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A B S T R A C T

This paper introduces the two-level Hierarchical Nested Cooperative Location (HNCL) model, extending the
literature on discrete cooperative covering problems. We analyse the problem of locating facilities arranged
in a two-level nested hierarchy and cooperating to maximize the covered demand. Facilities are characterized
by different coverage decay functions according to the hierarchical level they belong to (upper and lower).
Cooperation occurs between facilities at the same level (intra-level cooperation) and at different levels (inter-
level cooperation) of the hierarchy according to mechanisms modelled through joint coverage functions. Two
budget constraints are introduced for the total cost the decision-maker is willing to incur for locating facilities
at each level. The HNCL problem is first formulated as a mixed-integer non-linear programming (MINLP)
model; then, an equivalent mixed-integer linear program (MILP) is developed. We tested the HNCL model on
instances randomly generated and extracted from a real-world network. The results are provided and discussed,
highlighting the contribution of cooperative coverage compared to the individual one.
1. Introduction

Demand covering problems, initially introduced by Toregas et al.
(1971), constitute a major class of problems in facility location analysis,
with numerous applications in a wide range of domains. Their essence
is to determine appropriate locations for a set of facilities that must
offer some kind of services to a set of customers.

The wide applicability of covering models stimulated strong interest
in the research community, with numerous publications over the last
50 years. According to Berman et al. (2010), there are three main
assumptions in the early approaches to covering problems. Firstly,
under the binary (all or nothing) coverage assumption, they assume
that a customer is either fully covered if the distance to the nearest
operating facility does not exceed a predetermined limit, referred to as
the covering radius, or not covered at all if the nearest facility is beyond
that limit. Moreover, the coverage of each customer is called individual
since it depends only on the nearest established facility. In other words,
demand sharing is not allowed among multiple facilities. Lastly, the
covering radius is assumed to be a parameter under the direct control
of the decision-maker (fixed radius).

As the range of demand covering applications expanded over the
years, it was recognized that these assumptions were somewhat un-
realistic and that the original models could not adequately represent
realistic situations.

The first generalization concerned the concept of gradual or partial
coverage, introduced by Church and Roberts (1983) to model situations

∗ Corresponding author.
E-mail address: silvia.baldassarre@unina.it (S. Baldassarre).

where a customer is fully covered up to a certain distance from a
facility, but the coverage decreases according to a decay function
beyond that distance.

The second generalization was introduced by Berman et al. (2009a,
2011) to model situations where the individual coverage assumption
may not be valid and cooperation among facilities is allowed. In this set-
ting, it is assumed that each facility provides a coverage whose strength
decays over distance according to some coverage decay function and
the individual coverages are somehow aggregated, through a specified
aggregate coverage function. In this case, a demand node is considered
covered when the aggregated coverage exceeds a certain acceptable
threshold.

Finally, the third generalization concerns the possibility of consid-
ering the covering radius as a decision variable of the problem instead of
a fixed parameter (Berman et al., 2009b).

Here, we focus on the literature stream related to cooperative
location problems. In this context, several applications have been inves-
tigated. Typical examples dealt with the provision of physical signals
such as light, sound, and warning sirens. Herein, each target point
receives the sum of all of the signals instead of just the strongest one
(Berman et al., 2009a). However, the literature has also explored the
problem of designing service networks where the coverage is related to
the possibility of serving demand distributed over a study region and
the contextual presence of several facilities increases the effectiveness
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of the service itself. Proposed applications concern the design of fire
services (Wang et al., 2016), evacuation systems (Zhang et al., 2017),
and relief trains (Bababeik et al., 2018). In some cases, cooperation
also occurs among multiple types of facilities characterized by differ-
ent features (Li et al., 2018) or facilities arranged in a hierarchical
structure (Karatas, 2020).

In this work, we analyse the problem of multiple types of facilities
arranged in a nested hierarchical structure and cooperating to cover
the demand. Specifically, we propose the two-level Hierarchical Nested
Cooperative Location (HNCL) model. The hierarchy is nested (or
successively inclusive) in the sense that facilities of the upper level offer
all services available at facilities of the lower level, plus at least one
additional service (Narula, 1984). According to such definition, two
sets of services are defined: (i) exclusive services, provided solely by
upper-level facilities, and (ii) shared services, provided by facilities of
both hierarchical levels.

As regards the exclusive services, the model intends to guarantee
the coverage of all the demand according to the traditional coverage
paradigm (binary and individual). This means that each demand point
needs to find at least a facility within a fixed radius. Instead, as
concerns the shared services, cooperation is allowed. In particular, we
consider two distinct coverage decay functions, each associated with a
hierarchical level representing the probability of coverage by facilities.
Cooperation may occur between facilities at the same level (intra-level
cooperation) and at different levels (inter-level cooperation).

The aim is to design a network by locating facilities at each hierar-
chical level to cover all the demand for exclusive services and maximize
the covered demand for shared services. We assume a specific available
budget for the installation of facilities of each level.

The proposed HNCL problem is first formulated as a Mixed In-
teger Non-Linear Programming (MINLP) model. Then, a linearizing
approach is developed to provide an equivalent Mixed Integer Linear
Programming (MILP) formulation.

We perform extensive computational experiments to compare the
performance of MINLP and MILP formulations and investigate the effect
of certain parameters on the optimal solution to instances of various
sizes. The results are analysed, highlighting the contributions of the
coverage mechanisms.

The aim of this paper is threefold. First, The HNCL aims to extend
the available literature on cooperative problems. Indeed, to the best of
our knowledge, no hierarchical cooperative problems have been previ-
ously introduced considering a nested hierarchy. Therefore, inter-level
cooperation has never been taken into account.

A second contribution is given by the linearization method devel-
oped to provide an equivalent MILP formulation of the HNCL.

Finally, a further novelty is the proposal of a classification frame-
work to measure the contribution of cooperation to the coverage,
representing a valuable tool to analyse the scenarios produced by the
model by varying crucial parameters.

This work may also open to many research perspectives as the prob-
lem can be effectively used to represent many real-world applications,
especially in the logistics, retail and healthcare sectors.

The rest of the paper is organized as follows. In Section 2, we
analyse the cooperative location literature by highlighting the gaps
our work aims to bridge. In Section 3, we formulate the proposed
HNCL model as a non-linear programming model and introduce a
process for transforming it into an equivalent linear formulation. We
then explain our experimentation plan in Section 4 and report our
findings on a set of real and randomly generated instances in Section 5.
Some managerial implications are then drawn in Section 6. Finally,
in Section 7, we summarize our work in the concluding section and
suggest some possibilities for future research.

2. Literature review

Cooperative location problems in a discrete location space were
2

formally introduced by Berman et al. in 2011 and have received in-
creasing attention in the following years, leading to a worthy literature
body.

The majority of papers contributing to this class of problems con-
sider a single type of facility (S) (see, e.g., Zhang et al., 2017; Davari,
2019; Drezner and Drezner, 2019; Wang et al., 2021).

Those considering multiple types of facilities (M) (e.g., Wang et al.,
2016; Li et al., 2018; Karatas, 2018) generally considered distinct
coverage decay functions depending on facilities’ features (e.g., size,
capacity, attributes) or provided services. For instance, Karatas and
Eriskin (2021) analyzed the minimal covering location problem of
undesirable capacitated facilities by assuming gradual and cooperative
coverage. Facilities differ on the basis of their size, and the related
coverage decay functions depend on such a parameter. Ceteris paribus,
as the size grows, the coverage increases.

In some cases, the different types of facilities may be arranged in a
hierarchical structure, which could be nested (Ne) or non-nested (NNe).
Karatas and Dasci (2020) proposed a two-level non-nested hierarchical
location and sizing problem for maximizing expected demand coverage
while satisfying a budget constraint. Facilities of the upper and lower
levels provide disjoint sets of services, and cooperation occurs only
among lower-level facilities. A non-nested hierarchy is also consid-
ered by Karatas (2020) to address the two-level location problem for
heterogeneous sensor networks in a cooperative setting. In particular,
the hierarchy is modelled as a hub and spoke topology where spokes
cooperate to provide a certain level of coverage to critical facilities that
need protection against intruders. Hubs, on the other hand, serve as
communication centres and collect data from assigned spokes.

In a cooperative framework, the individual coverages have been
modelled through various decay functions, many of which borrowed
from gradual covering literature: inverse quadratic (e.g., Karabulut
et al., 2017), trapezoidal-shaped (e.g., Bababeik et al., 2018), linear
(e.g., Berman et al., 2019), sigmoid (e.g., Ming et al., 2021), Fermi-
type model (e.g., Karatas and Eriskin, 2021), exponential (e.g., Davari,
2019). Such coverages may assume different meanings. They may rep-
resent the intensities of physical signals (e.g., light or sound) dissipating
over the distance according to given physical laws (Berman et al.,
2011), or probabilities when they model the spatial interaction among
demand and facilities (Zhang et al., 2017).

The mechanism ruling the aggregation of single coverages depends
on the nature of the coverages themselves. When dealing with intensi-
ties, the aggregation mechanism is typically deterministic (D), and the
overall coverage is obtained as the sum of individual coverages (see,
e.g, Ashtiani et al., 2018; Ming et al., 2021). In contrast, when dealing
with probabilities, the aggregation mechanism is probabilistic (P) and
differently computed if the coverage events are assumed independent
(I) or somehow correlated (C). On the one hand, when the events
are perfectly correlated, the demand perceives only the maximum
coverage among those by located facilities. Contrariwise, if the events
are independent, all located facilities contribute to a demand node
coverage, which is obtained through a function of the product of the
single coverages. The case of partial correlation has been modelled
through the (non-linear) joint coverage function by Drezner and Drezner
(2014) and Berman et al. (2019), defined as a convex combination
of the two extreme cases. The weight 𝜃 rules the combination and
represents a correlation degree among coverage events. By varying 𝜃,
it is possible to capture the whole spectrum of dependencies.

The aggregate coverage function represents one of the peculiar
features of the cooperative mechanism and its mathematical definition
deeply affects the whole formulation of the problem. In a deterministic
framework, the model is typically linear (L) in contrast to the prob-
abilistic one, where the aggregate function leads to the insurgence of
non-linearities (NL). Some approaches have been developed to linearize
them. For instance, Karatas (2017) developed an approach to linearize
the aggregate coverage function defined under conditions of indepen-

dent coverage events. Álvarez-Miranda and Sinnl (2019) exploited the
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Table 1
Positioning HNCL in cooperative literature.

Paper Facility type Hierarchy Cooperative
mechanism

Coverage events Model
formulation

Additional
relaxations

Solution
approach

Álvarez-Miranda and Sinnl (2019) S – P C NL, L G E
Ashtiani et al. (2018) M – D – L – –
Bababeik et al. (2018) S – D – L – E
Bagherinejad et al. (2018) S – D – NL G H
Berman et al. (2009a) S – D – L – E, H
Berman et al. (2011) S – D – L – H
Berman et al. (2019) S – P C NL G H
Davari (2019) S – D – NL, L – H
Drezner and Drezner (2014) S – P C NL G H
Drezner and Drezner (2019) S – D – NL G H
Karabulut et al. (2017) M – D, P I NL, L G H
Karatas (2017) S – P I NL, L G, V E
Karatas (2018) M – P I NL, L – H
Karatas (2020) M Nn P I NL, L – –
Karatas and Dasci (2020) M Nn P I NL, L G, V –
Karatas and Eriskin (2021) M – P I NL, L G, V –
Li et al. (2018) M – D – L – –
Ming et al. (2021) M – D – L G –
Wang et al. (2016) M – D – NL G –
Wang et al. (2021) S – D – L – –
Zhang et al. (2017) S – P I NL – H
HNCL M Ne P C NL, L – –

The features are: Facility type (S: Single, M: Multiple), Hierarchy (Ne: Nested, Nn: Non-Nested, –: Not present), Cooperative mechanism (D: Deterministic, P: Probabilistic), Coverage
events (I: based on Independent events, C: based on possibly Correlated events, –: Not applicable), Model formulation (L: Linear, NL: Non-linear), Additional relaxations (G: Gradual
coverage, V: Variable radius, –: None), Solution approach (E: Exact, H: Heuristic and Metaheuristic, –: Not presented).
.

submodularity features of the joint coverage function to linearize it in
a single facility type setting.

