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Abstract
In this paper, we propose a complex return scenario generation process that can be 
incorporated into portfolio selection problems. In particular, we assume that returns 
follow the ARMA–GARCH model with stable-distributed and skewed t-copula 
dependent residuals. Since the portfolio selection problem is large-scale, we apply 
the multifactor model with a parametric regression and a nonparametric regression 
approaches to reduce the complexity of the problem. To do this, the recently pro-
posed trend-dependent correlation matrix is used to obtain the main factors of the 
asset dependency structure by applying principal component analysis (PCA). How-
ever, when a few main factors are assumed, the obtained residuals of the returns still 
explain a non-negligible part of the portfolio variability. Therefore, we propose the 
application of a novel approach involving a second PCA to the Pearson correlation 
to obtain additional factors of residual components leading to the refinement of the 
final prediction. Future return scenarios are predicted using Monte Carlo simula-
tions. Finally, the impact of the proposed approaches on the portfolio selection prob-
lem is evaluated in an empirical analysis of the application of a classical mean–vari-
ance model to a dynamic dataset of stock returns from the US market. The results 
show that the proposed scenario generation approach with nonparametric regression 
outperforms the traditional approach for out-of-sample portfolios.
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1 Introduction

Since the introduction of the mean–variance portfolio theory by Markowitz 
(1952), many researchers have published papers that aim to perform optimal asset 
allocation according to the different preferences and risk attitudes of investors, 
see, among others, Konno and Yamazaki (1991), Rockafellar and Uryasev (2002), 
Biglova et al. (2004), Rachev et al. (2005), Farinelli et al. (2008), Sharma et al. 
(2017), Wei et  al. (2021), and Bodnar et  al. (2022). Recently, an emphasis has 
been placed on the dynamics and nonlinear relationships on which these mod-
els are built, see Ledoit and Wolf (2017), Kouaissah et al. (2022), and Wei et al. 
(2021). The foundation of Markowitz’s theory is derived from the fact that the 
investor always strives for the best compromise between the expected returns of 
the portfolio and the corresponding level of risk, expressed as the variance of 
historical observations. In the subsequent literature, various types of approaches 
originating from econometrics and operations research have been suggested that 
strive to surpass many models, see, among others, Rachev et al. (2008); Fabozzi 
et al. (2010), and Stádník (2022).

In empirical analyses of optimal portfolio selection (Kondor et al., 2007; Orto-
belli and Tichý, 2015; Ortobelli et  al., 2019), the solutions of portfolio optimi-
sation models are highly dependent on the precise estimation of the input data-
set (statistics), which typically captures the dependency and interconnectedness 
between series of historical returns. According to findings in the previous lit-
erature, the return series of a financial asset is characterised as a random vari-
able that follows a non-normal distribution with an emphasis on heavy tails, see 
Fama (1965), Mandelbrot and Taylor (1967), Rachev et al. (2005), and Ortobelli 
et al. (2017). However, a considerable number of the financial models presented 
include a simplifying assumption that financial returns are normally distributed, 
see Markowitz (1952), Black and Scholes (1973), or Merton (1973). After the 
implementation of an �-stable (Lévy) type of distribution function to capture the 
distribution of financial data by Mandelbrot and Taylor (1967),this distribution 
became a widely used distribution in financial modelling, see Mittnik and Rachev 
(1989), Rachev and Mittnik (2000), or Xu et al. (2011).

In addition, reducing the portfolio selection problem’s dimensionality becomes 
more important with an increasing number of traded assets. In other words, for 
large-scale data analysis, the considerable complexity of estimating parameters 
increases as the number of variables increases, see Fan and Shi (2015). To allevi-
ate this problem, naive diversification, resampling methods, shrinkage estimators, 
and other similar approaches have been introduced in the literature, see Ledoit 
and Wolf (2003), DeMiguel et al. (2009), Pflug et al. (2012), and Pun and Wong 
(2019). An approach that is widely used by financial analysts and researchers 
is the multifactor model (Ledoit & Wolf, 2003; Fan et  al., 2008; Kouaissah & 
Hocine, 2021; Yang & Ling, 2023). As stated by Georgiev et al. (2015), approxi-
mating the returns using a multifactor model is an appropriate option in finan-
cial modelling, especially in the procedure of portfolio construction. Since sev-
eral factors allow us to perfectly obscure the cross-sectional risks, we can reduce 
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the number of parameters for covariance matrix estimation Fan et al. (2008). The 
application of single-factor and multifactor models, the number of factors being 
based on copula dependency estimation, was done by Oh and Patton (2017). In 
particular, they proposed new models for the dependence structure with respect to 
the joint possibility of crashes and different dependence structures during market 
declines and rises. Such a model is useful for high-dimensional financial vari-
ables.1 For normally distributed data, the ordinary least squares (OLS) estimator 
is an appropriate tool for estimating the coefficients of a multifactor model, see, 
among others, Ortobelli and Tichý (2015) and Ortobelli et al. (2017). However, 
given that returns do not follow a normal distribution, an alternative nonpara-
metric approach based on a conditional expectations estimator was proposed by 
Ortobelli et al. (2019); thsi approach has also become a useful technique for per-
formance evaluation.

Given the irregularity and volatility of return time series, in this paper, we pro-
pose and investigate a novel return scenario generation approach, concentrating on 
factors obtained from various proncipal component analyses (PCAs), which are 
modelled by the univariate ARMA(1,1)–GARCH(1,1) model with stable-distributed 
and skewed t-copula dependent residuals (Ross, 1978; Chamberlain & Rothschild, 
1983; Ortobelli et al., 2019; Pegler, 2019).2 This approach is subsequently integrated 
into dynamic large-scale portfolio selection strategies. Obviously, modelling port-
folios and individual assets is a challenging problem, especially using high-dimen-
sional datasets. In several analyses, it is noted that for modelling financial series, the 
ARMA–GARCH model works well, see Rachev and Mittnik (2000) and Georgiev 
et al. (2015). Recently, machine learning has become a more popular and suitable 
technique for predicting random series, see Rather et al. (2015), Ramezanian et al. 
(2021), and Ma et al. (2021). A broad comparison of time-varying models for pre-
dicting returns is provided by Cenesizoglu and Timmermann (2012). In addition, we 
analyse return generation strategies that contain a parametric approximation and a 
nonparametric approximation of return series based on main factors (principal com-
ponents) that are acquired employing PCA. Parametric regression analysis uses the 
OLS estimator as a simple tool for determining the coefficients of the linear regres-
sion between return and factor series, see Ross (1978) and Fan et al. (2008). On the 
other hand, the nonparametric regression is based on the Rupert and Wand (RW) 
estimator, see Ruppert and Wand (1994). In contrast to the recent literature (see 
Ortobelli and Tichý, 2015; Ortobelli et al., 2019), where the factors are determined 
from the Pearson linear correlation matrix or stable correlation matrix, we consider 
an alternative trend-dependent correlation measure inspired by the work of Ruttiens 
(2013).

In general, after applying PCA to the Pearson correlation, the first 5% of factors with 
the highest explanatory power capture approximately one-half of the original variability 
of a large-scale dataset. However, we observed that using the trend correlation allows 

1 Additional literature focusing on high-dimensional dependency estimation is discussed, for example, 
by Fan et al. (2016) and the references therein.
2 We abbreviate autoregressive moving average as ARMA and generalized autoregressive conditional 
heteroscedasticity as GARCH.
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us to improve the approximation process because of the higher explanatory power that 
results from this method. To capture the meaningful factors of returns, we develop a 
double-PCA approach, with a further PCA applied to the obtained residuals of returns. 
In particular, we assume that these residuals behave as another factor that expresses a 
significant portion of the variability. To do this, we apply the second PCA to the Pear-
son correlation matrix of the residuals to generate additional factors for the error parts. 
This process makes it possible to capture additional types and aspects of variability and 
improves the approximation as a whole.

