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ABSTRACT

All over the world electrical systems are undergoing unprecedented evolution driven
by technological advancements, environmental considerations, and changing energy con-
sumption patterns. Several trends are expected to shape the future of power systems. In
this context, quantitative models, such as optimization, simulations, and machine learn-
ing, will play more and more a crucial role in addressing the associated challenges both
in short-term operation and in long-term planning.

In this thesis, we have focused preeminently on an innovative modeling development
for the Generation Expansion Planning (GEP) problem, customized to address the forth-
coming demand for decision support in the Italian electricity market. The GEP is for-
mulated as a bilevel optimization problem, where Revenue Adequacy (RA) is ensured for
different technologies by considering a detailed definition of market revenues with mean-
ingful market clearing prices. This includes zonal distinctions as perceived by the Italian
electricity market to take into account price signals. In addition, the model incorpo-
rates side payments that can serve as indicators for Capacity Remuneration Mechanism
(CRM)-like auction. To ensure the realistic operation of the model, we have suggested
two novel sets of constraints. These are designed to prevent withholding strategies and
to deal with price indeterminacy.

The problem’s bilevel nature, combined with revenue modeling, results in bilinear
components. In addition to examining state-of-the-art linearization techniques, we have
developed an exact linearization method for the product of two continuous variables,
namely prices and quantities. To address the difficulty of finding feasible solutions, we
have defined warm-start algorithms. Furthermore, we have proposed an innovative ap-
proach that utilizes “hybrid” modeling of the complementarity slackness conditions. This
advancement has proven to be successful in narrowing the gap and proving optimality.

The thesis is organized as follows.

In Chapter 1 we introduce the GEP problem and provide a background on the elec-
tricity markets together with a central problem about the missing money and revenue

adequacy in electricity markets. Both concepts will be a fil rouge through the entire
thesis. In Chapter 2 we deepen the literature review on both the pricing scheme (2.1) in
several markets and on the specific proposals for the GEP (2.2). For the first theme, we
discuss important issues about non-convexity in pricing schemes while for the GEP we
distinguish between traditional GEP and those that account for the critical aspect of the
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revenue adequacy. In Chapter 3 we then switch to a brief exemplification of Mathemati-
cal Programming and to a presentation of a general taxonomy for optimization problems.
Subsequently, we focus on a class of optimization problems that will be used for the pro-
posed models, the bilevel optimization ones with their hierarchy structure. Notably, in
(3.3) we discuss reformulations approaches.

In Chapter 4 we step into the models for the Market Operator and propose a modifica-
tion of the Italian one w.r.t the inclusion of the technical minimum for certain generation
plants. We also discuss important issues related to price indeterminacy in the Market
Operator problem and strategic withholding of capacity by generators in our specific set-
ting. Then a discussion about how to model the Objective Function of the GEP problem
is analyzed and two main high-level models for the GEP are proposed. In Chapter 5
we then detail the two proposed models, named GEP-RA (1) and GEP-RA (2), with
all the blocks of constraints that are therein discussed in formal details. Notably, we
present an innovative formulation for a specific problem aiming at avoiding withholding
strategies. Additionally, for the peculiar issue of indeterminacy of the clearing price, we
propose another innovative block of constraints, that we later reformulate in (5.3) by
means of an extended formulation. We conclude this chapter by giving a mixed-binary
version of the proposed models in (5.4). In Chapter 6 we take the proposed formulations
and derive reformulations of them in order to be solved by general purposes optimization
solvers. Notably, we explicate the optimality conditions of the lower level of each bilevel
problem and give single-level equivalent models. Then in (6.2) we propose a simple, yet
effective, linearization of relevant bilinear components in the objective function(s) and
in some constraints. In Chapter 7 we propose different approaches aimed at enhancing
the computational efficiency. We tackle the challenge of identifying feasible solutions
by introducing specialized cuts and developing auxiliary problems that effectively warm-
start the GEP-RA (2) model. To address the task of proving optimality, we innovatively
combine different formulations of the complementarity slackness conditions.

In Chapter 8 we are ready to give a description of the actual software implementation
realized, and of the Italian test case that has been constructed and that will be used for
the computational tests. This test case, together with a simple synthetic one, is then
used for the comparison of the different proposed models both from a conceptual point
of view and from the point of view of resolution performance. A set of disaggregated and
aggregated output is presented and the results of the simulations in terms of modeling
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and performances are discussed. In Chapter 9 we describe future research directions in
terms of modeling choices, i.e. including the transmission network and uncertainty, and
others related to more efficient methodologies for solving the proposed problems that
remain of very high complexity, e.g. formulations and decomposition approaches.

In Chapter 10 we end the journey by recalling the main findings and drawing conclu-
sions of the present thesis.
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Chapter 1

Introduction

The evolution of electricity systems in recent years all over the world, and notably within
the European Community, involves an unprecedented series of transformative changes
aimed at reducing carbon emissions and mitigating the impact of climate change, at least
according to the interpretation of the anthropogenic nature of the phenomenon. There are
several key elements in the evolution of electricity systems concerning decarbonization:

1. Transition to Renewable Energy Sources:

• Solar and Wind Power: The significant increase in the deployment of solar
and wind power technologies has been a cornerstone of decarbonization. Ad-
vances in technology and cost reductions have made these sources increasingly
competitive and scalable.

• Hydropower and Geothermal: Traditional renewable sources, including
hydropower and geothermal, continue to play a role in the decarbonization
process.

2. Grid Modernization and Smart Technologies:

• Smart Grids: The evolution of electricity systems involves the integration
of smart grid technologies. These systems use advanced sensors, communica-
tion networks, and analytics to optimize the performance of the grid, enhance
reliability, and accommodate the variability of renewable energy sources.

• Demand Response: Implementing demand response programs within smart
grids allows for dynamic adjustments to electricity consumption based on real-
time conditions, helping to balance supply and demand.
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3. Energy Storage Integration:

• Batteries and Storage Solutions: The development and integration of en-
ergy storage technologies, such as batteries, are crucial for addressing the in-
termittent nature of renewable energy sources. Energy storage allows excess
energy to be stored and released when demand is high or renewable generation
is low, improving grid reliability.

4. Policy and Regulatory Support:

• Renewable Energy Standards: Many regions have established renewable
energy standards or targets, requiring a certain percentage of electricity to
come from renewable sources. These policies provide a regulatory framework
to encourage the adoption of clean energy.

• Carbon Pricing: The implementation of carbon pricing mechanisms, such as
carbon taxes or cap-and-trade systems, provides an incentive for the reduction
of carbon emissions from the power sector.

5. Phasing Out Coal and Natural Gas:

• Coal Phase-Out: Governments and utilities are increasingly committing to
phasing out coal-fired power plants due to their high carbon intensity. This
involves the retirement of existing coal plants and a shift toward cleaner energy
sources.

• Transition from Natural Gas: While natural gas has been considered a
bridge fuel, efforts are underway to transition away from it in the long term to
further reduce greenhouse gas emissions.

6. Electrification of Other Sectors:

• Transportation: The electrification of transportation, particularly the widespread
adoption of electric vehicles, may contribute to reducing the overall carbon
footprint by shifting from fossil fuel-based vehicles to electric power.

• Industrial Processes: Electrifying industrial processes, where feasible, may
help reduce emissions from sectors that traditionally rely heavily on fossil fuels.

7. Decentralization and Distributed Generation:
2
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• The growth of distributed generation, including rooftop solar panels and small-
scale wind turbines, contributes to a more decentralized and resilient electricity
system. Localized generation reduces transmission losses and enhances grid
flexibility.

8. International Collaboration:

• Global efforts, such as international agreements like the Paris Agreement, un-
derscore the importance of collaborative actions to achieve common decar-
bonization goals. Countries are working together to share best practices and
support each other in transitioning to cleaner energy systems.

9. Innovation in Advanced Technologies:

• Ongoing research and development in advanced technologies, such as next-
generation solar and wind technologies, as well as breakthroughs in energy
storage and grid management, are critical for achieving deeper decarbonization.

The evolution of electricity systems, with a focus on decarbonization, is therefore an
ongoing process of an outstanding complexity, driven by a combination of technological
innovation, policy and regulation measures, market dynamics, and international cooper-
ation. The ultimate goal is to create a sustainable, low-carbon energy system that can
meet the growing global demand for electricity while minimizing environmental impact.

In this context of evolution, mathematical models play a crucial role in the evolution of
electricity systems by providing tools for analysis, planning, optimization, and decision-
making. These models help stakeholders understand complex interactions within the
electricity system, anticipate future challenges and design effective strategies for sustain-
able development.

1.1 Thesis motivation and objectives

Generation Expansion Planning (GEP) problems aim at determining future generation
plan portfolios in a given Country that are optimal for the operation of the electric energy
system in the long term [Conejo et al., 2016]. They generally take the perspective of a
fictitious entity, usually called Central Planner (CP), that determines capacities, tech-
nology, and locations for generators. In recent years GEP problems took the perspective
of solving the so-called Trilemma:

• Meet electricity load in the long-term (Energy security)
3
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• Achieve predefined policy targets, such as decarbonization, integration of large
shares of renewables, and reduction of CO2 emissions (Environmental sustainability)

• Minimize the sum of the investment and operational cost over the planning horizon
(Energy equity)

Figure 1.1: Risky evolution of a system with high RES concentration

In the presence of high levels of renewable power sources, the scheduling of programmable
power plants (e.g. gas-fired ones) can be strongly influenced by the non-programmable
renewable generation as, e.g., the number of startups and shutdowns of the thermal plants
can increase, implying a consequential increase in the costs, including O&M costs. In fact,
cycling the thermal plants accelerates component wear and tear, resulting in an increase
in failure rates, longer maintenance and inspection periods, and higher consumption of
spares and replacement components [Rodilla et al., 2013]. To accurately estimate the
operative costs, the GEP should consider a good-to-high level of technical details in rep-
resenting thermal, hydropower and possibly pumping storage, plants, and various kinds
of other storage facilities, evaluating power system operation with an hourly resolution
which is the typical relevant period length considered in several electricity markets.

The centralized approach provides a benchmark to guide the time-spatial decisions
in building new electricity production facilities. Indeed, the actual building of the fa-
cilities is carried out by private investors who must be encouraged by policymakers and
regulators to follow the social welfare maximizing solution. In providing this bench-
mark, the quantity-based model proposed by [Micheli and Vespucci, 2020] ignores the
microeconomic point of view of the individual producer who needs to recover investment
and operational costs. This could compromise incentives for new entry of supply re-
sources as well as the incentives of existing units to refrain from retirement. As described
in [Hytowitz et al., 2020], future markets with growing penetration levels of renewable
energy could have many low-to zero-priced periods, since these power plants exhibit zero
marginal costs. In turn, this could affect energy revenues of the resources that are needed
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for the long-term system reliability (i.e. the capacity of the system to meet the load and
the reserve margins), preventing them from recovering both operating and capital costs,
see Fig. 1.1.

This thesis aims to enhance quantity-based optimization models to provide a bench-
mark that is revenue-adequate. The system configuration will be able to account for
energy prices and thus for the economic sustainability of the chosen generators. The
prices will be determined endogenously while maintaining their explainability, thus en-
suring that investment decisions are truly revenue-adequate. The proposed models will
provide guidance on several key aspects, such as investment decisions based on location,
technology selection, market clearing prices, and possible payments outside of the market.

Although the centralized approach does not reflect the real dynamics of modern power
systems, consisting of several decision-makers involved, the central view is still appropri-
ate to define the target towards which to encourage the system with appropriate inter-
ventions. Indeed, even if markets are designed to send signals to critical resources needed
for long-term reliability, a mathematical model representing the plurality of independent
agents would be highly complex. In fact, it would have to identify among the investment
alternatives, those that maximize the profits of each agent over a long-term time horizon,
as well as to ensure that the overall demand would be met by the existing generation
units. The high dimension of the resulting model would make it not computationally
possible to focus on an hourly discretization, which is nevertheless necessary to repre-
sent the market mechanism determining the marginal producers and thus the electricity
prices in a non-discriminatory market model such as marginal price ones. The idea of
having a CP for the auctions for the development of renewables sources has been in fact
envisioned by a recent consultation of the Italian Ministry of Environment and Energy
Security (MASE), [Ministero dell’Ambiente e della Sicurezza Energetica, 2023]. We shall
see later that the proposed model also takes into account possible long-term auctions as
those proposed in the aforementioned consultation.

As discussed in [Guo et al., 2022], even though alternatives to centralized coordination
have been proposed in the literature in the form of equilibrium problems to account for
the strategic actions of the players, it is difficult to conjecture the future degree of market
power for each market participant, as long as to set the parameter needed to calibrate
those models, and the multiplicity assumptions could strongly impact the results.

Along with the importance for the energy sector, the problem has great relevance in
5
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the operations research field, being generally addressed through the formulation of large-
scale mixed-integer non-convex models to account for physically-based binary decisions,
e.g., lumpy investments, minimum power outputs of production, minimum up and down
times, ramps constraints, and startup decisions, e.g. [Van Ackooij et al., 2018] and refer-
ences therein. Moreover, the price, and revenue, modeling may yield non-convex models
requiring dedicated solving algorithms and linearization techniques.

1.2 Introduction to Electricity Markets

Electricity and ancillary services markets have several peculiarities around the world
and notably within the European Community. Fig. 1.2 depicts a generic scheme of
electricity and balancing markets, including bilateral contracts and several interactions
among different entities, such as Market Operator (MO), Transmission System Operator
(TSO), producers owing programmable and non-programmable production units, loads,
and traders-wholesales.

Figure 1.2: Generic electrical energy markets scheme

With the generic scheme of Fig. 1.2 in mind, we briefly describe the specific mar-
ket sequence in Italy where the day-ahead market (MGP) is included in the European
coupling design as per EC Regulation 1222/2015, Capacity Allocation and Congestion

Management (CACM), while the ancillary services market by Regulation 943/2019 and
balancing Regulation. In Fig. 1.3 we sketch the Italian cascading markets, from forward
long-term (MTE) to balancing (MB) real-time markets, up to the European balancing
platforms (PBil) such as MARI and PICASSO. In the present thesis, we will be focusing
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Figure 1.3: Italian Electrical Energy Markets

on the spot electricity markets.

1.3 The missing money problem

Within liberalized electricity markets, the missing money problem materializes in the
long term when generators fail to recover their investment (i.e. CAPEX) and operational
costs through market revenues coming from electricity, and possibly ancillary, services.
There are two main causes of the missing money problem:

1. insufficient scarcity rents

2. non-convexities

The first case (1) is possible for both convex and non-convex models. In a pay-as-cleared

Figure 1.4: Infra-marginal and Scarcity rents with elastic (left) and inelastic (right) demand
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mechanism1, the market clearing price is set by the intersection of the demand and supply
curves, the latter constructed according to the merit order. This price is assigned to each
accepted generator. The marginal generator is the one who sets the price, while the
infra-marginal generators, having bid at lower prices, receive an infra-marginal rent. As
illustrated in Fig 1.4, when the offered capacity is not sufficient to cover the demand,
market prices spike up and are determined either by the - elastic - demand itself or
by the Value of Lost Load (VoLL), however defined within the specific market in the
case of - inelastic - demand [Boiteux, 1960]. The portion of the revenue attributable to
the difference between the market price and the cost of the marginal generator is called
scarcity rent and should be considered as revenue to cover the investment costs of both
infra-marginal and marginal generators [Bowring and Tyler, 2019].

Insufficiency of scarcity rent could occur either when the price is administratively
capped to a low value due to market concerns [Byers and Hug, 2023] or when the number
of times in which the price reaches the VoLL is zero or not enough. This leads to
a shortfall in revenue for existing generators and an insufficient incentive to invest in
new ones. This is the case of the Energy-only market (or Reserve and Energy market)
which does not compensate for capacity and therefore carries the risk that generation
companies will delay investment because they do not know whether and to what extent
the price of electricity will be set at a level sufficient to cover their costs [Fraunholz et al.,
2023]. Capacity Remuneration Mechanisms (CRM) can be introduced to address the
missing money problem related to the insufficiency of scarcity rents. However, a criticism
in [Mays et al., 2021] relates to the potential misallocation of resources and distortion of
the capacity mix, as these mechanisms are generally not capable of capturing real-time
information about operating conditions. CRM can be classified into different categories
such as those depicted in Fig. 1.5.

Notably, to ensure the adequacy of the system, with Decision n. ARG/elt/98/11
of the Italian Authority Regulatory for Energy, Networks and Environment (ARERA),
Italy has implemented a Capacity Market for thermal generators, where the TSO (Terna)
defines competitive auctions, in which:

• the demand curve represents the system’s willingness to pay for capacity according
to the adequacy targets set for the Italian electricity system, three hours

• the supply curve is defined by participants submitting their bids, which are defined
1As opposite to the pay-as-bid mechanism, where the price captured by each accepted generator equals its bid
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Figure 1.5: Capacity Remuneration Mechanism Taxonomy

by a premium in power [€/MW/year] for a certain time horizon and a capacity
[MW/year]

Once the auction clears a unique premium in [€/MW/year] is defined for each accepted
bid based on the intersection of demand and supply curves. Generators providing the
allocated capacity receive the fixed annual premium from Terna and pay back the differ-
ence, if positive, between the price realized on the energy market (MGP), and ancillary
services markets (MSD/MB), and the strike price defined by the ARERA based on the
marginal cost of an efficient open cycle gas turbine (OCGT), Decision n. 399/2021/R/eel
and subsequent. Thus realizing mandatory one-way2 Contracts for Difference (CfD). The
Italian design for the Capacity Market is typically referred to as a reliability option-type
of CRM. For an overview of the EU CRM and the theoretical underpinning of CRM, we
refer to [Papavasiliou, 2021]. Renewable generators, instead, to stabilize revenue streams
and thus increase the bankability of the projects can currently rely on two-ways CfD:
for RES the CRM-like auction can be interpreted as an instrument to achieve the decar-
bonization targets while ensuring the financial stability of the developments.

Additionally in the recent consultation on the Electricity Market Design, the European
2one-way CfD envision a single strike price or cap, while two-ways CfD envision a cap and a floor, therefore

in this latter case the producer is hedged against lower, below floor, marginal prices

9
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Commission envisions two-ways CfD as the main instrument to promote investments so
as to reach decarbonization. However, classic and simple two-ways CfD are criticized by
the FERX consultation [Ministero dell’Ambiente e della Sicurezza Energetica, 2023] as
interfering with market price signals:

• the producer ignores zonal construction criteria and hourly bidding strategies gener-
ally used to obtain a higher day-ahead price: since the producer receives the auction
price for each unit produced regardless of the zone and the time of the bid, it will
only act with the aim of maximizing its production.

• the producer bears the revenue risk related to the volume. When selling electric-
ity at market prices, the negative correlation between prices and the availability of
wind/solar power helps to mitigate the revenue risk (lower wind/solar production
corresponds to higher prices). When the revenues are based on CfD, on the other
hand, the reduction in production volume does not affect its captured price. Addi-
tionally, there is a volume risk associated with production reductions imposed by
overgeneration or curtailment.

Therefore, the consultation proposes two potential evolutions of CfD also towards the
so-called smart CfD that somehow face the dispatch efficiency issue. Additionally, the
consultation proposes two main approaches to the auctions:

a. centralized asset-based model

b. decentralized model with standard profiles

These alternatives are put forth with the objective of attaining decarbonization targets
while ensuring cost-minimization for consumers, stimulating efficient resource investment
and operation, and enhancing risk distribution among the involved players.

The centralized model (a) considers a centralized optimization process where the sys-
tem, the central planner, defines quantity, location, and types (the expected production
profile) of renewable sources to be built. In the decentralized model (b), instead, the
system defines only quantity and location, leaving the choice of the technologies’ portfo-
lio to the producers. At the same time, the system requires certain standard production
profiles from the producers.

The second case (2) refers to the presence of non-convex costs (e.g., startup costs3)
3that account for the fuel needed to raise the boiler to its minimum operating temperature prior to producing

electricity
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and technical constraints (e.g., minimum generation requirements and min up and down
time constraints). These non-convexities make it difficult, if not impossible, to determine
a spot price that precisely captures all the costs, that additionally are non-separable along
the time, e.g. [Taylor, 2018].

To cope with these inherent difficulties, several approaches have been proposed, one of
the most promising introduced the concept of Convex Hull Price (CHP), which was first
suggested in [Gribik et al., 2007] — and its approximations, often called Extended Loca-

tional Marginal Prices (ELMPs) [Wang et al., 2016], see also [Stevens and Papavasiliou,
2022]. In essence, the CHP approaches solve a relaxation as close as possible to the non-
convex formulation (the Convex Hull) and deduce prices from it. Lagrangian relaxations
or specialized formulations of constraint blocks that inherently have the property of being
a convex hull are often used, for example on the minimum up and down times, [Rajan
et al., 2005]. In fact, as explained in [Ruiz et al., 2012], binary variables are needed to
represent physically-based non-convexities but their presence prevents obtaining marginal
prices as dual variables of balance equations. This makes, in turn, difficult to define an
adequate remuneration for the units, leading the literature to propose several pricing
schemes. Since the difference between remunerations, as defined by the specific pricing
scheme, and operation costs finances the capital costs of infra-marginal units, different
investment decisions should be expected under each pricing scheme [Herrero et al., 2015].

In Section (2.1) we will detail several alternative pricing formulations proposed by the
literature also to deal with the missing money problem in the short term.

11





Chapter 2

Literature review

This chapter presents an extensive literature review of the most recent contributions in ad-
dressing the revenue adequacy issue for generators, highlighting the main open problems.
In Section (2.1), we explore clearing models in electricity markets, paired with various
pricing models, a fundamental step for both grasping the studies presented in Section
(2.2) and for appreciating our modeling choices described in the subsequent chapters. In-
deed, the papers reviewed consider different pricing schemes, the understanding of which
is essential for identifying the gaps this thesis aims to address. Among these gaps are the
lack of explainability and simplicity of the prices obtained and the impossibility of apply-
ing some pricing schemes in optimization problems, as opposed to heuristic approaches
which, as such, do not guarantee obtaining the most efficient solution. Moreover, the rev-
enue adequacy is guaranteed for specific technologies only, which may result in significant
losses for others or not coherent choices, since for example the investment decisions in
renewables and batteries are strictly related. Equally important, the analysis conducted
has been instrumental in understanding how to account for startup costs in our modeling
(thereby ensuring these costs are also covered) and the impact of non-convexities on the
market outcomes. Furthermore, the pricing section paves the way for introducing the
reader to strategic mechanisms, some of which will be addressed by our model.

2.1 Pricing schemes literature review

For a meaningful evaluation of revenue-adequate investments, it is essential for the models
to consider proper energy pricing [Frew et al., 2016]. The “right” prices provide appropri-
ate economic signals in both the planning and operation phases of real markets [Eldridge
et al., 2020], [Mays et al., 2021], in fact:

• in the long term, they efficiently coordinate entry (building) and exit (decommis-
13
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sioning) of different types of generators, thereby promoting an optimal resource mix,
i.e., the resource mix that satisfies system constraints at the least cost. This is true
at least independently of Policy indications such as decarbonization;

• in the short term, they support the least-cost dispatch, thus guaranteeing market
participation.

Moreover, short-term prices should give signals based on the load (higher price with
higher demand) to encourage the units with limited capacity, such as storage hydropower
plants and batteries, to bid in hours of peak, increasing the efficiency of the market by
performing peak-shaving without using other expensive units [Frangioni and Lacalandra,
2022]. Additionally, correct short-term pricing can be useful for demand response’s evo-
lution, e.g. [MacDonald et al., 2023]. The work in [Coutu and White, 2014a] illustrates
three key principles that a market and its pricing formation process should satisfy:

1. Efficiency

2. Price Transparency

3. Simplicity

The first principle (1) consists of identifying the dispatch that minimizes the produc-
tion costs corresponding to the offered prices and for which the dispatched generators
do not want to deviate, since any deviation would put them in a less favorable position.
The second principle (2) relates to a situation where market participants are aware of the
prices received by others and also of the replicability of the market outcomes. Finally,
the third principle (3) involves minimizing the number of prices, ideally having as few as
possible for each location and time, and having a simple logic that buyers/sellers under-
stand. This means avoiding complexities that might pose challenges in interpreting the
price. These three principles were a guideline for instance in designing the Italian MGP.

We will begin by illustrating the clearing methods in the US (2.1.1), where the sys-
tem operator allows participants to explicitly declare non-convexities in their multi-part
bids. Subsequently, we will delve into European markets, with a focus on the Italian
day-ahead market (2.1.2). While in some EU markets, complex bids (e.g., block orders in
the Nordic-Baltic region, minimum income conditions in Spain) are considered to address
non-convexities, Italy considers simple bids. In fact, the Italian market operator ignores
all the non-convexities on the day-ahead market, leaving the target of obtaining a pro-
duction profile that is consistent with the technical constraints and economically viable

14
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to the bidding skills of each generation company and to the intra-day market, which is
specifically designed in order to cope with possible unfeasible programs.

2.1.1 US market clearing

The US configuration with multi-part bids is considered: generators share all technical
constraints (e.g. technical minimum production, minimum up and down times) and costs
(marginal and startup costs) with the central system operator, who clears the market. In
Tab. 2.1 (adapted from [Herrero et al., 2020]) key offer parameters are highlighted.

Operating Costs Technical Constraints

Quantity, Marginal Cost MWh, $/MWh Minimum, Capacity MWh

No-load Cost $ Ramp Rate MWh/h

Start-up Cost $ Min Max Up Time h

Min Down Time h

Table 2.1: Typical multi-part offer parameters

The process of clearing the market and evaluating the outcomes typically involves
three steps, each corresponding to an optimization model, as depicted in Fig. 2.1:

• Unit Commitment and Economic Dispatch (UCED), which establishes the least-cost
dispatch (statuses and productions);

• PRICING, which determines the clearing prices;

• Profit Maximization (PM), which is employed to conduct an analysis of the losses
that a generator may perceive by following the least-cost dispatch.

The first modeling step is called Unit Commitment and Economic Dispatch (UCED).
Given the demand d (inelastic), the costs (CF

k , C
M
k ) and the physical characteristics

(Q
k
, Qk) for each generator k, the UCED consists in solving the least-cost problem

(2.1):

UCED(d) = min
Qk,γk

∑
k

(CF
k γk + CM

k Qk) (2.1a)

s.t.
∑

k

Qk = d (2.1b)

Q
k
γk ≤ Qk ≤ Qkγk k ∈ K (2.1c)

γk ∈ {0, 1} k ∈ K (2.1d)
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Figure 2.1: Steps for determining payments: the rectangles refer to the optimization models
used in the specific step. The continuous lines indicate the values that are always used as
inputs, while the dashed lines indicate inputs that are only required by some pricing approaches.
Specifically, for each generator k the profit πUCED

k is computed given the accepted quantity
QUCED

k and the status γUCED
k from UCED and the price λ (and possibly other compensations

µk, Uk) from PRICING. The make-whole payments MWPk are calculated as the payments
needed to cover losses. Given the price, the maximum profit πP M

k is determined by PM and
then the lost opportunity costs LOCk are calculated.

(2.1) is a mixed-integer problem (MIP) that determines for each generator k ∈ K the
status γk ∈ {0, 1} and the production Qk ≥ 0 so as to satisfy

• the system-wide constraint: supply-demand balance constraint (2.1b)

• local constraints for each k ∈ K: technical minimum and capacity constraints (2.1c)

and to minimize the system cost (2.1a) to supply demand d.
The function UCED(d), which represents the value of the least cost solution as de-

mand d varies, is called value function [Gribik et al., 2007].
Let’s consider the example in Tab. 2.2 and a demand 0 < d ≤ 40.

k CF
k CM

k Q
k

Qk

[$] [$/MWh] [MW] [MW]

A 70 5 0 15

B 0 10 11 15

W 0 0 0 10

Table 2.2: Economical and physical characteristics of the generators considered in the example

The system configuration has three generators A, B, C with marginal costs of 5, 10, and
0 $/MWh respectively; generator A has a cost of 70 $ associated with its startups while
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generator B presents a technical minimum level of 11 MW. The value function UCED(d),

Figure 2.2: Left: Value function UCED(d) (continuous lines) and dispatched quantities
Qk(d) ∀k (columns), for different levels of load d. Right: Slope of UCED(d), representing
the marginal cost of the marginal generator. In both the figures, the colors refer to the units
(A, B, W ).