In some models, the cooperative assumption is jointly considered
with the other relaxations mentioned in Section 1, which are gradual
coverage (G) and variable coverage radius (V). Bagherinejad et al.
(2018) proposed a non-linear maximal covering location problem, as-
suming gradual and cooperative coverage.

As regards solution approaches, various heuristics and metaheuris-
tics (H) as well as exact methods (E) have been developed. For in-
stance, Bababeik et al. (2018) proposed a combined e-constraint method
(AUGMECON) with a fuzzy-logic approach for solving a bi-objective
model related to the problem of locating relief trains. Karabulut et al.
(2017) propose three tabu search heuristics for solving the optimal
cooperating sensor deployment problem.

In order to compare the HNCL with existing cooperative models, we
summarized the main features of the cited papers in Table 1. It can be
noticed that no previous studies consider multiple facilities that (i) are
arranged in a nested hierarchy and (ii) cooperate (also among levels)
to cover the demand while (iii) assuming possibly correlated coverage
events.

The HNCL problem proposed in this work aims to bridge this gap by
considering two-level nested hierarchical facilities where cooperation is
not only between facilities at the same level (intra-level cooperation)
but also at different levels (inter-level cooperation) of the hierarchy.
Such cooperations are (non-linearly) modelled through three different
joint coverage functions.

It is worth highlighting that inter-level cooperation implies further
non-linearities in the model formulation compared to those already
investigated in the literature. Therefore, another contribution of the
present paper concerns the development of a linearizing approach for
both intra-level and inter-level cooperations, and, hence, the exten-
sion of the linearization proposed by Karatas (2017) to provide an
equivalent MILP of the HNCL.

In the following section, we present the HNCL problem, its MINLP
formulation and the development of the equivalent MILP.

3. The Hierarchical Nested Cooperative Location (HNCL) model

In this section, we introduce the two-level Hierarchical Nested Co-
operative Location (HNCL) model. We first define the problem frame-
3

work an its main assumptions; then, in Section 3.1 we provide the
MINLP formulation of the problem while the equivalent MILP formula-
tion is presented in Section 3.2.

We assume a two-level nested hierarchy involving upper and lower-
level facilities and two distinct sets of services. Specifically, exclusive
services are complex services provided solely by upper-level facilities,
and customers may be willing to travel a relatively long distance to
access them. Whilst, shared services, provided by facilities of both
hierarchical levels, are basic services that customers are expected to
find within short distances.

While the coverage mechanism for exclusive services is binary and
individual, in the sense that a demand node is covered if it finds at
least one upper-level facility within a predefined (large) radius 𝑅, the
cooperation may occur among facilities at the same level (intra-level
cooperation) and at different levels (inter-level cooperation) to cover
the demand for shared services.

In order to provide a clear picture of the HNCL problem setting, in
Fig. 1, we compare different versions of hierarchical covering problems
by referring to an example with 7 demand nodes and 5 facilities.
In particular, we classify the problem according to (a) the typology
of hierarchy (nested vs non-nested) and (b) the coverage mechanism
for low-level services (individual vs cooperative). By combining the
criteria, we consider four problem settings:

1. The two-level hierarchical non-nested problem (Fig. 1(a)), where
facilities at the two levels provide disjoint sets of services and
are able to cover the demand within different covering radii
(depicted in blue and red for facilities at the lower and upper
levels, respectively).

2. The two-level hierarchical nested problem (Fig. 1(b)), where fa-
cilities at the upper level provide, besides exclusive services,
those provided by the lower level (shared services). Compared
to Fig. 1(a), in Fig. 1(b), a different symbol has been used to
represent upper-level facilities. Moreover, the latter are charac-
terized by two radii, the blue one for the shared services and the
red one for exclusive ones. Here, a demand node can be covered
for shared services by an upper-level facility. See node n2 that
in the previous case remained uncovered.

3. The two-level hierarchical non-nested cooperative problem (Fig. 1(c))
Lower-level facilities provide decay coverages (as shown in the

figure through the gradient colour around them) that can be
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Fig. 1. Examples of coverage under different assumptions in a two-level hierarchy: non-nested vs nested hierarchy, classical coverage vs cooperative coverage.
aggregated to cover the demand. On the contrary, upper-level
facilities do not contribute to the provision of low-level services.
In this case, the node n5 is covered thanks to cooperation.

4. The two-level HNCL (our problem) that is nested and cooperative
(Fig. 1(d)). The main novelty is that the coverage for shared
services can be provided thanks to cooperation among facilities
at the same level (lower-lower or upper-upper) and at differ-
ent levels (lower-upper). See node n1 covered by cooperation
between the two upper-level facilities and n3 by cooperation
between one upper and one lower-level facility.

This last case has not been explored in the literature, as shown in
Section 2, and is the focus of the work. Given this rough picture of the
problem, let us formalize it.

Let 𝐼 denote the set of demand nodes, 𝐾 = {𝑈,𝐿} the set of facility
hierarchical levels – where 𝑈 and 𝐿 define the upper and the lower
ones, respectively – and 𝐽𝑘 the set of candidate sites for facilities of
level 𝑘 ∈ 𝐾.

We introduce two distinct coverage decay functions 𝜙𝑘
𝑖𝑗 for shared

services, each associated with a hierarchical level 𝑘 ∈ 𝐾, representing
the coverage level provided by a 𝑘-level facility 𝑗 ∈ 𝐽𝑘 to a demand
node 𝑖 ∈ 𝐼 . The functions 𝜙𝑘

𝑖𝑗 are left-continuous and non-increasing
over the distance 𝑑𝑖𝑗 from 𝑖 to 𝑗 (𝜙𝑘

𝑖𝑗 = 𝑓𝑘(𝑑𝑖𝑗 )), and explain the coverage
probability (0 ≤ 𝜙𝑘 ≤ 1). We assume that, for each given distance, the
4

𝑖𝑗
coverage level of an upper-level facility is higher than that provided by
a lower-level one.

All located facilities contribute to the aggregate coverage of each de-
mand node for shared services. We use the joint coverage
function (Drezner and Drezner, 2014) both for aggregating coverages
from the same level and from different levels. Let us remind that the
joint coverage is defined as a convex combination of two contribu-
tions: the first depicting the case of a perfect dependency in which
the customers perceive only the maximum coverage, and the second
one representing the case of perfect independence in which a function
of the product of the single coverages gives the aggregate coverage.
By varying the weights of the two contributions, it is possible to
capture the whole spectrum of event dependencies. In our problem, we
introduce three different aggregate coverage functions associated with
intra-lower, intra-upper and inter-level cooperations:

(i) Intra-level aggregate coverages 𝛷𝑘
𝑖 . Each of these functions is asso-

ciated with a hierarchical level 𝑘 ∈ 𝐾 and combines the coverage
levels provided by located facilities of level 𝑘 to demand node
𝑖 ∈ 𝐼 :

𝛷𝑘
𝑖 = 𝜃𝑘 max

𝑗∈𝐽𝑘

{

𝜙𝑘
𝑖𝑗𝑥

𝑘
𝑗

}

+
(

1 − 𝜃𝑘
) (

1 −𝑄𝑘
𝑖
)

∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (1)

where 𝑥𝑘𝑗 is equal to 1 if a facility of level 𝑘 is located at
candidate site 𝑗 ∈ 𝐽𝑘 and 0 otherwise, and 𝑄𝑘 represents the
𝑖
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overall non-coverage probability of a demand node 𝑖 by all
located facilities of level 𝑘 under the assumption of independent
coverage events, i.e. 𝑄𝑘

𝑖 =
∏

𝑗∈𝐽𝑘

(

1 − 𝜙𝑘
𝑖𝑗𝑥

𝑘
𝑗

)

. The weight 𝜃𝑘 de-
picts the correlation degree between coverages from facilities of
level 𝑘. If 𝜃𝑘 = 1, the coverage of 𝑖 is given by the maximum cov-
erage probability among located facilities (perfect dependence
of coverage events). In contrast, if 𝜃𝑘 = 0, the cooperation is
the maximum possible, being the coverage events independent.
Therefore, the degree of cooperation among facilities of level 𝑘
may be controlled by setting the parameter 𝜃𝑘 depending on the
specific application at hand;

(ii) Inter-level aggregate coverage 𝛷𝑖. This function combines the cov-
erage level jointly from facilities of different hierarchical level
to demand node 𝑖 ∈ 𝐼 :

𝛷𝑖 = 𝜃max
{

𝛷𝑈
𝑖 ;𝛷

𝐿
𝑖
}

+ (1 − 𝜃)
[

1 −
(

1 −𝛷𝑈
𝑖
) (

1 −𝛷𝐿
𝑖
)]

= 𝜃max
{

𝛷𝑈
𝑖 ;𝛷

𝐿
𝑖
}

+ (1 − 𝜃)
(

𝛷𝑈
𝑖 +𝛷𝐿

𝑖 −𝛷𝑈
𝑖 𝛷

𝐿
𝑖
)

∀𝑖 ∈ 𝐼 (2)

Similarly, the parameter 𝜃 regulates the cooperation degree
among facilities at distinct hierarchical levels. Therefore, 𝜃 =
1 means that the coverage of demand node 𝑖 is provided by
facilities of that hierarchical level providing the maximum; con-
versely, the cooperation among facilities at different hierarchical
levels is maximum if 𝜃 = 0.

We assume that a demand node 𝑖 ∈ 𝐼 is covered if the global
inter-level aggregate coverage 𝛷𝑖 exceeds a certain threshold 𝑇 (binary
coverage assumption, Berman et al., 2010).

The HNCL model aims to locate two types of facilities arranged in
a nested hierarchy such that the demand covered for shared services
is maximized whilst the coverage for exclusive services is guaran-
teed to each customer within a (large) fixed covering radius 𝑅. We
introduce two budgets, each available to locate facilities at a spe-
cific level. Thereby, a decision-maker implementing the HNCL model
may calibrate budgets depending on the investment they are will-
ing to undertake for locating facilities of a specific hierarchical level
characterized by different features.

3.1. HNCL: a mixed-integer non-linear programming (MINLP) formulation

In order to formulate the two-level HNCL model, we introduced the
following notation:

Sets
𝐼 Set of demand nodes;
𝐾 Set of hierarchical levels. 𝐾 = {𝑈,𝐿} where 𝑈 and 𝐿 denote

the upper and the lower levels, respectively;
𝐽𝑘 Set of candidate sites of facilities of level 𝑘 ∈ 𝐾;
Parameters
𝑤𝑖 Demand associated with node 𝑖 ∈ 𝐼 ;
𝑐𝑘𝑗 Cost for locating a facility of level 𝑘 ∈ 𝐾 at location 𝑗 ∈ 𝐽𝑘;
𝐵𝑘 Budget available for locating facilities of level 𝑘 ∈ 𝐾;
𝑑𝑖𝑗 Distance between demand node 𝑖 ∈ 𝐼 and candidate facility

location 𝑗 ∈
⋃

𝑘∈𝐾 𝐽𝑘;
𝑅 Covering radius for exclusive services, solely provided by

upper-level facilities;
𝜙𝑘
𝑖𝑗 Coverage level for shared services provided to demand node

𝑖 ∈ 𝐼 by facility of level 𝑘 ∈ 𝐾 located at 𝑗 ∈ 𝐽𝑘;
𝜃𝑘 Intra-level correlation factor depicting the dependency

among facilities at level 𝑘 ∈ 𝐾;
𝜃 Inter-level correlation factor depicting the dependency

among facilities at different levels;
𝑇 The threshold for coverage for shared services.
Covering sets
𝑁𝑈

𝑖 Set of candidate sites of upper-level facilities 𝑗 ∈ 𝐽𝑈 that
are within the distance 𝑅 from the demand node 𝑖 ∈ 𝐼 , i.e.
𝑁𝑈

𝑖 = {𝑗 ∈ 𝐽𝑈 ∶ 𝑑𝑖𝑗 ≤ 𝑅}.
5

Decision variables
𝑥𝑘𝑗 Binary decision variable equal to 1 if a facility of level 𝑘 ∈ 𝐾

is located at 𝑗 ∈ 𝐽𝑘;
𝑦𝑖 Binary decision variable equal to 1 if demand node 𝑖 ∈ 𝐼 is

covered for the shared services;
𝛷𝑘

𝑖 Intra-level aggregate coverage provided to node 𝑖 ∈ 𝐼 by
facilities located at the same level 𝑘 ∈ 𝐾;

𝛷𝑖 Inter-level Aggregate coverage provided to node 𝑖 ∈ 𝐼 by
facilities located at any level.