Finally, we provide an ex-ante and ex-post empirical analysis of the application of 
different return approximation methods in return scenario generation strategies used 
for a subsequent mean–variance portfolio optimisation. In particular, we analyse the 
impact on numerous portfolio strategies that form an efficient frontier at individual 
moments of the selected time period. Especially, these strategies differ according to 
various levels of the minimal expected return that are equidistant from each other. 
Therefore, we show the performance statistics and diversification measures for indi-
vidual strategies. Our approach enhances the existing literature by being the first to use 
double PCA for approximating returns, considering trend-dependent as well as Pear-
son correlations. In addition, the proposed approach, which includes the approximation 
and generation processes, outperforms both the classical mean–variance model and the 
strategy with approximated returns.

The rest of this paper is structured as follows. In Sect. 2, we discuss a multifactor 
model and different approaches for approximating returns suitable for a large-scale 
portfolio selection problem. Section 3 describes the properties of the ARMA–GARCH 
prediction model with stable-distributed residuals and a skewed t-copula dependency 
structure. In Sect. 4, we provide an empirical analysis of portfolio selection strategies 
that employ various methods to approximate the returns and a scenario generation 
model in the US equity market. Finally, a summary of the results is provided in Sect. 5.

2  Approaches to Approximating Returns

The purpose of this theoretical section is to characterise parametric and nonparamet-
ric techniques for approximating the scenario of asset returns in detail. Furthermore, 
we consider the decomposition of the dependency structure of assets expressed by 
the Pearson correlation measure and the trend-dependent measures (inspired by the 
“accrued returns variability”of Ruttiens, 2013) for factors obtained using PCA. The 
parametric approximation approach employs the classical linear OLS estimator. Addi-
tionally, a nonparametric technique is used that is based on nonparametric RW locally 
weighted least squares regression using a kernel estimator.

2.1  Trend‑Dependent Correlation PCA

In general, measuring the strength of the dependence between random series (such 
as asset returns) is an essential aspect of most optimisation problems. An incorrect 
determination of the dependency function leads to errors in many decision-making 
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tasks, such as the development of the prediction framework or the optimisation 
framework. For this reason, researchers have studied and developed variations of 
dependency measures to capture the relations between random variables well, see 
Cherubini et al. (2004), Szegö (2004), Ruttiens (2013), Ortobelli and Tichý, (2015), 
and the references therein.

In the present paper, we assume that the portfolio contains z risky assets 
with a vector of log-returns r = [r1, r2,… , rz] and a vector of asset weights 
x = [x1, x2,… , xz] . Moreover, we consider a situation in which short sales are 
not allowed (i.e. xi ≥ 0 ); the vector of portfolio weights x belongs to the simplex 
S = {x ∈ Rz ∣

∑

xi = 1;xi ≥ 0;∀i = 1,… , z} . The log-return of assets between time 
t − 1 and time t of the i-th asset is defined as follows:

where Pt,i represents the price of the i-th asset at time t.
To capture the dependency structure between return series that are typical for a 

heavy-tailed distribution, the classical correlation measures (e.g. Pearson, Kendall, 
or Spearman) are generally used. However, these correlation measures may lead to 
shortcomings in the results (Joe, 2014).

A commonly used linear dependency measurement is the Pearson coefficient of 
correlation, which is given by

where �i is the mean value of ri , E is the operator of the expected value, and 
�ri =

√

E(ri − �i)
2.

In recent years, several papers have analysed the suitability of these measures for 
the portfolio selection framework and concluded that the Pearson linear correlation 
coefficient is not relevant for heavy-tailed data, see Ortobelli and Tichý (2015) and 
Ortobelli et  al. (2019). An alternative that overcomes this imperfection is the fre-
quently used copula-based approach, see, among others, Cherubini et al. (2004) and 
Kouaissah et al. (2022). Pearson’s linear correlation represents one possibility, while 
concordance (rank) measures can also be applied to express the dependency between 
financial variables, these measures include, for example, Kendall’s tau, Spearman’s 
rho, Gini’s gamma, and Blomqvist’s beta. Ortobelli and Tichý (2015) provided a 
discussion of the properties of linear correlation measures and their applicability to 
the portfolio selection framework. Moreover, they noted that to express the depend-
ency between random variables, any type of correlation can be used, but to reduce 
the dimensionality of the problem, only some of the semidefinite positive correla-
tions are appropriate. Generally, classical correlation statistics ignore the factor of 
time, which is important for financial management and analysis.

Recently, Ruttiens (2013) suggested a different perspective on measuring the 
dependency while incorporating the time (trend) factor. In particular, his concept 
is based on the cumulative return ci,t = [ci,1, ci,2,… , ci,T ] , calculated as 

(1)ri,t = ln

(

Pi,t

Pi,t−1

)

(2)�Pearson
ri,rj

=
E[(ri − �i)(rj − �j)]

�ri�rj
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ci,t = ci,t−1exp(ri,t) , and the linear non-volatile trend line ei,t , which is called the 
‘equally accrued return’ and leads to an identical final cumulative value, where 
t = 1, 2,… , T  . Additionally, ei is simply computed as a linearly weighted return 
ei,t = ci,0 +

t

T
(ci,T − ci,0) , where ci,0 represents the initial investment. Thus, the 

spread series ci,t − ei,t allows us to compare the historical path of investment in 
the i-th asset and its non-volatile alternative. Based on the work of Ruttiens, we 
can formulate the following correlation measure �Rutt

ri,rj
 between the i-th and j-th 

return series:

where mi = E(ci − ei) is the mean spread of the i-th returns and 
�(ci−ei) =

√

E[(ci − ei) − mi]
2 is the standard deviation of the spread series of the i-

th returns. However, this formula can be reformulated more precisely by excluding 
the mean component mi due to the fact that usually ∀i mi ≠ ei . Essentially, we are 
proposing the use of a second moment of deviations ci − ei . We consider that the 
component mi negatively affects the final correlation values, and it is not crucial to 
the correlation formula. The rationale for removing this component is discussed in 
more detail in Nedela et al. (2023). Therefore, we consider a modified version of the 
Ruttiens correlation measure �modRutt

ri,rj
 , which is formulated as follows:

where the standard deviation of the spreads is calculated as �(ci−ei) =
√

E(ci − ei)
2 . 

By doing this, we can work precisely with deviations from the risk-free optimal 
alternative.

In order to reduce the dimensionality of a large-scale dataset while maintain-
ing the asset dependency structure, we apply an exponentially weighted PCA to 
various correlation matrices to obtain particular factors (components) explaining 
the required level of variability of the dataset, see Ortobelli and Tichý (2015) or 
Ortobelli et al. (2019). In other words, we describe the joint behaviour of z ran-
dom variables using several factors fj , where we consider the following general 
linear multifactor model:

where yi is a vector of the original variable with a variance–covariance matrix Σ that 
is decomposed into the constant �i , a linear combination of the k uncorrelated fac-
tors fj and coefficients �i,j , and an uncorrelated error part �i.

To do this, the PCA introduced by Pearson (1901) and Hotelling (1933) can be 
used, as it is a permissible mathematical method that provides us with the iden-
tification of the main factors (components) characterised by non-zero variance. 

(3)�Rutt
ri,rj

=
E
{[(

ci − ei
)

− mi

][(

cj − ej
)

− mj

]}

�(ci−ei)�(cj−ej)

(4)�modRutt
ri,rj

=
E
[(

ci − ei
)(

cj − ej
)]

�(ci−ei)�(cj−ej)

(5)yi = �i +

k
∑

j=1

�i,jfj + �i for i = 1,… , z
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The principle of the PCA method is to linearly transform the initial variable into a 
matrix of uncorrelated variables.

The factors are ordered, which means that the first factor obtained helps to explain 
the largest part of the variability of the original data, the second factor explains 
the second-largest part of the variability, and so on. Since we obtain z factors, for 
a large-scale dataset, we select only the first k factors that characterise a sufficient 
proportion of the variability. Note that several methods of determination have been 
proposed to find the optimal value of k, such as the Kaiser rule and cumulative vari-
ation (Kaiser, 1960).

2.2  Parametric and Nonparametric Regression Models for Approximating 
Returns

In portfolio selection, using the parametric regression model, we are able to replace 
the original z dependent return series {ri}

z

i=1
 with z new uncorrelated time series 

denoted as {wi}
n
i=1

 by employing the PCA method. In doing this, each ri is derived 
as a linear function of the wi series. For the general multifactor model (5), we can 
replace a random vector yi with the return series ri,t that is derived by k-factors given 
by

where �i is the fixed intercept of the i-th asset, �i,j is the coefficient related to the fac-
tor fj , and �i is the error part of the i-th asset estimation. Note that �i is a composition 
of unused uncorrelated factors, and for this reason, �i is uncorrelated with the first k 
principal components (factors). Moreover, we can say that if the joint distribution of 
the original series is a multivariate Gaussian distribution, then both the factors fj and 
the error part �i follow the Gaussian distribution and �i is independent of the factors.

