes for the conditional and iterative operators.
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Fig. 3. Simulator@run.time and SimulationUI component diagram

Fig. 4. CompositionManager Class Diagram

in the Algorithm 2. So, according to the GoF Visitor design pattern, each of these concrete classes implements
part of the visit algorithm operating on the object structure and maintains the state of the algorithm locally.

4.2 AsmetaComp usage

AsmetaComp can be used through a command line, as explained below. An orchestration language allows the
deinition of composition schemas for simulating local or remotemodels4 according to the compositional semantics
of the basic operators.

AsmetaComp Shell. The user can provide input interactively or via a script containing a sequence of commands
for setting and running the composition formula. In this example, we have adopted the second option as shown in
Code 4. After the number of involved models is deined (Code 4, line 1), we have built a pipe from the asmMulti
to the half-duplex bidirectional pipe of asmInc and asmDec (Code 4, line 2). Then, in the following lines, the
run command denotes when a composition step is performed and which are the values of inputs (monitored
functions).

4Model iles within a domain are located through a http-based URL path.
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Fig. 5. Composition Class Diagram

1 init −n 3
2 setup comp as asmMulti.asm | (asmInc.asm <|> asmDec.asm)
3 run(comp, {myinput=2})
4 run(comp, {myinput=3})
5 run(comp, {myinput=5}) ...

Code 4. Composition script

The output of the composition is shown in Code 5, and the result relects the expected behavior. Given the input
myinput = 2 to asmMulti (Code 4, line 3), the value of funcMulti is the input value multiplied by 2 (funcMulti = 4 -
Code 5, line 5). Then, asmInc is executed with the output of asmMulti speciication, funcMulti = 4. The value of
funcDec is the output of asmDec speciication in the previous step (initially, it assumes the value assigned in the
initialization section). After the irst execution step, the output of asmInc is funcInc = 6 (Code 5, line 9). Finally, to
conclude the irst composition step, the asmDec speciication is executed, its output is funcDec = 9 (Code 5, line 13).
The outputs of the irst composition steps are the inputs of the next composition step.

5 ASMETACOMP VALIDATION

In this section, we present the validation of the AsmetaComp tool by three use cases5: the Traic Light Cross
Manager, the Medicine Reminder and Monitoring System (MRM), and the Mechanical Ventilator Milano (MVM).
This latter case study [3], which motivated us to develop the tool, has already been presented in the conference
paper [8] and here is reported to point out the main indings.

5.1 Trafic Light Cross Manager

The traic light cross manager presented in this paper manages a two-way traic street intersection made up
of four traic lights for cars, a traic light for pedestrians, and a traic light for trams. The cross manager can
be into three distinct states: PEDESTRIAN when a pedestrian is required to cross the intersection, TRAM when a
tram is required to cross the intersection, NORMAL when other vehicles are allowed to cross the intersection. A

5AsmetaComp and all model examples presented here are available as part of the experimental project AsmetaS@run.time of ASMETA[1].
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1 ========= Compositional step 1 =========
2 [step:1 of asmMulti]
3 Model execution outcome: SAFE
4 Updated locations: {funcMulti=4}
5 Out locations: {funcMulti=4}
6 [step:1 of asmInc]
7 Model execution outcome: SAFE
8 Updated locations: {funcInc=6; maxFunction=4}
9 Out locations: {funcInc=6}
10 [step:1 of asmDec]
11 Model execution outcome: SAFE
12 Updated locations: {funcDec=9}
13 Out locations: {funcDec=9}
14 ========= Compositional step 2 =========
15 [step:2 of asmMulti]
16 Model execution outcome: SAFE
17 Updated locations: {funcMulti=6}
18 Out locations: {funcMulti=6}
19 [step:2 of asmInc]
20 Model execution outcome: SAFE

21Updated locations: {funcInc=17; maxFunction=9}
22Out locations: {funcInc=17}
23[step:2 of asmDec]
24Model execution outcome: SAFE
25Updated locations: {funcDec=22}
26Out locations: {funcDec=22}
27
28========= Compositional step 3 =========
29[step:3 of asmMulti]
30Model execution outcome: SAFE
31Updated locations: {funcMulti=10}
32Out locations: {funcMulti=10}
33[step:3 of asmInc]
34Model execution outcome: SAFE
35Updated locations: {funcInc=34; maxFunction=22}
36Out locations: {funcInc=6}
37[step:3 of asmDec]
38Model execution outcome: SAFE
39Updated locations: {funcDec=43}
40Out locations: {funcDec=43}

Code 5. Output of the compositional simulation of the three simple models

controller manages the four traic lights for cars. The traic lights can be of, yellow blinking, red light on, green
light on or yellow light on. Initially, the controller and the traic lights are of. When the turn on command is
received by the controller, the traic lights are set to yellow blinking until the operate command is received. When
the controller is in operate state, six modes are identiied: the traic lights are red, two are red, and the others are
green, two are red, and the others are yellow. The transition between red, green and yellow is managed by a timer.
When the standby command is received, the traic lights are set to yellow blinking and when the controller is
turned of, the traic lights are turned of as well.
If a pedestrian or a tram has to cross the intersection, the cross manager registers the event and then sets

its status to PEDESTRIAN or TRAM. Then the controller sets the traic lights for cars to red. After that, the
pedestrian/tram traic light is set to green and the pedestrian/tram can cross the intersection (in all directions).
The pedestrian/tram events are managed by the cross manager only when the controller is in operate state,
otherwise, the corresponding traic light is set to red.

Fig. 6 shows the I/O ASM assembly of the overall traic light cross manager system using an informal graphical
notation. Code 6 reports, instead, an excerpt of one of the component models: the ASM model of the traic light.
For example, transitionC (see Fig. 6) is the input command received by the controller to change its status, while
the controller status and mode (statusC and operateMode) are the input for the traic light models (see Code 6).
The outputs of the controller are the input for the traic lights, and the output lights values are respectively
lightsA and lightsB for the two traic lights (see Fig. 6). The definitions section in Code 6 contains the transition
rules r_operateSubState and r_Main.