With this notation, we can formulate the two-level HNCL model as
follows:

max
∑

𝑖∈𝐼
𝑤𝑖𝑦𝑖 (3a)

s.t.
∑

𝑗∈𝑁𝑈
𝑖

𝑥𝑈𝑗 ≥ 1 ∀𝑖 ∈ 𝐼 (3b)

(1),(2)

𝛷𝑖 ≥ 𝑇 𝑦𝑖 ∀𝑖 ∈ 𝐼 (3c)
∑

𝑗∈𝐽𝑘

𝑐𝑘𝑗 𝑥
𝑘
𝑗 ≤ 𝐵𝑘 ∀𝑘 ∈ 𝐾 (3d)

𝑥𝑘𝑗 ∈ {0, 1} ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘 (3e)

𝑦𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝐼 (3f)

𝛷𝑈
𝑖 , 𝛷

𝐿
𝑖 , 𝛷𝑖 ≥ 0 ∀𝑖 ∈ 𝐼 (3g)

The objective function (3a) maximizes the total covered demand for
shared services provided by facilities of both upper and lower levels.
Constraints (3b) guarantee that each demand node is covered within
the distance 𝑅 by at least one located upper-level facility. Constraints
(1) functionally define the intra-level aggregate coverage from facilities
located at the same level 𝑘 for each demand node 𝑖 ∈ 𝐼 . The global
(inter-level) coverage of each demand node 𝑖 ∈ 𝐼 from all located
facilities is defined by constraints (2). Constraints (3c) guarantee that a
demand node is covered for shared services if the global coverage level
exceeds the threshold 𝑇 . The maximum budget to spend for locating
facilities of each hierarchical level 𝑘 ∈ 𝐾 is assigned by constraints (3d).
Finally, constraints (3e)–(3g) define the nature of decision variables.

3.2. HNCL: a mixed-integer linear programming (MILP) formulation

In this section, we develop a linear reformulation of the MINLP (3)
presented in Section 3.1. The non-linearities occur both in aggregat-
ing coverages at the same hierarchical level (constraints (1)) and in
aggregating coverages among the hierarchical levels (constraints (2)).
We first describe our linearizing approach; then, the equivalent MILP
reformulation is provided in Section 3.2.1.

The max-parts in (1) and (2) are linearized by introducing the
following auxiliary decision variables:

𝑧𝑘𝑖𝑗 Binary decision variable equal to 1 if the maximum coverage
level at demand node 𝑖 from facilities of level 𝑘 ∈ 𝐾 is
achieved at 𝑗 ∈ 𝐽𝑘 (and is equal to 𝜙𝑘

𝑖𝑗);
𝛷𝑚𝑎𝑥

𝑖 Maximum aggregate coverage provided to demand node 𝑖 ∈ 𝐼
by single levels, i.e. 𝛷𝑚𝑎𝑥

𝑖 = max
{

𝛷𝑈
𝑖 ;𝛷

𝐿
𝑖
}

;
𝑠𝑘𝑖 Binary decision variable equal to 1 if 𝛷𝑘

𝑖 ≠ 𝛷𝑚𝑎𝑥
𝑖 , 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾.

and adding the following constraints to the model:
∑

𝑗∈𝐽𝑘

𝑧𝑘𝑖𝑗 ≤ 1 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (4a)

𝑧𝑘𝑖𝑗 ≤ 𝑥𝑘𝑗 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘 (4b)
∑

𝑗∈𝐽𝑘

𝜙𝑘
𝑖𝑗𝑧

𝑘
𝑖𝑗 ≥ 𝜙𝑘

𝑖𝑗𝑥
𝑘
𝑗 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘 (4c)

𝑚𝑎𝑥 𝑘
𝛷𝑖 ≥ 𝛷𝑖 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (4d)
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𝛷𝑚𝑎𝑥
𝑖 ≤ 𝛷𝑘

𝑖 + 𝑠𝑘𝑖 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (4e)
∑

𝑘∈𝐾
𝑠𝑘𝑖 ≤ 1 ∀𝑖 ∈ 𝐼 (4f)

𝑧𝑘𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑘, 𝑘 ∈ 𝐾 (4g)

𝑠𝑘𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (4h)

𝛷𝑚𝑎𝑥
𝑖 ≥ 0 ∀𝑖 ∈ 𝐼 (4i)

Constraints (4a)–(4c) assign each demand node 𝑖 ∈ 𝐼 to the located
facility of each level 𝑘 ∈ 𝐾 providing the maximum coverage level.
Specifically, each demand node 𝑖 must be assigned to at most one
(constraints (4a)), located (constraints (4b)) facility of level 𝑘 providing
the highest coverage level among all the located ones (constraints (4c)).
Then, max𝑗∈𝐽𝑘{𝜙𝑘

𝑖𝑗𝑥
𝑘
𝑗 } =

∑

𝑗∈𝐽𝑘 𝜙𝑘
𝑖𝑗𝑧

𝑘
𝑖𝑗 . Constraints (4d)–(4f) guarantee

that the variable 𝛷𝑚𝑎𝑥
𝑖 is equal to the maximum between 𝛷𝑈

𝑖 and 𝛷𝐿
𝑖

for each demand node 𝑖. Indeed, constraints (4d) set the lower bound of
𝛷𝑚𝑎𝑥

𝑖 to the larger between 𝛷𝑈
𝑖 and 𝛷𝐿

𝑖 . In contrast, constraints (4e) set
the upper bound of 𝛷𝑚𝑎𝑥

𝑖 to the smaller between 𝛷𝑈
𝑖 and 𝛷𝐿

𝑖 plus the
decision variable 𝑠𝑘𝑖 . The variable 𝑠𝑘𝑖 is equal to 1 only for at most one
(constraints (4f)) inequality among those obtained by varying 𝑘 in (4e)
for each demand node. For constraints (4d)–(4f) to be simultaneously
verified, the upper and the lower bound of 𝛷𝑚𝑎𝑥

𝑖 are identical and
correspond to the maximum.

The prod-parts included in (1) and (2) are represented by 𝑄𝑘
𝑖

and 𝛷𝑈
𝑖 𝛷

𝐿
𝑖 , respectively. In order to linearize 𝑄𝑘

𝑖 , we implement the
linearization process introduced by Karatas (2017) and the references
therein (Morton et al., 2007; Salmerón, 2012). The main idea is to
reduce each 𝑄𝑘

𝑖 to a network flow problem. For the sake of simplicity,
let us consider the overall non-coverage probability 𝑄𝐿

𝑖 of node 𝑖 by
facilities of the lower level 𝐿. The linearizing approach maps a network
crossed by a flow, as shown in Fig. 2.

By referring to Fig. 2, the network is designed as follows: (i) |𝐽𝐿
|+1

nodes (depicted by blue bullets) represent the candidate locations for
facilities of level 𝐿 plus a pseudo location (the (|𝐽𝐿

| + 1)-th); (ii) each
adjacent node pair, the 𝑗-th and (𝑗 + 1)-th is linked through two arcs –
one labelled positive (in dark green) and one negative (in light green)
associated with auxiliary decision variables 𝑣+𝑖𝑗𝐿 and 𝑣−𝑖𝑗𝐿, respectively
– that describe the flow; (iii) the labelled positive arc connecting 𝑗 and
(𝑗+1) is associated with a weight equal to (1−𝜙𝐿

𝑖𝑗 ); (iv) the variable 𝑥𝐿𝑗
rules the flow outgoing from node 𝑗. The flow crossing the network is
initialized to 1, i.e. the value of 𝑄𝐿

𝑖 if no facilities of level 𝐿 are located.
Suppose a facility is located at 𝑗 and, then, 𝑥𝐿𝑗 = 1. In this case, the flow
crosses the labelled positive arc from node 𝑗 to (𝑗 + 1) and is scaled
of a factor equal to (1 − 𝜙𝑘

𝑖𝑗 ). Otherwise, the flow crosses the labelled
negative arc, remaining unchanged. Therefore, the flow entering the
node (𝑗 + 1) of the network is equal to ∏𝑗

𝑡=1
(

1 − 𝜙𝑘
𝑖𝑡𝑥

𝑘
𝑡
)

. Finally, the
flow entering the pseudo location (|𝐽𝐿

| + 1) and thus outgoing the
network equals the non-coverage probability 𝑄𝐿

𝑖 . See Karatas (2017)
for a detailed description.

The approach by Karatas (2017) allows to linearize 𝑄𝑘
𝑖 of a single

hierarchical level 𝑘 ∈ 𝐾, while linearizing the prod-part of the ag-
gregation of coverages results in a further and more challenging task
when more levels of facilities interact to cooperate. Indeed, additional
6

products among decision variables are involved, as will be shown. Our
main contribution to the linearizing process is extending the approach
proposed by Karatas (2017) when cooperation occurs in a two-level
hierarchy of facilities. The prod-part 𝛷𝑈

𝑖 𝛷
𝐿
𝑖 is exploded, recalling their

definition in (1), and replacing max𝑗∈𝐽𝑘{𝜙𝑘
𝑖𝑗𝑥

𝑘
𝑗 } with its equivalent

∑

𝑗∈𝐽𝑘 𝜙𝑘
𝑖𝑗𝑧

𝑘
𝑖𝑗 , as follows:

𝛷𝑈
𝑖 𝛷

𝐿
𝑖 = 𝜃𝑈

(

1 − 𝜃𝐿
)
∑

𝑗∈𝐽𝑈

𝜙𝑈
𝑖𝑗𝑧

𝑈
𝑖𝑗 +

(

1 − 𝜃𝑈
)

𝜃𝐿
∑

𝑗∈𝐽𝐿

𝜙𝐿
𝑖𝑗𝑧

𝐿
𝑖𝑗+

+
(

1 − 𝜃𝑈
) (

1 − 𝜃𝐿
) (

1 −𝑄𝑈
𝑖 −𝑄𝐿

𝑖
)

+
(5a)

− 𝜃𝑈
(

1 − 𝜃𝐿
)

𝑄𝐿
𝑖

∑

𝑗∈𝐽𝑈

𝜙𝑈
𝑖𝑗𝑧

𝑈
𝑖𝑗 + (5b)

−
(

1 − 𝜃𝑈
)

𝜃𝐿𝑄𝑈
𝑖

∑

𝑗∈𝐽𝐿

𝜙𝐿
𝑖𝑗𝑧

𝐿
𝑖𝑗 + (5c)

+
(

1 − 𝜃𝑈
) (

1 − 𝜃𝐿
)

𝑄𝐿
𝑖 𝑄

𝑈
𝑖 + (5d)

+ 𝜃𝑈𝜃𝐿
∑

𝑗∈𝐽𝐿

𝜙𝐿
𝑖𝑗𝑧

𝐿
𝑖𝑗

∑

𝑗∈𝐽𝑈

𝜙𝑈
𝑖𝑗𝑧

𝑈
𝑖𝑗 (5e)

See Appendix for a comprehensive description.
The extended expression of 𝛷𝑈

𝑖 𝛷
𝐿
𝑖 is made up of the right-hand side

of (5a), which is linear and will be defined by 𝛬𝑖 for shortness in the
following, and four non-linear contributions (5b)-(5e). By setting 𝛥1

𝑖
equal to the reverse sign of (5b), 𝛥2

𝑖 to the reverse sign of (5c), 𝛥3
𝑖 to

(5d), and 𝛥4
𝑖 to (5e), the expression (5) can be equivalently written as:

𝛷𝑈
𝑖 𝛷

𝐿
𝑖 = 𝛬𝑖 − 𝛥1

𝑖 − 𝛥2
𝑖 + 𝛥3

𝑖 + 𝛥4
𝑖

Each non-linear contribution is given by a product of several factors.
Our approach consists of introducing a new network flow problem
for each of the non-linearities 𝛥𝑛

𝑖 𝑛 ∈ {1, 2, 3, 4} that linearizes one
of that factors, which can be handled in a (Karatas, 2017) fashion
(e.g., 𝑄𝐿

𝑖 ), and initializing the flow crossing the network to the rest
of the non-linear contribution.