In order to estimate the regression parameters, the OLS estimator is a simple and 
preferable method to use, especially when the regression is linear and the original 
series is normally distributed (Ortobelli et al., 2017; Kouaissah et al., 2022). How-
ever, it is evident that the returns of financial assets typically follow a fat-tailed 
distribution and a nonlinear dependency structure, see Fama (1965), Mandelbrot 
(1963), Rachev and Mittnik (2000), or Ortobelli et al. (2017).

Therefore, we should consider an alternative that fits the properties of financial 
returns, as stated by Ortobelli et al. (2017) or Ortobelli et al. (2019), such as a non-
parametric regression method. This approach uses conditional expectations and 
a multivariate kernel estimator. Assuming that the factors are determined by per-
forming PCA on the linear correlation matrix, the formulation of the nonparametric 
approach is as follows:

where F represents the matrix with f = (f1,… , fk) vectors of k uncorrelated factors 
and � is the error of estimation. Given the unknown general form of the function 

(6)r̂i = 𝛼i +

k
∑

j=1

𝛽i,jfj + 𝜀i, for i = 1,… , z

(7)r = E(r ∣ F = f ) + � = m(f ) + �
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m(f), we should use a nonparametric method, as proposed by Nadaraya (1964) and 
Watson (1964), such as the Gasser–Müller kernel estimator (Gasser & Müller, 1984) 
or the locally weighted least squares method introduced by Ruppert and Wand 
(1994), which is employed in this analysis. The nonparametric estimation of condi-
tional expectations using the Nadaraya–Watson predictor is presented in Herwartz 
(2017).

The general problem associated with the estimation of the regression function 
m(f) is to find the value of the parameter a: this can be done, according to Ruppert 
and Wand (1994), by solving the following optimisation task:

where KH(⋅) is a multivariate kernel estimator with an s × s symmetric positive-defi-
nite matrix H that depends on the sample size T, and fi is the i-th observation of the 
vector of factor f.

The essential aspect of the performance of a kernel function is the precise selec-
tion of the bandwidth rather than the type of function, see Hall and Kang (2005). 
For general multivariate kernel estimators KH(⋅) , Scott (2015) suggests the applica-
tion of an s-dimensional multivariate Gaussian density that incorporates the vari-
ance–covariance bandwidth H = diag(h1,… , hs) according to the following rule:

where �̂�i represents the estimated standard deviation of the i-th factor fi , and the 
parameter T is the length of the sample of observations. The task of this approach is 
to minimise the mean integrated squared error (MISE) obtained from the estimation. 
Additional discussions concerning the bandwidth selection procedure are presented 
by, e.g., Mugdadi and Ahmad (2004) and Borrajo et al. (2017). According to exist-
ing evidence presented by Ortobelli et al. (2019) and Kouaissah et al. (2022), Scott’s 
bandwidth selection is chosen to be used in the empirical analysis in this paper.

3  ARMA–GARCH Model with Stable Distribution and Skewed t 
Copula Dependency Structure

In this theoretical section, we briefly introduce the method for the simulation of return 
scenarios, which is motivated by techniques from Rachev et  al. (2008) and Biglova 
et al. (2009, 2014). To do this, we take into consideration that many of the random vari-
ables used in the financial environment follow the ARMA(1,1)–GARCH(1,1) model 
with stable-distributed and skewed t-copula dependent residuals, see Sun et al. (2008), 
Kim et al. (2011), and Georgiev et al. (2015). Thus, we can simply model individual 
return series or principal components (factors) scenarios for the future. The ARMA 
part of the model is used for capturing the autocorrelations, and by incorporating the 
GARCH part of the model, we are able to reflect several essential features of financial 

(8)min
a,b

T
∑

i=1

[ri − a − bT
(

fi − f
)

]2KH

(

fi − f
)

(9)Scott’s rule in ℝs ∶ ĥi = �̂�iT
−1∕(s+4), i = 1,… , s
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time series, such as leptokurticity, conditional heteroscedasticity, and volatility cluster-
ing, see Ha and Lee (2011) and Georgiev et al. (2015).

Since the dimensionality of a large-scale portfolio problem is significant and the 
multifactor model with PCA is used to eliminate this property, we are able to apply the 
univariate ARMA(1,1)–GARCH(1,1) model to the t-th observation of the j-th obtained 
factor fj,t for j = 1,… , k , see Biglova et al. (2014) and Georgiev et al. (2015). In this 
situation, the model is formulated as follows:

where �j,0 ≥ 0, �j,1 ≥ 0, �j,1 ≥ 0 , and �j,0 + �j,1 + �j,1 ≤ 1 , for j = 1,… , k , 
t = 1,… , T  , and uj,t usually represents independent identically distributed (i.i.d.) 
random variables with a mean equal to zero and a variance of 1, which is typical for 
distributions with skewness and heavy tails. Note that the parameters of the mod-
els are usually estimated using the maximum likelihood method or quasi-maximum 
likelihood method, see Biglova et al. (2014), Ha and Lee (2011), and Georgiev et al. 
(2015).

From the multifactor model, considering only the first k factors, we still obtain the 
error part �i for each return ri , which represents unexplained residuals that are inde-
pendent of each other, as well as the factors fj . Since we wish to reduce the problem’s 
dimensionality, it is not desirable to consider a vast number of factors. According to the 
empirical findings, the error part �i for each vector of returns ri (in a large-scale prob-
lem) could have a higher explanatory power than the most significant factor fj . For this 
reason, the significance of these errors cannot be overlooked and neglected. To improve 
the whole simulation process, we apply a second PCA to the Pearson correlation matrix 
of the vectors of errors �i for i = 1,… , z , which are obtained from the previous PCA. 
By performing the second PCA, we reduce the dimensionality of the unexplained 
residuals to obtain other significant factors for the final approximation. For this reason, 
the identical ARMA(1,1)–GARCH(1,1) model (10) is applied in order to generate the 
scenarios of an additional l factors f�ij , for j = 1,… , l , from the i-th return residuals.

Moreover, although we extend the matrix of factors used with the second PCA, we 
still obtain the remaining residual part �i , which is naturally smaller than it would be if 
only a single PCA was used. According to Georgiev et al. (2015), to model these resid-
uals, we consider the identical ARMA(1,1)–GARCH(1,1) model with a mathematical 
formulation given by

where �i,0 ≥ 0, �i,1 ≥ 0, �i,1 ≥ 0, �i,0 + �i,1 + �i,1 ≤ 1, i = 1,… , n, and t = 1,… , T  . 
Simultaneously, we determine the model parameters with the help of the classical 
maximum likelihood method. Again, we assume that the interdependencies of the 

(10)

fj,t = cj + ajfj,t−1 + bj�j,t−1 + �j,t

�j,t = �j,tuj,t

�2
j,t
= �j,0 + �j,1�

2
j,t−1

+ �j,1�
2
j,t−1

(11)

�i,t = c + a�i,t−1 + b�i,t−1 + �i,t

�i,t = �i,tui,t

�2
i,t
= �i,0 + �i,1�

2
i,t−1

+ �i,1�
2
i,t−1
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unexplained residuals �i,t are expressed by a skewed t copula dependency with sta-
ble-distributed marginals.