Compositional model simulation. By the AsmetaComp shell script reported in Code 7 we establish the composition
formula (using the setup command at line 2) made by four operator types (pipe, half-duplex, full-duplex and
synchronous parallel split):

(���������� | |����) < | > ������������ < | | > ���������� | (���� � �����ℎ��| |���� � �����ℎ��| |���� � �����ℎ�� | |���� � �����ℎ��)

The cross manager takes as input the controller status, the pedestrian and tram call, and determines the status of the crossing.

Based on the crossing status, the pedestrian and tram traic lights are set to the expected color. In case both calls arrive at the

same time, the pedestrian has priority. Then, the traic light controller, based on deined rules, sets simultaneously the traic

lights. Then, we express some compositional steps of the interacting models. This includes inputs from the environment

for the unbound ASM monitored functions of models (through the run commands). The resulting composition output is
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asm traficlightA
signature:
enum domain Lights = {ALL_OFF | RED | BLINK_YELLOW | GREEN |

YELLOW}
enum domain ControllerStatus = {CONTR_OFF | STANDBY | OPERATE}
enum domain ControllerOperateMode = {RED_AB | GREEN_A_RED_B |

YELLOW_A_RED_B | RED_BA | GREEN_B_RED_A |
YELLOW_B_RED_A}

out lightsA: Lights
monitored statusC: ControllerStatus
monitored operateMode : ControllerOperateMode

definitions:
rule r_operateSubState =

par
if operateMode = RED_AB or operateMode = RED_BA or

operateMode = GREEN_B_RED_A or operateMode =
YELLOW_B_RED_A then

lightsA := RED
endif
if operateMode = GREEN_A_RED_B then

lightsA := GREEN
endif

if operateMode = YELLOW_A_RED_B then
lightsA := YELLOW
endif
endpar

main rule r_Main =
par
if statusC = CONTR_OFF then
lightsA := ALL_OFF
endif
if statusC = STANDBY then
lightsA := BLINK_YELLOW
endif
if (statusC = OPERATE) then
r_operateSubState[]

endif
endpar

default init s0:
function lightsA = ALL_OFF

Code 6. ASM model of the Trafic Light

Controller

TrafficLightBTrafficLightA

statusC

lightsBlightsA

operateMode
statusC

transitionC

TrafficLightA

lightsA

TrafficLightB

lightsB

Cross manager

crossManagerController

Pedestrian

Tram

pedestrianComing
tramComing

tramLight

pedestrianLight

Fig. 6. Main components of the Trafic Light Cross Manager system and signals exchanged

1 init −n 8
2 setup comp as (pedestrian || tram) <|> crossManager <||> controller | (traiclightA || traiclightA || traiclightB || traiclightB)
3 run(comp, {crossManagerController=NORMAL;newPedestrianComing=false;newTramComing=false;transitionC=TURN_ON})
4 run(comp, {newPedestrianComing=false;newTramComing=false;transitionC=OPERATE_T;mCurrTimeSecs=2})
5 ...
6 run(comp, {newPedestrianComing=true;newTramComing=false;mCurrTimeSecs=6;transitionC=OPERATE_T})
7 run(comp, {newTramComing=false;mCurrTimeSecs=7;transitionC=OPERATE_T}) ...

Code 7. Composition script of the Trafic Light Cross Manager system

shown in Code 8. At each step, the user sets the value of monitored functions, and the models are executed by following the

composition formula. When a pedestrian has to cross the road, i.e., newPedestrianComing=true (see Code 7, line 6), the cross
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1 ========= Compositional step 1 =========
2 [step:1 of pedestrian]
3 Model execution outcome: SAFE
4 Out locations: {pedestrianComing=false, pedestrianLight=RED}
5 [step:1 of tram]
6 Model execution outcome: SAFE
7 Out locations: {tramLight=RED, tramComing=false}
8 [step:1 of crossManager]
9 Model execution outcome: SAFE
10 Out locations: {crossManagerController=NORMAL}
11 [step:1 of controller]
12 Model execution outcome: SAFE
13 Out locations: {statusC=STANDBY}
14 [step:1 of traiclightA]
15 Model execution outcome: SAFE
16 Out locations: {lightsA=BLINK_YELLOW}
17 [step:1 of traiclightA]
18 Model execution outcome: SAFE
19 Out locations: {lightsA=BLINK_YELLOW}
20 [step:1 of traiclightB]
21 Model execution outcome: SAFE
22 Out locations: {lightsB=BLINK_YELLOW}
23 [step:1 of traiclightB]
24 Model execution outcome: SAFE
25 Out locations: {lightsB=BLINK_YELLOW}
26 ========= Compositional step 2 =========
27 [step:2 of pedestrian]
28 Model execution outcome: SAFE
29 Out locations: {pedestrianComing=false, pedestrianLight=RED}
30 [step:2 of tram]
31 Model execution outcome: SAFE
32 Out locations: {tramLight=RED, tramComing=false}
33 [step:2 of crossManager]
34 Model execution outcome: SAFE
35 Out locations: {crossManagerController=NORMAL}
36 [step:2 of controller]
37 Model execution outcome: SAFE
38 Out locations: {operateMode=RED_AB;statusC=OPERATE}
39 [step:2 of traiclightA]
40 Model execution outcome: SAFE
41 Out locations: {lightsA=RED}
42 [step:2 of traiclightA]
43 Model execution outcome: SAFE
44 Out locations: {lightsA=RED}
45 [step:2 of traiclightB]
46 Model execution outcome: SAFE
47 Out locations: {lightsB=RED}
48 [step:2 of traiclightB]
49 Model execution outcome: SAFE
50 Out locations: {lightsB=RED} ...