The networks we introduce are depicted in Fig. 3. Additional aux-
iliary variables 𝛿𝑛+𝑖𝑗 and 𝛿𝑛+𝑖𝑗 describe the flow crossing the arcs. The
network in Fig. 3(a) is used for linearizing 𝛥1

𝑖 , which contains 𝑄𝐿
𝑖 .

The network is designed to linearize 𝑄𝐿
𝑖 , as in the previous case: the

nodes represent the candidate sites of lower-level facilities; variables
𝑥𝐿𝑗 direct the flow outgoing from 𝑗; the labelled positive arc from
facility candidate sites 𝑗 to (𝑗 + 1) is weighted by (1 − 𝜙𝐿

𝑖𝑗 ). However,
in this case, the initial flow is set to the rest of the expression of 𝛥1

𝑖 ,
i.e. 𝜃𝑈

(

1 − 𝜃𝐿
)
∑

𝑗∈𝐽𝑈 𝜙𝑈
𝑖𝑗𝑧

𝑈
𝑖𝑗 . The outgoing flow after having crossed

the whole network will equal 𝛥1
𝑖 = 𝜃𝑈

(

1 − 𝜃𝐿
)

𝑄𝐿
𝑖
∑

𝑗∈𝐽𝑈 𝜙𝑈
𝑖𝑗𝑧

𝑈
𝑖𝑗 .

The contribution 𝛥2
𝑖 is a mirror-like case of 𝛥1

𝑖 where this time 𝑄𝑈
𝑖 is

linearized through the network depicted in Fig. 3(b), which is made by:
red nodes representing candidate sites of upper-level facilities; (1−𝜙𝑈

𝑖𝑗 )
is the weight associated with the labelled positive arc linking nodes
𝑗 and (𝑗 + 1); the flow is initialized to

(

1 − 𝜃𝑈
)

𝜃𝐿
∑

𝑗∈𝐽𝐿 𝜙𝐿
𝑖𝑗𝑧

𝐿
𝑖𝑗 and is

direct from 𝑗 by the value of 𝑥𝑈𝑗 .
The network related to 𝛥3

𝑖 (Fig. 3(c)) is still designed to linearize
𝑄𝑈

𝑖 whilst the flow is initialized to 𝑄𝐿
𝑖 , representing the output of the

network in Fig. 2, multiplied by
(

1 − 𝜃𝑈
) (

1 − 𝜃𝐿
)

.

Fig. 2. Network related to demand node 𝑖 and crossed by the flow – scaled by the located facilities of level 𝐿 – representing the overall non-coverage probability 𝑄𝐿
𝑖 . Each blue

node represents a candidate location 𝑗 of level 𝐿; labelled positive and labelled negative arcs are depicted by solid dark green lines and dashed light green lines, respectively. A
generic node 𝑗 is related to variable 𝑥𝐿𝑗 , whose value directs the flow outgoing from 𝑗 on the labelled positive arc (𝑥𝐿𝑗 = 1) and the labelled negative arc (𝑥𝐿𝑗 = 0).
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Fig. 3. The four networks related to demand node 𝑖 and crossed by the flow representing the non-linear contributions: (a) 𝛥1
𝑖 equal to the reverse sign of (5b); (b)𝛥2

𝑖 equal to the
reverse sign of (5c); (c)𝛥3

𝑖 equal to (5d); (d)𝛥4
𝑖 equal to (5e). Blue and red nodes depict the candidate sites of facilities of the lower and the upper level, respectively. Labelled

positive and labelled negative arcs are depicted by solid and dashed lines, respectively. The variable below each node directs the flow across the arcs.
The contribution 𝛥4
𝑖 is dissimilar since it does not involve any 𝑄𝑘

𝑖 .
However, a modified network flow problem may nevertheless be im-
plemented, as shown in Fig. 3(d). Indeed, the network can be designed
as follows: the nodes represent candidates sites of upper-level facilities
to handle ∑

𝑗∈𝐽𝑈 𝜙𝑈
𝑖𝑗𝑧

𝑈
𝑖𝑗 ; the weight associated with the labelled positive

arc linking nodes 𝑗 and 𝑗+1 is equal to 𝜙𝑈
𝑖𝑗 ; the variable 𝑧𝑈𝑖𝑗 is responsible

for directing the flow outgoing from 𝑗. The flow entering the network is
𝜃𝑈𝜃𝐿

∑

𝑗∈𝐽𝐿 𝜙𝐿
𝑖𝑗𝑧

𝐿
𝑖𝑗 . Then, the flow will cross only one labelled positive

arc corresponding to the located upper-level facility 𝑗 that provides the
maximum coverage (𝑧𝑈𝑖𝑗 = 1) and all the others labelled negative arcs
of the network. Therefore, our linearization approach holds since only
one addend is positive in ∑

𝑗∈𝐽𝑈 𝜙𝑈
𝑖𝑗𝑧

𝑈
𝑖𝑗 .

It is worth noticing that we preferred to design the network on the
set 𝐽𝑈 instead 𝐽𝐿, whenever possible. This way we reduce the number
of auxiliary decision variables, reasonably assuming |𝐽𝑈

| ≪ |𝐽𝐿
| in

real-case applications.

3.2.1. HNCL: the MILP mathematical model
In order to linearize the model (3), we introduce the following

auxiliary decision variables:
7

𝑄𝑘
𝑖 Probability of demand node 𝑖 ∈ 𝐼 to be not covered by

all located facilities of level 𝑘 ∈ 𝐾 when their coverage
probabilities are based on independent events, i.e. 𝑄𝑘

𝑖 =
∏

𝑗∈𝐽𝑘

(

1 − 𝜙𝑘
𝑖𝑗𝑥

𝑘
𝑗

)

;
𝛥𝑛
𝑖 𝑛-th non-linear contribution in the definition of 𝛷𝑈

𝑖 𝛷
𝐿
𝑖 , where

𝑛 ∈ {1, 2, 3, 4}. 𝛥1
𝑖 corresponds to the reverse sign of (5b), 𝛥2

𝑖
to the reverse sign of (5c), 𝛥3

𝑖 to (5d), and 𝛥4
𝑖 to (5e);

𝑣+𝑖𝑗𝑘 Labelled positive flow of demand node 𝑖 ∈ 𝐼 and facility
candidate site 𝑗 ∈ 𝐽𝑘 of level 𝑘 ∈ 𝐾 related to 𝑄𝑘

𝑖 ;
𝑣−𝑖𝑗𝑘 Labelled negative flow of demand node 𝑖 ∈ 𝐼 and facility

candidate site 𝑗 ∈ 𝐽𝑘 of level 𝑘 ∈ 𝐾 related to 𝑄𝑘
𝑖 ;

𝛿𝑛+𝑖𝑗 Labelled positive flow of demand node 𝑖 ∈ 𝐼 and facility
candidate site 𝑗 related to 𝛥𝑛

𝑖 , where 𝑛 = 1 if 𝑗 ∈ 𝐽𝐿 and
𝑛 ∈ {2, 3, 4} if 𝑗 ∈ 𝐽𝑈 ;

𝛿𝑛−𝑖𝑗 Labelled positive flow of demand node 𝑖 ∈ 𝐼 and facility
candidate site 𝑗 ∈ 𝐽𝑘 related to 𝛥𝑛

𝑖 , where 𝑛 = 1 is 𝑗 ∈ 𝐽𝐿

and 𝑛 ∈ {2, 3, 4} if 𝑗 ∈ 𝐽𝑈 .

The MILP alternative formulation of HNCL model is:

max (3a)

s.t. 𝑣− + 𝑣+ = 1 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (6a)
𝑖,1,𝑘 𝑖,1,𝑘
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𝑣−𝑖,𝑗,𝑘 + (1 − 𝜙𝑘
𝑖𝑗 )𝑣

+
𝑖,𝑗,𝑘 = 𝑣−𝑖,(𝑗+1),𝑘 + 𝑣+𝑖,(𝑗+1),𝑘

∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑗 ∈ {1,… , |𝐽𝑘
|−1} (6b)

𝑣−
𝑖,|𝐽𝑘

|,𝑘
+ (1 − 𝜙𝑘

𝑖,|𝐽𝑘
|

)𝑣+
𝑖,|𝐽𝑘

|,𝑘
= 𝑄𝑘

𝑖 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (6c)

𝑥𝑘𝑗 ≥ 𝑣+𝑖𝑗𝑘 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘 (6d)

1 − 𝑥𝑘𝑗 ≥ 𝑣−𝑖𝑗𝑘 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘 (6e)

𝛷𝑘
𝑖 = 𝜃𝑘

∑

𝑗∈𝐽𝑘

𝜙𝑘
𝑖𝑗𝑧

𝑘
𝑖𝑗 + (1 − 𝜃𝑘)(1 −𝑄𝑘

𝑖 ) ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (6f)

𝛿1−𝑖1 + 𝛿1+𝑖1 = 𝜃𝑈
(

1 − 𝜃𝐿
)
∑

𝑗∈𝐽𝑈

𝜙𝑈
𝑖𝑗𝑧

𝑈
𝑖𝑗 ∀𝑖 ∈ 𝐼 (6g)

𝛿2−𝑖1 + 𝛿2+𝑖1 = 𝜃𝐿
(

1 − 𝜃𝑈
)
∑

𝑗∈𝐽𝐿

𝜙𝐿
𝑖𝑗𝑧

𝐿
𝑖𝑗 ∀𝑖 ∈ 𝐼 (6h)

𝛿3−𝑖1 + 𝛿3+𝑖11 =
(

1 − 𝜃𝑈
) (

1 − 𝜃𝐿
)

𝑄𝐿
𝑖 ∀𝑖 ∈ 𝐼 (6i)

𝛿4−𝑖1 + 𝛿4+𝑖1 = 𝜃𝑈𝜃𝐿
∑

𝑗∈𝐽𝐿

𝜙𝐿
𝑖𝑗𝑧

𝐿
𝑖𝑗 ∀𝑖 ∈ 𝐼 (6j)

𝛿1−𝑖𝑗 + (1 − 𝜙𝐿
𝑖𝑗 )𝛿

1+
𝑖𝑗 = 𝛿1−𝑖(𝑗+1) + 𝛿1+𝑖(𝑗+1)

∀𝑖 ∈ 𝐼, 𝑗 ∈ {1,… , |𝐽𝐿
|−1} (6k)

𝛿𝑛−𝑖𝑗 + (1 − 𝜙𝑈
𝑖𝑗 )𝛿

𝑛+
𝑖𝑗 = 𝛿𝑛−𝑖(𝑗+1) + 𝛿𝑛+𝑖(𝑗+1)

∀𝑖 ∈ 𝐼, 𝑛 ∈ {2, 3}, 𝑗 ∈ {1,… , |𝐽𝑈
|−1} (6l)

𝛿4−𝑖𝑗 + 𝜙𝑈
𝑖𝑗 𝛿

4+
𝑖𝑗 = 𝛿4−𝑖(𝑗+1) + 𝛿4+𝑖(𝑗+1) ∀𝑖 ∈ 𝐼, 𝑗 ∈ {1,… , |𝐽𝑈

|−1} (6m)

𝛿1−
𝑖|𝐽𝐿

|

+ (1 − 𝜙𝐿
𝑖|𝐽𝐿

|

)𝛿1−
𝑖|𝐽𝐿

|

= 𝛥1
𝑖 ∀𝑖 ∈ 𝐼 (6n)