For the previous models (10) and (11), we assume that the residuals �j,t follow the �j
-stable distribution and skewed t-copula interdependence. The distribution of financial 
return series is generally characterised by skewness, a higher peak, and two heavier tails 
compared to a normal distribution (Mittnik & Rachev, 1989; Xu et al., 2011). There-
fore, we proceed by performing the following steps. First, we have to approximate the 
empirical standardised residuals ûj,t =

�̂�j,t

𝜎j,t
 using the �j-stable distribution S�j(�j, �j,�j) , 

where � ∈ (0, 2] , �j ≥ 0 , �j ∈ [−1, 1] , and �j ∈ ℝ , see Rachev and Mittnik (2000). The 
parameter � is a stability index that determines the behaviour of the tails, �j is the scale 
parameter, �j is the shift parameter, and �j is the skewness parameter. The residuals are 
simply computed, e.g. from the model (10), by �̂�j,t = fj,t − aj,0 − aj,1fj,t−1 − bj,1𝜀j,t−1 for 
j = 1,… , k . To estimate the parameters of the �j-stable distribution, we use the maxi-
mum likelihood method. Then, we simulate S stable-distributed future scenarios for 
each of the standardized residual series ûj,t and determine the sample distribution for the 
same series as FStable

ûj,T+1
(x) =

1

S

∑S

s=1
I
{û

(s)

j,T+1
≤x}

, x ∈ R, j = 1,… , k, where û(s)
j,t

 is the s-th 
future standardised residual.

We use the maximum likelihood method to fit the parameters P and � of a skewed 
t distribution ( � degrees of freedom) from ûj,t using the following formulation:

where g ∶ [0,∞) →∶ [0,∞) , � is a vector of skewness parameters, Z ∼ N(0,Σ) with 
a covariance matrix Σ = [�i,j] , and W ∼ IG(

�

2
,
�

2
) , while IG represents an inverse 

Gaussian distribution. In accordance with the literature, we consider that � = 5 , and 
then Σ̂ = [cov(x) −

(2v2)

(v−2)2(v−4)
�̂� �̂� �]

(v−2)

v
 , see Zugravu et  al. (2013). After the estima-

tion, we simulate Q scenarios Sq using (12), where Sq = (S
q

1
,… , S

q

k
) , k is the number 

of factors, and q = 1,… ,Q . If we denote the marginal distributions by FSj
(x) , then 

we can formulate ((Sq
1
),… ,Fk(S

q

k
)) = (P1(X1 ≤ S

q

1
),… ,Pk(Xk ≤ S

q

k
)) , and we obtain 

S scenarios from a uniform random vector V = (V1,… ,Vk) with a joint distribution 
given by the copula Ct

v,P,�
 . Finally, the vector V can be transformed into dependent 

standardised residuals ûj,t+1 = (FStable
j

)−1(Vj) , considering the marginal �j-stable dis-
tribution. We are able to generate 𝜖j,T+1 = �̂�j,T+1ûj,T+1 , where �̂�j,T+1 is the volatility 
forecast obtained using the ARMA(1,1)–GARCH(1,1) model.

4  Empirical Analysis of the US Stock Market

In this section, we characterise the dataset and present an analysis, investigation, 
and discussion of the approximation of the returns and the approaches for predicting 
returns introduced in Sects. 2 and 3; these approaches are incorporated into the com-
plex mean–variance portfolio selection strategies.

(12)V = � + �g(W) +
√

g(W)Z
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4.1  Characterisation of the Dataset and Empirical Procedure

To perform the empirical analysis, we consider a dynamic dataset of daily historical 
return observations of 942 stocks traded on the US market that formed the compo-
nents of the S &P500 index. The data period, which begins on 2 January 2002 and 
runs until 31 December 2021, has a total of 5037 daily observations. The dynamic 
nature of the dataset lies in the fact that we captured all the changes that occurred 
in the composition of the index during the analysed period at regular 3-month inter-
vals. This allows us to provide a more precise and realistic analysis and eliminate the 
influence of survivorship bias (see, e.g., Brown et al., 1995). The dataset was gath-
ered from the Thomson Reuters Datastream.

Since we assume in this analysis that individual stock returns follow a stable dis-
tribution, we estimate the particular parameters (�, �, �,�) using the maximum like-
lihood method; the results are reported in Table 1. Furthermore, we show the aver-
age results for the mean (Mean), standard deviation (SD), skewness (Skew), kurtosis 
(Kurt), minimum (Min), and maximum (Max). Finally, we compute the percentage 
of rejections for the Jarque–Bera (JB) and Kolmogorov–Smirnov (KS) statistics to 
test the normality of the data with a 95% confidence level. We emphasise that when 
considering the whole period of return observations, we observe that the returns 
are not stationary due to the occurrence of financial crises. However, if we split the 
dataset into crisis-affected and non-crisis periods, we can observe that the data in the 
non-crisis periods are stationary.3

According to the average values, the normal distribution is rejected for almost 
all return series by both statistical tests. Moreover, stock returns present a negative 
skewness and high kurtosis (on average), which indicate the presence of heavy tails. 
This conclusion is also confirmed by the � parameter and the � parameter, which has 
an average value below the threshold of 2. Since the time period includes several 
crises, the absolute value of the average minimum is lower than the absolute value 
of the average maximum.

Due to the sensitivity of portfolio optimisation problems to the frequency of re-
calibration, we consider a monthly re-calibration interval (meaning 21 trading days), 
with a half-year rolling window of historical observations (126 trading days), to 
determine all necessary parameters of the approximation and generation models. 
Moreover, short sales of stocks are not allowed during investment, and the limit of 

Table 1  Comparison of the 
average of parameters computed 
using all daily returns for the 
considered dataset

Mean (%) SD (%) Skew Kurt Min Max

0.0348 2.3440 −0.1849 11.6921 − 0.2347 0.1757
� � � � JB(95%) KS(95%)
1.6953 0.1046 0.0129 −8 × 10−05 0.0078 0.0456

3 Although the GARCH model is conditioned by the stationarity of the data, this assumption is usually 
met since we are performing an empirical analysis with short periods of observations.
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the investment in an individual asset is not defined, i.e. xi ≤ 1 . The initial amount 
invested in each portfolio is W0 = 1.

The following steps are performed to optimise the various portfolios and then 
compute the performance statistics and the final wealth paths:

Step 1: PCA is applied to the trend-dependent correlation matrix Θ = (�modRutt
ri,rj

)z×z 
defined in Eq. (4) to obtain z factors (principal components) from among all available 
asset returns to reduce the dimensionality using Eq. (5). By doing this, the selected 
k = 6 factors (we observe that six factors are sufficient to explain more than 95% of 
the total trend-variance in all cases) of a large-scale portfolio are obtained. Further-
more, we compute the residual part �̂�i for each return ri and create a Pearson correla-
tion matrix to consider the correlation between these residual series. Then, we apply 
a second PCA to the Pearson correlation matrix in order to find an additional l = 25 
factors that capture approximately 40%–60% of the residual variability. Thus, the 
total number of factors is 31. Moreover, a small error component is still obtained.

Remark 1 The approximation procedure based on two separate PCAs performed 
on different types of correlation matrices takes into account different aspects of the 
variability. In particular, using this approach, we capture the market risk using the 
Pearson correlation and the trend-dependent risk using th modified Ruttiens correla-
tion. Furthermore, according to the empirical results, we can observe the benefit of 
applying PCA to the trend-dependent correlation in the strong explanatory power of 
a small number of principal factors. For example, to explain approximately 85% of 
the total portfolio variability, using the Pearson correlation PCA, we need to employ 
more than three times as many factors compared to the trend-dependent correlation 
PCA. Therefore, this approach allows us to more effectively capture the variability 
of the large-scale portfolio. Recall that we put an emphasis on the trend-dependent 
variability, which we consider an essential aspect of the portfolio variability.

In addition, the second PCA applied to the Pearson correlation provides insight 
into the market portfolio variability. To capture important factors, we apply PCA to 
the dependency matrix of the residuals of the returns obtained from the initial PCA. 
The residuals are essentially used to mitigate the double-capture impact of the main 
factors.

Step 2: In the portfolio selection scenario including the return generation process 
(hereinafter referred to as S-generation), future scenarios of all j = 1,… , 31 factors 
fj and a small error part �i are generated while supposing that the factors obtained 
from the previous step follow the ARMA(1,1)–GARCH(1,1) models (10) and (11) 
with stable-distributed residuals, which are interdependent according to the skewed 
t-copula function explained in Sect. 3. Using the maximum likelihood method, mod-
els for each factor and error series are fitted individually. In addition, a Monte Carlo 
simulation is performed to simulate S = 1000 future scenarios of individual series.4 
In contrast, for the second portfolio selection scenario (hereinafter referred to as 

4 Based on our proprietary analysis, we did not observe a significant difference in the final portfolio per-
formance for a higher number of scenarios, e.g. S = 2000 or S = 5000 . However, using a higher number 
of scenarios is significantly more computationally expensive and time-consuming.
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S-approximation), the scenario generation process is not considered, and only his-
torical approximate returns obtained using the OLS or RW techniques are used in 
later steps.