.

depicted in Fig. 2.2 by continuous lines, is discontinuous in one point and presents a
strong non-monotonically increasing slope. The swinging slope represents the marginal

cost of the marginal generator, i.e., the generator that would cover an additional unit of
load. These s are determined by the non-convex feasible sets XA,XB of the generator A
and B respectively, defined by their local constraints. In particular, the discontinuity is
caused by the positive value of the technical minimum Q

B
of generator B while the slope is

affected by the positive fixed cost CF
A of generator A. Due to the non-convexities, for some

levels of demand the marginal generator is not the most expensive committed generator.
For example, with a demand d = 20, the least-cost solution requires the production of
generators W and B for 9 MWh and 11 MWh respectively. The slope of the least-cost
function assumes a value of 0, albeit the most-expensive unit committed is B with a
marginal cost of 10, as the extra unit of demand would be met at the least cost by W.
Moreover, in the discontinuities, the slope is not defined and does not reflect the variation
in the cost associated with an additional unit of load (with respect to the least-cost value)
as the fixed cost and the discontinuities are not captured. For example, with d = 9 the
slope is 0 while with d = 11, the slope is 5; the value function for each value of the demand
is UCED(9) = 0, UCED(10) = 75, UCED(11) = 80. UCED(10) − UCED(9) = 75 is
not reflected by the marginal cost.

The of the slope representing the marginal cost (which increases and then decreases,
and then increases again as the load increases) and the resulting operating losses for the
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generators do not allow the traditional definition of

price equals marginal cost of the marginal generator

to be used and raise the question of how to define the PRICING problem that determines
the market-based prices, with consequent payments within the market.

A pricing scheme can be classified as

• uniform (also called linear or non-discriminatory), if each dispatched generator
receives the same market-based payment;

• multi-part (also called non-linear or discriminatory), if the market-based payment
differs between generators.

Discriminatory payments can be used to achieve economic efficiency and to signal
the need for economic investments while non-discriminatory payments can result in a
too broad distribution of the costs over the uniform price to provide a meaningful signal
[O’Neill et al., 2017].

The pricing scheme can be also referred to as volatile if a small change in load leads
to a large change in prices [Bjørndal and Jörnsten, 2008].

We will shortly review the different PRICING schemes that are currently used in the
US.

A competitive partial1 equilibrium (or Walrasian equilibrium) is defined by a set
of market-based prices (which we will refer to as λ, and eventually as µk, ρk if ad-
ditional discriminatory market-based payments are envisaged) and least-cost dispatch
(QUCED

k , γUCED
k for each generator k) such that, [O’Neill et al., 2005], [Schiro et al.,

2016]:

a. the market clears (the demand is satisfied by the dispatched production);

b. every participant maximizes its utility given the payments it receives.

In [Motto and Galiana, 2002] it is considered the additional condition "consumers have
no budget constraint" for the existence of a competitive equilibrium.

The condition (a.) is in general fulfilled by QUCED
k , γUCED

k because of the balance
constraint (2.1b); however, a competitive market clearing price does not exist when there
is no intersection of demand and supply curves: see the example in [Araoz and Jörnsten,
2011].

1Only one market is considered.
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The condition (b.) is evaluated by considering a Profit Maximization (PMk) prob-
lem for each generator k as in (2.2).

πP M
k = max

Qk,γk

λQk − CF
k γk − CM

k Qk (2.2a)

s.t. Q
k
γk ≤ Qk ≤ Qkγk (2.2b)

γk ∈ {0, 1} (2.2c)

Given the price λ (obtained from the chosen PRICING problem), with (2.2) the generator
k determines the maximum profit it could obtain if it were able to self-schedule, taking
into account its internal constraints (2.2b); note that the level of load d is not taken into
account in this problem.

Then the difference between the maximum possible bid-in profit πP M
k and the profit

obtained when following the least-cost dispatch

πUCED
k = λQUCED

k − CF
k γ

UCED
k − CM

k QUCED
k

can be calculated so as to check condition (b.): if πP M
k = πUCED

k for each generator k, (b.)
is satisfied and the prices support the least-cost solution. In particular, the market-based
payments are sufficient and market-based incentive compatibility exists; this condition is
called profit optimality.

However, profit-suboptimality may exist when a generator prefers a production sched-
ule that differs from the least-cost dispatch, as it can obtain a greater profit πP M

k >

πUCED
k . The generator bears losses, known as Lost Opportunity Costs (LOC), equal to

the difference between its preferred profit and what it would earn at the same price
following the least-cost solution:

LOCk = πP M
k − πUCED

k

Generators who bear LOC can learn to increase profits e.g. through a reinforcement
learning algorithm: they adopt a strategic bidding behavior consisting, for example,
of bidding with zero fixed operating costs (self-commitment) or zero total costs (self-
scheduling) to maximize the quantity accepted, exercising market power by becoming
price takers [Byers and Eldridge, 2022].
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Side payments equal to the LOC are needed so that generators have no incentive to
deviate from the UCED solution.

The system operator can provide side payments that only cover a part of the LOC:
Make-Whole Payments (MWP) ensure that the generator k receives at least its cleared
bid-in costs [Schiro et al., 2016]:

MWPk = −min{0, πUCED
k }

Since the inclusion of a unit in the optimal dispatch implies that its presence improves
the objective function value, there always exists enough surplus in the market to support
the MWP [Mays et al., 2021]. The latter is not true for LOC: see the example in [Madani
and Papavasiliou, 2022].

Considering transmission and reserve constraints, additional side payments, called
product revenue shortfalls [Eldridge et al., 2020] (or excess product payments or financial
transmission rights uplifts [Schiro et al., 2016]), could be required to prevent under-
funding of ancillary service providers and financial transmission rights holders; those
payments are needed when different binding inequality constraints exist in the UCED
and in the PRICING problems.

Incentive compatibility exists if the incentive to deviate from the least-cost dispatch
is eliminated by the combination of market-based and side payments.

Note that side payments should be reduced as they are discriminatory and not trans-
parent, making generators not able to be hedged in the forward markets [Schiro et al.,
2016] and distorting market entry incentives [Eldridge et al., 2020].

Mathematically, the previous concepts can be illustrated as follows [Pablo Luna et al.,
2021]: when the market-based price λ alone supports the least-cost solution, the following
inequality is valid

UCED(d′) ≥ UCED(d) + λ(d′ − d),∀d′ (2.3)

and requires the affine function UCED(d) + λ(d′ − d) to stay below the value function
UCED(d′). Therefore,

• if UCED(d) is convex, the set of supporting prices (more than one price in case
of price multiplicity, which will be discussed below) for a given demand d coincides
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with the subdifferential

∂ UCED(d) = {λ : UCED(d′) ≥ UCED(d) + λ(d′ − d), ∀d′}

• if UCED(d) is non-convex (as in the previous example), the existence of a price λ
that alone supports the least-cost solution is rare.

Additionally, in the points where UCED(d) is discontinuous, the price λ can take any
value in a set that is unbounded.

We now focus on the second block of Fig. 2.1, illustrating different PRICING models
that have been proposed. It is crucial to emphasize that, even though the dispatch
determined by PRICING may differ from that of UCED, only the price information from
the PRICING block is considered relevant. This does not apply to the P-D approach
(2.26), which determines price and quantity in one step.

2.1.1.1 Restricted

The simplest PRICING approach is the one called Restricted that was proposed in [Gribik
et al., 2007], also known as Locational Marginal Price [Eldridge et al., 2018] or Fixed

Configuration Pricing [Byers and Hug, 2023].

After solving the UCED problem (2.1) to find the least-cost dispatch (QUCED
k , γUCED

k ∀k),
the RESTRICTED MODEL (R) (2.4) is considered:

min
Qk

∑
k

(CF
k γ

UCED
k + CM

k Qk) (2.4a)

s.t.
∑

k

Qk = d (λR) (2.4b)

Q
k
γUCED

k ≤ Qk ≤ Qkγ
UCED
k k ∈ K (2.4c)

(2.4) is a linear problem (LP) obtained from the UCED problem by fixing γk with
optimal statuses γUCED

k . The optimal value of the dual variable λR associated with the
supply-demand balance constraint (2.4b) is the electricity (R) price. At price λR, the
MWP can be calculated, together with the LOC after solving the PM problem (2.2).

It is worth noting that R replicates the least-cost dispatch (QR
k = QUCED

k ∀k) and
produces prices λR exactly equal to the marginal costs of the marginal generators de-
scribed above. Therefore, the prices are volatile, as they do not monotonically increase
with demand, posing challenges for demand-response program incentives [Pablo Luna
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et al., 2021] and causing financial outcomes instability [Gribik et al., 2007].

The electricity price λR is exclusively determined by the marginal cost of the resource
with γUCED

k = 1. Certain generators that are set off-line by UCED may perceive LOC as
the startup and operation at full power would result in a profit that exceeds the zero profit
obtained by following the least-cost dispatch; this occurs when λR is sufficient to cover
both the marginal and the fixed costs of the generator. A side payment equal to the LOC
is then required to make the generator indifferent between starting up and following the
least-cost dispatch. Other online generators may instead realize an infra-marginal profit
when a more expensive generator sets the price. As the dual variable associated with the
balance constraint, the price represents the variation in the objective function associated
with an additional unit of load. Therefore, it reflects neither the fixed costs, since the
constant CF

k γ
UCED
k can be removed from the objective function without changing the

optimal solution, nor the marginal costs of the units operating at the technical minimum,
since in this case an additional unit of demand can generally be met by a less expensive
generator (that still has residual capacity). Side payments equal to the economic losses
are required to make the generators whole. At points of discontinuity in the value function
UCED(d), λR is any value between the highest marginal cost of online generators and
the VoLL (price multiplicity). In such instances, the level of load precisely equals the sum
of the capacities of online generators. It is noteworthy to mention that off-line generators
are effectively treated as if they do not exist, and as such, they cannot define the upper
bound of the price interval.

2.1.1.2 Integer programming

Since R requires high side payments to cover economic losses and LOC, the following
Integer Programming approach has been proposed in [O’Neill et al., 2005]. It is also
called post-UC problem [O’Neill et al., 2017]. After solving the UCED problem (2.1) to
find the least-cost dispatch (QUCED

k , γUCED
k ∀k), the INTEGER PROGRAMMING
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MODEL (IP) (2.5) is considered:

min
Qk,γk

∑
k

(CF
k γk + CM

k Qk) (2.5a)

s.t.
∑

k

Qk = d λIP (2.5b)

Q
k
γk ≤ Qk ≤ Qkγk k ∈ K (2.5c)

γk = γUCED
k k ∈ K (µIP

k ) (2.5d)

γk ≥ 0 k ∈ K (2.5e)

(2.5) is a LP obtained from the UCED problem by adding constraints (2.5d) 2 that
assign the optimal statuses γUCED

k to status variables γk, redefined as real non-negative.
The optimal value of the dual variable λIP associated with the supply-demand balance
constraint (2.5b) is the electricity (IP) price while the optimal value of the dual variable
µIP

k is the commitment price of the generator k; λIP measures the rate of change of
the objective function associated with the balance constraint, keeping the commitment
decisions fixed, while µIP

k measures the rate of change of the objective function associated
with the integrality nature of the commitment, and therefore, the impact of moving away
from the original 0-1 decision [Pablo Luna et al., 2021]. The revenues for electricity and
commitment are given by

πUCED
k = λIPQUCED

k + µIP
k γUCED

k − (CF
k γ

UCED
k + CM

k QUCED
k )

The market-based payment for generator k is expressed as λIPQUCED
k + µIP

k γUCED
k . It

is important to note that the term µIP
k γUCED

k is only defined when γUCED
k = 1. It rep-

resents a payment received by generator k if µIP
k > 0 or a payment made by generator

k to the auctioneer if µIP
k < 0. Positive values compensate for economic losses, while

negative values nullify infra-marginal profits, thus penalizing efficiency [Van Vyve, 2011]
and undermining the financing of capital costs. Consequently, πUCED

k = 0 for each gener-
ator k, and MWP are not required. By nullifying losses, IP can incentivize participants
to bid untruthfully, knowing that their stated costs are guaranteed to be reimbursed (as
in the pay-as-bid auction) [Byers and Hug, 2023]. Positive values render the generator
indifferent to being committed or not, while negative values can function as a penalty to

2The sign of these equalities has to be chosen such that the associated dual variables assume the right sign to
nullify πUCED

k .
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disincentive the startup of the plant. Consequently, the maximum profit πP M
k = 0 for

each generator k and side payments are not necessary to support the least-cost solution.
In other words, market-based incentive compatibility exists 3. The positive payments are
usually assumed to be distributed among consumers on a pro-rata basis, treating con-
sumers unfairly compared to generators, while the negative payments are only potential
to discourage the generators from deviating from the least-cost solution.

IP replicates the least-cost dispatch (QIP
k = QUCED

k ∀k) and the electricity prices are
volatile, being equal to the one determined by R (λIP = λR). Given the existence of
distinct commitment prices for different generators, it follows that IP is discriminatory.

To tackle the challenges associated with IP, two adjusted approaches have been in-
troduced. The Integer Programming Positive (IP+) approach proposed in [O’Neill
et al., 2005] aims to address the issue of nullifying infra-marginal profit. The electricity
price remains the dual variable λIP , while for the commitment price, µIP +

k = max(0, µIP
k )

is considered. As a result, generators receive payments for their commitment to cover
economic losses but retain infra-marginal profits. By assuming only non-negative values,
commitment prices either make the generator indifferent to being committed when it
suffers losses or increase the maximum profit the generator can achieve, thereby creating
LOC. The Modified Integer Programming (modIP) proposed in [Bjørndal and Jörn-
sten, 2008] was designed to mitigate both volatility and discriminatory concerns. Viewing
the IP problem (2.5) as a Benders sub-problem, it adds extra constraints that fixe some
continuous variables, referred to as price-complicating variables, at their optimal values,
so that prices are piece-wise constant and non-decreasing in d. In addition to the elec-
tricity price, generators receive a non-discriminatory fixed payment determined on the
basis of the dual variables associated with the additional constraints. For more details,
see the electronic companion to [Liberopoulos and Andrianesis, 2016].

The approaches described in the paragraphs below address other problems related to
IP or its variants. The pricing schemes CH (2.6),(2.11), have been suggested to address
the significant side payments that may be necessary with the IP+ and modIP approaches.
The objective of these schemes is to determine prices, among all possible uniform ones,
that minimize the side payments needed to support the least-cost solution. The GU
approach (2.25) redistributes the cost of reaching profit optimality: both generators and
consumers can be charged to provide subsidies to others. The sum of these transfers

3Only in the absence of scarcity [Byers and Hug, 2023]; a price equal to the VoLL may create LOC.
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is null, ensuring the system operator’s neutrality, i.e., the condition for which the total
payment collected from the consumers is exactly equal to the total remuneration paid to
the generators. The P-D approach (2.26) and various market power mitigation measures,
including deviation penalties, can be used to solve the problem of bid non-truthfulness.

2.1.1.3 Convex Hull

For small-scale examples (single time interval, single node), the application of a graphical

Convex Hull method is suitable to help intuition on this approach. Starting with the
UCED problem (2.1), this method graphically represents the value function UCED(d),
which we call ψ, and its convex hull, conv ψ. In this context, the conv ψ is defined
as the point-wise greatest convex function majorized by the value function ψ. It can
be graphically obtained by connecting the extreme points of the non-convex steps of
UCED(d) with straight lines, as illustrated in Fig. 2.3. The slope of the convex hull of

Figure 2.3: Value function UCED(d) (black lines) and its convex hull, as a function of the
load d. The convex hull is represented by the black line for 1 ≤ d ≤ 10, the blue and the orange
lines for 10 ≤ d ≤ 36, with slopes 9.667 and 10 respectively, and the black line for 36 ≤ d ≤ 40.

UCED(d) at the demand d is the electricity (CH) price.
The mathematical counterpart to the graphical approach, suitable for more realistic

and complex instances, is known as Convex Hull – partial Lagrangian (or minimum uplift)
and was introduced by [Gribik et al., 2007]. The CONVEX HULL (CH) PRICING
can be defined as the max-min problem (2.6)

L∗ = max
λ
L̂(λ) = max

λ

[
min

Qk,γk∈Xk

L(Qk, γk, λ)
]

(2.6)

obtained from the UCED problem (2.1). In order to solve (2.6), the partial Lagrangian
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is preliminarily defined as in (2.7)

L(Qk, γk, λ) =
∑

k

(CF
k γk + CM

k Qk) + λ(d−
∑

k

Qk) (2.7)

by relaxing the equality balance constraint (2.1b) as a penalty function while introduc-
ing the - unrestricted in sign - Lagrange multiplier λ, then proceeds accordingly with
Algorithm (1).

Algorithm 1: Convex Hull Pricing
Data: An instance of the clearing problem
Result: λ⋆

1 begin
2 Choose λ
3 repeat
4 L̂(λ)← minimizing L(Qk, γk, λ) over Qk, γk ∈ Xk

5 λ← UpdateLamba(λ)
6 until λ = λ⋆ s.t. L̂(λ) = maxλ L̂(λ)

The feasible set Xk is defined by the local constraints for each generator k, depending
on the complexity required, e.g. as the ones described in [Bacci et al., 2023] where it
is also proposed a specialized algorithm for solving the so-called 1UC, i.e. minimizing
L(Qk, γk, λ).

The optimal value of the outer variable λ is the electricity (CH) price:

λCH = argmaxλL̂(λ)

. It partially incorporates non-convex cost components, thereby mitigating economic
losses. It also reflects part of the marginal cost of the generators dispatched at the
technical minimum. In [Pablo Luna et al., 2021] the authors show that the CH problem,
as a byproduct, minimizes the difference between the preferred profits ∑

k π
P M
k (λ) and

the total payment λd, thus minimizing the LOC. In fact, (2.6) is equivalent to (2.8)

max
λ

λd+
∑

k

min
Qk,γk∈Xk

Lk(Qk, γk, λ) (2.8)

as the Lagrangian function L(Qk, γk, λ) is separable into Lk = CF
k γk + CM

k Qk − λQk.
Problem (2.8) is in turn equivalent to (2.9)

min
λ

∑
k

πP M
k (λ)− λd (2.9)
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as πP M
k = maxQk,γk∈Xk

λQk−CF
k γk−CM

k Qk. Due to the balance constraint (2.1b) in the
UCED problem, it follows that d = ∑

k Q
UCED
k . Therefore, (2.9) becomes (2.10)

min
λ

∑
k

πP M
k (λ)− λ

∑
k

QUCED
k (2.10)

Adding the constant ∑
k(CF

k γ
UCED
k − CM

k QUCED
k ) does not change the optimal value of

λ:

min
λ

∑
k

πP M
k (λ)− [λ

∑
k

QUCED
k −

∑
k

(CF
k γ

UCED
k − CM

k QUCED
k )] =

= min
λ

∑
k

πP M
k (λ)−

∑
k

πUCED
k (λ)

= min
λ

∑
k

LOCk(λ)

Consequently, λCH minimizes the LOC, thereby necessitating minimal side payments to
support the least-cost dispatch.

Obtaining optimal values for λCH could be computationally expensive as the CH
problem requires solving a sub-problem for each generator and at the same time optimiz-
ing over a non-differentiable convex function w.r.t λCH , e.g. [Frangioni, 2005], [Borghetti
et al., 2003], possibly requiring specialized approaches such as bundle methods, e.g. [Fran-
gioni, 2002]. In [Andrianesis et al., 2022] it is proposed a Dantzig-Wolfe decomposition
approach. To deal with computational problems, the CHPri (2.11), PD (2.12), and LD
(2.13) approaches have been proposed, and are described in the following sections.

2.1.1.4 Convex Hull Primal

In [Hua and Baldick, 2017] the authors propose a polynomially-solvable primal formula-
tion for the Lagrangian dual problem for the CH problem, called Convex Hull Primal. It
is also referred to as Tight Dispatchable in [Eldridge et al., 2020].

The CONVEX HULL PRIMAL (CHPri) problem is a tight formulation of the
UCED problem (2.1) obtained by finding for each generator k the convex envelope of the
individual cost function Ck = CF

k γk + CM
k Qk and the convex hull of the feasible set Xk,

defined by local constraints. Therefore, instead of finding the convex envelope of the value
function (system cost function), the approach performs a convexification on a resource-
specific level. The convex hull conv(Xk) is represented by all convex combinations of
points in Xk and it is given by the intersection of all convex sets that contain Xk, while
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the convex envelope is the largest convex function on conv(Xk) that is an under-estimator
of Ck on Xk. The reformulation becomes relevant when start-up/shut-down capabilities
and min up/down times are considered. Furthermore, with a single marginal cost per
generator, the convex envelope has the same functional form as Ck, since the latter
is affine, and only the convex hull needs to be determined. Applying the convex hull
description of the UCED problem of [Gentile et al., 2017], the CHPri problem is as in
(2.11)

min
Qk,γk

∑
k

[CF
k γk + CM

k (Q
k
γk +Qk)] (2.11a)

s.t.
∑

k

(Q
k
γk +Qk) = d λCHP (2.11b)

0 ≤ Qk ≤ (Qk −Qk
)γk k ∈ K (2.11c)

0 ≤ γk ≤ 1 k ∈ K (2.11d)

In (2.11), Qk represents the power production above the generator’s minimum output
Q

k
. The optimal value of dual variable λCHP associated with the supply-demand balance

constraint (2.11b) is the electricity (CHPri) price.

The CHPri method does not replicate the least-cost dispatch (Q
k
γCHP

k + QCHP
k ̸=

QUCED
k , γCHP

k ̸= γUCED
k ). The price λCHP can, to some extent, reflect fixed costs and/or

the costs of operating at the minimum output of any generator, as γk is a continuous
variable defined between 0 and 1. [Byers and Eldridge, 2022] shows that after strategic
bidding the cost to consumers is higher with R pricing (2.4) than with CH pricing, which
is more expensive without strategic bidding. Despite its potential benefits, also the
CHPri approach can present computational difficulties and has several counter-intuitive
economic properties [Mays et al., 2021].

2.1.1.5 Partial Dispatchable

The approach Partial Dispatchable is illustrated in [Eldridge et al., 2020] and it is also
referred to by the names Restricted Convex Hull in [Eldridge et al., 2018] and Partial

Approximate Convex Hull in [Byers and Hug, 2023].

After solving the UCED problem (2.1) to find the least-cost dispatch (QUCED
k , γUCED

k ∀k),
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the PARTIAL DISPATCHABLE MODEL (PD) (2.12) is considered:

min
Qk,γk

∑
k

(CF
k γk + CM

k Qk) (2.12a)

s.t.
∑

k

Qk = d λP D (2.12b)

Q
k
γk ≤ Qk ≤ Qkγk k ∈ K (2.12c)

0 ≤ γk ≤ γUCED
k k ∈ K (2.12d)

(2.12) is the LP obtained from the UCED problem by adding constraints (2.12d) that
limit the status variables γk, re-defined as real non-negative, to take values between 0
and the optimal statuses γUCED

k . The optimal value of dual variable λP D associated with
the supply-demand balance constraint (2.12b) is the electricity (PD) price.

PD does not replicate the least-cost dispatch (QP D
k ̸= QUCED

k , γP D
k ̸= γUCED

k ). The
price λP D partially reflects fixed costs and/or the costs associated with operating at the
minimum output. Prices are more stable compared to those obtained with the R approach
(2.4) but still exhibit non-monotonic increases with demand.

2.1.1.6 Loose Dispatchable

The Loose Dispatchable approach is illustrated in [Eldridge et al., 2020] and it is equivalent
to the approach called Dispatchable in [Gribik et al., 2007] or Integer relaxation in [Herrero
et al., 2020]. It is also referred to as Approximated Convex Hull Pricing in [Eldridge et al.,
2018] because, with a single marginal cost per unit and in the absence of binding ramping
constraints, it is equivalent to the CH (2.6) and CHP (2.11) approaches. The LOOSE

DISPATCHABLE MODEL (LD) (2.13)

min
Qk,γk

∑
k

(CF
k γk + CM

k Qk) (2.13a)

s.t.
∑

k

Qk = d λLD (2.13b)

Q
k
γk ≤ Qk ≤ Qkγk k ∈ K (2.13c)

0 ≤ γk ≤ 1 k ∈ K (2.13d)

is the LP problem obtained from the UCED problem by adding constraints (2.13d) that
limit the status variables γk, re-defined as real non-negative, to take values between 0 and
1. The optimal value of dual variable λLD associated with the supply-demand balance
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constraint (2.13b) is the electricity (LD) price and it represents the average cost at full
capacity from the most expensive generator engaged in the LD solution. In fact, (2.13)
can be equivalently formulated as the problem (2.14), where C̄M

k = CM
k + CF

k

Qk
:

min
Qk,γk

∑
k

C̄M
k Qk (2.14a)

s.t.
∑

k

Qk = d λP D (2.14b)

Q
k
γk ≤ Qk ≤ Qkγk k ∈ K (2.14c)

0 ≤ γk ≤ 1 k ∈ K (2.14d)

LD does not replicate the least-cost dispatch (QLD
k ̸= QUCED

k , γLD
k ̸= γUCED

k ). Prices
λLD partially reflect fixed costs and/or the costs associated with operating at the mini-
mum output and are increasing in demand.

2.1.1.7 Relaxed Minimum Operation

The approach Relaxed Minimum Operation is illustrated in [Byers and Hug, 2023] and
it is called Relaxed LMP in [Mays et al., 2021] or EcoMin relaxation in [Herrero et al.,
2020].

After solving the UCED problem (2.1) to find the least-cost dispatch (QUCED
k , γUCED

k ∀k),
the RELAXED MINIMUM OPERATION MODEL (RQmin) (2.15) is considered:

min
Qk

∑
k

(CF
k γ

UCED
k + CM

k Qk) (2.15a)

s.t.
∑

k

Qk = d λRQm (2.15b)

0 ≤ Qk ≤ Qkγ
UCED
k k ∈ K (2.15c)

Model (2.15) is the LP obtained from the UCED problem by replacing γk with the optimal
states γUCED

k and relaxing the minimum operating level Q
k

of the online generators or a
subset of generators. When the relaxation involves only fast-start generators, the pricing
scheme is called Fast-start pricing. The optimal value of the dual variable λRQm asso-
ciated with the supply-demand balance constraint (2.15b) is the electricity (RQmin)

price. This price does not increase monotonically with demand and does not incorporate
fixed costs; instead, it reflects the marginal costs of online generators operating at their
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minimum production levels (according to UCED), even if the least-cost dispatch is not
replicated. Given that the price can be established by generators dispatched at the tech-
nical minimum, RQmin may create an incentive for other generators, whose production
has been reduced to meet the minimum requirements, to increase their output. These
generators may adjust their declared minimum power output to their full capacity to
"chase" the lost opportunity, causing the system operator to fail in achieving the most
efficient commitment in terms of total cost dispatch [Coutu and White, 2014b].

The following pricing schemes (2.16) and (2.26) have been introduced with the objec-
tive of achieving short-term revenue adequacy. It’s worth noting, however, that some
of these schemes deviate from the principle (3) of simplicity in understanding. Instead of
considering the electricity price as the dual variable of the balance constraint, the RAPA
(2.20), DPA (2.21), and LC (2.23) approaches consider a price target or the price as a
primal variable that must be close to the target.

2.1.1.8 Average Incremental Cost

The approach Average Incremental Cost is illustrated in [Hua and Baldick, 2017], [Liberopou-
los and Andrianesis, 2016].