𝛿𝑛−
𝑖|𝐽𝑈

|

+ (1 − 𝜙𝑈
𝑖|𝐽𝑈

|

)𝛿𝑛+
𝑖|𝐽𝑈

|

= 𝛥𝑛
𝑖 ∀𝑖 ∈ 𝐼, 𝑛 ∈ {2, 3} (6o)

𝛿4−
𝑖|𝐽𝑈

|

+ 𝜙𝑈
𝑖|𝐽𝑈

|

𝛿4+
𝑖|𝐽𝑈

|

= 𝛥4
𝑖 ∀𝑖 ∈ 𝐼 (6p)

𝑥𝐿𝑗 ≥ 𝛿1+𝑖𝑗 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝐿 (6q)

𝑥𝑈𝑗 ≥ 𝛿𝑛+𝑖𝑗 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑈 , 𝑛 ∈ {2, 3} (6r)

𝑧𝑈𝑖𝑗 ≥ 𝛿4+𝑖𝑗 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑈 (6s)

1 − 𝑥𝐿𝑗 ≥ 𝛿1−𝑖𝑗 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝐿 (6t)

1 − 𝑥𝑈𝑗 ≥ 𝛿𝑛−𝑖𝑗 ∀𝑖 ∈ 𝐼, 𝑛 ∈ {2, 3}, 𝑗 ∈ 𝐽𝑈 (6u)

1 − 𝑧𝑈𝑖𝑗 ≥ 𝛿4−𝑖𝑗 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑈 (6v)

𝛷𝑖 = 𝜃𝛷𝑚𝑎𝑥
𝑖 + (1 − 𝜃)

(

𝛷𝑈
𝑖 +𝛷𝐿

𝑖 − 𝛬𝑖 + 𝛥1
𝑖 + 𝛥2

𝑖 − 𝛥3
𝑖 − 𝛥4

𝑖
)

∀𝑖 ∈ 𝐼 (6w)

𝑣+𝑖𝑗𝑈 , 𝑣
−
𝑖𝑗𝑈 , 𝛿

+
𝑖𝑗1, 𝛿

+
𝑖𝑗2, 𝛿

+
𝑖𝑗3, 𝛿

−
𝑖𝑗1, 𝛿

−
𝑖𝑗2, 𝛿

−
𝑖𝑗3 ≥ 0 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑈 (6x)

𝑣+𝑖𝑗𝐿, 𝑣
−
𝑖𝑗𝐿, 𝛿

+
𝑖𝑗4, 𝛿

−
𝑖𝑗4 ≥ 0 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝐿 (6y)

𝑄𝑈
𝑖 , 𝑄

𝐿
𝑖 , 𝛥

1
𝑖 , 𝛥

2
𝑖 , 𝛥

3
𝑖 , 𝛥

4
𝑖 ≥ 0 ∀𝑖 ∈ 𝐼 (6z)

(3b), (3c), (3d), (3e), (3f), (3g), (4)
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In order to compute the non-coverage probability 𝑄𝑘
𝑖 for each

demand node 𝑖 ∈ 𝐼 and each level 𝑘: constraints (6a) initialize the
flow entering the network to 1; constraints (6b) balance the outgoing
scaled flow from 𝑗 ∈ 𝐽𝑘 to the incoming flow to (𝑗 + 1) ∈ 𝐽𝑘; finally,
𝑄𝑘

𝑖 is computed by (6c) as the scaled flow outgoing from the network,
i.e. from |𝐽𝑘

|. Furthermore, technical constraints (6d) ensure that a
facility of level 𝑘 is located at candidate site 𝑗 ∈ 𝐽𝑘 if 𝑣+𝑖𝑗𝑘 is positive.
Conversely, if 𝑣−𝑖𝑗𝑘 is positive, a facility must not be located at 𝑗 by
constraints (6e).

The equivalent formulation of the intra-level aggregate coverage of
facilities of level 𝑘 ∈ 𝐾 expressed by (1) is provided by constraints (6f).

In order to compute 𝛷𝑈
𝑖 𝛷

𝐿
𝑖 for each demand node 𝑖 ∈ 𝐼 , the

four flows, each corresponding to a non-linear contribution in (5), are
initialized by constraints (6g)–(6j). Then, the flow balance crossing the
four networks is defined by constraints (6k)–(6m). Finally, the four
non-linear contributions are computed as the outgoing flow from the
networks (constraints (6n)–(6p)). Moreover, if 𝛿𝑛+𝑖𝑗 is positive, a facility
must be located at the candidate site 𝑗 ∈ 𝐽𝐿 when 𝑛 = 1 (constraints
(6q)) or at the candidate site 𝑗 ∈ 𝐽𝑈 when 𝑛 ∈ {2, 3} (constraints (6r))
or the facility located at candidate site 𝑗 ∈ 𝐽𝑈 provides the maximum
coverage level among all located upper-level facilities when 𝑛 = 4
(constraints (6s)). Instead, a facility is not located at the candidate site
𝑗 when 𝛿−𝑖𝑗𝑛 is positive (constraints (6t) and (6u)), neither it can provide
the maximum coverage level (constraints (6v)).

The equivalent linear formulation of the global (inter-level) aggre-
gate coverage defined by (2) for each demand node is provided by the
set of constraints (6w).

Finally, constraints (6x)–(6z) declare the nature of the additional
decision variables.

3.3. The value of the cooperation

In order to measure the contribution of intra-level and inter-level
cooperations, we introduced the following framework classifying cov-
ered demand nodes according to the mechanism responsible for the
coverage, as summarized in Table 2.

Let 𝑥𝑘𝑗
∗, 𝛷𝑘

𝑖
∗, 𝛷∗

𝑖 be the optimal solution of a HNCL model and
𝜙𝑚𝑎𝑥
𝑖

∗ the maximum coverage provided to demand node 𝑖 by a sin-
gle located facility, regardless of its hierarchical level, i.e. 𝜙𝑚𝑎𝑥

𝑖 =
max𝑘∈𝐾,𝑗∈𝐽𝑘 𝜙𝑘

𝑖𝑗𝑥
𝑘
𝑗
∗, 𝑖 ∈ 𝐼 . If 𝜙𝑚𝑎𝑥

𝑖
∗ exceeds the threshold 𝑇 , the demand

node 𝑖 is nevertheless covered, regardless of any established cooper-
ation. In this case, since locating (just) such a facility guarantees the
covering condition 𝛷∗

𝑖 ≥ 𝑇 , we can state that the involved mechanism
is the individual coverage. Instead, if 𝜙𝑚𝑎𝑥

𝑖
∗ is lower than the threshold

𝑇 albeit the demand node 𝑖 is covered
(

𝛷∗
𝑖 ≥ 𝑇

)

, the cooperation is re-
sponsible for covering. Additionally, we assess the type of cooperation
involved (intra-level or inter-level) by investigating the specific values
of 𝛷𝑘

𝑖 in relation to the threshold 𝑇 , as reported in Table 2. For instance,
𝑚𝑎𝑥∗
a demand node 𝑖 is covered by intra-lower level cooperation if 𝜙𝑖
Table 2
Coverage classification of covered demand nodes, where 𝑥𝑘𝑗

∗ , 𝛷𝑘
𝑖
∗ , 𝛷∗

𝑖 is the optimal solution of an HNCL model (6), and 𝜙𝑚𝑎𝑥
𝑖 = max

𝑘∈𝐾,𝑗∈𝐽 𝑘
𝜙𝑘
𝑖𝑗𝑥

𝑘
𝑗
∗.

Covered demand Set of nodes covered Percentage of covered demand

by Individual coverage 𝐼𝐼𝑛𝑑 = {𝑖 ∈ 𝐼 ∶ 𝜙𝑚𝑎𝑥
𝑖

∗ ≥ 𝑇 }
∑

𝑖∈𝐼𝐼𝑛𝑑
𝑤𝑖

/

∑

𝑖∈𝐼
𝑤𝑖 (%)

by Cooperation 𝐼𝐶𝑜𝑜𝑝 = {𝑖 ∈ 𝐼 ∶ 𝜙𝑚𝑎𝑥
𝑖

∗ < 𝑇 ∧𝛷∗
𝑖 ≥ 𝑇 }

∑

𝑖∈𝐼𝐶𝑜𝑜𝑝

𝑤𝑖

/

∑

𝑖∈𝐼
𝑤𝑖 (%)

Intra-Upper Level 𝐼𝑈𝐶 = {𝑖 ∈ 𝐼𝐶𝑜𝑜𝑝 ∶ 𝛷𝑈
𝑖
∗ ≥ 𝑇 ∧𝛷𝐿

𝑖
∗ < 𝑇 }

∑

𝑖∈𝐼𝑈𝐶

𝑤𝑖

/

∑

𝑖∈𝐼
𝑤𝑖 (%)

Intra-Lower Level 𝐼𝐿𝐶 = {𝑖 ∈ 𝐼𝐶𝑜𝑜𝑝 ∶ 𝛷𝑈
𝑖
∗ < 𝑇 ∧𝛷𝐿

𝑖
∗ ≥ 𝑇 }

∑

𝑖∈𝐼𝐿𝐶
𝑤𝑖

/

∑

𝑖∈𝐼
𝑤𝑖 (%)

Intra-Upper/Lower Level 𝐼𝑈𝐿𝐶 = {𝑖 ∈ 𝐼𝐶𝑜𝑜𝑝 ∶ 𝛷𝑈
𝑖
∗ ≥ 𝑇 ∧𝛷𝐿

𝑖
∗ ≥ 𝑇 }

∑

𝑖∈𝐼𝑈𝐿𝐶

𝑤𝑖

/

∑

𝑖∈𝐼
𝑤𝑖 (%)

Inter-Level 𝐼𝐼𝐶 = {𝑖 ∈ 𝐼𝐶𝑜𝑜𝑝 ∶ 𝛷𝑈
𝑖
∗ < 𝑇 ∧𝛷𝐿

𝑖
∗ < 𝑇 }

∑

𝑖∈𝐼𝐼𝐶
𝑤𝑖

/

∑

𝑖∈𝐼
𝑤𝑖 (%)
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Table 3
Setting of the 5 randomly generated instances.

Random instances

Set cardinalities |𝐼| = 100
|𝐽𝑈

| = |𝐽𝐿
| = 50

Fixed parameters 𝑑𝑖𝑗 is the Euclidean distance between 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽𝑈 ∪ 𝐽𝐿

𝑅 = 1, 000
𝜙𝑈
𝑖𝑗 , 𝜙

𝐿
𝑖𝑗 given by (7) with 𝛼1 = 1∕6, 𝛼2 = 1∕2

𝑇 = 0.7
𝑤𝑖 ∼ 𝑈 (10, 500)
𝑐𝑈𝑗 ∼ 𝑈 (800, 1000), 𝑐𝐿𝑗 ∼ 𝑈 (8, 10)

𝐵𝑈 = min
{

∑

𝑗∈𝐽𝑈 𝑐𝑈𝑗 𝑥
𝑈
𝑗 ∶

∑

𝑗∈𝑁𝑈
𝑖
𝑥𝑈𝑗 ≥ 1, 𝑖 ∈ 𝐼, 𝑥𝑈𝑗 ∈ {0, 1}, 𝑗 ∈ 𝐽𝑈

}

w

r
w
d
(
i

r
c
e

and 𝛷𝑈
𝑖
∗ are below the threshold 𝑇 , which is, instead, exceeded by

𝛷𝐿
𝑖
∗. Thus, the installation of lower-level facilities and their resulting

cooperation is responsible for the coverage of 𝑖. Instead, if 𝛷𝑈
𝑖
∗ and 𝛷𝐿

𝑖
∗

are less than 𝑇 while 𝛷∗
𝑖 exceeds 𝑇 , the demand node 𝑖 is covered by

the cooperation among all types of facilities (inter-level cooperation).
Finally, based on the above node classification, the demand is

aggregated to compute the percentage of covered demand by each
mechanism, as shown in Table 2. Such percentages represent their
contribution to the coverage of the demand.