Step 3: Approximated return series ri are computed by employing the linear para-
metric OLS estimator or nonparametric RW estimator presented in Sect. 2.2 to the 
simple factors (principal components) or the generated factors from Step 2 depend-
ing on the selected portfolio selection strategy.

Step 4: The optimal portfolio xopt is found by solving the minimisation of the 
global variance framework (for the last strategy, the maximisation of the expected 
return) for admissible levels of the expected return M, for the generated asset returns 
(using the S-generation strategy) or approximated returns (using the S-approxima-
tion strategy) from Step 2 as follows:

where Σ is the variance–covariance matrix and �� = (1, 1,… , 1) , it is a vector of 
ones. These optimisations problems are solved using MATLAB solvers.

Step 5: In the final step, we compute the ex-post final wealth of portfolios as 
follows:

where rex−posttk+1
 is the vector of gross returns for the time period between tk and tk+1 . 

The time tk+1 = tk + � , where � = 21 . The algorithm, from Step 1 to Step 5, is then 
repeated until no more observations are available.

4.2  Ex‑post and Ex‑Ante Results and Discussion

In this subsection, we present the results obtained from the ex-post empirical anal-
ysis based on the empirical process above. These resutls are povided in Tables  2 
and 3 and Figs. 1, 2 and 3. The portfolio statistics that we consider are the mean 
(Mean(%)), standard deviation (SD(%)), VaR5%, CVaR5%, and final wealth (Final 
W).5 We compute two performance measures,.6 i.e. the Sharpe ratio (SR) and the 
Rachev ratio (RR). To compute the excess return in performance ratios, we consider 
a 3-month US Treasury bill return as the risk-free rate. Note that in all tables, we 

(13)

min (xopt
�Σxopt)

E(xopt
�r) ≥ M

xopt
�� = 1

0 ≤ xi ≤ 1;i = 1,… , z

(14)Wtk+1
= Wtk

(xopt
�r
ex−post
tk+1

)

5 For a detailed explanation and mathematical formulation of the Value at Risk (VaR) and Conditional 
Value at Risk (CVaR) indicators, see e.g. Rachev et al. (2008) or Biglova et al. (2004).
6 Performance measures usually compare the excess return to unit of particular risk measure. The 
most used performance measure is the Sharpe ratio, in which the standard deviation represents the risk 
(Sharpe, 1994) In contrast, the Rachev ratio considers only the CVaR, which indicates both the expected 
return and the expected loss (Biglova et al., 2004).
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Fig. 1  Ex-post Log-Wealth for mean–variance strategies using S-approximated scenario with OLS esti-
mator

Fig. 2  Ex-post Log-Wealth for mean–variance strategies using S-approximated scenario with RW esti-
mator
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show results only for selected portfolio strategies to illustrate the significant differ-
ences between the portfolio statistics.

In Figs.  1 and 2, we show the ex-post paths of the logarithm of wealth (Log-
Wealth) obtained for various portfolio strategies using the OLS and RW approxima-
tions without the scenario generation process, respectively. For this comparison, we 
provide a performance and risk analysis of parametric and nonparametric approxi-
mation techniques applied to a dynamic dataset for the first time. From the paths 
in Figs. 1 and 2, we can see that the RW approach effectively smooths the wealth 
path for particular portfolio strategies. In particular, the trend-correlation PCA with 
RW approximation leads to a slightly lower variability, especially after the impact 
of the financial crisis (2008–2009). Generally, due to the dynamic dataset of stocks, 
portfolios have been dealing with the effects of the crisis for a long time, and this is 
usually observable in the real world. Interestingly, strategies that require the high-
est risk generate the best profitability until the beginning of the crisis, but after that 
point, the returns are not sufficient to achieve the corresponding level before the 
COVID-19 market downturn. Furthermore, for risk-preferred strategies (from the 
interval 50–60), the highest differences in performance occur; these differences are 
expressed as peaks. Overall, the RW approach outperforms the OLS approach for 
middle portfolio strategies, and it also obtains the highest Final W. Therefore, we 
use the RW approximation approach for the further analysis of the predictive power.7

Fig. 3  Ex-post Log-Wealth for mean–variance strategies using S-generated scenario with RW estimator

7 The benefits of the RW estimator with respect to the estimation error are provided by Ortobelli et al. 
(2017, 2019).
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Table 3  Portfolio statistics computed for daily ex-post returns obtained for selected mean–variance strat-
egies using S-generation scenario with RW estimators

Strategy Mean (%) SD (%) VaR5% CVaR5% Final W SR RR

1 0.0215 0.7739 0.0103 0.0194 2.8752 0.0266 0.8555
2 0.0264 0.8783 0.0116 0.0224 3.6638 0.0291 0.8888
3 0.0277 0.8908 0.0118 0.0226 3.9072 0.0302 0.9055
4 0.0269 0.8908 0.0118 0.0226 3.7555 0.0292 0.9038
5 0.0288 0.8947 0.0122 0.0226 4.1223 0.0312 0.9100
11 0.0315 0.9373 0.0132 0.0237 4.6952 0.0327 0.8908
12 0.0339 0.9269 0.0130 0.0231 5.2908 0.0356 0.9075
13 0.0319 0.9210 0.0133 0.0232 4.7956 0.0337 0.8783
14 0.0357 0.9433 0.0135 0.0234 5.7762 0.0369 0.9124
15 0.0372 0.9573 0.0138 0.0237 6.2089 0.0379 0.9114
21 0.0382 1.0427 0.0154 0.0256 6.5178 0.0358 0.9208
22 0.0393 1.0702 0.0159 0.0261 6.9002 0.0359 0.9359
23 0.0402 1.0703 0.0159 0.0261 7.2154 0.0368 0.9321
24 0.0436 1.1062 0.0169 0.0268 8.5155 0.0386 0.9560
25 0.0418 1.1195 0.0171 0.0271 7.7972 0.0366 0.9496
31 0.0464 1.2446 0.0198 0.0299 9.7916 0.0366 0.9614
32 0.0500 1.2734 0.0199 0.0303 11.6492 0.0386 0.9721
33 0.0471 1.2947 0.0200 0.0310 10.0892 0.0357 0.9621
34 0.0493 1.3231 0.0205 0.0315 11.2668 0.0366 0.9669
35 0.0476 1.3525 0.0211 0.0323 10.3713 0.0346 0.9632
36 0.0491 1.3850 0.0216 0.0329 11.1447 0.0348 0.9681
37 0.0564 1.4371 0.0220 0.0337 15.9319 0.0386 0.9972
38 0.0486 1.4513 0.0224 0.0345 10.9050 0.0329 0.9724
41 0.0492 1.5460 0.0241 0.0366 11.1920 0.0312 0.9792
42 0.0492 1.5832 0.0248 0.0374 11.2256 0.0305 0.9828
43 0.0507 1.6233 0.0252 0.0383 12.0663 0.0307 0.9880
44 0.0509 1.6688 0.0260 0.0393 12.2096 0.0300 0.9924
45 0.0506 1.7216 0.0266 0.0403 12.0096 0.0289 1.0024
51 0.0462 2.0444 0.0322 0.0484 9.6701 0.0222 1.0045
52 0.0496 2.1273 0.0334 0.0501 11.4292 0.0229 1.0120
53 0.0415 2.1841 0.0341 0.0520 7.6842 0.0186 0.9984
54 0.0392 2.2741 0.0356 0.0542 6.8502 0.0168 1.0011
55 0.0380 2.3745 0.0372 0.0564 6.4541 0.0156 1.0129
58 0.0291 2.6958 0.0415 0.0650 4.1733 0.0105 0.9968
59 0.0276 2.8348 0.0435 0.0685 3.8761 0.0094 0.9906
60 0.0329 3.0117 0.0453 0.0728 5.0387 0.0106 0.9836
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In order to compare particular ex-post portfolio statistics of selected strategies, 
we present Table  2, which includes the results of both approximation techniques. 
Generally, the results indicate that the best performance (based on the Mean and 
Final W) is achieved for the middle strategies using the RW estimator. In other 
words, the most advantageous attitude of the investor is that in which the risk and 
reward are considered similarly important. Usually, the riskiness of portfolios (SD, 
VaR5%, or CVaR5%) is similar or slightly lower in the RW approximation scenario 
compared to the OLS approach. On the contrary, the worst performance is achieved 
when the expected return of the portfolio is maximised regardless of the risk.