51========= Compositional step 6 =========
52[step:6 of pedestrian]
53Model execution outcome: SAFE
54Out locations: {pedestrianComing=true, pedestrianLight=RED}
55[step:6 of tram]
56Model execution outcome: SAFE
57Out locations: {tramLight=RED, tramComing=false}
58[step:6 of crossManager]
59Model execution outcome: SAFE
60Out locations: {crossManagerController=PEDESTRIAN}
61[step:6 of controller]
62Model execution outcome: SAFE
63Out locations: {operateMode=GREEN_A_RED_B;statusC=OPERATE}
64[step:6 of traiclightA]
65Model execution outcome: SAFE
66Out locations: {lightsA=GREEN}
67[step:6 of traiclightA]
68Model execution outcome: SAFE
69Out locations: {lightsA=GREEN}
70[step:6 of traiclightB]
71Model execution outcome: SAFE
72Out locations: {lightsB=RED}
73[step:6 of traiclightB]
74Model execution outcome: SAFE
75Out locations: {lightsB=RED}
76========= Compositional step 7 =========
77[step:6 of pedestrian]
78Model execution outcome: SAFE
79Out locations: {pedestrianComing=true, pedestrianLight=GREEN}
80[step:6 of tram]
81Model execution outcome: SAFE
82Out locations: {tramLight=RED, tramComing=false}
83[step:6 of crossManager]
84Model execution outcome: SAFE
85Out locations: {crossManagerController=PEDESTRIAN}
86[step:6 of controller]
87Model execution outcome: SAFE
88Out locations: {operateMode=RED_BA;statusC=OPERATE}
89[step:6 of traiclightA]
90Model execution outcome: SAFE
91Out locations: {lightsA=RED}
92[step:6 of traiclightA]
93Model execution outcome: SAFE
94Out locations: {lightsA=RED}
95[step:6 of traiclightB]
96Model execution outcome: SAFE
97Out locations: {lightsB=RED}
98[step:6 of traiclightB]
99Model execution outcome: SAFE
100Out locations: {lightsB=RED}

Code 8. Composition output of the Trafic Light Cross Manager system

manager moves to state PEDESTRIAN (see Code 8, line 60). In the next step, the pedestrian traic light is set to GREEN (see

Code 8, line 79), while the traic lights are set to RED (see Code 8, line 88).

5.2 The Medicine Reminder and Monitoring System

Medicine Reminder and Monitoring (MRM) System controls a smart medicine dispenser for medicine administration. To

secure patient safety, a component is responsible to manage critical situations by applying corrective actions if possible. The

ASM I/O assembly of the MRM system is shown in Fig. 7, where all exchanged signals are speciied between the component

Pillbox that represents the medicine dispenser, and the component SafePillbox in charge of managing missed pills.

The medicine dispenser is manually illed with the medicines prescribed (one medicine type per each compartment) based

on the doctor’s prescription. Then, the caregiver uploads to the medicine dispenser a drug ile record containing information

about the medicines prescribed by the doctor: medicine name, number of doses per day, time schedule, minimum separation

(in terms of time) from the medicine M to the interferer N and between the same medicine, and delta time added to the original

time schedule to remember the medicine again if a dose is missed. Once everything is correctly set up, the patient is notiied

Form. Asp. Comput.



A compositional simulation framework for Abstract State Machine models of Discrete Event Systems • 15

rule r_pillOnTime($compartment in Compartment)=
if isPillMissed($compartment) then
if rescheduleNotOverlap($compartment) then

par
setNewTime ($compartment, drugIndex($compartment)):= true
newTime ($compartment, drugIndex($compartment)):= at(time_consumption($compartment),drugIndex($compartment))+deltaDelay(name(

$compartment))
endpar endif endif

Code 9. Small snippet of SafePillbox: reschedule the pill when missed, if possible

Fig. 7. Main components of the MRM system and signals exchanged

1 init −n 2
2 setup Pillbox.asm SafePillbox.asm
3 run(SafePillbox.asm)
4 setup pillboxComposition as Pillbox.asm <|> SafePillbox.asm
5 run(pillboxComposition, {openSwitch(compartment1)=false;openSwitch(compartment2)=false})
6 run(pillboxComposition, {openSwitch(compartment1)=true;openSwitch(compartment2)=false})
7 run(pillboxComposition, {openSwitch(compartment1)=true;openSwitch(compartment2)=false})
8 run(pillboxComposition, {openSwitch(compartment1)=false;openSwitch(compartment2)=false})
9 run(pillboxComposition, {openSwitch(compartment1)=false;openSwitch(compartment2)=false})
10 run(pillboxComposition, {openSwitch(compartment1)=false;(openSwitch(compartment2)=false})
11 run(pillboxComposition, {openSwitch(compartment1)=false;openSwitch(compartment2)=false})

Code 10. Composition script of the MRM system

by the Pillbox when a medicine has to be taken: an audible alarm of the pill box sounds, a red LED, corresponding to the

compartment where the medicine to be taken is located, is turned on, and the compartment is unlocked. The patient/caregiver

has to open and then close the compartment to report that the medicine was efectively taken. If the pill is not taken after 20

minutes, it is considered missed. A missed pill is rescheduled by the SafePillbox by adding the delta time to the original

time schedule only if the minimum time window from the next medicine is observed, otherwise it is considered deinitely

missed. Code 9 reports a snippet of the SafePillbox component: when a pill is missed (the condition isPillMissed is true)

and there is guaranteed to be no overlap with the next medicine (the condition rescheduleNotOverlap is true), the current pill

is rescheduled by computing its new assumption time.