After solving the UCED problem (2.1) to find the least-cost dispatch (QUCED
k , γUCED

k ∀k),
the AVERAGE INCREMENTAL COST MODEL (AIC) (2.16) is considered:

min
Qk,γk

∑
k

(C̃F
k γk + CM

k Qk) (2.16a)

s.t.
∑

k

Qk = d λAIC (2.16b)

Q
k
γk ≤ Qk ≤ Qkγk k ∈ K (2.16c)

0 ≤ γk ≤ γUCED
k k ∈ K (2.16d)

(2.16) is the LP obtained from the UCED problem by adding constraints (2.16d) that
limit the status variables γk, re-defined as non-negative, to take values between 0 and the
optimal statuses γUCED

k and by amortizing the fixed cost CF
k (of online generators) over

the optimal production QUCED
k : C̃F

k = CF
k Qk

QUCED
k

. This reflects a quantity discount obtained
when the generators with fixed costs are dispatched at a higher level. The optimal value
of the dual variable λAIC associated with the supply-demand balance constraint (2.16b)
is the electricity (AIC) price, which can be equivalently determined by the problem
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(2.17) [Liberopoulos and Andrianesis, 2016]:

min
λAIC

λAIC (2.17a)

s.t. λAICQUCED
k ≥ CF

k γ
UCED
k + CM

k QUCED
k k ∈ K (2.17b)

For each (online) generator k, the revenue adequacy constraint (2.17b) ensures that
the market-based payment λAICQUCED

k is sufficient to cover marginal and fixed costs.
(2.17) is in turn equivalent to (2.18)

λAIC ≥ CF
k γ

UCED
k + CM

k QUCED
k

QUCED
k

k ∈ K (2.18)

Therefore, the price λAIC represents both the maximum average cost of the dispatched
generators (γUCED

k = 1) and the smallest revenue-adequate price (in the short term)
under the optimal allocation QUCED

k . The uniform prices λAIC are higher than the prices
obtained with the previous methods to avoid economic losses. The MWP are embedded in
the market-based payments received by all dispatched units, increasing the total payment
for the consumers; by reflecting the fixed cost of one generator, the price increases the
profits of other generators, leading to a potentially high LOC.

2.1.1.9 Semi-Lagrangian Relaxation

The Semi-Lagrangian relaxation approach has been proposed in [Araoz and Jörnsten,
2011]. The SEMI LAGRANGIAN RELAXATION (SLR) is the min model (2.19)
obtained from the UCED problem (2.1) by semi-relaxing the equality balance constraint
(2.1b):

L̂(λ) = min
Qk,γk∈Xk

L(Qk, γk, λ) = (2.19a)

= min
Qk,γk∈Xk

∑
k

(CF
k γk + CM

k Qk) + λ(d−
∑

k

Qk) (2.19b)

s.t.
∑

k

Qk ≤ d (2.19c)

Considering problem (2.19), the partial Lagrangian with respect to the balance con-
straint, now expressed in the form of the inequality (2.19c), has been formed (2.19b).
The Lagrangian multiplier λ prices in the objective function (2.19b) the amount of de-
mand not satisfied: a sufficiently large value of λ ensures that the optimal solution of
SLR respects the original balance equality constraint, since the term (d−∑

k Qk) in the
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objective function can only take non-negative values, it can only assume a null value in
order to minimize the objective function. This optimal value for λ, i.e., the electricity

(SLR) price λSLR, represents the smallest revenue-adequate price (in the short term) for
self-interested suppliers [Liberopoulos and Andrianesis, 2016]. With respect to CH (2.6),
the SLR problem (2.19) is not separable as the balance coupling constraint is maintained
in the inequality form, creating a possible drawback for applying the pricing to large sys-
tems since the approach needs to solve a certain number of these problems [Pablo Luna
et al., 2021]. The SLR problem is solved iteratively through the Algorithm (2). As for the

Algorithm 2: Semi-Lagrangian Relaxation
Data: An instance of the clearing problem
Result: λ⋆

1 begin
2 UCED(d)← Solve (2.1) // find the minimum cost UCED(d)
3 Choose initial (feasible) λ = λ1

4 repeat
5 L̂(λ)← Solve (2.19)
6 λ← IncreaseLambda(λ)
7 until λ = λ⋆ s.t. L̂(λ⋆) = UCED(d)

initial price λ1, one of the non-revenue-adequate prices obtained with the previous ap-
proaches can be considered; in [Araoz and Jörnsten, 2011] it is suggested using λ1 = λLD,
where λLD is the price obtained with (2.13).

Similar to the AIC approach (2.16), the uniform price λSLR is received by all dis-
patched generators; the effect on consumer payments could be even worse, since λSLR ≥ λAIC .

2.1.1.10 Revenue Adequate Price Adders

The same results of the SLR approach (2.1.1.9) can be obtained by implementing the
approach Revenue Adequate Price Adders proposed in [Byers and Hug, 2023]. Again,
after solving the UCED problem (2.1) to find the least-cost UC (QUCED

k , γUCED
k ∀k), the

REVENUE ADEQUATE PRICE ADDERS MODEL (RAPA) (2.20) is consid-
ered:

min
ε

∑
k

εQUCED
k (2.20a)

s.t. (λ∗ + ε)QUCED
k ≥ CF

k γ
UCED
k + CM

k QUCED
k k ∈ K (2.20b)

ε ≥ 0 k ∈ K (2.20c)
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Problem (2.20) is a LP and determines the optimal values for the price adder εRAP A

so as to satisfy (2.20b), which ensures revenue adequacy (in the short term) for each
generator k, and to minimize the total additional payments ∑

k εQUCED
k . As the base

price λ∗, one of the non-revenue-adequate prices obtained with the previous approaches
can be considered.

2.1.1.11 Dual Pricing Algorithm

The Dual Pricing Algorithm was proposed in [O’Neill et al., 2017] and later extended
in [Hytowitz, 2018]; while both works show a price-responsive demand, [Pablo Luna
et al., 2021] illustrates its adaptation to the inelastic demand case.

After solving the UCED problem (2.1) to find the least-cost dispatch (QUCED
k , γUCED

k )
for each generator k, the DUAL PRICING ALGORITHM MODEL (DPA) reads
as in (2.21):

min
λ,Uk

∑
k

Uk + a
|λ− λIP |
λIP

(2.21a)

s.t. λQUCED
k + Uk ≥ CF

k γ
UCED
k + CM

k QUCED
k k ∈ K (2.21b)

λ ≥ 0 (2.21c)

Uk ≥ 0 k ∈ K (2.21d)

Model (2.21) is a nonlinear problem (NLP) that determines optimal values for elec-

tricity (DPA) price λDP A, which is defined as a primal variable, plus discriminatory
compensations UDP A

k ,∀k ∈ K. The objective is to satisfy (2.21b), which ensures rev-
enue adequacy (in the short term) for each generator k, and to minimize the sum of the
total compensation ∑

k Uk and the distance to the target price, which is assumed to be
the price λIP obtained with (2.5). The scalar a is chosen by the modeler and balances
the trade-off between proximity to the target price λIP (market operator’s perspective)
and direct payments only (generators’ perspective). The absolute value in the objective
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function can be linearized by introducing an auxiliary variable x as in (2.22):

min
λ,Uk,x

∑
k

Uk + ax (2.22a)

s.t. λQUCED
k + Uk ≥ CF

k γ
UCED
k + CM

k QUCED
k k ∈ K (2.22b)

λ ≥ 0 (2.22c)

Uk ≥ 0 k ∈ K (2.22d)

x ≥ λ− λIP

λIP
(2.22e)

x ≥ λIP − λ
λIP

(2.22f)

In contrast to the IP approach (2.5), where market-based payments are expressed as
λIPQUCED

k +µIP
k γUCED

k , the compensation UDP A
k introduced by (2.21) does not depend on

the status of generator k. This means that generators might be motivated to deviate from
the least-cost solution since they can receive compensation even if they do not operate
the plant.

2.1.1.12 Limited Compensation

To limit the compensations received by generators, the Limited Compensation approach
has been proposed by [Pablo Luna et al., 2021].

After solving the UCED problem (2.1) to find the least-cost dispatch (QUCED
k , γUCED

k ∀k),
the LIMITED COMPENSATION MODEL (LC) (2.23) is considered:

min
λ,Uk,sk

1
2∥λ− λ

∗∥2
2 (2.23a)

s.t. Uk ≤ CF
k γ

UCED
k sk k ∈ K (2.23b)

λQUCED
k + Uk ≥ CF

k γ
UCED
k + CM

k QUCED
k k ∈ K (2.23c)

λQUCED
k + Uk ≤ CF

k γ
UCED
k + CM

k QUCED
k +M(1− sk) k ∈ K (2.23d)∑

k

Uk ≤ β

[
λ

∑
k

QUCED
k −

∑
k

(CF
k γ

UCED
k + CM

k QUCED
k )

]
(2.23e)

λ ≥ 0 (2.23f)

Uk ≥ 0 k ∈ K (2.23g)

sk ∈ {0, 1} k ∈ K (2.23h)

Model (2.23) is a mixed-integer quadratic problem (MIQP) that determines optimal
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values for electricity (LC) price λLC and discriminatory compensation ULC
k ,∀k ∈ K.

In the objective function (2.23a), the squared Euclidean distance to the target price λ∗

is minimized to stabilize the output and avoid price volatility. Different constraints are
considered: (2.23b) limits the compensation to cover fixed costs only, while (2.23c) ensures
the revenue adequacy (in the short term) for each generator k. The constrain (2.23d)
avoids overcompensation: if sk = 1, the total payment λQUCED

k + Uk can at most cover
the costs; if sk = 0, then Uk = 0 due to (2.23b) and the constraint is redundant since M
is a large positive constant. Finally, (2.23e) constrains the total compensation ∑

k Uk not
to exceed a fraction β of the market profit: when binding, it transfers part of the side
payments to the electricity price λ. The modeler chooses the target price λ∗ from the
non-revenue-adequate prices obtained by the approaches presented above and according
to the desirable properties he wishes to maintain. Additionally, he selects the scalar β to
limit the total compensation. The compensation ULC

k is always zero for generators with
null CF

k due to (2.23b). Furthermore, the payments cover the marginal costs of plants
operating at minimum output thanks to (2.23c). The additional constraint ∑

k Uk = 0
can be added but it can result in large increases of the price λLC .

A simplified version of (2.23) has been proposed in [Byers and Hug, 2023]: instead of
the binary variables sk, (2.24) introduces a price adder ε on top of the price λ∗, which is
no longer optimized (target price).

min
Uk,ε

∑
k

(εQUCED
k + Uk) (2.24a)

s.t. (λ∗ + ε)QUCED
k + Uk ≥ CF

k γ
UCED
k + CM

k QUCED
k k ∈ K (2.24b)∑

k

Uk ≤ β
∑

k

(λ∗ + ε)QUCED
k (2.24c)

Uk ≥ 0 k ∈ K (2.24d)

ε ≥ 0 (2.24e)

2.1.1.13 Generalized Uplift

The Generalized Uplift is illustrated in [Bouffard and Galiana, 2005]. The name "general-
ized" refers to a discriminatory payment that is given to all the generators in the market,
whether they are scheduled on or off, to enable them not only to cover losses but to make
the maximum profit at the least-cost dispatch.

After solving the UCED problem (2.1) to find the least-cost dispatch (QUCED
k , γUCED

k )
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for each generator k, the GENERALIZED UPLIFT (GU) (2.25) is considered:

min
λ,∆CF

k
,∆CM

k

∑
k

[
(∆CF

k γ
UCED
k )2 + (∆CM

k QUCED
k )2

]
(2.25a)

s.t.
∑

k

(∆CF
k γ

UCED
k + ∆CM

k QUCED
k ) = 0 (2.25b)

(λ,∆CF
k ,∆CM

k ) ∈ Ω(QUCED
k , γUCED

k ) k ∈ K (2.25c)

Model (2.25) is a quadratic problem (QP) that determines optimal values for the
electricity (GU) price λGU and the uplift function value Uk = ∆CF

k γ
UCED
k +

∆CM
k QUCED

k , ∀k ∈ K.

In the objective function (2.25a) the squared norm of the uplift components ∆CF
k (the

component associated with the ON state) and ∆CM
k (the component associated with the

production) is minimized. Constraint (2.25b) ensures the system operator’s neutrality
through zero-sum transfer between generators, while constraint (2.25c) guarantees that
the least-cost solution (QUCED

k , γUCED
k ) is the profit-maximizing solution, so that gener-

ators do not incur in LOC by following it. In fact, Ω(QUCED
k , γUCED

k ) is the set defining
the profit-optimality conditions for the generator k:

Ω(QUCED
k , γUCED

k ) =

= {(λ,∆CF
k ,∆CM

k ) : πk(Qk, γk) ≤ πk(QUCED
k , γUCED

k )− ε,∀(Qk, γk) ∈ Xk}

ε is a small positive scalar used to guarantee that the least-cost solution (QUCED
k , γUCED

k )
leads to the maximum profit in the case of multiple profit-maximizing schedules. Addi-
tional constraints could be added, such as those on the rules for sharing the cost to
achieve null LOC between generators and consumers. The sharing would be justified
by the incentives for generators not to try to artificially cause sub-optimality by their
bidding strategies.

The sets Ω(QUCED
k , γUCED

k ) are non-convex and impossible to express explicitly due
to the infinite possible feasible dispatches (Qk, γk). For single-time period cases, [Motto
and Galiana, 2002] and [Galiana et al., 2003] reformulate each non-convex set into two
equivalent linear constraints. However, for multi-period models deriving them is imprac-
tical as the number of necessary conditions increases exponentially with the number of
time periods. In addressing this challenge, [Bouffard and Galiana, 2005] proposed an
iterative method exemplified in Algorithm (3) that sequentially limits the feasible set, by
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adding user cuts, until the desired conditions are met.

Algorithm 3: Generalized Uplift
Data: An instance of the clearing problem
Result: λ⋆,∆CF ⋆

k , ∆CM⋆
k

1 begin
2 Set i = 0; Set Ω[0]

k = {∅}; Set ε

3 Set ∆C
F [0]
k = 0

4 Set ∆C
M [0]
k = 0

5 (QUCED
k , γUCED

k )← Solve (2.1) // find the least-cost dispatch
6 λR ← Solve (2.4) // find the restricted price
7

8 Set λ[0] = λR

9 for i = 1 to N do
10 ∀k : (Q[i+1]

k , γ
[i+1]
k )← Solve (2.2) // find the profit-maximizing dispatch

considering price λ[i] and additional compensations ∆C
F [i]
k , ∆C

M [i]
k

11 if (Q[i+1]
k , γ

[i+1]
k ) ̸= (QUCED

k , γUCED
k ) then

12 Ω[i+1]
k = Ω[i]

k ∩ {(λ, ∆CF
k , ∆CM

k ) : πk(Q[i+1]
k , γ

[i+1]
k ) ≤ πk(QUCED

k , γUCED
k )− ε

// AddCut to Ω[i+1]
k

13 if Ω[i+1]
k = Ω[i]

k ∀k then
14 λ = λ⋆

15 ∆CF ⋆
k = ∆C

F [i]
k

16 ∆CM⋆
k = ∆C

M [i]
k

17 STOP // Alg terminate

18 else

19 λ[i+1], ∆C
F [i+1]
k , ∆C

M [i+1]
k ← Solve (2.25) // with Ω[i+1]

k in (2.25c)
20 i← i + 1

2.1.1.14 Primal-Dual

The Primal-Dual approach has been proposed in [Ruiz et al., 2012]. The PRIMAL-

DUAL (2.26) is the mixed-integer bilinear problem (MIBP) obtained by following the
steps (1)-(5):

1. considering as the primal problem the one obtained from the UCED problem (2.1) by
adding constraints 0 ≤ γk ≤ 1,∀k ∈ K that limit the status variables γk, redefined
as real non-negative, to take values between 0 and 1;

2. deriving the dual problem of (1);

3. combining primal (1) and dual (2) to formulate a new problem that minimizes the
duality gap DG (2.26a) and is subject to both primal (2.26b)-(2.26d) and dual
(2.26e)-(2.26f) constraints;
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4. adding back integrality conditions γk ∈ {0, 1},∀k ∈ K (2.26i);

5. introducing revenue adequacy constraints (2.26j) that ensure that each generator k
achieves non-negative profit in the short term.

min
Qk,γk,λ,µ

k
,µk,ρk

DG =
∑

k

(CF
k γk + CM

k Qk)− (dλ−
∑

k

ρk) (2.26a)

s.t. d−
∑

k

Qk = 0 (2.26b)

Q
k
γk −Qk ≤ 0 k ∈ K (2.26c)

Qk −Qkγk ≤ 0 k ∈ K (2.26d)

CM
k − λ− µk

+ µk ≥ 0 k ∈ K (2.26e)

CF
k +Q

k
µ

k
−Qkµk + ρk ≥ 0 k ∈ K (2.26f)

µ
k
, µk, ρk ≥ 0 k ∈ K (2.26g)

λ free (2.26h)

γk ∈ {0, 1} k ∈ K (2.26i)

λQk ≥ CF
k γk + CM

k Qk k ∈ K (2.26j)

In addition to the electricity (P-D) price λP −D, (2.26) determines the optimal
values for both statuses γP −D

k and productions QP −D
k , for each generator k ∈ K.

The AIC approach (2.16) determines the minimum revenue-adequate price (in the
short term) under the least-cost allocation (γUCED

k , QUCED
k ), whereas the P-D approach

ensures revenue adequacy under the dispatch order (γP −D
k , QP −D

k ), that may deviate from
the least-cost dispatch. For example, P-D may transfer a part of the dispatched quantities
and the related payments from the infra-marginal suppliers to the marginal supplier
(cross-subsidy). This deviation results in a higher cost for the system: P-D trades cost
efficiency for price efficiency, as long as this trade-off reduces the duality gap [Liberopoulos
and Andrianesis, 2016]. The uniform revenue-adequate price λP −D affects all generators
dispatched, but the effect on consumer payments is smaller (λP −D ≤ λAIC). The profit
πP −D

k is always non-negative thanks to (2.26j), and MWP are not needed. The LOC
required to support the P-D dispatch solution can be defined as LOCP −D

k = πP M
k −πP −D

k .
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With this definition, the equality (2.27) holds

∑
k

LOCP −D
k = DG (2.27)

Therefore, by minimizing the duality gap, (2.26) minimizes the LOC associated with
the new dispatch order. The CH (2.6) remains the approach that minimizes the LOC
associated with the least-cost dispatch.

A slightly different version of (2.26) has been proposed in [Guo et al., 2022]: in the
objective function (2.28), instead of considering only the duality gap, both the total cost
and the duality gap are minimized, with a regularization term r acting as a tunable
parameter between the two objectives.

min
Qk,γk,λ,µ

k
,µk,ρk

∑
k

(CF
k γk + CM

k Qk) + rDG (2.28)

The scalar r is chosen by the modeler and balances the trade-off between minimizing
system costs and the deviation from the competitive equilibrium.

Unlike the IP approach (2.5), the P-D approach may discourage participants from
adopting strategic pay-as-bid , as there is no straightforward relationship between the
electricity price and the "declared" costs. However, this could lead to problems of price
interpretability.

Tab. 2.3 and Tab. 2.4 summarize the main characteristics of the pricing schemes
previously described.

2.1.2 Bidding behavior on the Italian day-ahead market

In general EU electricity markets adopt a different approach in dealing with non-convexities,
with the goal of facilitating trading and maximizing transparency (2) [Herrero et al.,
2020]. The basic bidding format is the (quantity-price) pairs. However, in some Euro-
pean countries, additional conditions can then be imposed, as the ones illustrated in Tab.
2.5. For example, in the Iberian market, fixed costs are not taken into account in the
determination of the least-cost dispatch, but if the minimum income conditions (MIC)

are not met, the order is not accepted.

The Italian day-ahead market (MGP) considers a mechanism based on simple single-
hour bids that enables producers to submit proposals containing only the indication of
the offered amount and the requested price. According to [GME, 2016], [GME, 2019],
each generator can submit a maximum of 8 non-decreasing in price bids per hour: up to
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R Traditional model used to compute electricity prices in US

IP Nullify LOC (The modified versions present LOC>0 but allow infra-marginal gen-
erators to keep their profits or determine non-discriminatory and non-volatile pay-
ments)

CH Minimize LOC

CHPri Primal formulation of CH, computationally more tractable

PD Reflect fixed costs (partially) and marginal costs of generators dispatched at the
minimum level

LD Partially reflect both the fixed and the marginal costs of generators dispatched at
the minimum level, without depending on the UCED solution

RQmin Reflect the marginal costs of generators dispatched at the minimum level

AIC Find the smallest revenue-adequate price under the least-cost dispatch

SLR Find the smallest revenue-adequate price for the self-interested generators

RAPA Find a non-discriminatory adder on price to make the least-cost solution revenue-
adequate

DPA Trade-off between deviation from the IP price and minimization of the discrimina-
tory compensations

LC Limit the discriminatory compensations

GU Ensure revenue neutrality for the system operator and zero LOC for generators

P-D Find both dispatch and revenue-adequate price; the dispatch differs from the least-
cost dispatch. Trade-off between cost minimization and competitive equilibrium

Table 2.3: Main goal for each pricing scheme

four supply offers and up to four injection programs related to bilateral contracts. The
latter are treated as supply offers to account for the corresponding power flow on the
transmission network between zones as defined by the MGP rules. The bidding curve of
generator k in hour t is therefore the non-decreasing step-wise linear function obtained
by representing quantity-price (Qk,t,s, Pk,t,s) pairs in non-decreasing order of price, where
s indicates the step. In Fig. 2.4, examples of bid curves with different numbers of steps
are illustrated. We will detail the mathematical formulation of the Italian MGP model
in (4.1.1).

The articulation of the bidding curve in steps enables the operator to adopt different
strategies in formulating bids for the available capacity of its generators. A portion of the
capacity, generally equal to the technical minimum or higher, either in cases where the
operator wishes to fulfill future or bilateral contracts or in the case of green energy that has
to be produced [Muñoz et al., 2013], can be offered at zero or at a reduced price (compared
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R IP CH, CHPri PD LD RQmin AIC SLR RAPA DPA LC GU P-D

1 Y Y N Y N Y Y Y Y Y Y Y N

2 Y Y N N N N N Y Y Y Y Y N

3 N Y P P P N Y Y Y Y Y Y Y

4 N Y P Y P Y Y Y Y Y Y Y Y

5 N Y N N N N N N N Y Y Y N

6 Y Y N P N Y Y Y P Y P Y P

7 > 0 0 min > 0 > 0 > 0 0 0 0 0 0 0 0*

8 > 0 0 min > 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0 0 min*

9 LP LP
max-min
MIP LP LP LP LP MIP LP NLP MIQP QP MIBP

Table 2.4: Main characteristics for each pricing scheme (N:no, Y:yes, P:partially).
1: UCED (2.1) dependent;
2: UCED dispatch reproduced by PRICING (For all pricing schemes except for P-D, the con-
sidered dispatch order is the least cost, even when the PRICING model does not reproduce it);
3: reflects fixed costs;
4: reflects marginal costs when generators are dispatched at the technical minimum;
5: discriminatory;
6: volatile;
7: MWP (If MWP=0, the price is revenue-adequate in the short term);
8: LOC;
9: class.
* only if the P-D dispatch order is considered.

Block orders Reject the bid if it is not totally accepted in a period of consecutive
hours

Minimum income Reject the bid if its daily remuneration does not cover a fixed cost (rep-
resenting, for example, the startup cost) and a variable cost

Load gradient Reject the bid if the difference between the energy in adjacent hours is
greater than a given value

Table 2.5: Complex bids in Europe

to the marginal cost of the plant) in order to increase the probability of the offer being
accepted. The generator is then paid the market clearing price (presumably higher than
the bid price) thanks to the uniform price auction mechanism (pay-as-cleared).

The operator can recover the fixed costs of the generator by offering a portion of its
capacity at a bidding price defined as the marginal cost plus an appropriate bid-up.

The peculiar configuration of the Italian electricity market, characterized by uniform
pricing, almost total rigid demand, and market segmentation into zones, together with
the operator’s diversified plant portfolio by zone and technology, may allow the operator
to influence the market price. In fact, the operator can determine an increase in the
clearing price by forcing a higher-cost generator to become marginal through two possible

42



2.1. Pricing schemes literature review

Figure 2.4: Examples of bidding curves with different numbers of steps, showing respectively
four and six offers on MGP for the specified generator, hour and day

strategies: inducing congestion between zones and withholding capacity.

The first strategy involves operating even at a loss in one zone in order to congest
the transmission lines and isolate the adjacent zone: the generator in the exporting zone
bids below its marginal cost to overproduce, forcing a more expensive generator to set
the price in the importing zone. The operator’s plants in the import zone enjoy a higher
price thanks to the network congestion created [Cazzola and Creatini, 2002], [Quick and
Carey, 2002].

The generation capacity withholding strategy, on the other hand, refers to the practice
of keeping available generation capacity from being competitively offered on the market
[García and Reitzes, 2007]. According to the EU Agency for the Cooperation of Energy
Regulators (ACER) [ACER, 2021b], the withholding can occur in two ways

1. economic withholding

2. physical withholding

depending on whether the limited production is determined (1) by offering a quantity at
an artificially high price, i.e., a price that does not reflect the marginal cost (including
opportunity cost) of the generator and is assumed to be higher than the clearing price,
or (2) by not offering the available generation capacity at any price.

The withholding of a significant amount of capacity on the day-ahead and intra-
day markets could also be explained by the operator’s desire to reserve the available
capacity for ancillary services markets, which may be more remunerative. An example of
such manipulative behavior by Enel Produzione is described in [AGCM, 2021], where the
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Italian Competition Authority (AGCM) reports that some generators, usually dispatched,
recorded zero injection programs on MGP+MI during some months of 2016, subsequently
forcing Terna to accept its offers on MSD at high prices for ancillary services such as
reactive power and grid stability.

When the unit is pivotal, the economic withholding offer might be accepted, leading
to a price increase without a reduction in production. In this case, it is more accurate to
refer to it as a price-maker strategy: the operator submits offers at a significantly high
price, knowing that the production from its generator is essential to meet the demand.

Article 5 of the, constantly evolving, EU Regulation on wholesale Energy Market
Integrity and Transparency (REMIT) prohibits market manipulation (or attempted ma-
nipulation) of the market but a case-by-case analysis needs to be performed to evaluate
the specific violation [ACER, 2021a].

In order to understand how different operators offer the available capacity on the
MGP, we perform the following analysis for each hour of the period January 2018 - June
2020. The installed capacity QI

k of the generator k is divided into the sum of (1)-(4), each
of which can take a positive or zero value at a given hour t, depending on the behavior
of the operator in formulating the offer:

1. Priority capacity QP =0
k,t offered at zero price

2. Positive price capacity QP >0
k,t , which in turn can be divided into:

2.1 Market capacity Q0<P ≤P thr
z

k,t

2.2 Economically withheld capacity QP >P thr
z

k,t

3. Available capacity QM
k,t

4. Physically withheld capacity QW p
k,t = QM

k,t −
∑

s Qk,t,s that is not offered even if
available

Operators anticipate the market price, submitting their bids before market clearing.
We establish a threshold price P thr

z for each market zone z as the 99th percentile of the
distribution of zonal market prices Pz within the considered time period. This threshold
reveals the operator’s intention to economically withhold capacity, regardless of success.
Estimation errors are considered in the 1% of the highest clearing price values. In Fig.
2.5, an example of the partition of the installed capacity is illustrated.
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Figure 2.5: Example of the partition of the installed capacity (400MW, equal to the avail-
able capacity) between priority capacity (green), market capacity (blue), economically withheld
capacity (yellow) and physically withheld capacity (orange), taking into account the offers re-
ported in the table (quantity Qs, price Ps for each step s offered by the generator on MGP
on the specified day and hour) and a threshold of 95 e/MWh (gray) based on the generator’s
bidding zone

Given the large amount of data (21,888 hours in the period considered), in order to
illustrate the strategies adopted by the operator, we represent the distribution of the
installed capacity of the generator k at a given hour t as a point with 4 dimensions, or
attributes, each defined as a percentage of the installed capacity QI

k:

(Q(P =0)%
k,t , Q

(0<P ≤P thr
z )%

k,t , Q
(P >P thr

z )%
k,t , QW p%

k,t )

Each attribute is defined in the interval [0:1] to make the strategies of different generators
comparable and to implicitly take into account the unavailable capacity, represented by
1− (Q(P =0)%

k,t +Q
(0<P ≤P thr

z )%
k,t +Q

(P >P thr
z )%

k,t +QW p%
k,t ).

We then apply a k-medoids clustering algorithm to the set of points associated with
each generator during the hours within the period under consideration.

Clustering is a technique that categorizes the observations of a dataset into groups
known as clusters. Specifically, the k-medoids algorithm defines these clusters based on
similarities (or dissimilarities) between observations and medoids, which are the repre-
sentative observations, one per cluster.