4. Test instances and experimental design

In order to prove the capability of the model to provide meaning-
ful solutions, the MINLP and MILP formulations of the HNCL model
presented in Section 3 have been tested both on random and real
instances.

The settings of the random instances are listed in Table 3. Specif-
ically, for each instance, we randomly generated 100 demand nodes
and 50 candidate location sites, assuming 𝐽𝑈 = 𝐽𝐿, from a uniform
distribution on a two-dimensional 1.000 × 1.000 square. Using the
Euclidean distance metric, we computed 𝑑𝑖𝑗 for each demand node
and candidate location site pair. The covering radius 𝑅 within which
demand nodes must have access to exclusive services provided by
upper-level facilities is fixed at 1.000. In contrast, we defined two
distinct coverage decay functions to model the coverages 𝜙𝑈

𝑖𝑗 and 𝜙𝐿
𝑖𝑗

provided by facilities at the upper and lower levels, respectively. They
are expressed by (7) and depicted in Fig. 4.

Fig. 4. Coverage decay functions 𝜙𝑈
𝑖𝑗 , 𝜙

𝐿
𝑖𝑗 where 0 < 𝛼1 < 𝛼2 < 1.

𝜙𝑈
𝑖𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 𝑑𝑖𝑗 ≤ 𝛼1𝑅
𝛼2𝑅 − 𝑑𝑖𝑗
(𝛼2 − 𝛼1)𝑅

𝛼1𝑅 < 𝑑𝑖𝑗 ≤ 𝛼2𝑅

0 𝑑𝑖𝑗 > 𝛼2𝑅

(7a)

𝜙𝐿
𝑖𝑗 = max

{

0;
𝛼1𝑅 − 𝑑𝑖𝑗

}

0 < 𝛼1 < 𝛼2 < 1 (7b)
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𝛼1𝑅
Specifically, we defined a trapezoidal-shaped function for the upper-
level facilities and a linear function for the lower-level ones. We assume
upper-level facilities to have a stronger coverage capability on an equal
distance compared to lower-level ones. The parameters characterizing
both functions are defined as proportional (of a value between 0 and 1)
to the covering radius 𝑅 (see Table 3). The threshold 𝑇 for considering
a node as covered is set equal to 0.7.

We have drawn the weight of each demand node 𝑤𝑖 and the costs for
locating facilities of both levels (𝑐𝑈𝑗 and 𝑐𝐿𝑗 ) from uniform distributions,

hose parameters are reported in Table 3. Finally, the budget 𝐵𝑈

has been set by solving a set covering problem aiming at locating
upper-level facilities within 𝑅 from each demand node at the minimum
cost.

Furthermore, we applied the HNCL model to a real-world case
study of a distribution network system operating in an urban context.
Specifically, we considered a retail company outsourcing basic services
by integrating the network of internal facilities (upper-level 𝐽𝑈 ) with
external ones (lower-level 𝐽𝐿). We defined four real instances taken
from four neighbourhoods in a city, as shown in Fig. 5 that reports
the cardinality of the sets of demand nodes 𝐼 and candidate sites 𝐽𝑈

and 𝐽𝐿. In particular, for each instance, we discretized the demand
space into nodes corresponding to the centroids of the populated census
tracts of the neighbourhood (set of demand nodes 𝐼). The location and
the demand nodes are depicted in Fig. 5(a). The set of upper-level
facilities 𝐽𝑈 (red diamonds) consists of existing facilities owned by the
etail company; the lower-level facilities representing set 𝐽𝐿 are chosen
ithin the network of retail shops (blue squares). The weight of each
emand node 𝑤𝑖 represents the resident population of the census tract
Fig. 5(b)). The remaining parameters are set up as for the random
nstances.

For each real and random instance, we varied the intra-level cor-
elation factors, assuming them identical 𝜃𝑈 = 𝜃𝐿, and the inter-level
orrelation factor 𝜃 in order to compare solutions obtained with differ-
nt degrees of cooperation at the same (by the value of 𝜃𝑈 , 𝜃𝐿) and at

different hierarchical levels (by the value of 𝜃). In particular, we tested
the correlation factors at their extreme values, i.e. 0 when maximum
cooperation is allowed and 1 when no cooperation is allowed, and at
intermediate values 0.3 and 0.7.

Furthermore, we are interested in investigating how lower-level
facilities support the upper-level ones and how they interact in covering
the demand for shared services. For this reason, we tested the HNCL on
the random and real instances by varying the budget for locating lower-
level facilities 𝐵𝐿, starting from 0 with step 10 until obtaining a value
of objective function 𝑧∗ = 𝑧̄. Such 𝑧̄ represents the maximum achievable
covered demand with a given combination of 𝜃𝑈 , 𝜃𝐿, 𝜃, obtained as the
value of the objective function of a relaxed HNCL where 𝐵𝐿 is not
assigned and a lower-level facility is located in every candidate site.

We conducted a total of 2.509 experiments for each formulation
(MINLP and MILP), of which 1.713 were for random instances and 796
for real instances.
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. Results

In this section, the results obtained by solving the HNCL for the test
nstances are presented and analysed. We first compare computational
esults obtained by solving the MINLP and the MILP formulations in
ection 5.1. In Section 5.2, we present some illustrative solutions show-
ng the contribution of cooperation in covering the demand. Finally, in
ection 5.3 the obtained results for random instances are summarized
nd discussed.

.1. Computational experiments

In order to evaluate the proposed linearization approach, we com-
are the computational results obtained by using both the MINLP and
ILP formulations on all the random and real instances.

All experiments were conducted on a PC with an Intel Core i7
rocessor at 2.30 GHz with 16 GB RAM. The MILP model was solved
sing CPLEX 20.1 within the AIMMS modelling environment, whereas
he original non-linear model (MINLP) was solved using the Knitro
olver within AMPL. A time limit of 10 min (600 s) was set for each
olver.

Table 4 shows the computational results in terms of the minimum,
he maximum and the average value of CPU time (in seconds) and
ptimality gap (%) for each formulation, also distinguishing for each
10

et of instances (real and random).
Clearly, the linearized model produces much better solutions both in
erms of quality and computation time. In the real instances, the non-
inear model required, on average, nearly 28 s of CPU time, whereas
he linear model took only around 1.5 s. With respect to solution
uality, CPLEX was able to solve all real instances optimally, whereas
nitro returned optimality gaps up to 20%. The differences in the
andom instances are even more extreme. While CPLEX took an average
f 37.68 s and managed to solve all instances to optimality, Knitro
equired an average of 400 s per instance and gave optimality gaps
s large as 53.70% as it exceeded the maximum time limit (600 s) on
everal occasions.

.2. Illustrative solutions: measuring the cooperation

In this section, illustrative solutions are presented, showing the con-
ribution of each coverage mechanism according to the classification
rovided in Section 3.3.

Fig. 6 depicts the maps of three illustrative solutions obtained
or Real Instance 4 by varying the inter-level correlation factor 𝜃 ∈
0, 0.7, 1} with fixed 𝐵𝐿 = 110 and 𝜃𝑈 = 𝜃𝐿 = 0 (maximum intra-
evel cooperation). The demand nodes are coloured according to the
echanism responsible to their coverage.

Firstly, it can be noticed that by fixing the budget for locating upper-
evel facilities 𝐵𝑈 in a set covering fashion, the individual coverages 𝜙𝑈

𝑖𝑗
provided by the 2 located upper-level facilities do not overlap; thus,

intra-upper level cooperation does not take place.
Table 4
Computational results of MILP and MINLP formulations.

CPU time (s) Optimality gap (%)

Min Max Average Min Max Average

MINLP All Instances 0.02 600.00a 251.90 0.00% 53.70% 12.04%
Real Instances 0.02 300.00 27.79 0.00% 20.00% 1.02%
Random Instances 14.64 600.00a 400.48 0.00% 53.70% 19.35%

MILP All Instances 0.11 455.92 23.27 0.00% 0.00% 0.00%
Real Instances 0.11 5.64 1.52 0.00% 0.00% 0.00%
Random Instances 0.12 455.92 37.68 0.00% 0.00% 0.00%

a Reached the time limit.
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Fig. 6. Illustrative solutions for Real Instance 4 by varying 𝜃 with 𝐵𝐿 = 110, 𝜃𝑈 = 𝜃𝐿 = 0.
Secondly, the effect produced by increasing 𝜃, i.e., restricting inter-
level cooperation, may be appreciated by comparing maps in Figs. 6(a),
6(b), and 6(c). Demand nodes covered by inter-level cooperation (yel-
low dots) progressively decrease, from 6 to 4 to 0, as well as the overall
covered demand, from 50.26% to 45.62% to 45.19%, when 𝜃 rises from
0 to 0.7 to 1.
11
In Fig. 7, we compare the percentage of covered demand in Random
Instance 3 by varying the correlation factors 𝜃𝑈 = 𝜃𝐿, 𝜃 and the
budget for locating lower-level facilities 𝐵𝐿. The percentage of cov-
ered demand is split according to our coverage classification scheme:
individual coverage is represented in purple, intra-lower level in pink,
and inter-level in yellow. As in the solutions shown in Fig. 6, the
Fig. 7. Random instance 3: contribution of coverages by varying 𝐵𝐿 , 𝜃𝐿 = 𝜃𝑈 , 𝜃.
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cooperation among upper-level facilities does not occur, regardless of
the value of 𝜃𝑈 . For each setting of 𝜃𝑈 = 𝜃𝐿 and 𝜃, we report the upper
ound 𝑧̄% of the percentage of covered demand

(

𝑧̄% = 𝑧̄
/
∑

𝑖∈𝐼 𝑤𝑖(%)
)

,
and the minimum budget for lower-level facilities to achieve that
percentage, 𝐵𝐿(𝑧̄). All solutions corresponding to larger budgets than
𝐵𝐿(𝑧̄) are identical to the solution obtained with 𝐵𝐿 = 𝐵𝐿(𝑧̄).

By analysing the graphs in Fig. 7, the percentage of covered demand
rogressively increases by expanding the lower-level network, i.e., by
ncreasing the budget 𝐵𝐿 until reaching 𝐵𝐿(𝑧̄). However, different
overage mechanisms of various extents are involved. In particular,
n Fig. 7(a), by fixing 𝜃 and increasing 𝜃𝐿, thus limiting intra-lower
evel cooperation, the pink stripe (intra-lower level cooperation) tends
o thin until it disappears for 𝜃𝑈 = 𝜃𝐿 = 1. Conversely, the yellow stripe
ends to reduce when increasing 𝜃 (limiting inter-level cooperation)
n Fig. 7(b). In both cases, a restriction in the cooperation degree,
y increasing 𝜃𝐿 or 𝜃, results in an overall reduction of the covered
emand for a fixed budget 𝐵𝐿. It is worth noticing in Fig. 7(b) (fixed
𝐿 = 0.7) that the upper bound of covered demand is invariant for an

increased 𝜃 from 0 to 0.3. However, such coverage can be reached only
through an increment of budget 𝐵𝐿 equal to 20. In conclusion, Fig. 7
12
highlights how cooperation has a significant impact in covering the
demand and that the correlation factors can be leveraged to rule the
cooperation degree.

5.3. Summary results

In this section, summary results obtained for random instances are
reported in Table 5 and discussed, referring to some specific represen-
tative combinations of correlation factors 𝜃𝐿, 𝜃. Since intra-upper level
cooperation is not established, 𝜃𝑈 is irrelevant, and thus they are not
reported. For each combination, we selected three representative bud-
gets, i.e. small

(

𝐵𝐿 = 50
)

, medium
(

𝐵𝐿 = 100
)

and large
(

𝐵𝐿 = 300
)

.
In correspondence with each budget, the minimum, the maximum and
the average percentage of covered demand among all random instances
are indicated. Then, according to what is illustrated in Section 3.3,
the percentage of covered demand is split into the contributions given
by the coverage mechanisms, individual or cooperative. The latter is
further subdivided according to the cooperation types.