Compositional model simulation. Once the interfaces and the speciication have been deined, the composition formula set

for the MRM system is: pillbox.asm <|> safePillbox.asm, as reported in Code 10 (we perform an initialization step of

the SafePillbox before starting the composition). This trace simulates the scenario of the pill missed (the compartment is

never opened - openSwitch(compartment)=false) and rescheduled. The output of the AsmetaComp is shown in Code 11. At

step 6 the pill is missed (outMess(comparment2)=moment missed - Code 11, line 53), and in step 7 it is rescheduled by the

SafePillbox component, which updates the assumption time of the missed pill (Code 11, line 59).
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1 ========= Compositional step 1 =========
2 [step:1 of SafePillbox]
3 Model execution outcome: SAFE
4 Updated locations: {}
5 [step:1 of pillbox]
6 Model execution outcome: SAFE
7 Updated locations: {outMess(compartment1)=Take fosamax, redLed(compartment2

)=OFF, time_consumption(compartment1)=[360], time_consumption(
compartment2)=[730,1140], redLed(compartment1)=ON, drugIndex(
compartment1)=0, isPillMissed(compartment1)=false, pillTakenWithDelay
(compartment2)=false, systemTime=361, pillTakenWithDelay(
compartment1)=false, drugIndex(compartment2)=0, name(compartment2)
="moment", name(compartment1)="fosamax", isPillMissed(compartment2)
=false, day=0}

8 Out locations: {outMess(compartment1)=Take fosamax, redLed(compartment2)=
OFF, time_consumption(compartment1)=[360], time_consumption(
compartment2)=[730,1140], redLed(compartment1)=ON, drugIndex(
compartment1)=0, isPillMissed(compartment1)=false, pillTakenWithDelay
(compartment2)=false, systemTime=361, pillTakenWithDelay(
compartment1)=false, drugIndex(compartment2)=0, name(compartment2)
="moment", name(compartment1)="fosamax", isPillMissed(compartment2)
=false, day=0}

9
10 ========= Compositional step 2 =========
11 [step:2 of SafePillbox]
12 Model execution outcome: SAFE
13 Updated locations: {}
14 [step:2 of pillbox]
15 Model execution outcome: SAFE
16 Updated locations: {outMess(compartment1)=Close fosamax in 10 minutes, redLed(

compartment1)=BLINKING}
17 Out locations: {outMess(compartment1)=Close fosamax in 10 minutes, redLed(

compartment1)=BLINKING, time_consumption(compartment1)=[360],
time_consumption(compartment2)=[730,1140], redLed(compartment1)=
ON, drugIndex(compartment1)=0, isPillMissed(compartment1)=false,
pillTakenWithDelay(compartment2)=false, systemTime=361,
pillTakenWithDelay(compartment1)=false, drugIndex(compartment2)=0,
name(compartment2)="moment", name(compartment1)="fosamax",
isPillMissed(compartment2)=false, day=0}

18
19 ========= Compositional step 3 =========
20 [step:3 of SafePillbox]
21 Model execution outcome: SAFE
22 Updated locations: {}
23 [step:3 of pillbox]
24 Model execution outcome: SAFE
25 Updated locations: {outMess(compartment1)=fosamax taken, redLed(

compartment1)=OFF, actual_time_consumption(compartment1)=[366],
systemTime=366, pillTakenWithDelay(compartment1)=true}

26 Out locations: {outMess(compartment1)=fosamax taken, redLed(compartment1)=
OFF, pillTakenWithDelay(compartment1)=true, time_consumption(
compartment1)=[360], time_consumption(compartment2)=[730,1140],
redLed(compartment1)=OFF, drugIndex(compartment1)=0, isPillMissed(
compartment1)=false, pillTakenWithDelay(compartment2)=false,
actual_time_consumption(compartment1)=[366], systemTime=366,
pillTakenWithDelay(compartment1)=true, drugIndex(compartment2)=0,
name(compartment2)="moment", name(compartment1)="fosamax",
isPillMissed(compartment2)=false, day=0}

27
28 ========= Compositional step 4 =========
29 [step:4 of SafePillbox]
30 Model execution outcome: SAFE
31 Updated locations: {}
32 [step:4 of pillbox]
33 Model execution outcome: SAFE
34 Updated locations: {outMess(compartment2)=Take moment, redLed(compartment2

)=ON, systemTime=731}

35
36Out locations: {outMess(compartment2)=Take moment, outMess(compartment1)=

fosamax taken,redLed(compartment2)=ON, time_consumption(
compartment1)=[360], time_consumption(compartment2)=[730,1140],
redLed(compartment1)=OFF, drugIndex(compartment1)=0, isPillMissed(
compartment1)=false, pillTakenWithDelay(compartment2)=false,
actual_time_consumption(compartment1)=[366], systemTime=731,
pillTakenWithDelay(compartment1)=false, drugIndex(compartment2)=0,
name(compartment2)="moment", name(compartment1)="fosamax",
isPillMissed(compartment2)=false, day=0}

37
38========= Compositional step 5 =========
39[step:5 of SafePillbox]
40Model execution outcome: SAFE
41Updated locations: {}
42[step:5 of pillbox]
43Model execution outcome: SAFE
44Updated locations: {outMess(compartment2)=Take moment in 10 minutes, redLed(

compartment2)=BLINKING}
45Out locations: {outMess(compartment2)=Take moment in 10 minutes, outMess(

compartment1)=fosamax taken, redLed(compartment2)=BLINKING,
time_consumption(compartment1)=[360], time_consumption(
compartment2)=[730,1140], redLed(compartment1)=OFF, drugIndex(
compartment1)=0, isPillMissed(compartment1)=false, pillTakenWithDelay
(compartment2)=false, actual_time_consumption(compartment1)=[366],
systemTime=742, pillTakenWithDelay(compartment1)=false, drugIndex(
compartment2)=0, name(compartment2)="moment", name(compartment1)
="fosamax", isPillMissed(compartment2)=false, day=0}

46
47========= Compositional step 6 =========
48[step:6 of SafePillbox]
49Model execution outcome: SAFE
50Updated locations: {}
51[step:6 of pillbox]
52Model execution outcome: SAFE
53Updated locations: {outMess(compartment2)=moment

missed, redLed(compartment2)=OFF, isPillMissed(compartment2)=true}
54Out locations: {outMess(compartment2)=moment missed, redLed(compartment2)=

OFF, time_consumption(compartment1)=[360], time_consumption(
compartment2)=[730,1140], redLed(compartment1)=OFF, drugIndex(
compartment1)=0, isPillMissed(compartment1)=false, pillTakenWithDelay
(compartment2)=false, actual_time_consumption(compartment1)=[366],
systemTime=753, pillTakenWithDelay(compartment1)=false, drugIndex(
compartment2)=0, name(compartment2)="moment", name(compartment1)
="fosamax", isPillMissed(compartment2)=true, day=0}