Moreover, we use the portfolio selection strategy with the simulated Q scenarios 
of factors obtained using the ARMA–GARCH model, which should provide addi-
tional benefits. By doing this, we are able to generate scenarios of the future returns 
of assets that are used for optimisation. In Table 3, we present the portfolio statistics 
obtained when the S-generation scenario with the RW regression estimator is used, 
and Fig. 3 shows the final Log-Wealth paths of all strategies.

As can be seen in Table  3, the performance results of the portfolio strategies 
based on the predicted return series significantly outperform the portfolios that are 
obtained when only the approximate return series are considered. In particular, the 
final wealth and mean return of the best strategy are approximately doubled com-
pared to those of the S-approximation strategy with the RW estimator, as shown in 
Table 2. However, when this approach is used, slightly higher values of the risk indi-
cators (SD, VaR5%, and CVaR5%) are obtained, and they do not differ significantly 
from the S-approximation scenario. Overall, the obtained performance ratios (SR 
and RR) are also at a higher level, which means that this strategy is better suited to a 
real application. 

Similarly to the previous analysis, Fig. 3 shows the wealth paths obtained after 
optimisation was applied to the returns obtained using the S-generated scenario 
with the RW estimator. In particular, it is clearly evident that the surface plot of the 
paths is less smooth than that of the S-approximated strategy with the RW estimator 
shown in Fig. 2. The paths of adjoining strategies behave identically but at different 
levels, leading to sharp peaks. However, the main benefit of this scenario lies in its 
faster adaptability during and after the crisis periods.

For the final evaluation, the ex-ante diversification analysis is performed using 
several indicators to examine the changes in the weights between re-calibration 
moments. The turnover � expresses the impact of re-optimisation on the portfolio 
composition. The value of �k after the k-th re-calibration is formulated as follows:

where xk
i
 is the weight assigned to the asset i at the re-calibration time k. Moreover, 

�k is contained in the interval [0, 2]; a value of 0 indicates that all weights remained 
unchanged after the k-th re-calibration, and a value of 2 means that there has been a 
complete transformation of the portfolio composition.

In addition, we show a simple portfolio diversification measure: the number 
of assets that form the components of the portfolio at the k-th re-calibration time. 

(15)�k =

z
∑

i=1

∣ xk
i
− xk−1

i
∣
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Using this measure, we are able to examine the changes in the portfolio composi-
tion with respect to particular strategies. Logically, the # (number) of assets is in 
the interval [1, z]. In a unique situation, when the investment is interrupted, the 
value of this measure is 0.

Finally, a diversification measure based on a concentration index is ana-
lysed. In the literature, we can find it as the Herfindahl–Hirschman index (HHI), 
which was originally applied to express the concentration of the market, see, e.g. 
Hirschman (1964). However, due to its explanatory power, it may be applied to 
portfolio analysis. It is calculated as the sum of the squares of the weights of the 
individual assets:

where HHI ∈ [
1

z
, 1] . If the concentration HHI goes to zero (one), the investment is 

divided into a large (small) set of assets, and vice versa.
In Table  4, the mean values of all the diversification measures mentioned 

above are reported for selected portfolio strategies.
The results in Table 4 confirm that portfolio strategies that minimise risk have 

more assets in the portfolio, and the number of assets decreases with increasing 
acceptance of risk (higher return requirement). This fact is supported by the lit-
erature related to the effect of diversification, see Woerheide and Persson (1992), 
Egozcue et  al. (2011) and the references therein. The RW regression generally 
encompasses more components in the portfolio, which is relevant for the less risky 
strategies. However, an interesting finding is visible when the RW approximation 
and generation processes are combined. The generated portfolios are divided into a 
larger number of assets, even for high-risk strategies. Moreover, this scenario leads 
to a relatively high value of turnover compared to scenarios without the generation 
step, which indicates more significant changes in the vector of optimal weights. 
Note that turnover affects the corresponding transaction costs.

Overall, the proposed approach for generating return scenarios based on dou-
ble PCA, where PCA is applied first to classical correlations and then to trend-
dependent correlations, and the ARMA–GARCH process with modified residuals 
in the mean–variance portfolio selection strategy outperforms simple portfolio 
selection approaches that consider only approximate returns.

5  Conclusion

In this paper, we proposed a new approach for the generation of return scenarios 
using the approximation of the returns and the ARMA–GARCH model with sta-
ble-distributed residuals following the dependency defined by the skewed t-copula 
function. In particular, we employed PCA twice: the trend-dependent correlation 
matrix is considered in the first step. Then, the linear correlation matrix of the 
residuals is included in the second PCA. By doing this, we determined the fac-
tors that best describe a large proportion of the portfolio variability, which was 

(16)HHI =

z
∑

i=1

x2
i
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Table 4  Ex-ante portfolio composition statistics obtained for selected mean–variance strategies while 
applying different scenarios

Strategy S-aproximated OLS S-aproximated RW S-generated RW

� # assets HHI � # assets HHI � # assets HHI

1 0.9363 14.7554 0.2821 0.8266 22.7897 0.2136 1.0731 37.8283 0.2009
2 0.9416 15.2790 0.2761 0.8322 23.2403 0.2103 1.1538 27.9871 0.2331
3 0.9528 15.6524 0.2683 0.8416 23.3433 0.2049 1.1742 31.6524 0.2252
4 0.9622 15.8069 0.2597 0.8526 23.4592 0.1987 1.1856 35.0687 0.2158
5 0.9726 15.8841 0.2507 0.8671 23.5451 0.1923 1.2051 34.0858 0.2146
11 1.0609 15.8412 0.1991 0.9695 23.2146 0.1534 1.3218 31.6438 0.1832
12 1.0770 15.6996 0.1925 0.9853 22.8627 0.1479 1.3455 29.4635 0.1834
13 1.0929 15.6567 0.1866 1.0009 22.5150 0.1429 1.3656 31.7167 0.1746
14 1.1060 15.5451 0.1813 1.0167 22.2275 0.1385 1.3753 27.5794 0.1733
15 1.1167 15.3777 0.1764 1.0308 21.8541 0.1345 1.3999 26.4464 0.1714
21 1.1627 14.2060 0.1621 1.0900 19.5880 0.1198 1.4799 26.8970 0.1583
22 1.1710 13.9099 0.1617 1.0990 19.2575 0.1195 1.5037 23.6094 0.1613
23 1.1798 13.6266 0.1616 1.1088 18.9227 0.1198 1.5048 22.2833 0.1589
24 1.1867 13.3133 0.1622 1.1157 18.5579 0.1208 1.5257 25.4592 0.1617
25 1.1932 13.2275 0.1631 1.1225 18.0601 0.1221 1.5281 20.6652 0.1643
31 1.2184 11.5665 0.1749 1.1551 15.0815 0.1358 1.5589 19.8155 0.1818
32 1.2218 11.2661 0.1776 1.1580 14.5923 0.1391 1.5614 19.4592 0.1840
33 1.2251 11.0429 0.1810 1.1611 14.1588 0.1427 1.5654 22.9485 0.1869
34 1.2281 10.7639 0.1849 1.1650 13.6695 0.1469 1.5667 18.7124 0.1927
35 1.2334 12.6524 0.1906 1.1692 13.2189 0.1512 1.5699 20.9399 0.1955
36 1.2359 10.1159 0.1945 1.1737 12.6781 0.1559 1.5742 19.9614 0.2024
37 1.2372 9.7897 0.1999 1.1789 12.2318 0.1613 1.5770 15.3004 0.2156
38 1.2385 9.4850 0.2059 1.1852 11.7296 0.1676 1.5720 19.0300 0.2156
39 1.2374 9.2275 0.2127 1.1904 11.2232 0.1749 1.5827 17.8584 0.2238
40 1.2352 8.9313 0.2197 1.1925 10.7210 0.1828 1.5778 18.8755 0.2316
41 1.2327 8.5923 0.2263 1.1927 10.2489 0.1910 1.5809 18.4034 0.2377
42 1.2391 10.2361 0.2351 1.1942 9.7554 0.1997 1.5777 15.3262 0.2469
43 1.2363 11.8798 0.2440 1.2004 11.3348 0.2107 1.5787 15.0515 0.2591
44 1.2368 11.4893 0.2537 1.2009 10.8283 0.2207 1.5858 16.6352 0.2706
45 1.2401 9.0773 0.2643 1.2018 10.3562 0.2319 1.5868 14.4936 0.2806
51 1.2257 7.1931 0.3532 1.2035 9.8541 0.3272 1.5715 20.8712 0.3716
52 1.2190 8.8584 0.3732 1.2022 9.2618 0.3487 1.5757 16.2403 0.3940
53 1.2182 6.2403 0.3965 1.2030 7.3391 0.3735 1.5812 18.9700 0.4136
54 1.2149 10.4807 0.4247 1.2023 8.9571 0.4027 1.5776 14.9700 0.4388
55 1.2107 10.2833 0.4555 1.1981 8.2403 0.4340 1.5745 15.0773 0.4613
58 1.1815 9.8155 0.5857 1.1763 8.8712 0.5711 1.5603 15.1845 0.5927
59 1.1752 6.4549 0.6595 1.1693 7.8712 0.6486 1.5700 12.4120 0.6639
60 1.1761 3.5150 0.7677 1.1790 2.4807 0.7603 1.5689 12.0815 0.7588
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expressed by different types of measures. In addition, we suggested both parametric 
OLS and nonparametric RW regression estimators. This was followed by an empir-
ical investigation focused on the benefits of including the return scenario genera-
tion process in the portfolio optimisation strategy for a dynamic dataset consisting 
of US stocks.