For our analysis, we select the Clustering LARge Applications (CLARA) algorithm
from the k-medoids family, which is specifically designed for large datasets, after determin-
ing the optimal number of clusters using the Gap Statistic Algorithm (GSA) [Tibshirani
et al., 2001] illustrated by Algorithm (4). For a number of clusters k from one to the
number to test kM (defined by the user), the GSA applies CLARA to find k clusters
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in both the dataset and the B samples. Each sample is defined considering a reference
distribution for each attribute of the data and represents the null hypothesis where no
natural clustering structure exists. Then it compares the Total Deviation TDk, i.e. the
distance between the k medoids found with CLARA and the observations of the dataset,
to that expected e, determining the value gapk. The optimal number of clusters kopt is
determined by the point where increasing the number of clusters no longer provides a
significant improvement in the gap value, also considering the simulation error sk+1 with
one additional cluster.

Algorithm 4: Gap Statistic Algorithm
Input : Dataset D, max number of clusters kM , number of bootstrap samples B
Output: Optimal number of clusters kopt

1 for k = 1 to kM do
2 Apply CLARA to find k clusters in D
3 Determine ln(TDk)

4 for b = 1 to B do
5 Extract a sample S of observations equal to the size of D
6 for each k = 1 to kM do
7 Apply CLARA to find k clusters in S
8 Determine ln(TDk,b)

9 for k = 1 to kM do
10 e = 1

B

∑B
b=1 ln(TDk,b)

11 gapk = e− ln(TDk)
12 sdk =

√
1
B

∑B
b=1 [ln(TDk,b)− e]2

13 sk = sdk

√
1 + 1

B

14 kopt = smallest k such that gapk ≥ gapk+1 − sk+1

For each generator k, we therefore determine the medoids representative of the capac-
ity allocation strategy. An example is shown in Fig. 2.6, where medoid 1 represents the
physical withholding strategy of all the available capacity while medoid 4 refers to the
cases with unavailability; the percentages of priority capacity Q(P =0)% may be related to
two different plant’s configurations or to bilateral contracts while the small percentages
of withheld capacity may refer to primary control reserve.

We finally group the medoids by operator in order to compare the strategies adopted
on different generators. For example, Tab. 2.6 shows for the generators of A2A the first
two medoids by cluster size, excluding the medoids (0,0,0,0) referring to situations of
complete unavailability of the plants. The prevailing pattern in the zone NORD indicates
that a majority of combined cycle plants adopt economic withholding as their primary
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Generator
(

Q(P =0)%, Q(0<P ≤P thr)%, Q(P >P thr)%, QW p%
)

Tech Zone

UP_CASSANO_2 0 0 93 7 CCGT NORD

UP_CASSANO_2 46 47 0 7 CCGT NORD

UP_CTE_DEL_M_2 0 0 92 8 CCGT NORD

UP_CTE_DEL_M_2 0 0 87 13 CCGT NORD

UP_SERMIDE_3 0 0 95 5 CCGT NORD

UP_SERMIDE_3 0 0 0 100 CCGT NORD

UP_SERMIDE_4 0 0 95 5 CCGT NORD

UP_SERMIDE_4 23 0 0 0 CCGT NORD

UP_CHIVASSO_1 44 50 0 7 CCGT NORD

UP_CHIVASSO_1 0 0 96 5 CCGT NORD

UP_CHIVASSO_2 0 0 95 5 CCGT NORD

UP_CHIVASSO_2 45 46 0 9 CCGT NORD

UP_PIACENZA_4 0 0 92 8 CCGT NORD

UP_PIACENZA_4 0 0 0 50 CCGT NORD

UP_MONFALCO_1 0 0 97 3 COAL NORD

UP_MONFALCO_1 80 18 0 3 COAL NORD

UP_MONFALCO_2 75 21 0 4 COAL NORD

UP_MONFALCO_2 0 0 96 4 COAL NORD

UP_GISSI_1 0 0 92 8 CCGT CSUD

UP_GISSI_1 55 39 0 6 CCGT CSUD

UP_GISSI_2 0 0 93 7 CCGT CSUD

UP_GISSI_2 52 39 0 9 CCGT CSUD

UP_S.F._DEL_1 0 0 0 100 ST SICI

UP_S.F._DEL_1 0 100 0 0 ST SICI

UP_S.F._DEL_2 0 0 0 100 ST SICI

UP_S.F._DEL_2 0 100 0 0 ST SICI

UP_S.F._DEL_5 0 0 0 100 ST SICI

UP_S.F._DEL_5 0 100 0 0 ST SICI

UP_S.F._DEL_6 0 0 0 100 ST SICI

UP_S.F._DEL_6 0 100 0 0 ST SICI

Table 2.6: Main medoids for each A2A generator considering the offers on the MGP in the
period January 2018 - June 2020: each medoid is characterized by the percentage of capacity
offered at zero price, the percentage offered at a market price, and the economically and physi-
cally withheld percentages; the colors highlight the non-zero values, from the lowest (yellow) to
the highest (red). The table also shows the technology and bidding zone for each generator.
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Figure 2.6: Example of the medoids identified by the algorithms for the specified generator;
each medoid is characterized by the percentage of capacity offered at zero, offered at market
price, economically and physically withheld. The graph shows each observation in terms of
priority Qpp, market Qmp, and physically withheld Qwp percentages, as the economically
withheld capacity is zero. The colors of the observations indicate the clusters associated with
the medoids.

strategy and offer a part of the capacity at zero price and a part of the capacity at
market price as a secondary strategy. The coal-fired plants, on the other hand, tend
to favor either a zero-price strategy for a substantial portion of their capacity or opt
for an economic withholding strategy. For generators located in Sicily, the predominant
strategy involves physical withholding for the entire capacity, followed by a market-price
bidding strategy, adopted in far fewer cases (< size of the clusters). Small values of QW p%

(3%-13%) may suggest the reservation of a capacity for primary reserve purposes rather
than a strategy involving physical withholding.

2.2 GEP literature review

Traditional GEP models described in (2.2.1) are quantity-based and lack consideration for
prices, thus failing to ensure the economic sustainability of generators. This oversight can
lead to loss-making resource mixes for producers, requiring compensatory side payments.
Conversely, the works in (2.2.2), along with some references therein, propose different
methods for determining a resource mix that takes into account the revenue adequacy of
generators.

2.2.1 Traditional GEP models

The decision-making process for planning electric energy systems is characterized by
three key features: long-term view, uncertainty, and high dimensionality. Indeed, power
generation assets have a lifetime of up to fifty years, so investment decisions have a
lasting impact on the future operation of the system and need to take into account the
uncertainty arising from, for example, future load or evolution of costs. In order to
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make informed decisions, large-scale models include many variables and constraints to
represent different operating conditions, and in particular integer variables to represent
the selection of the facilities.

The seminal book referred to in [Conejo et al., 2016], and the references therein, delve
into several aspects of the GEP problems:

1. Perspective: centralized or decentralized

2. Time framework: static or dynamic

3. Modeling of the transmission network: single-node or network-constrained

4. Modeling of the operating conditions: historical data or clustering

5. Unit Commitment Formulations: binary or clustered

6. Modeling of the market clearing: single-level or bilevel

7. Uncertainty characterization: deterministic or uncertain

Other challenges, such as the co-optimization of generation and transmission (Generation
and Transmission Expansion Planning models - GTEP) or the modeling of interconnec-
tions between power systems and other sectors are described in [Koltsaklis and Dagoumas,
2018].

One fundamental aspect is the perspective (1), which can be either centralized or de-
centralized. In centralized GEP models, an independent entity called the Central Planner
(CP) performs the anticipative planning: given the existing generation portfolio, it deter-
mines the long-term resource mix that is most beneficial for the operation of the electric
energy system as a whole. With this purpose, the CP can consider different objective
functions, such as maximizing social welfare or minimizing different types of costs (in-
vestment, operational, and social costs). The CP does not actually build the generating
units but uses the outcomes from the analysis as a guide to design different types of poli-
cies and incentives (e.g., a price guarantee or capacity payments) to encourage private
investors to build certain generation facilities (e.g. those that maximize social welfare).
In decentralized GEP models, instead, the private profit-oriented endeavor is considered:
producers compete with each other to build and operate their respective production fa-
cilities with the objective of maximizing profit. Some papers such as [Wogrin et al.,
2011] consider a single power producer that competes with other producers in an elec-
tricity market: the producer strategically makes investment and operational decisions,
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exercising market power, while the decisions of its rivals are assumed to be exogenous
data. Other works, instead, consider investment equilibrium problems where multiple
strategic producers make their own decisions seeking their own profit: at the equilibrium
point, no producer can increase its profit by unilaterally changing its strategies. While
the decentralized approaches can be used by the individual investor, the centralized ones
can be used by the policymakers and Regulators to gain insight into the of strategic
producers in response to already specified policies. Centralized models generally allow to
consider short-term operations in great detail while do not consider strategic behaviors.
In contrast, decentralized approaches are focused on the interactions between strategic
players while reducing technical details. Moreover, decentralized GEP may result in
discontinuous system development because of inappropriate coordination between actors.

Besides deciding the optimal technology, capacity, and possibly location of the new
generating units, it is generally important to determine the optimal timing for building
them (2). In this sense, GEP models are classified as dynamic (also called multistage),
if the evolution of the system is determined over a time horizon consisting of a sequence
of reference periods (e.g. years), or as static (single-stage), if they take a given future
year as a reference. Since the generation expansion plan is mainly conditioned by system
demand, which generally increases over time, the reference year is usually chosen as the
last year of the planning horizon. If a dynamic framework is considered, then simplifying
assumptions in the description of the system is generally required to avoid the problem
becoming computationally intractable. A static framework, on the other hand, usually
allows for a detailed representation of the system components and can be used with a
rolling-window perspective: the static approach can be applied sequentially to different
time windows to get an updated view of the situation over time.

Identifying the best locations for new generators is becoming increasingly critical as
the penetration of renewables grows, especially in those areas where they are favored
for production. This may lead to structural congestion in the transmission network
(3). Some studies focus on (single-node) systems without representing the transmission
network, while others integrate network representation into the GEP problem (network-

constrained), thus incorporating signals for constructing generating facilities in specific
zones and alleviating congestion.

Different operating conditions of the system, such as different demand realizations
or capacity factors of renewables, can be modeled in different ways (4): one alternative,

50



2.2. GEP literature review

often impractical due to the data volume of large systems, consists of considering historical
data to predict the operating conditions in the considered planning horizon. To provide
a meaningful representation of the system while keeping the problem computationally
tractable, some GEP use a small number of representative periods (e.g. days) instead of
modeling every hour of the planning horizon. There are several techniques for selecting
representative days, such as methods based on the load–duration curve and clustering
methods [Li et al., 2022]. The latter group similar days into clusters and assign a weight
to each cluster so that, for example, the weighted sum of the hourly demand of the
clusters is equal to the original demand of the entire planning horizon. The use of
representative days prompts the question of how these days should be connected. The
most straightforward approach is to assume that all thermal plants are off-line at the
beginning of each representative day. However, this results in an overestimation of costs.
For a more accurate unit commitment, the initialization approach proposed in [Micheli
et al., 2021] can be applied.

In a real test case, incorporating traditional UC constraints (binary formulation)
for individual power plants would be computationally infeasible due to the number of
variables and constraints. Therefore, clustered unit commitment formulation can be im-
plemented to maintain the problem computationally tractable (5): similar generators are
grouped into a cluster and a single integer variable (rather than multiple binary vari-
ables) is introduced to represent, for example, the number of online units within each
cluster in each time step. Together with the number of variables describing commitment
statuses, also the number of constraints and continuous variables representing dispatch-
ing decisions is reduced, being defined for only a small number of clusters rather than the
complete set of thermal power plants. A comparison of the two formulations is provided
in [Meus et al., 2018].

The GEP problem can be modeled as an optimization problem of the protagonist, the
CP, subject to the outcomes of the market clearing problem since the market is affected
by the generation expansion plan. As a result, the GEP mathematically becomes a bilevel

model (6), a class of optimization problems that will be illustrated in Chapter (3): the
CP receives accepted power quantities from the Market Operator, who, in turn, bases its
decisions on the expansion plan.

As mentioned above, GEP models are characterized by long-term planning horizons
and this requires to account for uncertainty (7). GEP can be classified as deterministic
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or uncertain, depending on whether the planner assumes to have reliable data at the time
of decision or makes decisions in an uncertain environment. To deal with uncertainty,
different techniques are available, such as stochastic programming or robust optimiza-
tion [Roald et al., 2023]. In the former case, scenarios are used that model the future
realization of uncertain parameters over the planning horizon considered; however, as-
signing the probability associated with each scenario is challenging, as this information
is often unavailable or difficult to estimate. Robust optimization, on the other hand,
addresses the uncertain nature of the problem by constraining the uncertain parameters
to a deterministic set of values, basically aiming at obtaining solutions that are "good"
for any ex-post realization of the uncertain data.

GEP models can be formulated as problems that determine the optimal value of deci-
sion variables such as new investment, i.e n, dispatched quantities, i.e. Q, and statuses of
generators, i.e. γ, while minimizing investment f INV (n) and operational fOP (Q, γ) func-
tion costs and considering both investment gINV (n) and operational g(Q, γ), h(n,Q, γ)
constraints, such as minimum penetration of renewables or UC constraints. Thus, tra-
ditional GEP models are quantity-based and do not take into account pricing, and the
relative revenues. After solving this kind of GEP, an ex-post analysis can be performed
to determine possible losses of selected generators. As illustrated in Fig. 2.7, once the
optimal mix has been determined (the investment variables n are fixed to their optimal
values n∗), together with the operating conditions (the UC binary variables γ are fixed
at their optimal values γ∗), the model becomes linear. Therefore, the clearing prices
can be determined as the dual variables λ of the supply-demand balance constraint. At
this point, the Make-Whole Payment (MWP), i.e., the payment required for the gener-
ator k involved to recover both the investment and operational costs, can be eventually
calculated as the difference between costs and revenues.

MWP k = −min{0, revenuesk−costsk} = −min{0, λ∗ Q∗
k−f INV

k (n∗
k)−fOP

k (Q∗
k, γ

∗
k)}

2.2.2 GEP models that account for the Revenue Adequacy

The main GEP works in the literature that consider revenue adequacy are

1. Enumerative approach [Herrero et al., 2015]

2. Heuristic approach [Byers and Hug, 2023]
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Figure 2.7: Traditional mixed-integer GEP model (in the bold box) and ex-post calculation of
the MWP of each generator k: the integer variables, such as investments n and statuses γ, are
fixed to their optimal values in order to derive the price λ as the dual variable of the balance
constraint in the resulting linear model

3. Optimization approach [Guo et al., 2022]

Note that all consider an energy-only market and a centralized approach.

The Enumerative approach (1) investigates how different pricing schemes affect invest-
ment decisions by computing long-term profits πLT

k,m for each technology (or generator)
k and for each possible mix m, and then choosing among the mixes with non-negative
profits for all generators the one that maximizes the social welfare, as shown in Fig. 2.8.
In particular, after solving a traditional GEP to find the least-cost energy mix, it enu-
merates the set M of all possible mixes, excluding those that differ significantly from the
least-cost energy mix. For each energy mix in the set (with the investment decision fixed
by the energy mix considered), it determines the least-cost dispatch (2.1) and the clearing
price with the R (2.4) (supplemented with MWP to cover losses related to the operational
costs) and LD (2.13) pricing schemes. For each pricing scheme and for each technology,
the area of all possible combinations is divided into a region of mixes that would make all
units of the technology recover their capital cost and a region where not all units of the
technology recover their capital costs, defining the break-even frontier of the technology
(frontier in the case of two technologies, surface in the case of three technologies). The
intersection of the break-even frontiers determines the energy mix chosen for each pricing
rule. When investment decisions are discrete, the intersection of the break-even frontiers
may not coincide with a combination of power plants; in this case, the mix that maxi-
mizes the social benefit is chosen from all quasi-break-even candidates. The investment
decision is determined by enumerating all possible solutions, which makes the approach
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Figure 2.8: Enumerative approach procedure consisting of computing the long-term profits
πLT

k,m for each technology k and possible mix m and selecting the mix that maximizes the social
benefit among those with non-negative profit for all technologies; the figure on the right with
two technologies and discrete investment decisions is taken from [Herrero et al., 2015]

difficult to apply to large, non-greenfield cases.

The Heuristic approach (2) adapts the resource mix to be revenue-adequate for each of
the pricing schemes considered. In particular, starting from the solution of a traditional
GEP (2.7), for each generator k ∈ K

n∗
k =


0 if generator k is not built in GEP

1 if generator k is built in GEP

the CP iteratively modifies the investment decisions nk, ∀k ∈ K until a long-term

market equilibrium is reached: considering both the operational costs and the investment
costs, no one incurs a loss and no one can make a profit by entering the market. Indeed,
both positive and negative profits could result in a move away from the CP solution to
an alternate resource mix that may clear a different level of demand. The maximization
of the social welfare (or the minimization of the costs, in case of rigid demand) is no
longer guaranteed; the method begins with the traditional GEP solution only in the
expectation that the equilibrium point is close to the maximum-welfare solution. Since
lumpy investments are considered (the investment decision is represented by a binary
variable), multiple solutions may exist. Long-term profits πLT

k are determined with the
investment decision fixed, following the scheme in Fig. 2.9: given the investments n[i]

k in
iteration i, the UCED (2.1), and one of the listed PRICING4, are solved to determine
the dispatch and the clearing price (with any additional compensation).

The investment decisions are iteratively modified according to the Algorithm (5).
Given a pricing scheme, e.g. (2.4), the algorithm determines the revenue-adequate re-

4The work considers LP PRICING only: R (2.4), IP (2.5), PD (2.12), RQmin (2.15), AIC (2.16), RAPA (2.20)
and LC (2.24)
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Figure 2.9: Heuristic approach procedure starting from the investment decisions n
[0]
k = n∗

k

determined by a traditional GEP and consisting of iteratively modifying the investment decisions
n

[i]
k until the long-term profit πLT

k for each generator k meets certain criteria

source mix nRA
k ,∀k. In the initialization part, the set K is ordered to ensure technology

neutrality: according to n∗
k, the ordering is done by first considering the built generators

and then the unbuilt generators, one per technology. A logic variable check(g) takes the
value TRUE if technology g has to be checked, FALSE otherwise. The outer iteration
(while) is run if for at least one generator k the profit πLT

k is > bound or < −bound and
terminates if either the profits of all generators are null (between −bound and +bound)
or no generator has been added or removed in the last inner iteration (j = i). The bound
instead of 0 is considered to reflect some leniency for lumpy investments. In the inner
iteration, the algorithm loops through the set of all generators, both currently built and
unbuilt, and modifies the resource mix either by removing a built generator if it makes
a negative profit (< −bound), or by adding an unbuilt generator k if the addition makes
both the generator k and the generators k′ of the same technology g make a positive
profit (> bound for k′). Note that the termination condition j = i can lead to a solu-
tion nRA

k , ∀k which is not a true equilibrium: some generators can have a high profit
(πLT

k > bound), since the only conditions checked in the inner for iteration are πLT
k > 0

and πLT
k′ > −bound; this happens due to the presence of non-convexities.

In the heuristic approach illustrated, different pricing schemes are applied in the op-
erational stage, where investment decisions are considered as fixed. The trial-and-error
approach leads to a solution that may be far from the cost-minimizing solution and may
vary significantly depending on the pricing scheme chosen and on the order of generators.
Furthermore, it does not consider the existing resource mix (greenfield assumption) or
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Algorithm 5: Heuristic approach
Data: An instance of the clearing problem plus all data for the GEP
Result: nRA

k , for each k for e.g. (2.4)
// revenue-adequate resource mix for the chosen pricing scheme

1 begin
2 n∗

k,∀k ← Solve (2.7) // find the maximum-welfare resource mix
3 Set i = 0; Set bound
4 Set nk = n∗

k, ∀k
5 Order K // ensure technology neutrality
6 while |πk| > bound ∀k do
7 Set check(g) = TRUE, ∀g
8 Set j = i
9 for k ∈ K do

10 Set g = gk

11 if nk = 0 ∧ check(g) = TRUE then
12 Set nk = 1 // try to modify the resource mix
13 (πLT

k , πLT
k′ ∀k′ ∈ g) ← Solve (2.1), Solve e.g. (2.4) // find the

long-term profits for all generators of the technology g
14 if πLT

k > 0 ∧ πLT
k′ > −bound ∀k′ ∈ g then

15 i← i + 1 // the resource mix has been modified

16 else
17 Set nk = 0 // do not modify the resource mix
18 check(g) = FALSE

19 else if nk = 1 then
20 πLT

k ← Solve (2.1), Solve e.g. (2.4) // find the l-t profit for k
21 if πLT

k < −bound then
22 Set nk = 0 // modify the resource mix
23 i← i + 1

24 else // ni
k = 0 ∧ check(g) = FALSE

25

26 if j = i then
27 Set nRA

k = nk∀k
28 STOP // Alg terminate because no generator added or removed

investment decisions for renewables. Instead, it only considers scenarios with different
penetration levels.

The Optimization approach (3), along with investment decisions, endogenously deter-
mines market clearing prices to express the Revenue Adequacy (RA) constraint

revenues ≥ costs

Since the optimization model necessitates the endogenization of prices along with the
dispatch order to express revenues, the incorporation of any two-step pricing scheme is
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precluded. As shown in column 1 of Tab. 2.4, the only PRICING models that exhibit
independence from the UCED solution (in the price determination) are CH (2.6), LD
(2.13), and P-D (2.26), but only the latter determines both the price and the dispatch in a
single model. Therefore, the P-D has been extended by [Guo et al., 2022] to be applicable
in the long term. As illustrated in Fig. 2.10, a mixed-integer bilinear optimization model
is formulated starting from a traditional MIP GEP: the investment decisions n are treated
as parameters, while the binary variables γ are relaxed to be continuous in order to derive
the dual of the Unit Commitment (UC) relaxed problem; then the integrality conditions
are restored, the investment, UC and dual constraints are combined, and the investment
and operating costs, together with the weighted duality gap fDG (given by the difference
between the primal UC objective and the dual objective) are minimized in the objective
function. The hourly clearing prices are the dual variables λ of the balance constraints

Figure 2.10: Derivation of the GEP-RA model (in the bold block): the first two blocks are
only needed to formulate the final model, which is a combination of investment constraints,
primal and dual operational constraints, and revenue adequacy constraints

considered by the CP; therefore, they may differ in general from those that the Market

Operator would determine as they could be pushed up in order to meet the RA constraint.

Since the RA constraint is fulfilled by price spikes, the model loses the explainability
of prices (3); moreover, with fixed investment decisions, in the real-time model (which
does not take into account the RA constraint) the same spikes will likely not occur,
jeopardizing generators’ profitability.

In addition to the aforementioned models, [Dvorkin et al., 2017] has proposed an
optimization approach that specifically addresses revenue adequacy concerns for electro-
chemical Energy Storage (ES). The paper presents a bilevel model designed to determine
the optimal siting and sizing of ES while ensuring their revenue adequacy. In the lower
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level, the prices are determined as the dual variables of nodal balance constraints, taking
into account dispatch constraints (including ramps) for thermal generators, wind spillage
constraints based on wind production forecast, grid constraints, and ES constraints. In
the upper level, investment and RA constraints for ES are considered, together with a
fixed thermal fleet (no thermal expansion), on which operational constraints limit the val-
ues of the binary variables. The linearity of the lower level, resulting from the treatment
of binary variables as parameters decided by the upper level, allows its reformulation
through the strong duality equality included in the upper level. The division of con-
straints between upper and lower levels, depending on whether they constrain binaries or
not, together with the inclusion of, for example, ramp constraints in the LL, can lead to
a price that is difficult to interpret, thereby compromising again the simplicity require-
ment (3). Furthermore, ensuring revenue adequacy only for ES and its impact on the
clearing price may lead to significant losses for thermal or renewable generators. Most
importantly, the evolution of batteries should be evaluated in relation to the evolution of
renewables, whereas the current model only considers a fixed fleet of wind generators.
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Bilevel optimization models

3.1 Mathematical Programming and optimization taxonomy

Mathematical Programming (MP) serves as a formal language designed to articulate opti-
mization problems and provides a structured framework for their resolution. Within this
framework, each formal MP sentence, referred to as a formulation, is constructed from
a set of fundamental entities. These entities include index sets and parameters, encap-
sulating the problem input; decision variables, representing the solution for a particular
instance; an objective function, assessing variable assignments; and diverse constraints,
defining the feasible decisions within the problem space. The assembly of these compo-
nents forms the foundation for expressing and solving optimization problems within the
MP framework.

Assuming, w.l.o.g, minimization, the MP formulation of a single-level generic deter-
ministic optimization problem1 can be denoted as in (3.1)

min
x

f(x) (3.1a)

s.t. g(x) ≤ 0 (3.1b)

h(x) = 0 (3.1c)

x ∈ X (3.1d)

In problem (3.1) a single decision-maker decides on x, which represents the vector of
variables, according to the objective function f(x) and the inequality (3.1b) and possibly
equality (3.1c) set of constraints. Throughout this thesis we will assume that we are

1We will concentrate on deterministic problems; there is also a wide class of optimization problems under uncer-
tainty, that can be tackled with Stochastic, Robust, or Chance Constraints, e.g. [Roald et al., 2023], [Van Ackooij
et al., 2018] for comprehensive approaches in the energy field.
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always optimizing over closed sets. The taxonomy, and related solution complexity, of a
specific optimization problem is determined by the type of the real-valued functions, that
we assume smooth, present in problem (3.1), i.e. f , g, h, and by the set X . Depending
on each one of them, problem (3.1) can be differently categorized and tackled.

In MP, the utilization of reformulation techniques is a common practice. A refor-
mulation Q of a given problem P is essentially an auxiliary problem that shares certain
properties with P . In the realm of MP, reformulations are typically employed to trans-
form the original problem into a more tractable form, facilitating a more straightforward
solution. The reformulation Q of a problem P can take various forms to enhance its
solvability and better suit specific objectives. These reformulations may:

A Preserve Optimality Properties: Q has the capability to retain all or some of
the optimality properties, either at a local or global level, inherent in P ;

B Result from Constraint Removal: Q can be derived from P by strategically
eliminating certain constraints, a process commonly known as relaxations. This
approach aims to simplify the problem structure while maintaining its essential
characteristics;

C Approximate Components of P : Q may involve approximations of specific
components of P . These approximations, while not guaranteeing optimality, serve
the purpose of providing a practical and feasible solution approach. It’s noteworthy
that such approximations may or may not come with explicit optimality guarantees.

A more comprehensive exploration of reformulations can be found in e.g. [Liberti, 2009]
and [Vielma, 2015].

On their side, optimization problems of the form (3.1) can be usually divided2 into
linear, quadratic, generally nonlinear, and non-convex. They can have only continu-
ous variables, only integer variables, or a mix of continuous and integer variables. The
most general class is the one of the Mixed-integer Nonlinear Programming (MINLP),
e.g. [Sahinidis, 2019]. MINLP, in turn, can be divided into convex MINLP problems
or non-convex MINLP problems, depending on the convexity of the related relaxations,
e.g. [Burer and Letchford, 2012]. We refer to the simple diagram in Fig. 3.1 for a quite
comprehensive taxonomy scheme. Notably for convex formulation and reformulations of

2Given that a comprehensive examination of these topics exceeds the scope of this thesis, we will refrain from
presenting proofs and instead furnish bibliographic references for those interested in delving deeper into these
subjects
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Figure 3.1: Optimization Problem taxonomy

general nonlinear problems we refer to [MOSEK ApS, 2023] for an extensive treatment of
relevant sub classes of non-linear convex models such as Second Order Cone Programming
(SOCP) and Semi-Definite Programming (SDP).

Among the general non-convex ones are the bilevel problems, in which the optimization
problem is split into two levels and the decisions are coupled between a so-called upper-
level problem and a so-called lower-level. In this thesis, we will basically deal with these
classes of optimization problems, therefore it is useful to survey some classes of them.
We refer to the recent surveys [Beck and Schmidt, 2021] and [Kleinert et al., 2021a] for a
more complete treatment of this important class of optimization models and to [Dempe,
2020] and reference therein also for an extensive list of works in the bilevel optimization.