If 𝜃𝐿 = 𝜃 = 1, no cooperation is allowed. The HNCL turns into
a non-cooperative model, which nevertheless includes the decay in
Table 5
Summary of results for random instances.

𝜃𝐿 = 𝜃 = 1
Min Max Average

𝐵𝐿 = 50 𝐵𝐿 = 100 𝐵𝐿 = 300 𝐵𝐿 = 50 𝐵𝐿 = 100 𝐵𝐿 = 300 𝐵𝐿 = 50 𝐵𝐿 = 100 𝐵𝐿 = 300

Covered demand%Covered demand% 32% 40% 45% 41% 50% 55% 37% 46% 50%
by Individual coverage% 32% 40% 45% 41% 50% 55% 37% 46% 50%
by Cooperation% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Intra-Lower Level 0% 0% 0% 0% 0% 0% 0% 0% 0%
Inter-Level 0% 0% 0% 0% 0% 0% 0% 0% 0%

𝜃𝐿 = 𝜃 = 0
Min Max Average

𝐵𝐿 = 50 𝐵𝐿 = 100 𝐵𝐿 = 300 𝐵𝐿 = 50 𝐵𝐿 = 100 𝐵𝐿 = 300 𝐵𝐿 = 50 𝐵𝐿 = 100 𝐵𝐿 = 300

Covered demand%Covered demand% 40% 55% 69% 53% 67% 87% 46% 60% 77%
by Individual coverage% 32% 44% 48% 40% 44% 49% 34% 41% 45%
by Cooperation% 8% 11% 21% 13% 23% 38% 12% 19% 32%
Intra-Lower Level 0% 4% 13% 0% 7% 17% 1% 6% 17%
Inter-Level 8% 7% 8% 13% 16% 21% 11% 13% 15%

𝜃𝐿 = 𝜃 = 0.7
Min Max Average

𝐵𝐿 = 50 𝐵𝐿 = 100 𝐵𝐿 = 300 𝐵𝐿 = 50 𝐵𝐿 = 100 𝐵𝐿 = 300 𝐵𝐿 = 50 𝐵𝐿 = 100 𝐵𝐿 = 300

Covered demand%Covered demand% 36% 46% 58% 45% 57% 65% 40% 52% 62%
by Individual coverage% 30% 38% 49% 41% 49% 54% 36% 44% 48%
by Cooperation% 6% 8% 9% 4% 8% 11% 3% 8% 14%

Intra-Lower Level 2% 3% 4% 0% 1% 4% 1% 2% 7%
Inter-Level 4% 5% 5% 4% 7% 7% 2% 6% 7%

𝜃𝐿 = 1, 𝜃 = 0
Min Max Average

𝐵𝐿 = 50 𝐵𝐿 = 100 𝐵𝐿 = 300 𝐵𝐿 = 50 𝐵𝐿 = 100 𝐵𝐿 = 300 𝐵𝐿 = 50 𝐵𝐿 = 100 𝐵𝐿 = 300

Covered demand%Covered demand% 40% 52% 56% 52% 64% 71% 45% 57% 62%
by Individual coverage% 32% 40% 44% 40% 46% 52% 35% 43% 47%
by Cooperation% 8% 12% 12% 12% 18% 19% 10% 14% 14%

Intra-Lower Level 0% 0% 0% 0% 0% 0% 0% 0% 0%
Inter-Level 8% 12% 12% 12% 18% 19% 10% 14% 14%

𝜃𝐿 = 0.7, 𝜃 = 0.3
Min Max Average

𝐵𝐿 = 50 𝐵𝐿 = 100 𝐵𝐿 = 300 𝐵𝐿 = 50 𝐵𝐿 = 100 𝐵𝐿 = 300 𝐵𝐿 = 50 𝐵𝐿 = 100 𝐵𝐿 = 300

Covered demand%Covered demand% 38% 52% 61% 49% 61% 74% 43% 55% 66%
by Individual coverage% 33% 44% 48% 39% 48% 53% 35% 43% 47%
by Cooperation% 5% 8% 13% 10% 13% 21% 7% 12% 19%

Intra-Lower Level 0% 2% 0% 0% 0% 3% 0% 1% 6%
Inter-Level 5% 6% 13% 10% 13% 18% 7% 11% 13%

𝜃𝐿 = 0.3, 𝜃 = 0.7
Min Max Average

𝐵𝐿 = 50 𝐵𝐿 = 100 𝐵𝐿 = 300 𝐵𝐿 = 50 𝐵𝐿 = 100 𝐵𝐿 = 300 𝐵𝐿 = 50 𝐵𝐿 = 100 𝐵𝐿 = 300

Covered demand%Covered demand% 37% 50% 61% 46% 61% 80% 41% 53% 70%
by Individual coverage% 37% 41% 46% 38% 46% 53% 35% 41% 47%
by Cooperation% 0% 9% 15% 8% 15% 27% 6% 12% 23%

Intra-Lower Level 0% 4% 10% 3% 10% 20% 2% 7% 17%
Inter-Level 0% 5% 5% 5% 5% 7% 3% 5% 5%
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the coverage level provided by different hierarchical facilities and a
minimum threshold for coverage. In this case, each demand node
perceives only the maximum coverage by a single facility (individual
coverage), regardless of its hierarchical level. If the budget 𝐵𝐿 = 300,
the covered demand is on average equal to 50% with an increase
of 13% with respect to the case of 𝐵𝐿 = 50. This slight improve-

ent shows that lower-level facilities may contribute to a small extent
hen they cannot cooperate, given their individual coverage dissipates

apidly.
On the contrary, when the maximum intra and inter-level cooper-

tions are allowed (𝜃𝐿 = 𝜃 = 0), the coverage achieves the maximum
alue. For example, the average covered demand for 𝐵𝐿 = 300 reaches

77%, +27% compared to the previous case, given the substantial
contribution given by intra-lower level (17%) and inter-level (15%)
cooperations that partially replaces the individual coverage, which goes
from 50% to 45%.

The analysed settings represent the extreme coverage cases from the
minimum (𝜃𝐿 = 𝜃 = 1) to the maximum (𝜃𝐿 = 𝜃 = 0) achievable cov-
ered demand, and any other solution obtained with any combination
of 𝜃𝐿 and 𝜃, presents a percentage of covered demand within the range
thus defined. For instance, setting 𝜃𝐿 = 𝜃 = 0.7 and 𝐵𝐿 = 100, on
verage, the demand covered by cooperation is 8%, of which 2% is
ntra-lower level and 6% is inter-level, compared to 19% if 𝜃𝐿 = 𝜃 = 0.
he overall covered demand equals 52%, between 46% (if 𝜃𝐿 = 𝜃 = 1)
nd 60% (if 𝜃𝐿 = 𝜃 = 0).

A case of interest is the combination 𝜃𝐿 = 1 and 𝜃 = 0. In this
case, each demand node perceives the maximal coverage provided
by a single facility at the lower level (𝜃𝐿 = 1 and 0% of covered
demand by intra-lower level cooperation) and a single facility at the
upper level (intra-upper level cooperation is not established). These
two coverages are combined to define the overall coverage with the
maximum freedom of cooperation (𝜃 = 0). The inter-level cooperation
gives discrete support to the overall demand coverage, i.e., on average,
10% with a small budget (𝐵𝐿 = 50) and 14% with a medium (𝐵𝐿 = 100)
or large (𝐵𝐿 = 300) budget; individual coverage, in comparison, covers
35%, 43%, and 47% of demand, respectively.

Comparing the contributions of the cooperation mechanisms, if 𝜃𝐿 ≥
𝜃, the inter-level cooperation generally covers a more extensive amount
of demand than the cooperation among lower-level facilities. See, for
instance, the results obtained by choosing 𝜃𝐿 = 0.7 and 𝜃 = 0.3.

onsidering the instance showing the maximum covered demand, the
nly contributing cooperation type with a small or medium budget
𝐵𝐿 = 50 and 𝐵𝐿 = 100) is the inter-level one, with 10% and 13% of
overed demand, respectively; intra-lower level cooperation does not
ccur. Even considering a large budget (𝐵𝐿 = 300), the inter-level
ooperation reaches 18% of covered demand, whilst the intra-lower
evel cooperation contributes with a 3%.

Conversely, if 𝜃𝐿 < 𝜃, the coverage provided by intra-level cooper-
tion is typically more significant, as shown by results with 𝜃𝐿 = 0.3
nd 𝜃 = 0.7. In this setting with a large budget, regarding the solution
resenting the maximum covered demand, the intra-level cooperation
rovides 20% of covered demand, opposing the inter-level cooperation
hat contributes with a 7%.

As expected, the presented results show that solutions are highly
ensitive to the correlation factors ruling the degree of cooperation and
ow, by establishing additional lower-level facilities, a greater extent
f demand can be covered thanks to intra and inter-level cooperations.

. Managerial implications

The formulated model can be effectively used to represent many
eal-world decision-making problems concerning the design of service
etworks.

Indeed, there are several application contexts where users’ accessi-
13

ility to a given service does not depend solely on the distance from c
heir closest facility but on the number, density and characteristics of
ll the facilities located in their neighbourhood.

From a methodological point of view, this is testified by well-
stablished approaches in the spatial accessibility-related literature,
onsidering the simultaneous presence of facilities within a given dis-
ance from users. It is the case of the Floating Catchment Area (FCA) or
he gravity-based methods (Luo and Wang, 2003). Also, in the location
iterature, many problems consider sophisticated spatial interaction
odels to determine the demand allocation or the attraction degree of

ocated facilities.
From a practical perspective, many examples of interests involving

ooperative and hierarchical systems may be provided.
For example, in the logistics sector, optimizing last-mile delivery is

aining momentum after the e-commerce boom, and new delivery solu-
ions have been explored to meet this growing demand. In this context,
he ‘‘Click & Collect’’ is a relatively new method of selling products
ccording to which customers place their order online and then collect
t at a specific location, such as parcel lockers, manned collection
oints, or shops. It allows consolidating deliveries (for providers) and
aving fees on shipping or delivery (for customers). The Click & Collect
etwork must be expanded to encourage customers to opt for self-
ollection instead of home delivery (Mangiaracina et al., 2019). For
his purpose, a cooperative paradigm may effectively adapt. Indeed, the
ustomers’ acceptance of self-collection depends on the set of attractive
ptions they may patronize within a limited distance. Such options
re heterogeneous and can be organized according to hierarchical
etworks. For example, shops and collection points can be arranged
n a nested hierarchy as both can be used to collect parcels, but shops
lso provide additional services.

Moreover, given the recent digitalization trend in the banking sec-
or, financial institutions are restructuring their branch networks. The
ltimate goal is to shrink the network and progressively transform the
emaining branches into semi-digital facilities with staff dedicated to
omplex and added-value operations. In the new model, the physical
rovision of basic services (e.g., deposits, withdrawals and bill pay-
ents) is internally consolidated and outsourced to external facilities,
sually located at regularly visited shops (e.g., supermarkets or tobacco
hops). This strategy would allow banks to maintain a capillary pres-
nce across the territory and guarantee proximity to those customers
ho prefer in-person channels (Baldassarre et al., 2024). In this system,
xternal facilities cooperate to provide coverage to users among them
nd also with the internal branches themselves.

Lastly, in the healthcare sector, users interact with various types
f facilities to receive services and health facilities are often arranged
n nested hierarchical structures (Mitropoulos et al., 2006). For ex-
mple, diagnostic centres, primary-care centres, and hospitals that
ffer progressively complex services. All these facilities cooperate in a
ierarchical fashion to ensure that their patients have adequate and fair
vailability and accessibility to the healthcare services they commonly
rovide.

In the above-described settings, the HCNL may be suitable for
ffectively designing nested hierarchical facilities networks, where co-
peration at each level and between levels can be exploited as a
echanism to cover the demand better.