The results of the first comparison, in which the impact of the OLS and RW 
estimation techniques on various mean–variance portfolio strategies without the 
generation step was analysed, show that using the RW estimator the best port-
folio performance is achieved. Additionally, the riskiness of these portfolios is 
lower than it is when the OLS estimator is used; this is reflected in the smoother 
wealth paths. Second, we compared the portfolio statistics obtained by incor-
porating the dynamic process of factor scenario generation (ARMA–GARCH 
model), while the RW estimator is utilised for different portfolio strategies with 
those obtained without the generation process. The ex-post results of the new 
proposed approach show that it significantly outperforms the scenarios without 
the generation part in terms of profitability, while the risk increased slightly. 
According to the ex-ante results of diversification indicators, if the RW approach 
is used for return approximation, the portfolio is usually spread over a larger 
number of assets.

In general, our empirical findings suggest that the complex scenario consist-
ing of the double-PCA, nonparametric approximation based on the RW esti-
mator and the ARMA–GARCH prediction model is significantly more profit-
able than the other considered scenarios. The benefits of this scenario lie in the 
favourable properties of the dynamic ARMA–GARCH prediction and, more 
importantly, in its cooperation with the double PCA, which leads to an increase 
in the portfolio performance. We observed that the proposed procedure is able to 
approximate future asset return scenarios well. This is apparent specifically for 
mean–variance portfolio strategies that express the attitude of the average risk-
seeking investor.

Acknowledgements The authors would like to thank the Czech Science Foundation (GACR) under the 
Project 23-06280S and SGS Research Project SP2023/019 of VSB – Technical University of Ostrava for 
financial support of this work.

Funding Open access publishing supported by the National Technical Library in Prague. This research 
has been supported by the VSB – Technical University of Ostrava institutional grant SP2023/019 and by 
the Czech Science Foundation GAČR 23-06280S. The financial support of the European Union under 
the REFRESH – Research Excellence For REgion Sustainability and Hightech Industries project num-
ber CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just Transition is acknowledged as 
well.

Declarations 

Conflict of interest No potential conflict of interest was reported by the author(s).

Consent for publication The authors have consented to the submission of the work to the journal.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 



1 3

Dynamic Return Scenario Generation Approach for Large‑Scale…

as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Biglova, A., Ortobelli, S., & Fabozzi, F. (2014). Portfolio selection in the presence of systemic risk. Jour-
nal of Asset Management, 15(5), 285–299.

Biglova, A., Ortobelli, S., Rachev, S. T., et al. (2004). Different approaches to risk estimation in portfolio 
theory. The Journal of Portfolio Management, 31(1), 103–112.

Biglova, A., Ortobelli, S., Rachev, S., et  al. (2009). Modeling, estimation, and optimization of equity 
portfolios with heavy-tailed distributions. In S. Satchell (Ed.), Optimizing optimization: The next 
generation of optimization applications and theory. Amsterdam: Academic Press.

Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. The Journal of Political 
Economy, 81(3), 637–654.

Bodnar, T., Lindholm, M., Niklasson, V., et al. (2022). Bayesian portfolio selection using VaR and CVaR. 
Applied Mathematics and Computation, 427, 127120.

Borrajo, M. I., González-Manteiga, W., & Martínez-Miranda, M. D. (2017). Bandwidth selection for ker-
nel density estimation with length-biased data. Journal of Nonparametric Statistics, 29(3), 636–668.

Brown, S. J., Goetzmann, W. N., & Ross, S. A. (1995). Survival. Journal of Finance, 50(3), 853–873.
Cenesizoglu, T., & Timmermann, A. (2012). Do return prediction models add economic value? Journal 

of Banking & Finance, 36(11), 2974–2987.
Chamberlain, G., & Rothschild, M. (1983). Arbitrage, factor structure, and mean-variance analysis on 

large asset markets. Econometrica, 51(1), 1281–1304.
Cherubini, U., Luciano, E., & Vecchiato, W. (2004). Copula Methods in Finance. Chichester: Wiley.
DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus Naive diversification: How inefficient is 

the 1/n portfolio strategy? The Review of Financial Studies, 22(5), 1915–1953.
Egozcue, M., Fuentes García, L., Wong, W., et  al. (2011). Do investors like to diversify? A study of 

Markowitz preferences. European Journal of Operational Research, 215(1), 188–193.
Fabozzi, F. J., Dashan, H., & Guofu, Z. (2010). Robust portfolios: Contributions from operations research 

and finance. Annals of Operations Research, 176(1), 191–220.
Fama, E. F. (1965). The behavior of stock-market prices. Journal of Business, 38(1), 34–105.
Fan, J., Fan, Y., & Lv, J. (2008). High dimensional covariance matrix estimation using a factor model. 

Journal of Econometrics, 147(1), 186–197.
Fan, J., Liao, Y., & Liu, H. (2016). An overview of the estimation of large covariance and precision 

matrices. The Econometrics Journal, 19(1), C1–C32.
Fan, J., Liao, Y., & Sh, X. (2015). Risks of large portfolios. Journal of Econometrics, 186(2), 367–387.
Farinelli, S., Ferreira, M., Rossello, D., et al. (2008). Beyond Sharpe ratio: Optimal asset allocation using 

different performance ratios. Journal of Banking & Finance, 32(10), 2057–2063.
Gasser, T., & Müller, H. G. (1984). Estimating regression functions and their derivatives by the kernel 

method. Scandinavian Journal of Statistics, 11(3), 171–185.
Georgiev, K., Kim, Y. S., & Stoyanov, S. (2015). Periodic portfolio revision with transaction costs. Math-

ematical Methods of Operations Research, 81(3), 337–359.
Ha, J., & Lee, T. (2011). NM-QELE for ARMA-GARCH models with non-gaussian innovations. Statis-

tics & Probability Letters, 81(6), 694–703.
Hall, P., & Kang, K. H. (2005). Bandwidth choice for nonparametric classification. The Annals of Statis-

tics, 33(1), 284–306.
Herwartz, H. (2017). Stock return prediction under Garch—An empirical assessment. International Jour-

nal of Forecasting, 33(3), 569–580.
Hirschman, A. O. (1964). The paternity of an index. The American Economic Review, 54(5), 761–762.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 D. Neděla et al.

1 3

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of 
Educational Psychology, 24(7), 498–520.