3.2 Bilevel optimization brief history and generalities

The history of bilevel optimization traces back to Von Stackelberg’s leader-follower games
in the 1930s [Von Stackelberg, 1934] and later, [Stackelberg, 1952]. Notably, Bracken and
McGill [Bracken and McGill, 1973] applied this concept in 1973 to minimize military costs.
In 1977, Candler and Norton [Candler and Norton, 1977] recognized the intricate nature
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of bilevel problems, noting non-convexity and disconnected feasible sets even in cases with
all linear components. A fact that at the present time is well understood. Later years saw
the formalization of the NP-hardness of linear bilevel problems. Early algorithms, such
as Candler and Norton’s [Candler and Norton, 1977] enumerative method and Bialas and
Karwan’s kth-best algorithm [Bialas and Karwan, 1978], emerged in the late 1970s. A
pivotal shift occurred in 1981 when Fortuny-Amat and McCarl [Fortuny-Amat and Mc-
Carl, 1981] proposed a groundbreaking approach for convex-quadratic bilevel problems.
By replacing the follower problem with its Karush–Kuhn–Tucker (KKTs) conditions, due
to Harold W. Kuhn and Albert W. Tucker appeared in the seminal paper [Khun and
Tucker, 1951]3, the authors transformed it into a single-level problem at least in principle
now solvable by standard mixed-integer solvers. This historical narrative underscores the
persistent challenges of bilevel optimization and the evolution of algorithms, with early
attempts laying the foundation for more effective solutions in subsequent years.

In 2009, a significant milestone in the field of computational bilevel optimization was
achieved with the introduction of a branch-and-cut approach specifically designed for
purely integer bilevel problems [DeNegre and Ralphs, 2009]. Following this breakthrough,
the ensuing decade witnessed a surge in computationally oriented research, addressing
various classes of bilevel problems. The introduction of the branch-and-cut approach not
only provided a tangible solution for a specific subset of problems but also catalyzed
a broader interest in developing efficient computational methods for diverse challenges
within the realm of bilevel optimization.

Stepping into some formal detail, a bilevel or hierarchical optimization problem is an
optimization problem constrained by the set of the optimal solutions of another optimiza-
tion problem. It can be generically denoted as in (3.2)

min
x∈X,y

F (x, y) (3.2a)

s.t. G(x, y) ≥ 0 (3.2b)

y ∈ S(x) (3.2c)

3We refer the interested reader also to [Cottle, 2012] for a historical clarification of the role of William Karush
with his master’s thesis [Karush, 1939]
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where S(x) is the set of the optimal solutions of the x-parameterized problem (3.3):

min
y∈Y

f(x, y) (3.3a)

s.t. g(x, y) ≥ 0 (3.3b)

Therefore, in essence, problems (3.2) and (3.3) are fused into a conceptually unique
problem. More in detail, in bilevel optimization problems, such as (3.2)-(3.3), there are
two decision-makers, each with their own set of variables and constraints. Problem
(3.2) is known as the upper-level or leader’s problem, while problem (3.3) is the lower-level

or follower’s problem, reflecting a hierarchical structure: any decision (x) taken by the
leader to optimize his goals is affected by the response (y) of the follower, who will seek
to optimize his own outcomes.

The variables x ∈ Rnx are the upper-level variables (or leader’s decisions) and y ∈ Rny

are lower-level variables (or follower’s decisions). The objective functions read F, f : x ∈
Rnx × Rny → R, while the constraints are in the upper-level G : x ∈ Rnx × Rny → Rm

and in the lower-level g : x ∈ Rnx × Rl → Rm. All functions F, f,G and g are here
assumed to be continuously differentiable. The set X ⊆ Rnx and Y ⊆ Rny possibly
indicate integrality restrictions of the related variables. As an example if X = Znx , then
the upper-level problem is an integer program. Lastly, all upper-level variables that are
present in the lower-level constraints are usually called linking variables. We give the
following useful definitions: 3.2.1, 3.2.2, and 3.2.3.

Definition 3.2.1 (Shared Constraint Set) The set

Ω = {(x, y) ∈ (X × Y ) : G(x, y) ≥ 0, g(x, y) ≥ 0} (3.4)

is named the shared constraint set.

Definition 3.2.2 (Bilevel Feasible Set; Inducible Region) The set

F = {(x, y) : (x, y) ∈ Ω, y ∈ S(x)} (3.5)

is called the bilevel feasible set or inducible region.

Definition 3.2.3 (High-Point Relaxation) The problem of minimizing the upper-level
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objective function over the shared constraint set, i.e.

min
x,y

F (x, y) (3.6a)

s.t. (x, y) ∈ Ω (3.6b)

is called the high-point relaxation (HPR) of Problem (3.2).

We can note that the HPR, defined by problem (3.6), is identical to the original bilevel
problem (3.2) except for the set valued constraint y ∈ S(x), i.e., except for the lower-level
optimality conditions. In this respect, it is a relaxation of (3.2), and notably a special
one. The upper-level decision-maker typically has complete knowledge of the lower-level
problem. In contrast, the lower-level decision-maker observes the leader’s decisions (the
upper-level variables are fixed parameters in the lower-level problem) and optimizes his
own strategies. Assuming the leader lacks knowledge of the follower’s model, he can
learn over time by observing the follower’s reactions and thereby gaining insight into
the follower’s model. This process is commonly referred to as Learning game or Inverse

optimization, see [Borrero et al., 2022]. In case of multiple lower-level optimal solutions
y for any given upper-level decision vector x (the set S(x) is not a singleton), the leader
can assume an optimistic position, expecting the follower to choose that solution from
the optimal set which leads to the best upper-level objective function value (the lower-
level solution minimizes the upper-level function), or a pessimistic position, expecting the
follower to choose that solution from the optimal set which leads to the worst upper-level
objective function value (the lower-level solution maximizes the upper-level function).
The minimization written as (3.2a) assumes the optimistic position as the leader controls
y, as we will assume in our work. The problem assuming the pessimistic position is in
general more difficult to define and can result in the non-existence of a solution. In [Dempe
et al., 2018], and [Sinha et al., 2017] the authors review bilevel optimizations and provide
additional details on bilevel pessimistic problems.

In this thesis, we will consider linear lower-level problems, that we can write as in
(3.7).

min
y

dTy (3.7a)

s.t. Cx+Dy ≥ b (3.7b)

y ≥ 0 (3.7c)
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In (3.7) d ∈ Rny , C ∈ Rl×nx , D ∈ Rl×ny , and b ∈ Rl. We note that for the lower-level
problem, x is not a variable but a parameter. The dual of the Problem (3.7) is the
x-parameterized linear problem (3.8)

max
λ

(b− Cx)Tλ (3.8a)

s.t. DTλ ≤ d (3.8b)

λ ≥ 0 (3.8c)

3.3 Bilevel optimization single level reformulations

When the lower-level problem is linear, it is possible to replace it with its necessary and
sufficient optimality conditions, the KKTs.

Note that for nonlinear lower-level problems, the KKTs are not sufficient optimality
conditions; for a discussion of nonlinear lower-level problems, we refer the reader to [Klein-
ert et al., 2021a]. The KKTs conditions appear as primal, dual, and complementarity
constraints, and reduce the overall bilevel optimization problem to a special single-level
constrained optimization problem (3.9), named in the literature Mathematical Program

with Complementarity Conditions (MPCC)

min
x,y,λ

F (x, y) (3.9a)

s.t. G(x, y) ≥ 0 (3.9b)

0 ≤ (Cx+Dy − b) ⊥ λ ≥ 0 (3.9c)

0 ≤ (d−DTλ) ⊥ y ≥ 0 (3.9d)

The constrains (3.9c), (3.9d) are equivalent to:

λ ≥ 0 (3.9e)

Cx+Dy − b ≥ 0 (3.9f)

d−DTλ ≥ 0 (3.9g)

y ≥ 0 (3.9h)

(Cx+Dy − b)Tλ = 0 (3.9i)

(d−DTλ)Ty = 0 (3.9j)

By optimizing over x, y, and λ simultaneously in problem (3.9), every global solution
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of (3.9) corresponds to an optimistic bilevel solution. The constraints (3.9i), (3.9j) are
the complementarity slackness conditions: either Cx + Dy − b = 0 and λ ≥ 0 or the
other way around, λ = 0 and Cx + Dy − b ≥ 0. The case Cx + Dy − b = 0 and λ = 0
is also feasible, but generally irrelevant. In the simplest case with F , G, and H linear,
the MPCC Problem (3.9) is linear except for the complementarity conditions, which
make it a single-level non-convex optimization problem that is NP-hard to solve, [Deng,
1998]. One can eliminate the non-convex terms xλ and yλ, and then solve the model as
a mixed-integer linear program (MILP) using different approaches as follows.

An early approach proposed by Fortuny-Amat and McCarl [Fortuny-Amat and Mc-
Carl, 1981] reformulates the disjunctive complementarity constraints (3.9i), (3.9j) by
introducing binary variables z1, z2 and a well-known approach usually termed Big-M as
in (3.10).

Cx+Dy − b ≤M (1− z1) (3.10a)

λ ≤M z1 (3.10b)

d−DTλ ≤M (1− z2) (3.10c)

y ≤M z2 (3.10d)

z1, z2 ∈ {0, 1} (3.10e)

If z1 = 0, then the dual variable λ = 0, and the primal inequality Cx + Dy − b ≤ M is
inactive; if z1 = 1, then the primal inequality is active Cx + Dy − b = 0 and the dual
variable λ can take positive values. Similarly for z2. M is a sufficiently large constant
(the big-M ) that is difficult to set because the dual feasible set corresponding to bounded
primal feasible sets is unbounded. Moreover, a not sufficiently large constant may cut
off some optimal solutions while an exceedingly large constant may produce a weak LP-
relaxation, e.g. [Kleinert et al., 2020]. Another equivalent MILP formulation consists in
reformulating the complementarity conditions (3.9i), (3.9j) using Special Order Set of
type 1 (SOS1), e.g. [Beale and Tomlin, 1970], [Siddiqui and Gabriel, 2013], i.e., a set of
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variables where at most one variable can have a value greater than zero as in (3.11).

s1 = Cx+Dy − b (3.11a)

s2 = λ (3.11b)

t1 = d−DTλ (3.11c)

t2 = y (3.11d)

{s1, s2} ∈ SOS1 (3.11e)

{t1, t2} ∈ SOS1 (3.11f)

The pairs {s1, s2} and {t1, t2} are declared as SOS1: of each pair, only one variable can
take positive values.

A possible alternative to reformulate the MPCC involves exploiting strong duality for
the follower’s linear problem to convert the problem into a single-level quadratic program
that is non-convex as in (3.12).

min
x,y,λ

F (x, y) (3.12a)

s.t. G(x, y) ≥ 0 (3.12b)

Cx+Dy − b ≥ 0 (3.12c)

λ ≥ 0 (3.12d)

d−DTλ ≥ 0 (3.12e)

y ≥ 0 (3.12f)

yTd = (b− Cx)Tλ (3.12g)

In Problem (3.12), the complementarity conditions (3.9i), (3.9j) are replaced by the
strong-duality equality (3.12g), requiring the primal objective function to be equal to
the dual objective function. To demonstrate the equivalence of the two approaches, one
can substitute the expression derived from constraint (3.9j)

(d−DTλ)Ty = 0⇐⇒ dTy = λTDy ⇐⇒ yTd = yTDTλ

into the constraint (3.9i)

(Cx+Dy − b)Tλ = 0⇐⇒ yTDTλ = (b− Cx)Tλ⇐⇒ yTd = (b− Cx)Tλ
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Similar to (3.9), the problem (3.12) is non-convex due to the bilinear product of variables
xTλ. However, the introduction of binary auxiliary variables in this case does not allow an
equivalent MILP formulation to be derived, but only an approximate formulation derived
from the binary expansion of one of the continuous variables of the bilinear product, [Dias
Garcia et al., 2023], [Pereira et al., 2005], [Zare et al., 2019].

Given the complexity of solving bilevel problems exactly, heuristic solution methods
have also been developed. These methods do not provably compute a global minimum
in finite time. For example, the Regularization approach reformulates the complementar-
ity conditions (3.9i), (3.9j) by introducing small scalars r1, r2 and solving the resulting
nonlinear optimization problem iteratively:

(Cx+Dy − b)Tλ ≤ r1

(d−DTλ)Ty ≤ r2

At each iteration, the locally optimal solution is used as the warm start point for the next
iteration while the scalar values are reduced. Another example of heuristic approaches
is the Penalty Alternating Direction Method, which relaxes the strong duality (3.12g) by
penalizing it in the objective function and then splits the problem into two subproblems,
one for x and one for λ. See [Bylling, 2018] and also [Beck and Schmidt, 2021] for an
in-depth explanation of these heuristic methods.
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Chapter 4

Development of bilevel models for

GEP

In this chapter, we describe the process undertaken to develop the proposed models. In
Section (4.1), we delve into the intricacies of this development process, outlining various
modeling assumptions. Subsequently, in Section (4.2), we introduce the two bilevel mod-
els designed to determine a revenue-adequate configuration for the system, each providing
distinct perspectives on optimization objectives.

4.1 Stepwise evolution of the models

As explained in Section (2.1), a meaningful assessment of revenue-adequate investments
requires the consideration of appropriate pricing. In order to define the best resource mix
for Italy, we first examined the market clearing model used by the (Nominated) Italian
Market Operator (GME), as outlined in Section (4.1.1), and then introduced necessary
modifications. In particular, Section (4.1.2) introduces a refined version of the market
clearing model, that specifically addresses the minimum output of thermal generators.
This adjustment will allow startup costs to be taken into account in ensuring revenue
adequacy. Additionally, Section (4.1.4) delves into renewable cannibalization and outlines
the evolution of the renewable offer strategies; the hypothesized evolution requires the
consideration of partially accepted offers. Section (4.1.5) outlines modeling assumptions
for the integration of batteries into the system to store excess renewable production and
use it in later hours. Section (4.1.6) emphasizes the importance of designing a system
that is fully adequate and accommodates possible side payments. Finally, Section (4.1.7)
illustrates the cases in which the model under consideration results in price indeterminacy,
along with modeling adjustments aimed to better reflect real-world investment decisions.
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4.1.1 The Italian Market Clearing problem

The Italian Market Operator receives a set S of selling offers from potential sellers and a
set B of buying bids from potential buyers, each in the form of a pair, and referred to a
specific hour. Selling offers are pairs (SQj, SPj) indicating that the seller is willing to sell
up to SQj units of electricity at unit price SPj, while buying bids are pairs (BQi, BPi)
indicating that the buyer is willing to buy up to BQi units of electricity at unit price BPi.
In order to preserve the convexity of the model, if one seller issues two offers (SQ1, SP1)
and (SQ2, SP2) with SP1 < SP2, then he is willing to sell up to SQ1 units of electricity
at unit price SP1, and, if all those are sold, he is also willing to sell up to SQ2 units at
the larger unit price SP2. The submitted offers/bids on the market compose two curves:
the supply curve, increasing with respect to the offer price SPj, for the selling offers, and
the demand curve, decreasing with respect to the bid price BPi, for the buying bids, as
illustrated in Fig. 4.1.

Figure 4.1: Supply (orange) and demand (gray) curves: at the intersection, λ∗ represents the
price of electricity and Q∗ the total quantity accepted; the area (blue) represents the social
welfare

In non-pathological situations, the curves meet at a single point that defines

• the electricity price λ∗, corresponding to the price of the marginal, i.e. the most
costly selling offer accepted, and

• the total quantity Q∗ of purchased energy.

The price λ∗ is paid to all the sellers whose offers contribute to the total accepted quantity
Q∗ (pay-as-cleared mechanism).

From a mathematical point of view, the MO clears the day-ahead market by solving
the primal problem MGP with Elastic demand (MGP-E) (4.1) for each hour to
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4.1. Stepwise evolution of the models

which the bids are referred. In the model, a system with one zone is considered as if the
transmission system had no bottlenecks, i.e. the so-called single bus system. The model
with multiple zones as envisioned by the Italian regulation will be presented shortly.

max
BQi≥0,SQj≥0

∑
i∈B

BPiBQi −
∑
j∈S

SPjSQj (4.1a)

BQi ≤ BQi i ∈ B (ηi ≥ 0) (4.1b)

SQj ≤ SQj j ∈ S (µj ≥ 0) (4.1c)∑
i∈B

BQi =
∑
j∈S

SQj (λ) (4.1d)

In (4.1), the optimal values BQ∗
i and SQ∗

j represent respectively how much of the i-th
buying bid/j-th selling offer is accepted by the MO. Constraints (4.1b) and (4.1c) limit
the accepted quantity with respect to the bid quantity while (4.1d) requires that whatever
is sold is also bought (supply-demand balance constraint). The objective function (4.1a)
conceptually maximizes social welfare, geometrically defined as the area between the
demand and the supply curves.

Let ηi and µj be the dual variables associated with the constraints (4.1b) and (4.1c)
respectively, while λ is the dual variable associated with the constraint (4.1d). The dual
of (4.1) is the problem (4.2).

min
ηi≥0,µj≥0,λ

∑
i∈B

BQiηi +
∑
j∈S

SQjµj (4.2a)

ηi + λ ≥ BPi i ∈ B BQi ≥ 0 (4.2b)

µj − λ ≥ −SPj j ∈ S SQj ≥ 0 (4.2c)

The Complementarity Slackness Conditions (CSC) of (4.1) and (4.2) read as in (4.3).

ηi(BQi −BQi) = 0 i ∈ B µj(SQj − SQj) = 0 j ∈ S (4.3a)

BQi(ηi + λ−BPi) = 0 i ∈ B SQj(µj − λ+ SPj) = 0 j ∈ S (4.3b)

They define the following rejection or acceptance criteria:
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Bid

rejected BQ∗
i = 0 λ∗ ≥ BPi − η∗

i η∗
i = 0 λ∗ ≥ BPi

part. accepted 0 < BQ∗
i < BQi λ∗ = BPi − η∗

i η∗
i = 0 λ∗ = BPi

fully accepted BQ∗
i = BQi λ∗ = BPi − η∗

i η∗
i ≥ 0 λ∗ ≤ BPi

Offer

rejected SQ∗
j = 0 λ∗ ≤ SPj + µ∗

j µ∗
j = 0 λ∗ ≤ SPj

part. accepted 0 < SQ∗
j < SQj λ∗ = SPj + µ∗

j µ∗
j = 0 λ∗ = SPj

fully accepted SQ∗
j = SQj λ∗ = SPj + µ∗

j µ∗
j ≥ 0 λ∗ ≥ SPj

In particular:

• from primal and dual feasibility and (4.3a), one has that whenever λ∗ < BPi we have

η∗
i > 0, i.e., the market clearing price is smaller than the price at which the buying bid i

would be accepted, then BQ∗
i = BQi, i.e., the buying bid is fully accepted.

• Dually, whenever λ∗ > SPj it must result µ∗
j > 0, i.e., the market clearing price is larger

than the price at which selling offer j would be accepted, then SQ∗
j = SQj , i.e., the selling

offer is fully accepted.

So, the objective function (4.2a) measures – and minimizes – the deviation between the amount

of money that the buyers were willing to pay in order to get the amount of electricity they

actually received, plus the amount of money that the buyers were expecting to get in order to

sell the amount of electricity they actually sold, and that corresponding to forcing everybody to

sell/buy at the fixed market clearing price λ∗. Of course, nobody can, and is forced to, buy/sell

at a price that is too high/low for his expectations; in fact, due to (4.3b), a buying bid for which

λ∗ > BPi ⇒ η∗
i = 0 > BPi − λ∗ results in BQ∗

i = 0, and analogously for selling offers.

The dual variable ηi represents the operating profit per unit: it is null when the i-th buying

bid is either rejected or partially accepted or non-negative when the bid i is totally accepted:

η∗
i = max{0, BPi − λ∗}

Similarly, µ∗
j represents the operating profit per unit of the j-th selling offer:

µ∗
j = max{0, λ∗ − SPj}

Since η∗
i , µ∗

j > 0 only when BQ∗
i = BQi and SQ∗

j = SQj respectively, the optimal value of

the dual objective function (4.2a) represents the sum of the consumers’ profits ∑
i∈B BQiη

∗
i and
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the producers’ profits ∑
j∈S SQjµ∗

j , that is in turn equal to the social welfare for the strong-

duality equality (the primal objective function represents the social welfare).

The value of the optimal market clearing price can result in any of the four cases illustrated

in Fig. 4.2, based on the characteristics of the intersection point [GME, 2002]:

E1 unique price defined by the marginal supply offer λ∗ = SPj∗

E2 unique price defined by the marginal buying bid λ∗ = BPi∗

E3 quantity-indeterminacy: λ∗ = SPj∗ = BPi∗ ; any quantity in [Q∗
min, Q∗

max] is optimal

E4 price-indeterminacy: any price in [λ∗
min, λ∗

max] is optimal

Figure 4.2: Market clearing price and total quantity accepted under different assumptions
about the characteristics of the intersection of the supply (orange) and demand (gray) curves

Both cases (E3) and (E4) are caused by degenerate solutions in the primal and dual problems

respectively. In (E4), social welfare does not change depending on which price is chosen in

[λ∗
min, λ∗

max]; what changes is the ratio of consumer to producer profits: by choosing λ∗
min,

consumer profits increase [Byers and Hug, 2023].

Given the nature of the electricity, the demand curve can also be imagined as rigid, i.e.,

independent of the price, and therefore be a simple constant D with a possible cap at the

price given by an estimation of the Value of Lost Load (VoLL), which in the Italian market is
73



Chapter 4. Development of bilevel models for GEP

conventionally set at 3000 e/MWh [European Commission, 2020]. In this case, the number of

possible intersection cases reduces to three, as shown in Fig. 4.3:

I1 unique price defined by the marginal generator λ∗ = Pk∗

I2 energy-not-provided: the demand exceeds the total quantity offered, giving rise to Energy

Not Provided (ENP), and thus to a market clearing price equal to the VoLL (λ∗ = V oLL)

I3 price-indeterminacy: any price in the interval [λ∗
min, λ∗

max] is optimal

Figure 4.3: Market clearing price and total quantity accepted under different levels of inelastic
demand (gray vertical line): in Case 1 there are infra-marginal rents (blue area), in Case 2 there
are both infra-marginal (blue area) and scarcity (orange area) rents, while in Case 3 the infra-
marginal rents depend on the price chosen from the indeterminacy interval

The MO solves the primal problem MGP with Inelastic demand (MGP - I) (4.4).

min
Qk≥0,ENP ≥0

∑
k∈K

PkQk + V oLL ENP (4.4a)

Qk ≤ Qk k ∈ K (µk ≥ 0) (4.4b)∑
k∈K

Qk + ENP = D (λ) (4.4c)

The non-negative variable ENP is introduced in the supply-demand balance constraint (4.4c)

and it is penalized in the objective function (4.4a) at VoLL.

The dual of (4.4) is the problem (4.5).

max
µk≥0,λ

Dλ−
∑
k∈K

Qkµk (4.5a)

µk − λ ≥ −Pk k ∈ K (Qk ≥ 0) (4.5b)

λ ≤ V oLL (ENP ≥ 0) (4.5c)

In the objective function (4.5a) Dλ represents the consumers’ expenditure while the term

−
∑

k∈K Qkµk forces the solution to assign a value µ∗
k > 0 to the bids with the lowest incre-

mental cost. In other words, the cheapest offers needed to cover the demand are fully accepted
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(Q∗
k = Qk). Even with inelastic demand, the dual variable µ∗

k = max{0, λ∗−Pk} represents the

operating profit per unit: in particular, it is positive only if the generator is infra-marginal

(λ∗ > Pk) or in the case of scarcity rent created by ENP ∗ > 0 (λ∗ = V oLL > Pk); in all other

cases, it is zero.

We now assume that each selling offer (generator) k is associated with a given zone among

a set Z of possible ones by the set Kz. Exchanges of electricity within the same zone are not

limited; however, a set L of transmission lines between zones is given, and exchanges are limited

by the equivalent capacity of these lines. Unlike other European countries (with the exception

of Scandinavia), where zones typically correspond to the entire national territory (each Country

a zone), Italy considers |Z| = 7 distinct market zones [Terna, 2021], linked as shown in Fig. 4.4.

Figure 4.4: Italian market zones and equivalent transmission lines; the depicted direction
follows the convention of indicating a positive sign for the flow of energy in that direction and
a negative sign for the flow of energy in the opposite direction

This approach aims to account for the specific geographical configuration of the productions

and loads and tailor purchase prices based on the balance between generation capacity and

demand, which may vary from zone to zone, signaling appropriate pricing differences across

zones.

Considering multiple zones, we obtain the primal problem Constrained MGP with In-
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elastic demand (C-MGP-I) (4.6). For simplicity, we ignore the ENP.

min
Qk≥0,Fl

∑
k∈K

PkQk (4.6a)

Qk ≤ Qk k ∈ K (µk ≥ 0) (4.6b)∑
k∈Kz

Qk +
∑

l∈BSz

Fl = Dz +
∑

l∈F Sz

Fl z ∈ Z (λz) (4.6c)

F l ≤ Fl ≤ F l l ∈ L (υl, υl ≥ 0) (4.6d)

In constraint (4.6d), F l and F l are respectively the minimum and the maximum capacities

of the transmission line l (typically, F l < 0 and F l > 0). The constraints (4.6c) ensure the

supply-demand balance at each zone z: the left-hand side represents the energy sources given

by generators and incoming flows (arcs entering the zone z), while the right-hand side describes

the energy uses given by the zonal demand and outgoing flows (arcs leaving the zone z).

The corresponding dual problem of (4.6) is (4.7).

max
(µk,υl,υl)≥0,λ

∑
z∈Z

Dzλz −
∑
k∈K

Qkµk +
∑
l∈L

(F lυl − F lυl) (4.7a)

µk − λ ≥ −Pk k ∈ K (Qk ≥ 0) (4.7b)

λztail
l
− λzhead

l
) − υl + υl = 0 l ∈ L (Fl) (4.7c)

The optimal value λ∗
z is the market clearing price of zone z. Zonal prices may vary

across different zones. Line l ∈ L is defined by the ordered pair of nodes (ztail
l , zhead

l ), i.e. a

positive flow is from ztail
l to zhead

l and a negative flow is from zhead
l to ztail

l .

The CSC (4.8) are

υl(Fl − F l) = 0 l ∈ L υl(F l − Fl) = 0 l ∈ L (4.8)

and together with the dual constraint (4.7c) define the following criteria on the prices among

zones:

F l < F ∗
l < F l υ∗

l = 0 υ∗
l = 0 λ∗

ztail
l

= λ∗
zhead

l

F ∗
l = F l υ∗

l = λ∗
ztail

l

− λ∗
zhead

l

≥ 0 υ∗
l = 0 λ∗

ztail
l

≥ λ∗
zhead

l

F ∗
l = F l υ∗

l = 0 υ∗
l = λ∗

zhead
l

− λ∗
ztail

l

≥ 0 λ∗
ztail

l

≤ λ∗
zhead

l

As intuition suggests, in the absence of congestion, the price for the producers is unique.

Conversely, when congestion materializes in the solution, prices are consequently higher in
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zones with lower supply (import zones) and vice versa. From a generation standpoint, this also

incentivizes investors to develop capacity in the zone where it is needed to reduce congestion

(locational price signals).

The dual variables υ∗
l and υ∗

l represent the congestion rents:

υ∗
l = max{0, λ∗

ztail
l
− λ∗

zhead
l
} υ∗

l = max{0, λ∗
zhead

l
− λ∗

ztail
l
} (4.9)

The rules of the Italian electrical market require the MO to produce:

• zonal prices λ∗
z for sellers, taking into account the extra cost corresponding to the presence

of transmission constraints;

• a unique market clearing price λ∗ for buyers, referred to as PUN (Prezzo Unico Nazionale),

ensuring that buyers are neither penalized nor favored based on their geographical loca-

tion.

4.1.2 Introducing the minimum power output

The Italian MO does not consider technical minimum outputs of thermal generators and thus

MGP-I (4.4) may result in generators dispatched for a lower level than what is physically

possible. However, after MGP clearing the resulting schedule can be changed by defining new

offers on a subsequent market, the intra-day market (MI). In so doing generators have the

opportunity to adjust their position before the real time, where the schedule defined by the

TSO becomes binding. In essence, the producer may decide to:

• re-assign the energy sold in MGP by its own generators (if he has more than one generator

in his portfolio);

• submit new offers with other producers to buy back that energy sold in MGP or sell more

energy in MI markets;

• pay penalties on the ancillary services market according to the imbalance they produced.