55
56========= Compositional step 7 =========
57[step:7 of SafePillbox]
58Model execution outcome: SAFE
59Updated locations: {setOriginalTime(compartment2)=false,

newTime(compartment2)=790, setNewTime(compartment2)=true}
60Out locations: {setOriginalTime(compartment2)=false, newTime(compartment2)

=790, setNewTime(compartment2)=true}
61[step:7 of pillbox]
62Model execution outcome: SAFE
63Updated locations: {outMess(compartment2)=moment rescheduled, redLed(

compartment2)=OFF, time_consumption(compartment2)=[790,1140]}
64Out locations: {outMess(compartment2)=moment rescheduled, redLed(

compartment2)=OFF, time_consumption(compartment1)=[360],
time_consumption(compartment2)=[790,1140], redLed(compartment1)=
OFF, drugIndex(compartment1)=0, isPillMissed(compartment1)=false,
pillTakenWithDelay(compartment2)=false, actual_time_consumption(
compartment1)=[366], systemTime=753, pillTakenWithDelay(
compartment1)=false, drugIndex(compartment2)=0, name(compartment2)
="moment", name(compartment1)="fosamax", isPillMissed(compartment2)
=false, day=0}

Code 11. Composition output of the MRM system
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Fig. 8. Main components of the MVM system and signals exchanged

1 init −n 3
2 setup comp as Hardware.asm <|> (Controller.asm <|> Supervisor.asm)
3 run(comp, {adc_reply_m=RESPONSE;fan_working_m=true;pi_6_m=25;pi_6_reply_m=RESPONSE;temperature_m=25;state=STARTUP;insp_valve=CLOSED;

exp_valve=OPEN;mCurrTimeSecs=1})
4 run(comp, {adc_reply_m=RESPONSE;fan_working_m=true;pi_6_m=25;pi_6_reply_m=RESPONSE;temperature_m=25;startupEnded=true;mCurrTimeSecs=2})
5 run(comp, {adc_reply_m=RESPONSE;fan_working_m=true;pi_6_m=25;pi_6_reply_m=RESPONSE;temperature_m=25;selfTestPassed=true;mCurrTimeSecs=3})

6 run(comp, {adc_reply_m=RESPONSE;fan_working_m=true;pi_6_m=25;pi_6_reply_m=RESPONSE;temperature_m=25;startVentilation=true;mCurrTimeSecs
=4})

7 run(comp, {adc_reply_m=RESPONSE;fan_working_m=true;pi_6_m=25;pi_6_reply_m=RESPONSE;temperature_m=25;mCurrTimeSecs=5})
8 run(comp, {adc_reply_m=RESPONSE;fan_working_m=true;pi_6_m=25;pi_6_reply_m=RESPONSE;temperature_m=25;mCurrTimeSecs=6})

Code 12. Composition script of the MVM system

5.3 Mechanical Ventilator Milano

MVM is a mechanical lung ventilator composed of two main software components: the controller and the supervisor. The

controller sets the input and output valves to allow the patient to breathe and manages the lung ventilation based on user

inputs (acquired through the GUI component) and patient parameters. The supervisor software monitors the overall system

behavior and ensures that the machine HW operates safely. As explained in [8], when composing the controller and the

supervisor, when the supervisor detects a failure in the controller it leads the system in a fail-safe state (the input valve is

closed, and the output valve is opened) to put the patient in a safe situation as required by the speciication.

Fig. 8 shows a high-level overview of the main architecture components of the MVM system using an informal graphical

notation.

Compositional model simulation. The script reported in Code 12 is used to set the compositional formula (see line 2) made by

two bidirectional pipes: Hardware.asm <|> (MVMController .asm <|> Supervisor.asm) and compositional steps of the interacting

MVM models. The hardware sends values to both the controller and supervisor and both entities respond by providing the

hardware coniguration based on the ventilation status (bidirectional pipe between hardware and controller/supervisor).

Additionally, the controller communicates information such as its status and alarms raised to the supervisor, which returns its

status to it (bidirectional pipe between controller and supervisor). The script provides input functions for each run to simulate

a normal operation.

Code 13 reports the output of the simulation trace. In this simulation, after starting the ventilation, the supervisor detects

an error in the input valve status when entering in expiration phase (step 5). The valve is set to OPEN instead of CLOSED. To

protect the patient, the supervisor sets the ventilator into fail-safe mode by setting the input valve closed and the output

valve open (step 6). To detect this malfunction in the controller, we injected an error manually in the model, and we found

that the supervisor was able to detect it and act properly.
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1 ========= Compositional step 1 =========
2 [step 1 of MVMHardware]
3 Out locations: {temperature=25, fan_working=true, adc_reply=RESPONSE, pi_6_reply=RESPONSE, pi_6=25}
4 [step 1 of MVMController]
5 Out locations: {mCurrSecs=1, all_cont=NONE, watchdog=true}
6 [step 1 of MVMSupervisor]
7 Out locations: {status_selftest=NOTSTART, state=INIT, watchdog_st=INACTIVE}
8 ========= Compositional step 2 =========
9 [step 2 of MVMHardware]
10 Out locations: {temperature=25, fan_working=true, adc_reply=RESPONSE, pi_6_reply=RESPONSE, pi_6=25}
11 [step 2 of MVMController]
12 Out locations: {mCurrSecs=2, all_cont=NONE, watchdog=true, enter_self=true}
13 [step 2 of MVMSupervisor]
14 Out locations: {al_bit=NONE, insp_valve=OPEN, status_selftest=PERFORMING, state=SELFTEST, watchdog_st=INACTIVE, exp_valve=CLOSED}
15 ========= Compositional step 3 =========
16 [step 3 of MVMHardware]
17 Out locations: {temperature=25, fan_working=true, adc_reply=RESPONSE, pi_6_reply=RESPONSE, pi_6=25}
18 [step 3 of MVMController]
19 Out locations: {mCurrSecs=3, all_cont=NONE, watchdog=true, exit_self=true, enter_self=true}
20 [step 3 of MVMSupervisor]
21 Out locations: {al_bit=NONE, insp_valve=CLOSED, status_selftest=ENDED, state=VENTILATIONOFF, watchdog_st=INACTIVE, exp_valve=OPEN}
22 ========= Compositional step 4 =========
23 [step 4 of MVMHardware]
24 Out locations: {temperature=25, fan_working=true, adc_reply=RESPONSE, pi_6_reply=RESPONSE, pi_6=25}
25 [step 4 of MVMController]
26 Out locations: {mCurrSecs=4, oValve=CLOSED, run_command=true, breath_sync=INSP, stop_command=false, all_cont=NONE, watchdog=true, exit_self=true