Joe, H. (2014). Dependence modeling with copulas (1st ed.). Boca Raton: Chapman and Hall/CRC.
Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psycho-

logical Measurement, 20(1), 141–151.
Kim, Y. S., Rachev, S. T., Bianchi, M. L., et al. (2011). Time series analysis for financial market melt-

downs. Journal of Banking & Finance, 35(8), 1879–1891.
Kondor, I., Pafka, S., & Nagy, G. (2007). Noise sensitivity of portfolio selection under various risk meas-

ures. Journal of Banking & Finance, 31(5), 1545–1573.
Konno, H., & Yamazaki, H. (1991). Mean-absolute deviation portfolio optimization model and its appli-

cations to Tokyo stock market. Management Science, 37(5), 519–531.
Kouaissah, N., & Hocine, A. (2021). Forecasting systemic risk in portfolio selection: The role of techni-

cal trading rules. Journal of Forecasting, 40(4), 708–729.
Kouaissah, N., Ortobelli, S., & Jebabli, I. (2022). Portfolio selection using multivariate semiparametric 

estimators and a copula PCA-based approach. Computational Economics, 60, 833–859.
Ledoit, O., & Wolf, M. (2003). Improved estimation of the covariance matrix of stock returns with an 

application to portfolio selection. Journal of Empirical Finance, 10(5), 603–621.
Ledoit, O., & Wolf, M. (2017). Nonlinear shrinkage of the covariance matrix for portfolio selection: 

Markowitz meets goldilocks. Review of Financial Studies, 30(12), 4349–4388.
Ma, Y., Han, R., & Wang, W. (2021). Portfolio optimization with return prediction using deep learning 

and machine learning. Expert Systems with Applications, 165, 113973.
Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business, 36(4), 394–419.
Mandelbrot, B., & Taylor, H. M. (1967). On the distribution of stock price differences. Operations 

Research, 15(6), 1057–1062.
Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.
Merton, R. C. (1973). An intertemporal capital asset pricing model. Econometrica, 41(5), 867–887.
Mittnik, S., & Rachev, S. T. (1989). Stable distributions for asset returns. Applied Mathematics Letters, 

2(3), 301–304.
Mugdadi, A. R., & Ahmad, I. A. (2004). A bandwidth selection for kernel density estimation of functions 

of random variables. Computational Statistics & Data Analysis, 47(1), 49–62.
Nadaraya, E. A. (1964). On estimating regression. Theory of Probability and its Applications, 9(1), 

141–142.
Neděla, D., Ortobelli, S., & Tichý, T. (2023). Mean-variance vs trend-risk portfolio selection. Review of 

Managerial Science. https:// doi. org/ 10. 1007/ s11846- 023- 00660-x
Oh, D. H., & Patton, A. J. (2017). Modeling dependence in high dimensions with factor copulas. Journal 

of Business & Economic Statistics, 35(1), 139–154.
Ortobelli, S., Kouaissah, N., & Tichý, T. (2017). On the impact of conditional expectation estimators in 

portfolio theory. Computational Management Science, 14(4), 535–557.
Ortobelli, S., Kouaissah, N., & Tichý, T. (2019). On the use of conditional expectation in portfolio selec-

tion problems. Annals of Operations Research, 274(1), 501–530.
Ortobelli, S., & Tichý, T. (2015). On the impact of semidefinite positive correlation measures in portfolio 

theory. Annals of Operations Research, 235(1), 625–652.
Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Maga-

zine, 2(6), 559–572.
Pegler, M. (2019). Large-dimensional factor modeling based on high-frequency observations. Journal of 

Econometrics, 208(1), 23–42.
Pflug, G., Pichler, A., & Wozabal, D. (2012). The 1/n investment strategy is optimal under high model 

ambiguity. Journal of Banking & Finance, 36(2), 410–417.
Pun, C. S., & Wong, H. Y. (2019). A linear programming model for selection of sparse high-dimensional 

multiperiod portfolios. European Journal of Operational Research, 273(2), 754–771.
Rachev, S. T., Menn, C., & Fabozzi, F. J. (2005). Fat-tailed and skewed asset return distributions: Impli-

cations for risk management, portfolio selection, and option pricing. New York: Wiley.
Rachev, S., & Mittnik, S. (2000). Stable Paretian Models in Finance. Chichester: Wiley.
Rachev, S. T., Stoyanov, S. V., & Fabozzi, F. J. (2008). Advanced Stochastic Models, Risk Assessment and 

Portfolio Optimization: The Ideal Risk, Uncertainty and Performance Measures. New York: Wiley 
Finance.

https://doi.org/10.1007/s11846-023-00660-x


1 3

Dynamic Return Scenario Generation Approach for Large‑Scale…

Ramezanian, R., Peymanfar, A., & Ebrahimi, S. B. (2021). An integrated framework of genetic network 
programming and multi-layer perceptron neural network for prediction of daily stock return: An 
application in Tehran stock exchange market. Applied Soft Computing, 82, 105551.

Rather, A. M., Agarwal, A., & Sastry, V. N. (2015). Recurrent neural network and a hybrid model for 
prediction of stock returns. Expert Systems with Applications, 42(6), 3234–3241.

Rockafellar, R., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of 
Banking & Finance, 26, 1443–1471.

Ross, S. (1978). Mutual fund separation in financial theory: The separating distributions. Journal of Eco-
nomic Theory, 17(2), 254–286.

Ruppert, D., & Wand, M. (1994). Multivariate locally weighted least squares regression. The Annals of 
Statistics, 22(3), 1346–1370.

Ruttiens, A. (2013). Portfolio risk measures: The time’s arrow matters. Computational Economics, 41(3), 
407–424.

Scott, D. (2015). Multivariate density estimation: Theory, practice, and visualization. New York: Wiley.
Sharma, A., Utz, S., & Mehra, A. (2017). Omega-CVaR portfolio optimization and its worst case analy-

sis. OR Spectrum, 39(2), 505–539.
Sharpe, W. F. (1994). The sharpe ratio. Journal of Portfolio Management, 21(1), 49–58.
Stádník, B. (2022). Convexity arbitrage-the idea which does not work. Cogent Economics & Finance, 

10(1), 2019361.
Sun, W., Rachev, S., Stoyanov, S. V., et al. (2008). Multivariate skewed student’s t copula in the analy-

sis of nonlinear and asymmetric dependence in the German equity market. Studies in Nonlinear 
Dynamics & Econometrics. https:// doi. org/ 10. 2202/ 1558- 3708. 1572

Szegö, G. (2004). Risk measures for the 21st century. Chichester: Wiley.
Watson, G. S. (1964). Smooth regression analysis. Sankhya, 26(4), 359–372.
Wei, J., Yang, Y., Jiang, M., et al. (2021). Dynamic multi-period sparse portfolio selection model with 

asymmetric investors’ sentiments. Expert Systems with Applications, 177, 114945.
Woerheide, W., & Persson, D. (1992). An index of portfolio diversification. Financial Services Review, 

2(2), 73–85.
Xu, W., Wu, C., Dong, Y., et al. (2011). Modeling Chinese stock returns with stable distribution. Math-

ematical and Computer Modelling, 54(1–2), 610–617.
Yang, S., & Ling, N. (2023). Robust projected principal component analysis for large-dimensional sem-

iparametric factor modeling. Journal of Multivariate Analysis, 195, 105155.
Zugravu, B., Oanea, D. C., & Anghelache, V. G. (2013). Analysis based on the risk metrics model. Roma-

nian Statistical Review, 61(2), 145–154.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

https://doi.org/10.2202/1558-3708.1572

	Dynamic Return Scenario Generation Approach for Large-Scale Portfolio Optimisation Framework
	Abstract
	1 Introduction
	2 Approaches to Approximating Returns
	2.1 Trend-Dependent Correlation PCA
	2.2 Parametric and Nonparametric Regression Models for Approximating Returns

	3 ARMA–GARCH Model with Stable Distribution and Skewed t Copula Dependency Structure
	4 Empirical Analysis of the US Stock Market
	4.1 Characterisation of the Dataset and Empirical Procedure
	4.2 Ex-post and Ex-Ante Results and Discussion

	5 Conclusion
	Acknowledgements 
	References