Let’s consider the example in Tab. 4.1 with prices in [e/MWh] and quantities in [MWh], assume

a rigid system demand of D = 30 MWh. The system configuration includes two generators, k1

and k2, with offer prices of 5 e/MWh and 10 e/MWh, and offer quantities of 20 MW and 40

MW, respectively; generator k2 presents a technical minimum level of 15 MW. As illustrated in

the left-hand figure of Fig. 4.5, MGP-I dispatches the cheapest generator at capacity and the

more expensive generator for the remaining load: Q∗
2 = 10 < Q2 = 15, therefore its outcome is

infeasible due to the technical minimum. Generator k2 may alternatively:
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k1 k2

Q
k

0 15

Qk 20 40

Pk 5 10

Table 4.1: Economical and physical characteristics of the generators considered in the example

a. on MI try to sell an additional amount of energy Q2−Q∗
2 = 5, to reach a feasible point of

production, to generator k1, which would reduce its production to Q1
∗− (Q2−Q2

∗) = 15

without incurring the cost of production of Q1 = 5 MWh at 5 e/MWh (assuming that

the generator offers at its marginal cost);

b. operate at the technical minimum and incur a positive imbalance;

c. choose to stay off, resulting in a negative imbalance.

In the latter two cases, (b.) and (c.), it will pay imbalance prices that will form in the ancillary

services markets according to the imbalance rules in force. In case (a.), for generator k1 to

Figure 4.5: Comparison between the optimal solutions of MGP-I (left) and MGP+MI (right)
with given statuses γ1 = γ2 = 1. To meet the technical minimum requirement (violet segment),
MGP+MI decreases the dispatch of the cheapest generator (orange segment), which becomes
marginal: the reduced price results in a loss (red area) for the more expensive generator.

accept the MI offer, generator k2 must choose an offer price ≤ 5, i.e. below the cost that k1

would incur if producing instead of buying from k2. Note that although k2 is losing money, its

opportunity cost is related to choices (b.) or (c.).

Therefore, downstream of MI, the price is λ = 5, at which k1 is indifferent between producing

the dispatched quantity on MGP and modifying its production.
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We approximate the operation of the MGP and MI markets by introducing in the MGP-I

model (4.4) a parameter γk, representing the commitment status of the generator k: in the

MGP+MI model (4.10), γk = 1 indicates that generator k is ON and must be dispatched at a

level between the technical minimum Q
k

and the capacity Qk; γk = 0 indicates that generator

k is OFF and does not offer.

min
Qk≥0,ENP ≥0

∑
k∈K

PkQk + V oLL ENP (4.10a)

Q
k
γk ≤ Qk ≤ Qkγk k ∈ K (µ

k
, µk ≥ 0) (4.10b)∑

k∈K

Qk + ENP = D (λ) (4.10c)

Considering γk as a parameter, the dual of (4.10) is the problem (4.11).

max
(µ

k
,µk)≥0,λ

Dλ +
∑
k∈K

(Q
k
γkµ

k
−Qkγkµk) (4.11a)

− µ
k

+ µk − λ ≥ −Pk k ∈ K (Qk ≥ 0) (4.11b)

λ ≤ V oLL (ENP ≥ 0) (4.11c)

The CSC (4.12) are

µ
k
(Qk −Q

k
γk) = 0 k ∈ K µk(Qkγk −Qk) = 0 k ∈ K (4.12a)

Qk(−µ
k

+ µk − λ + Pk) = 0 k ∈ K ENP (V oLL− λ) = 0 (4.12b)

and introduce the following criteria

γk = 0 Q∗
k = 0 µ∗

k
≥ 0 µ∗

k ≥ 0 µ∗
k − µ∗

k
≥ λ∗ − Pk

γk = 1

Q∗
k = Q

k
µ∗

k
= Pk − λ∗ ≥ 0 µ∗

k = 0 λ∗ ≤ Pk

Q
k

< Q∗
k < Qk µ∗

k
= 0 µ∗

k = 0 λ∗ = Pk

Q∗
k = Qk µ∗

k
= 0 µ∗

k = λ∗ − Pk ≥ 0 λ∗ ≥ Pk

For γk = 1 the dual variables µ
k

and µk represent the loss per unit and the profit per

unit, respectively:

µ∗
k

= max{0, Pk − λ∗} µ∗
k = max{0, λ∗ − Pk} (4.13)

For γk = 0, on the other hand, the values of µ∗
k

and µ∗
k do not impact the objective function
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(4.11a) and can therefore take on any value. In this case, they do not represent losses or profits.

The only constraint is on the difference µ∗
k − µ∗

k
.

Assuming γ1 = γ2 = 1 in the example, MGP+MI (4.10) leads to the optimal dispatch shown

in the right-hand figure of Fig. 4.5: the generator k1 is no longer dispatched at capacity (reduc-

tion of the dispatched quantity of the cheapest generator) while the generator k2 is dispatched

at the technical minimum. The electricity price does not reflect the offer price of k2 since k2 is

not the marginal generator, although it is the more expensive one dispatched: an additional unit

of load would be covered by k1. Therefore, generator k1 bears a loss per unit µ∗
2 = 5e/MWh.

Another important difference between MGP-I and MGP+MI concerns price indeterminacy

cases: in MGP-I, the MO problem sees all generators, even those that are not dispatched,

allowing them to cover any additional unit of demand. In contrast, MGP+MI treats off-line

generators (γk = 0) as non-existent, making it impossible for them to meet an additional unit

of demand and resulting in unmet energy demand and a price at the VoLL. Let’s consider the

previous example with a demand D = 20 MWh: Fig. 4.6 shows prices resulting from MGP-I

and MGP+MI.

Figure 4.6: Comparison of the optimal solutions of MGP-I (left) and MGP+MI (right) in the
case of price indeterminacy: in MGP-I, the second generator could satisfy one additional unit
of demand, whereas in MGP+MI, any additional demand could not be satisfied by the off-line
generator (γ2 = 0), leading to a price fixed at VoLL

The optimal value of the binary variable γk, and other variables, are defined in another

optimization problem, that considers optimal dispatched quantities and prices from MGP+MI

(4.10). The resulting problem is therefore a bilevel model in which:

• the lower level (LL) is the problem MGP+MI (4.10) solved for each hour by the MO. This

model will be also modified later on;

• the upper level (UL) is the problem of a CP that determines γ∗
k , and other variables,
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according to its objective function and constraints. The formulations of the UL will be

detailed also subsequently.

Among its constraints, the UL takes into account UC constraints enforcing in each hour t

consistency between statuses γk,t and variables representing startup αk,t and shutdown βk,t

decisions. In this way, it is able to account for startup costs CSU
k in the Revenue Adequacy

(RA) constraints, that from the operational point of view can be defined in (4.14) as a first

attempt.

∑
t

λtQk,t ≥
∑

t

(CSU
k αk,t + CM

k Qk,t) (4.14)

Constraints (4.14) are needed for each generator k ∈ K, CM
k is the marginal cost of the generator

k.

These RA constraints will later be modified to include investment costs and zonal prices

and other components.

To account for startup/shutdown dynamics (and thus for the startup costs), the technical

minimum values Q
k

must be positive. Without this condition, if the generator is turned ON

(αk,t = 1), there is no incentive to switch it OFF and pay the startup cost in later hours, as

it can operate with zero production (Qk,t = 0) even in the ON state (γk,t = 1), as per the

constraint (4.10b).

Including the technical minimum constraint Qk,t ≥ Q
k
γk,t in the UL instead of the LL

would introduce a significant distortion in market outcomes. In fact, the model could result in

allocating the entire demand to the more expensive generator while keeping the cheapest OFF.

4.1.3 Strategic withholding

The CP, representing the producers, may decide to adopt a capacity withholding strategy (2)

by shutting down some generators (setting γk = 0) to allow generators with higher marginal

costs (offer prices) to set the clearing price, and thus satisfy the RA constraints, as illustrated

in Fig. 4.7. This is equivalent in reality to the operator owning both the first and the second

generator deciding not to offer the capacity of the second generator in order to obtain a higher

profit for the first generator.

Withholding of capacity is prohibited by REMIT, but ACER can only detect this strategic

behavior by carrying out a case-by-case analysis, as explained in (2.1.2). Such detection can be

particularly difficult when operators, instead of physically withholding their capacity, perform

economic withholding, which also results in the removal from the market of capacity that, if

offered at an appropriate price, would set the price at a lower level.
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Figure 4.7: Comparison between the optimal solutions without (left) and with (right) the
withholding strategy: in order to increase the profit (green area) of the first generator and
thus cover additional (e.g. fixed) costs and satisfy the RA constraint, the CP takes the second
generator off-line (γ2 = 0, orange) to force the MO to set a higher clearing price

As the offer price is a parameter of the model rather than a variable, economic withholding is

not possible in our model, but the effect on the clearing price is the same as physical withholding.

The constraints introduced to avoid unwanted physical withholding will be presented later in

the complete model, i.e. (5.10)-(5.13).

4.1.4 RES offer at LCOE: their offer quantity can be partially accepted

Renewable cannibalization is a phenomenon observed in the energy sector, where the increasing

integration of zero marginal cost renewable energy sources, such as solar and wind power, leads

to a decline in their market value. This decline poses a threat to investment incentives in

renewable technologies. Studies on cannibalization in high wind and solar penetration markets

have been conducted for California [Prol et al., 2020] and Germany [Liebensteiner and Naumann,

2022]. These papers use a time-series econometric model using ex-post data to find yearly

cannibalization results and then apply regression models to find relations between the market

price and the so-called cannibalization factor and relevant factors.

The following key points outline the characteristics and implications of renewable cannibal-

ization:

• Zero Marginal Cost Nature: Solar and wind power exhibit zero marginal costs once

the infrastructure is established, distinguishing them from conventional power sources

such as gas, coal fired ones.

• Market Value Decline: Increased penetration of renewable energy can lead to a decrease

in electricity prices during periods of high renewable generation, impacting the market
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value of renewables.

• Impact on Investment Incentives: The reduced market value can deter investors, as

the revenue generated may not cover the costs of installing and maintaining renewable

infrastructure.

• Supply and Demand Dynamics: The extent of cannibalization is influenced by the

balance between supply (renewable generation) and demand (electricity consumption),

according to the principles of supply and demand.

• Time-Dependent Nature: The intermittency of renewable energy, especially wind and

solar, contributes to cannibalization. Solar energy is more predictable due to consistent

radiation, while wind power is less predictable.

• Geographical and Regulatory Variations: Cannibalization research is often specific

to a country or region, considering local factors like energy demand, grid infrastructure,

and regulatory frameworks.

• Technology-Specific Considerations: Cannibalization affects solar and wind power

differently. Solar is exposed to prices during the day, while wind power generation extends

beyond daylight hours, influenced by night-time wind speeds

Understanding these dynamics is crucial for policymakers and investors to design effective

strategies that support renewable energy growth while addressing challenges associated with

cannibalization.

It is well known that at the time of writing in the day ahead market, the RES generators

offer at 0 e/MWh as the market-clearing price is typically set by gas power plants. Projecting

us to 2040 and beyond, we will introduce a conceptual paradigm shift in the offering strategies

of RES producers which may materialize in some respect. Specifically, we will assume that RES

generators offer at their, perceived - Levelized Cost of Electricity (LCOE), e.g. [Ueckerdt et al.,

2013]. In its several variants, LCOE is a metric used to assess the lifetime cost of generating a

unit of electricity from a particular energy generation source and is expressed in terms of the

cost per MWh. LCOE is often used to compare the economic competitiveness of different energy

technologies but, reversing the perspective, can be also used as a metric for offering in future

systems with high penetration of RES. This is particularly relevant when payments outside the

markets are excluded or only partially considered for this class of production plants.

Non-programmable renewable power sources offer on the market their entire production due

to the inability to modulate their output. The production is determined by their capacity,
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represented by Q
V for photovoltaic generators, and the corresponding capacity factor, cfV ,

influenced by solar irradiation at that specific time.

Let’s consider two hypotheses for modeling the acceptance criteria of RES offers:

a. the RES offer can be partially accepted

b. the RES offer is fully accepted

We propose to operate under hypothesis (a.) so that the clearing price can coincide with the

photovoltaic offer price P V (= LCOEV ). Conversely, under the alternative hypothesis (b.), the

LCOE will never fix the clearing price, as illustrated below.

In the case of fully accepted RES offers (b.), we introduce a slack variable OG representing

RES curtailment (i.e. an overgeneration) in the balance constraint (4.15c) to ensure problem

feasibility.

min
QK≥0,OG≥0

P KQK + P V cfV Q
V (4.15a)

QKγ ≤ QK ≤ Q
K

γ (4.15b)

QK + cfV Q
V = D + OG (λ) (4.15c)

The term P V cfV Q
V in the objective function (4.15a) is constant and can be omitted without

affecting the optimal solution. The clearing price takes a value of zero (λ = 0) when there

is an excess of production over demand (OG > 0): when satisfying the demand D, the cost

of producing the entire quantity cfV Q
V is already taken into account and one more unit of

demand would be satisfied by reducing OG without changing the cost. Note that penalizing the

variable OG with the photovoltaic offer price PV in the objective function would lead PV to be

able to set the clearing price. However, this solution is limited to a single type of RES offering

at a fixed price and is not applicable when dealing with multiple types of RES production (e.g.

wind) offered at different prices.

Therefore, we consider the possibility of partially accepted RES offers (a.) as in (4.16).

min
QK≥0,QV ≥0

P KQK + P V QV (4.16a)

QKγ ≤ QK ≤ Q
K

γ (µK , µK ≥ 0) (4.16b)

QV ≤ cfV Q
V (µV ≥ 0) (4.16c)

QK + QV = D (λ) (4.16d)

The example in Tab. 4.2 illustrates the comparison between the models (4.15) and (4.16), cor-
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responding to the hypotheses (b.) and (a.) respectively. The system configuration includes one

off.price off.quantity D 10 40

K 94 [30,40] QK 0 30

V 64 (a.) [0,20] (a.) QV 10 10

or (b.) 20 (b.) OG 10 10

(a.) λ 64 64

(b.) λ 0 0

Table 4.2: Comparison between optimal solutions under the hypotheses (a.) partially accepted
and (b.) fully accepted for RES offers at different levels of demand D, given the offer prices
and quantities of the thermal power plant K and the RES power plant V: under (a.), V is
the marginal generator and sets the price, while under (b.) the price is zero since the cost of
meeting an additional unit of demand does not vary due to the overgeneration caused by the
non-partitionable quantity of V and the technical minimum of K

thermal generator with offer price 94 e/MWh and offer quantity 40 MW and one photovoltaic

generator with offer price 64 e/MWh, based on its LCOE, and offer quantity 20 MW, given

by the product of its capacity and capacity factor; the thermal generator presents a technical

minimum level of 30 MW. The clearing price λ takes the LCOE value of 64 only under the

hypothesis (a.). With D = 40 MWh, the photovoltaic is the marginal generator due to the

technical minimum of the thermal generator.

Therefore we carry on the problem (4.16) whose dual is the problem (4.17).

max
(µK ,µK ,µV )≥0,λ

Dλ + QKγµK −Q
K

γµK − cfV Q
V

µV (4.17a)

− µK + µK − λ ≥ −P K (QK ≥ 0) (4.17b)

µV − λ ≥ −P V (QV ≥ 0) (4.17c)

The CSC (4.18) are

µV (cfV Q
V −QV ) = 0 QV (µV − λ + P V ) = 0 (4.18)

and introduce the following criteria
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cfV = 0 QV ∗ = 0 µV ∗ ≥ 0 µV ∗ ≥ λ∗ − P V

cfV > 0

QV ∗ = 0 µV ∗ = 0 λ∗ ≤ P V

0 < QV ∗ < cfV Q
V

µV ∗ = 0 λ∗ = P V

QV ∗ = cfV Q
V

µV ∗ = λ∗ − P V ≥ 0 λ∗ ≥ P V

For cfV > 0 the dual variable µV ∗ represents the profit per unit of the photovoltaic generator:

µV ∗ = max{0, λ∗ − P V } (4.19)

For cfV = 0, on the other hand, the value of µV ∗ does not impact the objective function (4.11a)

and can take on any value that is ≥ λ∗ − P V . In this case, it does not represent the profit per

unit.

4.1.5 Batteries to reduce energy losses

We integrate batteries into the system to efficiently manage RES production that may not be

fully accepted by the MO, as described in (4.1.4). The exceeding RES production can be stored

in batteries and be used in later hours for reducing thermal production and thus lowering the

cost of meeting the demand realizing a so-called time shifting.

The CP can decide optimal investments and operation of batteries. From the operational

point of view, the variables BC
t and BD

t are introduced in the UL. These variables, representing

the charge and the discharge of the battery, can be modeled as SOS1 to establish their mutual

exclusivity, i.e. to ensure that charging and discharging do not occur simultaneously. In addi-

tion, continuous variables Bt are used to represent the energy level of the battery in hour t. UL

constraints model the operation of batteries. Specifically, energy balances (4.20) ensure that

the energy stored at the end of hour t equals the energy stored at the end of hour t−1, plus the

energy charged or minus the energy discharge. Additional constraints will be introduced later.

Bt = Bt−1 + BC
t −BD

t (4.20)

We consider two alternative formulations for the LL, that have respective different formulations

for the UL:

B1 batteries not participating in the market

B2 batteries participating in the market
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In the first case (B1), only the discharge BD
t is considered as a parameter of the LL balance

constraint (4.21d).

min
QK

t ≥0,QV
t ≥0

P KQK
t + P V QV

t (4.21a)

QKγt ≤ QK
t ≤ Q

K
γt (µK

t
, µK

t ≥ 0) (4.21b)

QV
t ≤ cfV

t Q
V (µV

t ≥ 0) (4.21c)

QK
t + QV

t = Dt −BD
t (λt) (4.21d)

The charge BC
t is limited in the UL constraint by the RES production net of the quantity

accepted by the MO, e.g. for photovoltaic these constraints read as in (4.22).

BC
t ≤ cfV

t Q
V −QV

t (4.22)

It’s important to note that this constraint may not always be satisfied at equality due to technical

limitations, such as the inability to store all excess energy. For instance, the excess energy might

exceed the charging rate or the battery may already be saturated. In such cases, there could

be an incentive for the CP to invest in additional battery capacity. Indeed, the model chooses

the number of batteries that represents the best trade-off between the increase in investment

costs for installing new batteries and the reduction in operating costs due to increased storage

capacity, resulting in lower residual demand to satisfy.

From the point of view of the e.g. photovoltaic, and more generally RES, generator, the

quantity QV
t accepted by the MO generates a revenue at the hourly price λt whereas the excess

energy that is used to charge the battery does not produce a revenue. The described operation

of the system is only possible in the presence of a supporting mechanism that compensates for

the investment and service of storing and shifting the production from one hour to another.

In the second case (B2), instead, both charge BC
t and discharge BD

t are considered as

parameters of the LL balance constraint (4.23d). Therefore, the accepted quantities incorporate

the energy needed to charge the battery, which in this case can be charged by both RES and

thermal generators.
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min
QK

t ≥0,QV
t ≥0

P KQK
t + P V QV

t (4.23a)

QKγt ≤ QK
t ≤ Q

K
γt (µK

t
, µK

t ≥ 0) (4.23b)

QV
t ≤ cfV

t Q
V (µV

t ≥ 0) (4.23c)

QK
t + QV

t = Dt + BC
t −BD

t (λt) (4.23d)

RES also receive the clearing price for the part of their production used to charge the battery.

Therefore in this second case, (B2), the batteries can be eligible for RA treatment.

4.1.6 The need for a fully-adequate model with side payments

As described in (1.3), energy-only markets consider revenues only from the market, relying on

scarcity rents of the hours when demand exceeds supply (ENP > 0, λ = V oLL) to cover fixed

and investment costs. Therefore, a CP aiming to meet RA constraints may, or is forced to,

intentionally create a situation where the system cannot fulfill the entire demand. At the same

time, the CP must reduce to a minimum the number of hours in which some consumers are not

supplied due to system adequacy issues; in particular, an electricity system is typically assumed

to be adequate if there are no more than 3 hours per year with positive ENP (system adequacy

condition).

As explained in (4), for computational tractability, we limit our analysis to a small number

of days representative of the future year. This limitation makes it difficult to restrict the number

of hours when the price is set to the VoLL as per the system adequacy target. We therefore

penalize the ENP in the UL objective function at the VoLL.

We observed that the CP determines optimal values of investments, statuses of thermal

generators, and discharges of batteries so that in some hours the total capacity is slightly less

than demand (small ENP values), forcing the MO to assign a price equal to the VoLL for the

entire dispatched quantities.

Therefore, it is not possible to model an energy-only market with RA constraints as the

latter would affect the optimal solution.

A fully-adequate system is considered, i.e., a system without ENP. Therefore, the clearing

price can be at most equal to the maximum bid price. Defining λ̂i = {P RES , P K} as the ordered

set of offer prices, the inequality (4.24) holds.

λ ≤ λ = max
i

λ̂i (4.24)
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At the same time, thermal generators are assumed to bid at their marginal costs. Side payments

become necessary to cover any costs beyond the marginal ones, particularly for the marginal

generator, as the other can rely on infra-marginal rents. The model is referred to as "simil-

capacity" because of the possibility for generators to receive an additional (and discriminatory)

revenue, e.g. uk for thermal power plant k, outside of the market. This side payment will

be minimized by the CP and will act as a slack variable possibly needed to satisfy the RA

constraints. These can be modeled with constraints that, for e.g. thermal generators, take the

generic form (4.25).

∑
t

λtQk,t + uk ≥
∑

t

(CSU
k αk,t + CM

k Qk,t) + InvCosts (4.25)

The RA constraints are expressed as inequalities with slack variables, e.g. uk, defined as

positive and minimized in the objective function. In fact, in cases where market revenues,

such as ∑
t λtQk,t for thermal generators, exceed the associated costs, equalities would not be

feasible. Modeling uk as a free variable and removing it from the objective function would

introduce distortions in market results. In fact, minimizing the price as in (5.45) would lead the

CP to strategically dispatch thermal plants at their technical minimums to avoid them setting

the price. The price would instead be set by less expensive generators; any losses incurred would

be covered by uk, which would not affect the value of the objective function.

4.1.7 Price indeterminacy

In the LL model, the clearing price λt is indeterminate when the following conditions occur

simultaneously in hour t:

1. RES generators are dispatched at the maximum hourly production (QV
t = cfV

t Q
V ).

2. ON thermal generators (γk,t = 1) are dispatched at their capacity (QK
k,t = Q

K
k );

3. Batteries playing with charge and discharge to meet on a vertical line the demand, i.e.

(I3)

The clearing price is defined within an interval of values [λ∗
min, λ∗

max] as described in (E4) and

(I3). Among the prices in this interval, the CP chooses one that satisfies the RA constraints,

adopting an optimistic position as explained in (3.2). In Appendix A of [Caramanis and Asso-

ciates Inc., 2002] the price-indeterminacy is considered an unlikely solution to the hourly auction

problem and one method is suggested to deal with indeterminacy. However, this approach does

not solve the issue in this situation. On the other hand, the model can strategically identify

investment decisions that are not realistic. In fact, the CP can identify solutions that combine
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the operational decision of commitment of the thermal generator and the investment decision

in RES capacity in such a way that the total quantity offered coincides with the quantity de-

manded, and the price becomes indeterminate. As we shall see soon, from the CP standpoint

choosing the upper bound of the price does not change its objective function while it helps in

satisfying the RA constraints.

Since in reality such behavior on RES, w.r.t the continuous decisions, cannot be applied by

investors, we must eliminate these types of solutions by modeling discrete investment decisions

(lumpy investments). The constraints introduced to avoid unwanted price indeterminacy created

by occurrences (2)-(3) will be presented later in the complete model, i.e. (5.25)-(5.30).

4.2 Models description

Let us consider the Generation Expansion Planning problem determining investments in new

thermal plants, new RES plants (photovoltaic and wind power), and new batteries so that the

resulting mix is able to meet future electricity demand as the first goal. A simplified transporta-

tion model is used to represent an electricity system consisting of a set of zones interconnected

by transmission lines of limited capacity. We assume that during the considered planning

horizon, there are no changes in the transmission topology, i.e., the existing transmission lines

remain the same or are updated accordingly with an off-line process.

To balance modeling accuracy and computational complexity, we develop a static GEP

model, considering a future year (the year 2040 in our applications to the Italian system) that

is represented by a small number of representative days chosen in such a way as to take

into account the most significant and relevant operating conditions of the system, as detailed

in (4). The dynamic approach could provide more accurate solutions but it would increase the

complexity of the problem, as detailed in (2).

The initial state of the system is represented by a set of existing thermal and renewable

plants and a set of existing batteries. We do not consider specific thermal plant decommission-

ing; we will assess ex-post which plants are not chosen to meet the load. Additionally the model

could intercept policy targets by simply setting to certain maximum values the usage of specific

technologies, such as (initially existing) coal.

The new production mix must be determined taking into account the targets for decar-

bonization of energy systems: we have in particular considered that in each zone z:

• the final installed capacity (existing + new) of photovoltaic power generation must be at

least equal to the minimum required capacity

• the final installed capacity (existing + new) of wind power generation, considering both
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in-shore and offshore, must be at least equal to the minimum required capacity.

In a system with high shares of renewable capacity, thermal plants only produce when the

available primary sources (solar radiation, wind speed) are insufficient to meet the demand.

Thermal plants are therefore used for a reduced number of hours, w.r.t. the classic base load

operation, and likely incur higher operating costs due to the increased cycling operations needed

to cope with the non-programmability of renewable plants. From the modeling standpoint,

the thermal power plants dynamics in tactical, short-term, problems are defined with typical

constraints such as Technical Minimum power, Minimum Up and Down times, and max Up and

Down Ramps rates. As for the costs, the models typically include also Start Up Costs that are

incurred whenever such plants are switched on and that can depend on how long the plant has

been off-line, e.g. [Van Ackooij et al., 2018], [Gentile et al., 2017]. On the contrary in strategic

models such as the ones of this work, it is custom to neglect some of these since their inclusion

becomes unjustified when considering the uncertainty and if compared with the additional

computational burden. For instance, in [Poncelet et al., 2020] it is argued that if storage

technologies are considered, integrating technical constraints for thermal plants has only a minor

impact on both overall cost projections and most investments. Lastly, it is important to point

out that especially for the new gas-fired plants, manufacturers are reducing the physiological

values of the Min Up and Down times and enlarging the ramp rate capabilities. For economic

reasons in the forthcoming models, we decided to keep the Start Up Costs since they are more

and more entering into the economic evaluation of the profitability of such plants. Apart from

the technical constraints in the proposed models we impose economic constraints related to

the revenue adequacy of thermal plants over the period considered, also for the reasons

explained in (1.3). Later we will also explain how one component of these constraints can be

interpreted with the lens of the CRM.

In order to correctly estimate the revenues of thermal plants, we want the zonal hourly price

to be defined as the cost of satisfying an additional unit of demand. The zonal hourly price that

is endogenously determined by our model meets the definition and is not affected by the RA

constraint, thus solving the problems inherent in the approach [Guo et al., 2022] (see 2.2.2).

In fact, we develop a bilevel model in which

• the lower level (LL) is the problem solved for each hour by the Market Operator (MO):

given (a) the hourly-zonal demand (inelastic), (b) the supply bids submitted by individual

generators, and (c) the operation of the batteries, the MO determines the dispatch of the

generators, i.e. the accepted quantities of each bid; in such a model, the hourly-zonal

clearing price is the optimal value of the dual variable associated with the constraint
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imposed to satisfy the hourly-zonal demand.

• the upper level (UL) is the problem of a central entity (Central Planner - CP), which

– determines the evolution of the system, i.e. the investments in thermal plants, RES

plants, and batteries

– determines the operation of thermal power plants and batteries to meet the hourly-

zonal demand.

The CP combines in itself the role performed by various actors in the system (investors,

generation plant operators, battery operators, and the regulator).