, enter_self=true, iValve=OPEN}
27 [step 4 of MVMSupervisor]
28 Out locations: {al_bit=NONE, insp_valve=OPEN, status_selftest=ENDED, state=VENTILATIONON, watchdog_st=BREATHON, exp_valve=CLOSED}
29 ========= Compositional step 5 =========
30 [step 5 of MVMHardware]
31 Out locations: {temperature=25, fan_working=true, adc_reply=RESPONSE, pi_6_reply=RESPONSE, pi_6=25}
32 [step 5 of MVMController]
33 Out locations: {mCurrSecs=5, oValve=OPEN, run_command=true, breath_sync=EXP, stop_command=false, all_cont=NONE, watchdog=true, exit_self=true,

enter_self=true, iValve=OPEN}
34 [step 5 of MVMSupervisor]
35 Out locations: {al_bit=NONE, insp_valve=OPEN, status_selftest=ENDED, state=FAILSAFE, watchdog_st=BREATHON, exp_valve=OPEN}
36 ========= Compositional step 6 =========
37 [step 6 of MVMHardware]
38 Out locations: {temperature=25, fan_working=true, adc_reply=RESPONSE, pi_6_reply=RESPONSE, pi_6=25}
39 [step 6 of MVMController]
40 Out locations: {mCurrSecs=6, oValve=OPEN, run_command=true, breath_sync=EXP, stop_command=false, all_cont=NONE, watchdog=true, exit_self=true,

enter_self=true, iValve=OPEN}
41 [step 6 of MVMSupervisor]
42 Out locations: {al_bit=NONE, insp_valve=CLOSED, status_selftest=ENDED, state=FAILSAFE, watchdog_st=ALARM, exp_valve=OPEN}

Code 13. Composition output of the MVM when error in input valve status

6 DISCUSSION

In this section, we provide a more extended analysis of the potential advantages of the proposed compositional approach

over the traditional monolithic one, i.e., importing the diferent submachines in a unique model and scheduling them by

suitable ASM rule constructors. Comparison is given in terms of well-known architectural design principles [19] (Sect. 6.1) and

simulation results (Sect. 6.2). We also discuss major strengths and limitations of our approach as we perceived and observed

concretely during the development of the presented case studies (Sect. 6.3), as well as how threats to validity have been

mitigated (Sect. 6.4).

6.1 Architectural design principles comparison

Compositional simulation of I/O ASMs has the main advantage of modeling adhering to well-known design principles that

lead to maintainable software, such as łdivide and conquerž, high cohesion and low coupling, and information hiding [19]. In
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general, applying these principles diligently will result in models that have many advantages over monolithic models. In our
case, some overall goals we want to achieve with the compositional modeling approach include, but are not limited to:

• Avoiding a monolithic and tightly coupled system model by promoting łseparation of concernsž and the łSingle
Responsibility Principlež.

• Accelerating model development by distributing the work of developing a complex system model among a group of
people that would work on individual sub-models in isolation and integrate their work later on to form the inal system
model thanks to well-deined I/O interfaces.

• Making a system model scalable and potentially distributable across diferent, separate computation nodes/engines
(e.g., as runtime models in a Digital Twin platform).

• Increasing model qualities such as usability, analyzability, maintainability, and reusability.
• Achieve a more evolvable system model by preparing for an extension of the model.

In the following, we provide a comparison of the two approaches by using the general design principles [19, Chapter 9]
mentioned before as classiication framework. The results are summarized in Tab. 1.

(1) Divide and conquer: The logical breakdown of the system behavior into interrelated self-contained subsystems/com-
ponents is a well-known engineering technique to tackle design complexity.

Monolithic approach. Within a monolith model, the divide and conquer principle is applicable by modularizing the
model in terms of ASM modules (i.e. by introducing separate model units that can be independently developed) and by
orchestrating their execution through the main rule of a unique ASM model. Such ASM model composes the ASM
modules by containment (i.e., all the ASM modules are imported, compiled and linked into the inal executable ASM
model).

Compositional approach. Making ASM models compositional, with well-deined I/O bindings, facilitates both the
decomposition task (the separate models can be independently developed) and the integration task. This last would be
achieved at runtime through the orchestration formula over the ASM assembly.

(2) Increase cohesion A subsystem component has high cohesion if it keeps together things that are related to each
other (e.g. functional cohesion), and keeps out other things.

Monolithic approach. A set of related functions and rules for reading input and producing outputs are to be kept
together in one ASM module, and everything else is to be kept out. So a certain efort is required to properly design
ASM modules.

Compositional approach. One module keeps together a set of related functions and rules for reading in values and
producing out values, and everything else is kept out. This is done by establishing a well-deined set of interrelated
in/out interfaces.

(3) Reduce coupling Coupling occurs when there are interdependencies between one module and another.

Monolithic approach. There is normally data and control coupling since ASM modules are imported into one ASM
model.

Compositional approach. It reduces data coupling, since the data being passed over a formula is usually the values of
only input/output locations of a model. Of course, there is normally control coupling (output values sent as input by a
model to the next one(s).

(4) Increase abstraction To reduce complexity, your designs should allow you to hide or defer consideration of details.
Abstractions work by allowing you to understand the essence of something and make important decisions without
knowing unnecessary details.

Monolithic approach. Each individual ASM module can be small, and therefore easier to understand. Separate ASM
modules are good abstractions, but it is necessary to understand the details of how they operate to determine possible
interactions and avoid inconsistencies and interferences for functions updates.
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Compositional approach. Each individual ASM model can be small as well, and therefore easier to understand. Separate
I/O ASM models are good abstractions. You can use them as black boxes with no need to understand the details of how
they operate.