In the design of service networks, the coverage level provided
y a single facility to a given demand node represents its ability to
ttract that node and depends on its characteristics and the distance
rom the demand (coverage decay function). The way users simul-
aneously perceive the coverage levels from all facilities in terms of
verall attraction depends on the type of services under consideration
nd the users’ preferences. Despite more options within the covering
adius, there are cases where users perceive only that facility with
he strongest attraction (individual coverage) and others where they
tart experiencing the effects of other facilities in their neighbourhood.
his aspect is modelled through the aggregate coverage function. The

hoice of adopting the joint coverage function allows us to represent
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a wide spectrum of situations characterized by different degrees of
cooperation. Additionally, by introducing the concept of inter-level
cooperation, we assume a distinct function to aggregate coverages
from different levels of facilities. This is significant as it enables us to
represent situations where users perceived coverages differently from
the two levels.

As demonstrated by the results, the scenarios produced by the model
are significantly affected by the calibration of parameters ruling the
aggregations (i.e., 𝜃𝑈 , 𝜃𝐿 and 𝜃). Although tuning these parameters
in real-world applications can be challenging, as they represent how
users perceive the simultaneous presence of multiple facilities, it could
be very insightful for the decision-maker to analyse the scenarios
generated by the model by varying them. By doing so, indeed, the
decision-maker may assess the robustness of the obtained solutions
in terms of the network configuration. High robustness levels can
increase the decision-maker’s confidence in activating specific locations
in contrast to solutions highly sensitive to the parameters mentioned.
Moreover, the decision-maker may appreciate the value of cooperation
and how this contribution is dependent on the hypothesis made on the
aggregation mechanisms.

Finally, the model may help decision-makers to allocate the avail-
able budget optimally. Generally, the higher-level facilities have a
stronger attraction but a higher activation cost, while lower-level fa-
cilities have lower costs and less attractiveness. Hence, the model
helps design the network to find a trade-off between location costs
and user coverage. By varying the budget for activating lower-level
facilities, decision-makers can assess the marginal benefit in terms of
additional covered demand achievable with an extra investment. Once
the marginal benefit becomes low, the decision-maker may decide that
it is not convenient to expand the lower-level facility network further.

7. Conclusions

In this paper, we presented a novel cooperative covering model,
namely HNCL, aiming at maximizing the covered demand by locating
facilities arranged in a two-level nested hierarchy. Facilities provide a
decaying coverage to demand nodes according to defined functions.
First, the two cooperations among facilities at the same hierarchical
level are treated separately (intra-level cooperation) and modelled as
joint coverage functions. Then, a further joint coverage function is
introduced to aggregate the coverage provided by facilities at different
hierarchical levels (inter-level cooperation). The three introduced joint
coverage functions present three key parameters – 𝜃𝑈 , 𝜃𝐿, 𝜃 – regulating
he cooperation degrees among facilities at the same and different
evels. A given threshold defines the minimum coverage level that must
e provided to a demand node to be covered. Two distinct available
udgets are considered to locate facilities of each level.

A first non-linear HNCL formulation has been presented. Then, we
pplied a linearizing approach to the HNCL developed by extending the
inearization by Karatas (2017).

Both non-linear and linear formulations have been tested on in-
tances randomly generated as well as extracted from real-world net-
orks of a retail company. Several results have been obtained by
arying the budget for locating facilities of the lower level and the
arameters 𝜃𝑈 , 𝜃𝐿, 𝜃. We first compared the two formulations from
computational point of view. The results have shown that our lin-

arizing approach outperformed the non-linear formulation both in
omputing times and quality of solutions. Moreover, the results demon-
trate the capability of the model to provide meaningful solutions
nd how decision-makers may levera the key parameters 𝜃𝑈 , 𝜃𝐿, 𝜃 in
rder to regulate the cooperation degree depending on the specific real
cenario at hand, where some sort of dependencies among potential
acilities may occur.

Moreover, depending on the specific real context, the decay cover-
ge functions should be carefully modelled in order to be able to shape
he customers’ perceptions with respect to service coverage in a realistic
14
manner. A possible future research direction, indeed, can involve the
analysis of a suitable service sector and the application of the HNCL
model to a real network by considering decay coverage functions based
on real customer data obtained, for instance, by means of surveys.

Finally, the HNCL may be easily extended by formulating a gradual
HNCL model involving the possibility of partial coverage of the de-
mand. However, measuring the cooperation as defined in Section 3.3 by
subdividing the contribution of each covering mechanism is no longer
possible since the threshold 𝑇 is not considered. Furthermore, as the
size of the instance grows the HNCL problem may be challenging to
solve. Thus, a further research direction could involve the development
of a solution approach.
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Appendix. Exploding 𝜱𝑼
𝒊 𝜱

𝑳
𝒊

In order to handle the prod-part 𝛷𝑈
𝑖 𝛷

𝐿
𝑖 (𝑖 ∈ 𝐼) included in the

inter-level aggregate coverage 𝛷𝑖, let 𝛷𝑈
𝑖 and 𝛷𝐿

𝑖 be defined as in (1):

𝛷𝑈
𝑖 𝛷

𝐿
𝑖 =

[

𝜃𝑈 max
𝑗∈𝐽𝑈

{𝜙𝑈
𝑖𝑗𝑥

𝑈
𝑗 } +

(

1 − 𝜃𝑈
) (

1 −𝑄𝑈
𝑖
)

]

⋅

[

𝜃𝐿 max
𝑗∈𝐽𝐿

{𝜙𝐿
𝑖𝑗𝑥

𝐿
𝑗 } +

(

1 − 𝜃𝐿
) (

1 −𝑄𝐿
𝑖
)

]

(A.1)

Let us recall the auxiliary decision variable 𝑧𝑘𝑖𝑗 that is equal 1 when
the located facility 𝑗 ∈ 𝐽𝑘 of level 𝑘 ∈ 𝐾 provides the maximum
coverage to 𝑖 among all the located facilities of level 𝑘 and 0 otherwise,
as defined in Section 3.2. Therefore, max𝑗∈𝐽𝑘{𝜙𝑘

𝑖𝑗𝑥
𝑘
𝑗 } is equivalent to

∑

𝑗∈𝐽𝑘 𝜙𝑘
𝑖𝑗𝑧

𝑘
𝑖𝑗 and can be replaced by the latter in (A.1).
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⎢
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𝑈
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1 − 𝜃𝑈
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1 −𝑄𝑈
𝑖
)

⎤

⎥

⎥

⎦

⋅

⎡

⎢

⎢

⎣

𝜃𝐿
∑
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(
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𝑖
)

⎤

⎥
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(A.2)

The expression (A.2) can be exploded as follows:

𝛷𝑈
𝑖 𝛷

𝐿
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−
(

1 − 𝜃𝑈
)

𝜃𝐿𝑄𝑈
𝑖

∑

𝑗∈𝐽𝐿

𝜙𝐿
𝑖𝑗𝑧

𝐿
𝑖𝑗 −

(

1 − 𝜃𝑈
) (

1 − 𝜃𝐿
)

𝑄𝑈
𝑖 +

( 𝑈 ) ( 𝐿) 𝑈 𝐿
+ 1 − 𝜃 1 − 𝜃 𝑄𝑖 𝑄𝑖
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By handling the expression and separating all the linear contribu-
tions, we obtain:

𝛷𝑈
𝑖 𝛷

𝐿
𝑖 = 𝜃𝑈

(

1 − 𝜃𝐿
)
∑

𝑗∈𝐽𝑈

𝜙𝑈
𝑖𝑗𝑧

𝑈
𝑖𝑗 +

(

1 − 𝜃𝑈
)

𝜃𝐿
∑

𝑗∈𝐽𝐿

𝜙𝐿
𝑖𝑗𝑧

𝐿
𝑖𝑗+

+
(

1 − 𝜃𝑈
) (

1 − 𝜃𝐿
)

−
(

1 − 𝜃𝑈
) (

1 − 𝜃𝐿
)

𝑄𝐿
𝑖 −

(

1 − 𝜃𝑈
) (

1 − 𝜃𝐿
)

𝑄𝑈
𝑖 +

+ 𝜃𝑈𝜃𝐿
∑

𝑗∈𝐽𝑈

𝜙𝑈
𝑖𝑗𝑧

𝑈
𝑖𝑗

∑

𝑗∈𝐽𝐿

𝜙𝐿
𝑖𝑗𝑧

𝐿
𝑖𝑗 − 𝜃𝑈

(

1 − 𝜃𝐿
)

𝑄𝐿
𝑖

∑

𝑗∈𝐽𝑈

𝜙𝑈
𝑖𝑗𝑧

𝑈
𝑖𝑗+

−
(

1 − 𝜃𝑈
)

𝜃𝐿𝑄𝑈
𝑖

∑

𝑗∈𝐽𝐿

𝜙𝐿
𝑖𝑗𝑧

𝐿
𝑖𝑗 +

(

1 − 𝜃𝑈
) (

1 − 𝜃𝐿
)

𝑄𝑈
𝑖 𝑄

𝐿
𝑖

𝛷𝑈
𝑖 𝛷

𝐿
𝑖 = 𝜃𝑈

(

1 − 𝜃𝐿
)
∑

𝑗∈𝐽𝑈

𝜙𝑈
𝑖𝑗𝑧

𝑈
𝑖𝑗 +

(

1 − 𝜃𝑈
)

𝜃𝐿
∑

𝑗∈𝐽𝐿

𝜙𝐿
𝑖𝑗𝑧

𝐿
𝑖𝑗+

+
(

1 − 𝜃𝑈
) (

1 − 𝜃𝐿
) (

1 −𝑄𝑈
𝑖 −𝑄𝐿

𝑖
)

+
(A.3a)

𝜃𝑈𝜃𝐿
∑

𝑗∈𝐽𝑈

𝜙𝑈
𝑖𝑗𝑧

𝑈
𝑖𝑗

∑

𝑗∈𝐽𝐿

𝜙𝐿
𝑖𝑗𝑧

𝐿
𝑖𝑗 (A.3b)

− 𝜃𝑈
(

1 − 𝜃𝐿
)

𝑄𝐿
𝑖

∑

𝑗∈𝐽𝑈

𝜙𝑈
𝑖𝑗𝑧

𝑈
𝑖𝑗 + (A.3c)

−
(

1 − 𝜃𝑈
)

𝜃𝐿𝑄𝑈
𝑖

∑

𝑗∈𝐽𝐿

𝜙𝐿
𝑖𝑗𝑧

𝐿
𝑖𝑗 +

(

1 − 𝜃𝑈
) (

1 − 𝜃𝐿
)

𝑄𝑈
𝑖 𝑄

𝐿
𝑖 (A.3d)

(A.3a) includes the linear contributions, which we denote by the
label 𝛬𝑖, and the non-linear contributions are (A.3b)–(A.3d). The latter
are separately linearized by extending the linearizing process by Karatas
(2017), as described in Section 3.2. Let 𝛥𝑛

𝑖 denote the 𝑛th non-linear
contribution. Then, (A.3) is given by:

𝛷𝑈
𝑖 𝛷

𝐿
𝑖 = 𝛬𝑖 − 𝛥1

𝑖 − 𝛥2
𝑖 + 𝛥3

𝑖 + 𝛥4
𝑖

where 𝛥1
𝑖 = 𝜃𝑈

(

1 − 𝜃𝐿
)

𝑄𝐿
𝑖
∑

𝑗∈𝐽𝑈 𝜙𝑈
𝑖𝑗𝑧

𝑈
𝑖𝑗 ,

𝛥2
𝑖 = 𝜃𝐿

(

1 − 𝜃𝑈
)

𝑄𝑈
𝑖
∑

𝑗∈𝐽𝐿 𝜙𝐿
𝑖𝑗𝑧

𝐿
𝑖𝑗 ,

𝛥3
𝑖 =

(

1 − 𝜃𝑈
) (

1 − 𝜃𝐿
)

𝑄𝑈
𝑖 𝑄

𝐿
𝑖 ,

𝛥4
𝑖 = 𝜃𝑈𝜃𝐿

∑

𝑗∈𝐽𝑈 𝜙𝑈
𝑖𝑗𝑧

𝑈
𝑖𝑗
∑

𝑗∈𝐽𝐿 𝜙𝐿
𝑖𝑗𝑧

𝐿
𝑖𝑗 .
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