In the system, we therefore consider one main decision maker, the CP, and a price-setting entity,

the MO, that responds to the actions of the CP, giving birth to a bilevel optimization model.

As described in (4.1.6) it is assumed that:

• the system is fully adequate, i.e., there is no Energy Not Provided and the clearing price

can be at most equal to the maximum bid price (no VoLL)

• thermal generators bid at marginal cost.

Therefore side-payment may be required to cover fixed and investment costs.

Focusing on the final goal of the GEP models it is clear that we seek an "optimal" resource

mix. However, the mathematical formulation of "optimal" in the objective functions is fuzzy

and can be differently declined. For instance, one may focus on the total operational costs as

in traditional models, or it may focus on system costs which may differ from operational costs.

Additionally, it can include other components such as side payments. Moreover, the investment

costs can appear in the OF or somewhere else. As a general consideration, we can therefore

state that GEP models are not universally defined and modeling choices have to be made.

We proposed two alternative models, which can be conceptually sketched as in Fig. 4.8.

1. GEP-RA (1)

2. GEP-RA (2)

The colors indicate the type of variables: red for continuous variables, green for integer (bi-

nary) variables, and blue for dual variables associated with the constraints of the LL problem.

Both problems have a hierarchical structure as the UL problem includes the optimal solution

of the LL problem but not vice versa. Instead, in the LL problem, the UL variables are fixed

parameters and not decision variables. The constraints on integer decisions, e.g., the on/off
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Figure 4.8: Proposed bilevel models: the lower levels determine the accepted quantities Q and
the market clearing prices λ given the investments n and the operational decisions γ, BD, BC

taken by the upper levels; GEP-RA (1) minimizes both the investment and operational costs
taking into account the revenue adequacy constraints only for thermal power plants, whose side
payments u are also minimized, while GEP-RA (2) minimizes the system costs additionally
taking into account the revenue adequacy of renewables and batteries by introducing battery
charging in the lower level

statuses γ of conventional generators, are enforced in the UL problem and the corresponding

integer decisions parameterize the LL problems so that the LL is linear. Similarly, the dispatch

decisions, e.g., the accepted quantities QK of conventional generators, resulting from the LL

problems affect the decisions made in the UL problem. The LL problem yields clearing prices

λ, which, in turn, are used in the UL problem to compute the revenues collected, e.g., by con-

ventional generators on the market. RA constraints make the UL a mixed-integer quadratically

constrained program.

In GEP-RA (1), following the conventional approach of centralized GEP models (2.2.1), the

investment f INV (n) and operational costs fOP (Q, γ) are minimized in the UL. RA constraints

are considered for thermal generators in a framework akin to the Italian Capacity Market, with

side payments uK also minimized in the OF. In GEP-RA (2), on the other hand, the system

costs (i.e. the total costs to consumers) are minimized, moving f INV (n), fOP (Q, γ) from the

OF to the RA constraints, since these costs are borne by the generators’ owners and not by the

system. In the context of the FERX consultation, RA constraints are introduced also for RES

and batteries to cover their investment costs, with specific side payments minimized in the OF.

To account for the revenues of batteries, GEP-RA (2) considers a LL with both charge and
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discharge as described in (B2).
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Chapter 5

The proposed models

In this chapter, we provide a detailed formulation of the models GEP-RA (1) and GEP-RA (2)

introduced in Section (4.2). Furthermore, enhancements to certain constraints are proposed in

Section (5.3), and a version of the model considering only continuous and binary variables is

provided in Section (5.4).

5.1 GEP-RA (1)

The GEP-RA (1) model is (5.1)-(5.39). Both the Market Operator (MO) model and the Central

Planner (CP) model are included.

min
V ar

TC (5.1)

Variables

V ar ≡{
nV

z , nW I
z , nW O

z , nB
z , nK

k

}
(Investments) ∪{

uK
k

}
(Side payments) ∪{

αk,t, βk,t, γk,t, γSL
k,t , xT F

k,t

}
(Unit commitment with avoidance of capacity withholding) ∪{

Bz,t, BC
z,t, BD

z,t, ϕz,t

}
(Batteries) ∪

{RNP z,t} (Reserve not provided) ∪

{yz,t,i} (Price indeterminacy) ∪{
QK

k,t, QV
z,t, QW I

z,t , QW O
z,t , λz,t

}
(LL - optimistic perspective) (5.2)
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Objective function

TC =

= |T |
8760

∑
z∈Z

(
IV

z Q
V

nV
z + IW I

z Q
W I

nW I
z + IW O

z Q
W O

nW O
z + IB

z Q
B

nB
z

)
+

+ |T |
8760

∑
k∈K

IK
k Q

K
k nK

k +
∑
k∈K

uK
k +

∑
k∈K

∑
t∈T

(CSU
k αk,t + CM

k QK
k,t) +

+
∑
z∈Z

∑
t∈T

cRNP RNP z,t (5.3)

Constraints on zonal capacities of RES power plants and batteries in the target year: z ∈ Z

V z ≤ Q
V (nV

z,0 + nV
z ) ≤ V z (5.4)

W z ≤ Q
W I (nW I

z,0 + nW I
z ) + Q

W O (nW O
z,0 + nW O

z ) ≤W z (5.5)

Bz ≤ Q
B (nB

z,0 + nB
z ) ≤ Bz (5.6)

Constraints on thermal power capacity in the target year: k ∈ Kz, z ∈ Z

nK
k ≤ nK

k (5.7)

UC constraints, with avoidance of physical withholding

γk,t − γI
k,t = αk,t − βk,t k ∈ K, t ∈ T I (5.8)

γk,t − γk,t−1 = αk,t − βk,t k ∈ K, t ∈ T ∖ T I (5.9)

γk,t + γSL
k,t = nK

k,0 + nK
k k ∈ K, t ∈ T (5.10)

γSL
k,t ≥ 1− xT F

k,t k ∈ K, t ∈ T (5.11)

γSL
k,t ≤ (nK

k,0 + nK
k )(1− xT F

k,t ) k ∈ K, t ∈ T (5.12)

xT F
k,t ≥ xT F

kk,t q ∈ [1, |Q| − 1] , k ∈ Kq, kk ∈ Kq+1, t ∈ T (5.13)

Constraints that define accepted quantities and zonal prices for each hour: t ∈ T

Optimality conditions of the MO problem (5.42) (5.14)
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Constraints on operation of batteries: z ∈ Z

BC
z,t ≤ rtC Bz ϕz,t t ∈ T (5.15)

BD
z,t ≤ Dz,t (1− ϕz,t) t ∈ T (5.16)

BC
z,t ≤ cfV

z,t Q
V (nV

z,0 + nV
z ) + cfW I

z,t Q
W I (nW I

z,0 + nW I
z )

+ cfW O
z,t Q

W O (nW O
z,0 + nW O

z )−QV
z,t −QW I

z,t −QW O
z,t t ∈ T (5.17)

BC
z,t ≤ rtC Q

B (nB
z,0 + nB

z ) t ∈ T (5.18)

BD
z,t ≤ rtD Q

B (nB
z,0 + nB

z ) t ∈ T (5.19)

Bz,t ≤ Q
B (nB

z,0 + nB
z ) t ∈ T (5.20)

Bz,t = (1− κ) BI
z,t + κC BC

z,t − κD BD
z,t t ∈ T I (5.21)

Bz,t = (1− κ) Bz,t−1 + κC BC
z,t − κD BD

z,t t ∈ T ∖ T I (5.22)

Bz,t = BI
z,t t ∈ T L (5.23)

Reserve constraints: z ∈ Z, t ∈ T∑
k∈Kz

(QK
k γk,t −QK

k,t)+

+ df
[
rtD Q

B (nB
z,0 + nB

z ) (1− ϕz,t)−BD
z,t

]
+ RNP z,t ≥ Rz,t (5.24)

Constraints that avoid price indeterminacy: z ∈ Z, t ∈ T

yz,t,1 ≤
∑

z′∈Z

QV
z′,t (5.25)

yz,t,2 ≤
∑

z′∈Z

QW I
z′,t (5.26)

yz,t,3 ≤
∑

z′∈Z

QW O
z′,t (5.27)

yz,t,3+q ≤
∑

k∈Kq

γk,t q ∈ Q (5.28)

∑
i∈I

yz,t,i = 1 (5.29)

λz,t =
∑
i∈I

λ̂i yz,t,i (5.30)
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Revenue adequacy constraints: k ∈ Kz, z ∈ Z∑
t∈T

λz,t QK
k,t + uK

k ≥M

[
|T |

8760 IK
k Q

K
k nK

k +
∑
t∈T

(CM
k QK

k,t + CSU
k αk,t)

]
(5.31)

Variables types

nV
z , nW I

z , nW O
z , nB

z ∈ N z ∈ Z (5.32)

nK
k ∈ N k ∈ K (5.33)

uK
k ≥ 0 k ∈ K (5.34)

αk,t, βk,t, γk,t, γSL
k,t ∈ N k ∈ K, t ∈ T (5.35)

xT F
k,t ∈ {0, 1} k ∈ K, t ∈ T (5.36)

Bz,t, BC
z,t, BD

z,t, RNP z,t ≥ 0 z ∈ Z, t ∈ T (5.37)

ϕz,t ∈ {0, 1} z ∈ Z, t ∈ T (5.38)

yz,t,i ∈ {0, 1} z ∈ Z, t ∈ T, i ∈ I (5.39)

5.1.1 Capacity of RES power plants, thermal power plants and batteries in

the target year

We assume standard sizes for RES power plants and batteries, expressed by the following

parameters

Q
V [MW ] Standard capacity of solar power plants

Q
W I [MW ] Standard capacity of onshore wind power plants

Q
W O [MW ] Standard capacity of offshore wind power plants

Q
B [MW ] Standard capacity of batteries

Thermal power plants can have different capacities. The types of thermal power plants

located in zone z ∈ Z are the elements of set Kz and the different capacities are represented by

the following parameters

Q
K
k [MW ] Capacity of thermal power plants of type k ∈ Kz for z ∈ Z

The configuration of the system at the beginning of the planning period is represented by

the following parameters
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nV
z,0 [−] Number of solar power plants (standard capacity) existing in zone z

at the beginning of the planning period

nW I
z,0 [−] Number of onshore wind power plants (standard capacity) existing

in zone z at the beginning of the planning period

nW O
z,0 [−] Number of offshore wind power plants (standard capacity) existing

in zone z at the beginning of the planning period

nB
z,0 [−] Number of batteries (standard capacity) existing in zone z at the

beginning of the planning period

nK
k,0 [−] Number of thermal power plants of type k existing in zone z at the

beginning of the planning period

In each zone z, the CP representing the investors determines the number of new RES power

plants, new thermal power plants and new batteries represented by the following integer-valued

variables

nV
z [−] Number of new solar power plants in zone z in the target year

nW I
z [−] Number of new onshore wind power plants in zone z in the target

year

nW O
z [−] Number of new offshore wind power plants in zone z in the target

year

nB
z [−] Number of new batteries in zone z in the target year

nK
k [−] Number of new thermal power plants of type k in the target year

Constraints (5.4), (5.5), and (5.6) impose that in the target year, the total capacity of solar

power plants, wind power plants, and batteries, respectively, in each zone z is between the

following lower and upper bounds, which represent policy requirements and budget/permitting

constraints, respectively.

V z [MW ] Minimum solar power capacity in zone z in the target year

V z [MW ] Maximum solar power capacity in zone z in the target year

W z [MW ] Minimum wind power capacity in zone z in the target year

W z [MW ] Maximum wind power capacity in zone z in the target year

Bz [MW ] Minimum storage capacity in zone z in the target year

Bz [MW ] Maximum storage capacity in zone z in the target year
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Constraints (5.7) impose that in the target year, the number of thermal power plants of

each type k in each zone z is bounded above by nK
k .

5.1.2 Unit commitment with avoidance of physical withholding

The so-called Clustered Unit Commitment formulation is used to take into account Unit Com-

mitment constraints in the optimization model while keeping the problem computationally

tractable, as described in (5). Although simplified, the UC formulation allows for the inclusion

of thermal plant startup costs over the considered planning period.

Constraints (5.8) and (5.9) ensure consistency of the values taken on in adjacent hours by

the following integer variables representing startups, shutdowns, and statuses for each power

plant type k.

αk,t [−] number of plants of type k started up at hour t

βk,t [−] number of plants of type k shut down at hour t

γk,t [−] number of plants of type k on-line at hour t

Constraints (5.8) refer to the first hour (i.e., t ∈ T I) of each representative day, for which

the following parameter is given, while constraints (5.9) refer to all hours except the first (i.e.,

t ∈ T ∖ T I) of each representative day.

γI
k,t [−] number of on-line thermal power plants of type k at the beginning of

hour t ∈ T I

Constraints (5.10) state that the number of on-line plants of type k at hour t is bounded

above by the number of plants of type k installed in the target year, being γSL
k,t an integer-valued,

non-negative variable. In the usual UC formulation, this upper bound constraint is expressed

as (5.40).

γk,t ≤ nK
k,0 + nK

k k ∈ K, t ∈ T (5.40)

However, we have decided to integrate the UC constraints with innovative constraints, avoiding

the manipulative behavior of physical withholding of capacity that the CP representative of

the producers can adopt with the classical formulation. In fact, as described in Section (4.1.3),

some thermal generators do not offer, with the aim of forcing the clearing price to be set by

generators with higher marginal costs/offer prices; in this way, the producers can obtain higher

revenues from other generators. The regulation prohibits this strategic behavior that is however

difficult or demanding to detect.
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In any case, the user of the proposed model can decide either to leave the CP free to adopt

the manipulative behavior, observing ex-post from the calculated optimal solution whether such

behavior is necessary to guarantee the Revenue Adequacy constraints (thanks to an increase

in market revenues, see Section (5.1.7)), or impose that the CP, as the regulator, prevents

such manipulative behavior for thermal generators of cluster k in hour t. From a mathematical

standpoint avoiding this occurrence is quite tricky. We propose to proceed as follows: we started

from the possible situation where some plant(s) in a cluster have not been offered to completion,

mathematically this means that the strict inequality γk,t < nK
k,0 + nK

k holds for some k and t.

Then we introduce the integer slack variable γSL
k,t into the general constraint (5.40), which

now becomes (5.10).

γk,t + γSL
k,t = nK

k,0 + nK
k k ∈ K, t ∈ T (5.10)

Subsequently, we introduce a binary variable xT F
k,t , linked to the integer γSL

k,t according to the

logical condition (5.41)

xT F
k,t =


1 if γSL

k,t = 0

0 if γSL
k,t ≥ 1

k ∈ K, t ∈ T (5.41)

γSL
k,t = 0 indicates that the generators of cluster k do not withhold capacity in hour t because

all available generators (existing + built) are on-line or, in other words, present their bids

(γk,t = nK
k,0 + nK

k ). This must trigger xT F
k,t = 1. Conversely, γSL

k,t ≥ 1 indicates that some

available generators of cluster k are off-line in hour t for two possible reasons: either because

such generators are not needed to fulfill the demand requirement or because they withhold

capacity (γk,t < nK
k,0 + nK

k ). In this case, the logical constraints impose xT F
k,t = 0.

We achieve our final goal by introducing precedence constraints (5.13), which for each pair

of generators of clusters k and kk, differentiated by bid price (k ∈ Kq has bid price λ̂q lower

than the bid price λ̂q+1 of kk ∈ Kq+1), require that the bids of the k generators be submitted

first, i.e., xT F
kk,t cannot take the value 1 if xT F

k,t = 0.

xT F
k,t ≥ xT F

kk,t q ∈ [1, |Q| − 1] , k ∈ Kq, kk ∈ Kq+1, t ∈ T (5.13)

The logical condition (5.41) can be modelled with the linear constraints (5.11), (5.12), where

(nK
k,0 + nK

k ) represents the maximum value that the variable γSL
k,t can take, i.e. the maximum

101



Chapter 5. The proposed models

number of plants of cluster k.

γSL
k,t ≥ (1− xT F

k,t ) k ∈ K, t ∈ T (5.11)

γSL
k,t ≤ (nK

k,0 + nK
k )(1− xT F

k,t ) k ∈ K, t ∈ T (5.12)

5.1.3 Determination of accepted quantities and zonal prices

We assume that at each hour t and in each zone z the RES power plants offer their hourly

production and the on-line thermal power plants of type k offer their capacity. The production

of RES power plants depends on the respective capacity factor

cfV
z,t [MWh/MW ] Solar capacity factor of zone z in hour t

cfW I
z,t [MWh/MW ] Inshore wind capacity factor of zone z in hour t

cfW O
z,t [MWh/MW ] Offshore wind capacity factor of zone z in hour t

The offer prices are represented by the following parameters

P V [e/MWh] Offer price of solar power production (either 0 or LCOEV )

P W I [e/MWh] Offer price of inshore wind power production (either 0 or
LCOEW I)

P W O [e/MWh] Offer price of offshore wind power production (either 0 or
LCOEW O)

P K
k [e/MWh] Offer price of production of thermal power plants of type k

(CM
k )

The offer price for renewable energy can either be 0, as is currently the case, or the Levelized

Cost of Electricity (LCOE), according to the paradigm shift described in (4.1.4). Indeed, RES

can currently rely on the clearing price set by gas-fired power plants, except for a limited number

of hours per year (e.g. 100) when the clearing price is set at 0. By 2040, as RES penetration

increases, the zero offer price strategy is expected to be unsustainable for RES generators, as

it would set the clearing price to 0 in a much larger number of hours per year, preventing RES

generators from recovering their investment costs. The offer price for thermal energy is assumed

to be equal to the marginal cost CM
k .

The market clearing problem solved by the MO for each hour t ∈ T is as follows:

min
Q,Fl,t

LLP =
∑
z∈Z

(
P V QV

z,t + P W I QW I
z,t + P W O QW O

z,t

)
+

∑
k∈K

P K
k QK

k,t (5.42a)
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QV
z,t + QW I

z,t + QW O
z,t +

∑
k∈Kz

QK
k,t + BD

z,t

+
∑

l∈BSz

Fl,t ≥ Dz,t +
∑

l∈F Sz

Fl,t z ∈ Z (λz,t ≥ 0) (5.42b)

0 ≤ QV
z,t ≤ cfV

z,t Q
V (nV

z,0 + nV
z ) z ∈ Z (µV

z,t ≥ 0) (5.42c)

0 ≤ QW I
z,t ≤ cfW I

z,t Q
W I (nW I

z,0 + nW I
z ) z ∈ Z (µW I

z,t ≥ 0) (5.42d)

0 ≤ QW O
z,t ≤ cfW O

z,t Q
W O (nW O

z,0 + nW O
z ) z ∈ Z (µW O

z,t ≥ 0) (5.42e)

QK
k

γk,t ≤ QK
k,t ≤ Q

K
k γk,t k ∈ K (µK

k,t
≥ 0, µK

k,t ≥ 0) (5.42f)

F l ≤ Fl,t ≤ F l l ∈ L (υl,t ≥ 0, υl,t ≥ 0) (5.42g)

By solving problem (5.42), the MO determines the optimal values of the following variables

for hour t ∈ T :

QV
z,t [MWh] Accepted quantity of solar production in zone z

QW I
z,t [MWh] Accepted quantity of onshore wind production in zone z

QW O
z,t [MWh] Accepted quantity of offshore wind production in zone z

QK
k,t [MWh] Accepted quantity of production of thermal power plants of type k

Fl,t [MWh] Flow on transmission line l

Constraints (5.42b) state that in each zone z the sum of (i) the accepted quantities of

sell offers submitted by the power plants located in the zone, (ii) the energy withdrawn from

batteries located in the zone (decided by the CP), (iii) the energy imported from other zones,

is at least equal to the zone’s demand plus the energy exported to other zones. The optimal

value of the dual variable λz,t is the zonal clearing price. By formulating the constraint as an

inequality, rather than an equality, the zonal prices take on non-negative values. Constraints

(5.42c)-(5.42e) state that in each zone z the accepted quantities of RES sell offers must be

non-negative and not greater than the quantity produced, which depends on the number of

new generators (decided by the CP). The possibility of partial acceptance of RES producers’

offers is considered so that the clearing price can coincide with the offer price of a RES producer;

if this were not allowed, the price would be zero in case of overproduction (overgeneration) and

never equal to the offer price of a RES producer, as detailed in Section (4.1.4). Constraints

(5.42f) state that in each zone z the accepted quantities of thermal power plants of type k must

be either within the interval defined by the technical minimum QK
k

and the capacity Q
K
k , if

there are plants of type k on-line (γk,t ≥ 1), or zero, if all plants of type k are off-line (γk,t = 0).
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Note that γk,t, i.e., whether plants of type k present an offer or not, is determined by the

CP. Constraint (5.42g) states that the flow Fl,t must be between the minimum flow F l and the

maximum F l flow. Among all solutions satisfying constraints (5.42b) − (5.42g), a solution must

be found that minimizes the total operating cost (5.42a), i.e. the sum of the products of the

accepted quantities times the corresponding offer prices.

The CP’s decisions γk,t, BD
z,t, nV

z , nW I
z and nW O

z , for k ∈ Kz, z ∈ Z and t ∈ T , are treated

as parameters when deriving the Karush-Kuhn-Tucker optimality conditions (KKTs) of the MO

problem. By including the KKTs of the MO problem in the GEP-RA (1) model, the clearing

price is defined endogenously (see Section 6.1). However, the question of price indeterminacy

is left open. Price indeterminacy occurs when demand, net of battery discharge, is equal to the

sum of the capacities of the generators whose offers are accepted; in this case, the clearing price

is defined in an interval of values as detailed in Section (4.1.7).

5.1.4 Operation of batteries

Constraints (5.17) to (5.23) define the following variables for the batteries located in zone z

Bz,t [MWh] energy stored at the end of hour t

BC
z,t [MWh] charge at hour t

BD
z,t [MWh] discharge at hour t

considering technical limits resulting from the following parameters

rtC [−] rate on battery charge (0.25)

rtD [−] rate on battery discharge (0.25)

and losses by means of the following parameters

κ [−] energy loss coefficient of batteries (0)

κC [−] loss coefficient for battery charge (1)

κD [−] loss coefficient for battery discharge (1)

In particular, battery charge and discharge cannot occur at the same hour t in any zone z:

this is ensured by constraints (5.15) and (5.16), in which the binary variable ϕz,t ∈ {0, 1} is 1

if batteries are charging and 0 if batteries are discharging. In (5.16), the demand value Dz,t is

used as the upper bound, as discharging is done to meet demand. In (5.15), the value rtC Bz

is used as the upper bound for charging (see Tab. 6.3).
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At each hour t the batteries located in each zone z may be charged using the zone’s RES

production that exceeds the amount accepted by the market operator. Therefore, constraints

(5.17) state that the charge is bounded above by the RES production net of the quantity

accepted by the MO. Constraint (5.17) may not be met at equality when it is not possible to

store all the excess electricity due to the technical constraints of the battery. For example, the

battery may be saturated (resulting in an incentive to invest in more battery capacity to be

able to charge) or the excess energy may exceed the charge rate. The batteries are subject to

the technical limits resulting from the rates rtC and rtD: constraints (5.18) state that in any

hour t the battery charge in zone z is bounded above by the charge rate rtC multiplied by the

capacity in the target year; similarly, constraints (5.19) state that in any hour t the battery

discharge in zone z is bounded above by the charge rate rtD multiplied by the capacity in the

target year. Therefore, we assume ramp values proportional to the capacity of the battery; for

example, with values for rates of 0.25, each battery can complete a cycle in 4 hours. Constraints

(5.20) state that the electricity stored in zone z at the end of hour t cannot exceed the storage

capacity installed in the zone.

The storage balance constraints (5.21) refer to the first hour (i.e., t ∈ T I) of each repre-

sentative day, where BI
z,t denotes the electricity stored at the beginning of each representative

day in the batteries located in zone z. The storage balance constraints (5.22) refer to all hours

except the first (i.e., t ∈ T ∖T I) of each representative day. In both constraints, the consistency

of the values taken on in adjacent hours by the energy levels is enforced.

Constraints (5.23) state that in each zone z the electricity stored at the end of the last hour

of the day (i.e., t ∈ T L) must be equal to the electricity stored at the beginning of the day,

therefore enforcing a daily cycle. In this way, at the beginning of the next day, the operational

situation is reconstituted as it was on the day under consideration. Constraints (5.23) prevent

the model from being short-sighted (end-of-horizon effect1). We note that if Bz,t > BI
z,t for

t ∈ T L (i.e., at the end of the day), the initial battery level will be higher on the following

day, reducing the possibility of storing excess energy. Also, a discharge at the end of the day,

resulting in Bz,t < BI
z,t for t ∈ T L, would not be justified by a price opportunity, as we do not

consider battery revenues in this model.

The above formulations for charging and discharging operations with binary variables are

exact. A linear relaxation is also proposed in [Pozo, 2022], and its convex hull in [Pozo, 2023].

The author argues that only a certain percentage of overlapping charge and discharge operations

1The initial period is influenced by past decisions, such as the discharge or charge of batteries from previous
periods. Given that the tests cannot be performed over an infinite horizon, each instance suffers from boundary
effects at the end of the horizon, as no further discharge or charge releases are forecast beyond period T L.
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are observed while simplifying the model.

5.1.5 Reserve

Another relevant detail that we have included in the proposed model is the possibility of con-

sidering solutions that are not only adequate from the point of view of the electrical load, but

also from the point of view of the reserve: we secure the reserve for the ancillary market (MSD),

so that generators cannot be used at full capacity and can be re-dispatched to meet the system

requirements. In fact, e.g. if downstream of the day-ahead and intra-day market (MGP+MI)

one generator is switched on and dispatched at full capacity and one is switched off, the TSO

(Terna) re-dispatches them both, calling the first one down and the second one up, in order to

have, with the same total production, two generators already switched on at medium load that

can be used in real-time to e.g. balance the system, resolving possible grid congestion or deal

with sufficient voltage profiles.

In [Guo et al., 2022], revenues from both the sale of energy and the provision of reserve

services are considered (Energy and Reserve market, typical of the US configuration). Unlike

[Guo et al., 2022], we do not consider reserve constraints in the lower-level problem. In fact, in

the EU, generators do not earn from reserve services in energy markets, but in separate ancillary

services markets. These markets are also controlled by different entities with different criteria.

For instance, in Italy, the NEMO clears the energy market with a pay-as-cleared mechanism,

while the TSO clears the ancillary services market with a pay-as-bid mechanism. As we do not

model the MSD, but only the MGP+MI markets, we consider the reserve constraints in the

UL as a safeguard for planning purposes only; otherwise the model might decide to invest in

the number of generators that, when on-line at full capacity, exactly cover the highest demand,

without leaving the possibility of re-dispatching the generators to meet the system requirements,

such as the tertiary reserve.

In constraints (5.24), the spinning reserve provided by on-line thermal power plants is rep-

resented by the term ∑
k∈Kz

(QK
k γk,t − QK

k,t) and the spinning reserve provided by batteries

is represented by the term df
[
rtD Q

B (nB
z,0 + nB

z ) (1− ϕz,t)−BD
z,t

]
. The reserve margins are

given by the quantity rtD Q
B (nB

z,0 + nB
z ) the battery can discharge minus the quantity BD

z,t it

is already discharging. If the battery is charging, i.e. ϕz,t = 1 for the Constraint (5.15), then it

cannot provide reserve. The battery can stop charging in order to meet the reserve requirement:

the model can set ϕz,t = 0 and BD
z,t = 0 so that all the possible discharge quantities are available

to provide reserve. The derating factor df accounts for battery degradation over time. Zonal

reserve requirements can only be met by thermal generators and batteries located in the zone
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so that the reserve is not constrained by transmission. The slack variable2 RNP z,t represents

the Reserve Not Provided (RNP) and it is penalized in the objective function with the penalty

coefficient cRNP that should reflect the price of this RNP. In fact, the reserve required, Rz,t, is

estimated using probabilistic approaches and depends on how much it costs and whether the

requirement can be actually met.