(5) Increase reuse and reusability Designing for reusability means designing various aspects of your system so that
they can be used again in other contexts, both in your system and in other systems.

Monolithic approach. ASM modules are visible within the ASM model that imports them. This beneit encourages
reuse, though the absence of explicit I/O module bindings make it diicult to recognize modules with high potential
reusability.

Compositional approach. The architectural model assembly makes each model component visible. This beneit encour-
ages reuse. By analyzing the architecture, you can discover those components that can be obtained from past projects
or from third parties. You can also identify model components that have high potential reusability.

(6) Design for lexibility It is about anticipating changes that a system model may have to undergo in the future and
preparing for them. With a compositional and highly modular model, it is easier to plan the evolution of the system
model itself.

Monolithic approach. Low coupled and high cohesive ASM modules facilitate changes and extensions. However,
changing the modules orchestration protocol requires changing the main rule of the ASM model, so it requires
changing the ASM model.

Compositional approach. Independent models interrelated by well-deined I/O interfaces allows us to more readily
replace a model and add new extensions. Also, changing the orchestration protocol of the system sub-models is
facilitated by simply changing the orchestration formula. So, diferent orchestration schemes can be easily proved by
changing the formula over the ASM assembly and not the models.

(7) Design for testability/analizability It is about to make testing and analysis of the system model easier. For instance,
the scenario-based validation should be easy to apply.

Monolithic approach. An ASM module can be tested/analyzed independently, but it requires a main ASM that imports
the module and runs it by invoking its rule(s) properly. From the simulation point of view, the execution of ASM
modules as orchestrated by the main rule of a unique ASM model would result in a inal global state without any
visibility of the intermediate states upon execution of a single module. For instance, writing a scenario for the composed
system [12], requires setting and checking the global ASM state

Compositional approach. ASM models can be tested/analyzed independently before being composed with a simulation
formula, also by applying scenario-based validation to each of them. During the compositional simulation, intermediate
state changes and update sets of sub-models are externally visible.

(8) Design defensively It is about performing validity checks to avoid attempts to use a system model inappropriately.

Monolithic approach. No rigorous checking can be applied without well-deined in/out interfaces of ASM modules. The
designer can use invariants to specify safety constraints over the global ASM state.

Compositional approach. It favors defensive design at the level of components. In/out values of each component model
can be rigorously checked/sanitized [9]. Moreover, a design-by-contract approach, writing careful pre-conditions and
post-conditions for each component model, could be also adopted.

6.2 Simulation comparison

We compare here the monolithic and compositional approaches in terms of simulation by reporting the results for the
traic light cross manager.

We have written a unique monolithic ASM that includes all eight component models (as modules) of the traic light
cross-manager system. The behavior of each component is captured by an ASM rule and the monolithic ASM schedules, by
the main rule shown in Code 14, their behavior as requested in the formula in Code ??.

A certain modiication of the component models, in terms of rules and functions, was necessary to reproduce the execution
as given by the compositional simulation. E.g. the operator full-duplex bidirectional pipe and synchronous parallel split,
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Compositional high high high high high high high medium

Table 1. Comparison between Monolithic and Compositional approaches, w.r.t. Architectural Design Principles in [19]

main rule r_Main =
seq

par
r_Tram[] r_Pedestrian[]

endpar
par

r_CrossManager[]
seq

r_Controller[]
par

r_TraficLightA1[] r_TraficLightA2[] r_TraficLightB1[] r_TraficLightB2[]
endpar

endseq
endpar

endseq

Code 14. Scheduling of the trafic light cross manager components

are both translated using the parallel ASM rule, with the addition of shared functions for the full-duplex bidirectional pipe
to allow the output exchange. Similar considerations hold for managing, in terms of the sequential rule, the pipe and the
half-duplex bidirectional pipe We have also modiied the modules accordingly, to avoid, for instance, redeinitions of domains
and functions.

Then, we simulated the monolithic ASM giving the same input speciied in Code ??. Concerning the performance (in terms
of number of run steps, number of updated locations at each step), we observed that the number of run steps to achieve the
same result is the same in both approaches, while in the monolithic approach, we observed a lower number of updates than
the compositional approach (8 against 10). However, in the output of the compositional approach, we have the advantage of
immediately identifying the values of the interface functions related to each component.

Assuming now that we want to reuse the same components to model an intersection with the same behavior but with one
traic light A and one traic light B. In the case of the compositional approach, the only change to be made concerns the
compositional formula in Code ??, which becomes:

(pedestrian || tram) <|> crossManager <||> controller | (traficlightA || traficlightB)

Instead, considering the monolithic ASM, the modeler should do the following manual changes: remove the corresponding
ASM rules from the main rule in Code 14, remove the traic lights functions (traficLightA2 and traficLightB2), remove every
behavior (rule) related to the deleted traic lights.

6.3 Strengths and limitations

Based on our modeling and validation experience with the proposed approach, we can conclude that decomposing the system
model into two or more sub-models and loosely coupling their simulation (co-simulation), provided us several advantages
w.r.t. creating an entire system model. Since from the beginning, the sub-models can be developed by diferent groups and
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for diferent engineering domains and target platforms (e.g., the MVM controller prototype on the Arduino board [8]), this
compositional modeling technique allowed us a high degree of lexibility in managing the separation of the modeling/analysis
tasks in diferent modeling/development groups, each working in parallel at their own speed. As a result, subsystem models
can be analyzed and validated/veriied in isolation to prove their correctness according to the established I/O interfaces with
the other subsystem models, so allowing us to speed up the overall formal development process from requirements to code.
Moreover, this compositional modeling helped to clarify and make precise w.r.t. the documented system requirements, the
communication protocol among components.

Deining the I/O bindings between the sub-models and capturing the computational causality between sub-models in terms
of a compositional simulation formula is, however, not a trivial task and requires a clear understanding of how the involved
subsystems react to I/O stimuli and of their communication and computation protocol.

In a wider context, this technique could help us in providing virtual models (e.g., an ASM model that is a virtual copy of a
system controller) and leveraging model simulation at runtime. Models@run.time together with formal analysis and data
analytics are the main enablers of the Digital Twin technology, which is a growing interest in any ield. By model simulation,
it is possible to interact with the digital twin of a real system (or a part of it) by simulating diferent what-if analysis scenarios
[13] to identify the best actions to be then applied on the physical twin.

6.4 Threats to Validity

Some aspects may threaten the validity of both the presented approach and the evaluation results. In the following, we discuss
the most important ones, namely internal, and external validity.

Internal validity. To mitigate this threat we designed a set of controlled validation experiments based on known use cases
related to case studies from the research literature to which the authors contributed to. So thanks to this prior knowledge
about the case studies and the availability of their modeling and analysis artifacts, we could compare the outcomes of our
validation campaign for the compositional simulation of the decomposed version of these system models w.r.t. the validation
results obtained for the preceding monolithic version of the same system models. This direct manipulation of the previous
system models has been fundamental to assess cause-efect relations among the system model entities and their functions,
and therefore to show the correctness of the proposed approach.

External validity. Two main factors might threaten the external validity of our approach.
First, threats may exist if the characteristics of the systems of our case studies are not indicative of the characteristics of

other systems. We limited these threats by adopting, in addition to small model examples, two case studies from the medical
domain, which are highly safety-critical and complex enough. The application of our approach to additional case studies
whose decomposition lead to a high number of sub-models, and therefore to a more complex composition formula with
sub-formulas, is part of our future work.

Second, the quality of the decomposition, especially if inherited by system models deined by third parties, may naturally
bring to a bad identiication of proper composition formula for orchestrating the sub-systems models, and, as a consequence,
to failure in providing the desired behavior of the system in an aggregated form. However, being the subsystems models
usually treated as black-boxes, the global system behavior can not be realized by acting inside the composed models, rather, it
emerges from the models interactions (the I/O function bindings) and therefore has to be realized by a composition formula
that acts on these interactions unveiling the right computational causality between sub-models.

7 RELATED WORK

We drew inspiration from existing frameworks that inluenced our approach to compositional model-based simulation. These
frameworks include those associated with worklow modeling and service orchestration, such as tools like Business Process
Model and Notation (BPMN) [22] and the Jolie language [2]. Additionally, we were inluenced by frameworks related to
multi-state machine modeling, such as Yakindu statecharts [18]. However, our proposed technique focuses on a distributed
model-based system simulation. Its primary application is in practical scenarios where model simulation is necessary during
runtime, and models need to be co-simulated alongside real systems. This includes runtime models that form part of the
knowledge base for a self-adaptive and autonomous system [6] or a digital twin plant [16].
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Several approaches to model (co)simulation exist for coupling diferent simulators and simulations of multi-dimensional
models of cyber-physical systems [15]. With co-simulation, emphasis is given to combine parts of the systems, modeled and
simulated by diferent techniques and modeling paradigms, such as physics-related models, control laws, and sequential,
concurrent and real-time interoperability patterns. Some of these approaches are formal (as our approach). For example,
Circus for cyber physical systems [30] is a process algebra that formalizes a co-simulation model conforming to the FMI
Functional Mockup Interface (FMI) [21]. Although some operators are similar (as the sequence and parallelism), our operators
compose models of the same type (ASMs), and are more inspired by worklow/orchestrations operators from the ield of
service composition and by conventional forms of inter-process communication (IPC) from the ield of operating systems.

The paper [23] introduces a choreography automaton for choreographic modeling of communication systems. This
automaton consists of a system of communicating inite state machines, where the transitions are labeled by synchronous
or asynchronous interactions. Choreographies are efective methods for describing contemporary software architectures
like microservices. However, in our initial compositional simulation approach, we chose to utilize centralized synchronous
communication semantics, which is commonly found in IT service orchestration and automation platforms. The deinition
and implementation of choreography constructs for deploying and executing asynchronous I/O ASMs are postponed to future
work.

ASMs have found utility in the realm of component- and service-based architectures, speciically in the OASIS/OSOA
standard Service Component Architecture (SCA). This standard is employed for the assembly of heterogeneous services, and
ASMs are utilized for service modeling and prototyping within this framework. In this context, abstract implementations or
prototypes of SCA components known as SCA-ASM components are co-executed alongside other component implementations.
The work by Riccobene et al. [24] explores this concept in detail.

In a separate study by Mirandola et al. [20], a method for predicting the reliability of service assemblies is presented. The
method takes into account both the system-level and component-level aspects of reliability. It achieves this by combining a
reliability model designed for an SCA assembly that involves SCA-ASM components.

8 CONCLUSION AND FUTURE DIRECTIONS

This paper presents a modeling and simulation method for DESs based on the I/O ASM concept and the introduction of the
compositional simulation technique for I/O ASMs. The utility of compositional simulation of I/O ASMs is demonstrated
through the traic light cross manager, the medicine reminder and monitoring system, and the Mechanical Ventilator Milano
utilizing the tool AsmetaComp. AsmetaComp enables distributed simulation of ASMs by facilitating the connection and co-
simulation of separate ASM system models. This allows the creation of simulations for integrated systems or the division of a
large ASM model into smaller sub-models that can co-execute, potentially on diferent local or remote processes/computers.

As part of our future endeavors, we aim to extend our support for supplementary composition operators and patterns like
attempt choice and non-deterministic choice. Then, we aim to improve the veriication tool to allow compositional veriication,
by studying the limitations and advantages of verifying small interacting models against monolithic ones.

Additionally, our plans include incorporating choreography constructs from the standard Business Process Modeling
Notation 2.0 (BPMN2) Choreography Diagram to enable decentralized co-simulation of asynchronous ASMs (as described
in [22]). Furthermore, we aim to facilitate the co-simulation of ASM models with other simulated or real subsystems within a
federated, interoperable simulation environment. This integration could adhere to established standards such as the IEEE
1516 High-Level Architecture (HLA) and the FMI [21] for distributed co-simulation [17].
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