If reserve margins can only be provided by on-line thermal power plants, the spinning reserve

is the amount of unused capacity of on-line thermal power plants: in this case constraints (5.24)

are replaced by constraints (5.43) for each z ∈ Z and t ∈ T

∑
k∈Kz

(QK
k γk,t −QK

k,t) + RNP z,t ≥ Rz,t (5.43)

As an alternative, or in addition, to the spinning reserve, the so-called substitution reserve

can be considered, i.e. the reserve provided by all the installed thermal power plants as in

(5.44):

∑
k∈Kz

[
Q

K
k (nK

k,0 + nK
k )−QK

k,t

]
+ RNP z,t ≥ Rz,t z ∈ Z, t ∈ T (5.44)

5.1.6 Price indeterminacy

When unique, the clearing price coincides with either an offer price or 0 or the VoLL. The zero

value is associated with RES curtailment, which can never occur when considering a positive

offer price and the possible partial acceptance of offer quantities, as explained in Section (4.1.4).

The price can also assume a null value in particular cases, which are, however, the result of

strategic, unrealistic behavior. The value of VoLL is reached only in case of load shedding

(positive ENP). Since we are modeling an adequate system, there can be no load shedding and

the price can never reach the VoLL, as explained in Section (4.1.6). Therefore, we exclude the

possibility that the clearing price is 0 or the VoLL and focus only on it being equal to one of

the offer prices. This is true when the clearing price is unique. In the case of indeterminacy,

the clearing price can instead be unbounded from above, as shown in Fig. 4.6, being off-line

generators treated as if they did not exist.

The CP may act strategically to determine these specific cases of indeterminacy and select-

ing, among the prices for which the MO is indifferent, the one that allows to meet the Revenue

Adequacy constraints (see Section (5.1.7) later on), according to the optimistic view described

2With a non-standard definition, we might call it “pseudo” slack, being the constraint written as
available reserve + RNP ≥ R: the constraint is satisfied at equality when available reserve ≤ R, with
RNP = R − available reserve or at inequality when available reserve ≥ R, with RNP = 0.

107



Chapter 5. The proposed models

in Section (3.2). To avoid this behavior, we formulate the innovative set of constraints (5.25)

to (5.30), considering the following parameters

λ̂i [e/MWh] Offer price i ∈ I

λ̂q [e/MWh] Offer price q ∈ Q of thermal power plants

The parameters λ̂i, for each i, represent the offer prices of both RES and thermal power

plants, sorted in the ascending order {P V , P W I , P W O, λ̂q} for each q. The parameter λ̂q specif-

ically denotes the q-th offer price of thermal power plants of type k ∈ Kq: all the thermal

generators belonging to the set Kq offer at the same price λ̂q.

A binary variable yz,t,i is introduced for each λ̂i. RES generators can only set the clearing

price when dispatched: constraints (5.25) to (5.27) force the binary variables yz,t,1, yz,t,2 and

yz,t,3 to 0 if solar, inshore and offshore wind (respectively) are not dispatched in any of the

zones. On the other hand, they can take the values 0 or 1 if the dispatched quantities are

greater than 1 MWh, which is the minimum accepted quantity according to the market rules.

The constraints take into account the sum of the dispatched quantities across the zones as, in

the absence of congestion, the clearing price of a zone can be set by a generator located in any

zone.

Similarly, only the on-line thermal generators can define the clearing price: by constraints

(5.28) the binary variable yz,t,3+q is bound to 0 if no generator with offer price λ̂q is on-line,

while it can take the values 0 or 1 if at least one generator with offer price λ̂q is on-line.

The clearing price λz,t is a LL decision variable, and it can assume different values in the

case of indeterminacy. In the UL we force to make it assume a single value as defined in the

linear combination of the offer prices λ̂i, times the binaries yz,t,i working as activation variables,

(5.30). As the clearing price can only be defined by one of the offer prices of the generators,

then these variables must add up to 1, (5.29).

Because of constraints (5.29)-(5.30) any strategic attempt to create an indeterminate situa-

tion would be pointless, as they force the CP to choose the leftmost value of the indeterminacy

interval. This selection of the left extreme can represent the CP acting as the regulator.

Note that the choice of the left extreme of the price indeterminacy interval is not guaranteed

in the presence of generators dispatched at the technical minimum. For example, let us consider

two generators, denoting by A the one offering at price a, and by B the one dispatched at the

technical minimum offering at price b > a. Price indeterminacy occurs when A is dispatched at

full capacity: the price is defined in the interval [a, b]. Since both a and b are considered by λ̂i,

the chosen market clearing price could be equal to b.
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A tighter version of constraints (5.29) and (5.30) is discussed in Section 5.3.

5.1.7 Revenue adequacy

The Revenue Adequacy constraints (5.31) guarantee that, for each type k of thermal power

plant in each zone z, the sum of revenues from the market (from energy sales) ∑
t λz,t QK

k,t and

revenues from side payment (outside the market) uK
k is at least equal to the sum of investment

costs and operating costs, multiplied by the user-defined rate of return M ≥ 1 expected by the

plant owners. Focusing on the relevant role of the non-negative variable uK
k , we note that such

variable enters the RA constraint (5.31) as a slack variable3. If for thermal power plants of type

k the market revenues exceed the total costs multiplied by M , the slack assumes a null value,

and the constraint is satisfied with the strict inequality. Vice versa, if the market revenues are

less than the total costs multiplied by M , the model determines the positive side payment uK
k

required to satisfy the RA constraint of plant type k at equality. In fact, the total side payments∑
z∈Z

∑
k∈Kz

uK
k appear in the OF as a term to be minimized.

In the light of what has been described in Section (1.3) about the Italian approach to the

CRM, the values of uK
k in the optimal solution give an indication of how much the specific

technology needs to be compensated via side payments. This of course if the policymakers

and regulators decide to adopt such measures. Additionally, choosing to satisfy the RA via

discriminatory side payments, allows the CP not to increase the marginal price for all the

energy produced and accepted by the MO.

We incidentally note that the model now becomes a mixed integer quadratically constrained

due to the presence of the bilinear terms λz,t QK
k,t.

The term |T |
8760 makes investment and operating costs comparable as the former refer to the

year while the latter to the representative days.

5.1.8 Objective function

Given the investment costs per MW

IV
z Solar investment cost in zone z

IW I
z Wind inshore investment cost in zone z

IW O
z Wind offshore investment cost in zone z

IB
z Battery investment cost in zone z

IK
k Investment cost of thermal power plants of cluster k

3With a non-standard definition, we might call it “pseudo” slack, being the constraint written as revenues+u ≥
costs.
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and the operational costs

CM
k Marginal costs of thermal power plants of cluster k

CSU
k Startup costs of thermal power plants of cluster k

the objective function (5.3), to be minimized, is the sum of four terms representing the invest-

ment costs, the operating costs of the thermal power plants, the side payments of the thermal

power plants, and the penalties for reserve not provided, respectively. As the magnitudes of the

last three terms depend on the number of days used to represent the target year, the investment

cost is scaled to make it comparable with them, i.e. in the first term the annual investment cost

is multiplied by |T |
8760 . In the second term, the operating costs of the thermal power plants are

the sum of startup costs and production costs.

Marginal costs and startup costs are considered for each thermal generator. The operat-

ing costs of the RES generators are not considered since they are null (in the LL problem,

P V = LCOE represents the offer price while in the UL problem, only the investment costs are

considered). Consequently, the UL problem can have alternative optimal solutions that differ

in the value of the discharge BD
z,t; these alternative optimal solutions for UL correspond to

different LL costs.
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5.2 GEP-RA (2)

In the GEP-RA (2) model, the CP determines the optimal system configuration by imposing

the recovery of all investment costs (RES, batteries, thermal) and operating costs (thermal)

through revenue adequacy constraints. In particular, this requires modeling the revenues of

batteries.

The first and second terms of the GEP-RA (1) OF (5.3) do not appear in the GEP-RA (2)

OF and are replaced by the following two terms:

• the total cost to consumers

• the side payments of power plants and batteries.

Model GEP-RA (2) allows to determine the best trade-off between non-discriminatory and

discriminatory payments. The former are determined by the clearing price at which all electricity

is sold, the latter are the different side payments specific for each plant or battery.

The GEP-RA (2) model is (5.45)-(5.61).

Objective Function

min
V ar

∑
z∈Z

∑
t∈T

λz,t (Dz,t −BD
z,t + BC

z,t) +
∑
z∈Z

(uV
z + uW I

z + uW O
z + uB

z ) +
∑
k∈K

uK
k +

+
∑
z∈Z

∑
t∈T

cRNP RNP z,t (5.45)

Variables

V ar ≡

{(5.2)} (GEP-RA (1)) ∪{
uV

z , uW I
z , uW O

z , uB
z

}
(Side payments) (5.46)

Constraints on zonal capacities of RES power plants and batteries in the target year: z ∈ Z

(5.4)− (5.6) (5.47)

Constraints on thermal power capacity in the target year: k ∈ Kz, z ∈ Z

(5.7) (5.48)
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UC constraints, with avoidance of physical withholding

(5.8)− (5.13) (5.49)

Constraints that define accepted quantities and zonal prices for each hour: t ∈ T

Optimality conditions of the MO problem (5.62) (5.50)

Constraints on operation of batteries: z ∈ Z

(5.15)− (5.16) (5.51)

(5.18)− (5.23) (5.52)

Reserve constraints: z ∈ Z, t ∈ T

(5.24) (5.53)

Constraints that avoid price indeterminacy: z ∈ Z, t ∈ T

(5.25)− (5.30) (5.54)

Revenue adequacy constraints: z ∈ Z

(5.31) k ∈ Kz (5.55)∑
t∈T

λz,t QV
z,t + uV

z ≥M
|T |

8760 IV
z Q

V
nV

z (5.56)

∑
t∈T

λz,t QW I
z,t + uW I

z ≥M
|T |

8760 IW I
z Q

W I
nW I

z (5.57)

∑
t∈T

λz,t QW O
z,t + uW O

z ≥M
|T |

8760 IW O
z Q

W O
nW O

z (5.58)

∑
t∈T

λz,t (BD
z,t −BC

z,t) + uB
z ≥M

|T |
8760 IB

z Q
B

nB
z (5.59)

Variables types

(5.32)− (5.39) (5.60)

uV
z , uW I

z , uW O
z , uB

z ≥ 0 z ∈ Z (5.61)
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5.2.1 Determination of accepted quantities and zonal prices

To introduce RA constraints for batteries (see Section (5.2.2)), we need to express their market

revenues. This in turn requires the modified model (5.62) for the LL.

min
Q,Fl,t

(5.42a) (5.62a)

QV
z,t + QW I

z,t + QW O
z,t +

∑
k∈Kz

QK
k,t + BD

z,t

+
∑

l∈BSz

Fl,t ≥ Dz,t +
∑

l∈F Sz

Fl,t + BC
z,t z ∈ Z (λz,t ≥ 0) (5.62b)

(5.42c)− (5.42g) (5.62c)

Balance constraints (5.62b) consider discharge as an increase in supply and charge as an

increase in demand. The clearing price λz,t is determined by the MO, taking into account the

participation of the batteries in the system operation (the batteries do not offer, but influence

the clearing price through their discharge-charge dynamics).

Note that the increase of the load determined by the charge can be met by both RES and

thermal productions. The UL constraint (5.17), limiting the charge to the RES production net

of the quantity accepted by the MO, is no longer considered. RES now also have revenues for

battery charging, which in this model is accepted on the market.

5.2.2 Revenue Adequacy

In addition to the RA constraints (5.31) relating to thermal power plants, the additional RA

constraints (5.56)-(5.58) relate to RES, and constraints (5.59) relate to batteries. Note that

investment costs only appear on the right-hand side of these new RA constraints, as operating

costs are zero for the respective technologies.

Similarly to the role of side payments for thermal plants, here the slack variables uV
z , uW I

z and

uW O
z represent the side payments for RES technologies. In line with the spirit of the consultation

[Ministero dell’Ambiente e della Sicurezza Energetica, 2023], they can be interpreted as the

amount of economic resources that an auction can give. Such discriminatory remunerations are

used by the system to support RES that otherwise may fail to stay in the market but are needed

to achieve policy objectives. At the same time, these auctions tend to stabilize energy market

prices by imposing two-ways CfD (which we do not model and can be computed off-line).

In particular, in constraints (5.59), the first term represents the net revenue of the batteries,

i.e. the difference between what is received when discharging and what is paid when charging.

We recall that by constraints (5.15), (5.16) charge and discharge are mutually exclusive in any
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hour. The second term represents the side payments possible needed to cover the investment

costs. Depending on the design, they could be seen as either discriminatory compensation to

batteries from the capacity market or additional revenue from the re-dispatch markets.

5.2.3 Objective function

The objective function (5.45), to be minimized, represents the total cost for consumers. The

first term represents the costs paid on the market, while the second and third terms express

the side payments, which are ultimately also paid by consumers as they are included in their

electricity bills.

The first term represents the value of the produced energy, considering for each zone z and

hour t either the energy (Dz,t + BC
z,t) if the battery is charging or the energy (Dz,t−BD

z,t) if the

battery is discharging. In this way, the energy actually produced in each zone z and hour t is

evaluated at the corresponding market clearing price λz,t.

Unlike the GEP-RA (1) OF (5.3), the GEP-RA (2) OF (5.45) allows the CP to decide the

operation of batteries taking into account the impact of such decision on the market clearing

price determined by the LL. In fact, different values of battery discharge may correspond to

different accepted quantities, and thus to different LL costs and clearing prices. Therefore, since

clearing prices appear in the GEP-RA (2) OF, the CP optimizes the use of the batteries.

In this version, new bilinear terms are introduced both in the OF (BD
z,t λz,t, BC

z,t λz,t) and

in the RA constraints (BD
z,t λz,t, BC

z,t λz,t, λz,t QV
z,t, λz,t QW I

z,t , λz,t QW O
z,t ).

5.3 An improved version of the constraints on the choice of the left extreme

of the price indeterminacy interval

The use of binary variables yz,t,i with the requirement of constraint (5.29) that they add up to

one can slow down branch-and-bound MIP solvers [Yıldız and Vielma, 2013]. Specifically, this

constraint leads to unbalanced branch-and-bound trees when |I| > 2. Indeed, when variable

yz,t,i is set to 1 (up-branching), all other variables yz,t,j for j ∈ I − {i} are set to 0; on the

contrary, when yz,t,i is set to 0 (down-branching), the other variables are let unconstrained,

which may slow down the solution process. To address this balancing issue, [Vielma, 2015]

proposes an extended formulation, which we introduce in our model by defining the auxiliary
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binary variables wz,t,i and replacing constraints (5.29) and (5.30) by (5.63)-(5.65).

λz,t = λ̂1wz,t,1 +
|I|∑

i=2
(λ̂i − λ̂i−1)wz,t,i z ∈ Z, t ∈ T (5.63)

wz,t,i ≥ wz,t,i+1 i ∈ [1 : |I| − 1], z ∈ Z, t ∈ T (5.64)

wz,t,1 = 1 z ∈ Z, t ∈ T (5.65)

If wz,t,1 = 1 and wz,t,2 = ... = wz,t,|I| = 0, then λz,t = λ̂1; if wz,t,1 = wz,t,2 = 1 and

wz,t,3 = ... = wz,t,|I| = 0, then λz,t = λ̂1 + λ̂2 − λ̂1 = λ̂2 and so on. For i ≥ 2, constraint (5.64)

implies that constraint (5.63) becomes λz,t = λ̂i since for 1 ≤ j ≤ i− 1, λ̂j and −λ̂j cancel out.

Therefore, as in the original formulation, only one price is selected among the offers. However,

the branching is more efficient in the extended formulation: indeed, for i = 1 : |I| − 1, wz,t,i = 0

(down-branching) implies wz,t,j = 0 for j > i, while for i = 2 : |I|, wz,t,i = 1 (up-branching)

implies wz,t,j = 1 for j < i. This effect is named double contracting branching.

To preserve the validity of the constraints (5.25)-(5.28) that depend on the variable yz,t,i,

we introduce (5.66) and (5.67) to link yz,t,i to the auxiliary variable wz,t,i.

yz,t,i = wz,t,i − wz,t,i+1 i ∈ [1 : |I| − 1], z ∈ Z, t ∈ T (5.66)

yz,t,i = wz,t,i i = |I|, z ∈ Z, t ∈ T (5.67)

In fact, the binary yz,t,i can take the value 1, with a corresponding clearing price λz,t = λ̂i, only

if wz,t,i = 1 and wz,t,i+1 = 0.

5.4 Mixed-binary version

We also created a mixed-binary version of the model to test whether a computational im-

provement can be achieved. This model has been obtained by applying a binary expansion to

each integer variable considered in the main model. In particular, for thermal power plants, we

replace the integer variables nK
k , γk,t, αk,t and βk,t , with their binary expansion, determined

by introducing the binary variables

• nK−BIN
k,e ∈ {0, 1}, with e ∈ EK

k , which is the set of exponents of 2 needed to express the

maximum number of new generators of cluster k (nK
k )

• γBIN
k,t,e , αBIN

k,t,e , βBIN
k,t,e ∈ {0, 1}, with e ∈ EK+K0

k , which is the set of exponents of 2 needed

to express the sum of the maximum number of new generators (nK
k ) and the number of

existing generators (nK0
k ).
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For example, if nK
k = 7 and nK0

k + nK
k = 9, then EK

k = {0, 1, 2} and EK+K0
k = {0, 1, 2, 3}. The

variable nK
k is replaced by

∑
e∈EK

k

2e nK−BIN
k,e = 20 nBIN

k,0 + 21 nBIN
k,1 + 22 nBIN

k,2

while variable γk,t is replaced by

∑
e∈EK+K0

k

2e γBIN
k,t,e = 20 γBIN

k,t,0 + 21 γBIN
k,t,1 + 22 γBIN

k,t,2 + 23γBIN
k,t,3

Constraints (5.7) and (5.40) are replaced by (5.68) and (5.69).

∑
e∈EK

k

nK−BIN
k,e ≤ nK

k k ∈ K (5.68)

∑
e∈EK+K0

k

2e γBIN
k,t,e ≤ nK

k,0 +
∑

e∈EK
k

nK−BIN
k,e k ∈ K, t ∈ T (5.69)

For RES generators and batteries, we replace the integer variables nV
z , nW I

z , nW O
z , nB

z with their

binary expansion, determined by introducing the binary variables

• nV −BIN
z,e ∈ {0, 1}, with e ∈ EV

z , which is the set of exponents of 2 needed to express the

maximum number of new solar generators in zone z

• nW I−BIN
z,e ∈ {0, 1}, with e ∈ EW I

z , which is the set of exponents of 2 needed to express

the maximum number of new wind inshore generators in zone z

• nW O−BIN
z,e ∈ {0, 1}, with e ∈ EW O

z , which is the set of exponents of 2 needed to express

the maximum number of new wind offshore generators in zone z

• nB−BIN
z,e ∈ {0, 1}, with e ∈ EB

z , which is the set of exponents of 2 needed to express the

maximum number of new batteries in zone z

Constraints (5.4) and (5.5) are replaced by (5.70) and (5.71)

V z ≤ Q
V (nV

z,0 +
∑

e∈EV
z

nV −BIN
z,e ) ≤ V z z ∈ Z (5.70)

W z ≤ Q
W I(nW I

z,0 +
∑

e∈EW I
z

nW I−BIN
z,e ) + Q

W O(nW O
z,0 +

∑
e∈EW O

z

nW O−BIN
z,e ) ≤W z z ∈ Z (5.71)

Note that different E sets were created to define the right number of binaries to represent

the maximum value that different integer variables can take and not a larger number of binaries

when these are not needed.
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By replacing all the integer variables with their binary expansions, the GEP-RA (1) and

GEP-RA (2) models are redefined, resulting in two models consisting solely of continuous and

binary variables.
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Chapter 6

Resolution of the proposed models

In Section (6.1), we present various reformulations of the lower-level problems discussed earlier.

Certain reformulations incorporate bilinear terms, and these, along with the bilinear products

in the RA constraints and objective function, are linearized in Section (6.2).

6.1 Reformulation of the bilevel model into a single-level model

The LL problems (5.42) and (5.62), which we refer to as LL (1) and LL (2) respectively, are lin-

ear and can be included in the respective UL problem as a set of linear and non-linear equations

obtained by applying the Karush-Kuhn-Tucker optimality conditions (KKTs), as described in

Chapter 3. In this way, the bilevel model is transformed into a single-level model. The KKTs

are determined as the combination of the primal constraints, dual constraints, and the Com-

plementary Slackness Conditions (CSC), which require a null product of each primal constraint

with its corresponding dual variable (both in the form ≥ 0) and vice versa.

0 ≤ cp ⊥ vd ≥ 0

0 ≤ cd ⊥ vp ≥ 0

Here, cp denotes each primal constraint, vd denotes the corresponding dual variable, cd denotes

each dual constraint, and vp denotes the corresponding primal variable. In Appendix A is the

explicit formulation of both the primal-dual constraints and the different reformulations for

CSC, which are reported here in compact form.
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The CSC of LL (2) in the Product formulation are defined as (6.1) for each t ∈ T .

(
QV

z,t+QW I
z,t +QW O

z,t +
∑

k∈Kz
QK

k,t+
∑

l∈BSz
Fl,t−

∑
l∈F Sz

Fl,t−Dz,t+BD
z,t−BC

z,t

)
⊥ λz,t z ∈ Z (6.1a)

(Fl,t − F l) ⊥ υl,t l ∈ L (6.1b)(
F l − Fl,t

)
⊥ υl,t l ∈ L (6.1c)(

cfV
z,t ·Q

V · (nV
z,0 + nV

z )−QV
z,t

)
⊥ µV

z,t z ∈ Z (6.1d)(
cfW I

z,t ·Q
W I · (nW I

z,0 + nW I
z )−QW I

z,t

)
⊥ µW I

z,t z ∈ Z (6.1e)(
cfW O

z,t ·Q
W O · (nW O

z,0 + nW O
z )−QW O

z,t

)
⊥ µW O

z,t z ∈ Z (6.1f)(
QK

k,t −QK
k
· γk,t

)
⊥ µK

k,t
k ∈ K (6.1g)(

Q
K
k · γk,t −QK

k,t

)
⊥ µK

k,t k ∈ K (6.1h)

(
P V − λz,t + µV

z,t

)
⊥ QV

z,t z ∈ Z (6.1i)(
P W I − λz,t + µW I

z,t

)
⊥ QW I

z,t z ∈ Z (6.1j)(
P W O − λz,t + µW O

z,t

)
⊥ QW O

z,t z ∈ Z (6.1k)(
P K

k − λz,t − µK
k,t

+ µK
k,t

)
⊥ QK

k,t k ∈ Kz, z ∈ Z (6.1l)

For the LL (1) model, the CSC (6.1a) does not include the term −BC
z,t in the left-hand term

(primal constraint).

Note that when the CSC are included in the UL as additional constraints, the terms

BC
z,t, BD

z,t, nV
z , nW I

z , nW O
z , γk,t

are no longer parameters but represent variables, determining new bilinear terms.

The nonlinear conditions (6.1a)-(6.1l) can be reformulated with different methods; depend-

ing on the chosen reformulation, bilinear terms may or may not be considered. We tested

different methods by both deriving the reformulations manually and using the automatic re-

formulations available in the BilevelJuMP package [Dias Garcia et al., 2023] belonging to the

Julia Programming Language ecosystem. Concerning the latter, the technology aspects will be

detailed in (8.1).

The first reformulation, see (A.3), consists of aggregating all the conditions into a single
120



6.1. Reformulation of the bilevel model into a single-level model

constraint in which all the terms (written in the ≥ form) sum up to 0:

cp · vd + cd · vp = 0 (6.2)

The Special Order Sets of type 1 (SOS1) reformulation, see (A.4), consists of introducing a

set of variables where at most one variable in the set can take a value greater than zero. Given

{sA
1 , sA

2 } ∈ SOS1 and {sB
1 , sB

2 } ∈ SOS1, the CSC can be rewritten as follows

sA
1 = cp sA

2 = vd

sB
1 = cd sB

2 = vp

The Fortuny-Amat and McCarl (Big-M) [Fortuny-Amat and McCarl, 1981] reformulation,

see (A.5), consists of introducing a binary for each complementarity condition. Given b1 ∈ {0, 1}

and b2 ∈ {0, 1} the CSC can be rewritten as follows

cp ≤M cp (1− b1) vd ≤Mvd b1

cd ≤M cd (1− b2) vp ≤Mvp b2

where M cp, Mvd, M cd, Mvp are large enough numbers so that the optimal solution(s) of the

problem is not cut off. If b1 = 1, then cp = 0 while the constraint on the associated dual

variable vd is redundant; if b1 = 0, then vd = 0 and the constraint on cp is redundant. The

complete formulation is reported in Appendix

To find reasonable bounds, we evaluate each term of the CSC, as shown in Tab. 6.1 and

Tab. 6.2. Note that bounds on the primal variables are easy to derive, as they are bounded

by the physics of the problem, modeled in the UL constraints. For the dual variables, we base

our bounds on the interpretation of the dual of the LL. In particular, when cfV
z,t = 0, there is

no upper bound on the dual variables µV
z,t (and the same for those related to wind), that can

take any value ≥ λ∗
z,t − P V without affecting the optimal solution. Therefore, we consider the

upper bound λ− P V for both cfV
z,t > 0 and cfV

z,t = 0, as it is the real upper bound in the first

case, while it is among the values that do not affect the objective function in the second case.

Similarly for wind variables.

When γ∗
k,t = 0, there is no upper bound on the dual variables µK

k,t
and µK

k,t, that can take

any value such that µK
k,t − µK

k,t
≥ λ∗

z,t − P K
k without affecting the optimal solution. For µK

k,t

and µK
k,t

we respectively consider the upper bounds λ− P K
k and P K

k as they are the real upper

bounds for γ∗
k,t > 0, while they are among the values that do not affect the objective function
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Chapter 6. Resolution of the proposed models

cp Mcp vd Mvd from

cf, γ∗ > 0 cf, γ∗ = 0

QV
z,t + QW I

z,t + QW O
z,t +∑

k∈Kz
QK

k,t +
∑

l∈BSz
Fl,t −∑

l∈F Sz
Fl,t − Dz,t + BD

z,t − BC
z,t

0 λz,t λ = maxi∈I λ̂i (4.24)

Fl,t − F l F l − F l υl,t λ (4.9)

F l − Fl,t F l − F l υl,t λ (4.9)

cfV
z,tQ

V (nV
z,0 + nV

z ) − QV
z,t cfV

z,tV z µV
z,t λ − P V ∞ (4.19)

cfW I
z,t Q

W I(nW I
z,0 + nW I

z ) − QW I
z,t cfW I

z,t W z µW I
z,t λ − P W I ∞ (4.19)

cfW O
z,t Q

W O(nW O
z,0 + nW O

z ) − QW O
z,t cfW O

z,t W z µW O
z,t λ − P W O ∞ (4.19)

QK
k,t − QK

k
γk,t Q

K
k (nK

k,0 + nK
k ) µK

k,t
P K

k (⋆) ∞ (4.13)

Q
K
k γk,t − QK

k,t Q
K
k (nK

k,0 + nK
k ) µK

k,t λ − P K
k ∞ (4.13)

Table 6.1: Upperbounds M cp of primal constraints cp and Mvd of dual variables vd. (⋆) P K
k

instead of P K
k − λ as the latter could be negative.

for γ∗
k,t = 0.

cd Mcd vp Mvp from

P V − λz,t + µV
z,t P V + λ − P V QV

z,t cfV
z,tV z (5.42c), (5.4)

P W I − λz,t + µW I
z,t P W I + λ − P W I QW I

z,t cfW I
z,t W z (5.42d), (5.5)

P W O − λz,t + µW O
z,t P W O + λ − P W O QW O

z,t cfW O
z,t W z (5.42e), (5.5)

P K
k − λz,t − µK

k,t
+ µK

k,t P K
k + λ − P K

k QK
k,t Q

K
k (nK

k,0 + nK
k ) (5.42f), (5.10), (5.7)

Table 6.2: Upper bounds M cd of dual constraints cd and Mvp of primal variables vp

It is worth noting that the upper bounds on variables of Tab. 6.1 and Tab. 6.2 are useful not

only for the Big-M reformulation of the KKTs, but more generally in helping the solver to define

the feasible region. Indeed, aggressive bound tightening represents an important building block

for enhancing MIP technology in the presence of indicator constraints and disjunctive terms, as

described in [Belotti et al., 2016]. Therefore, we introduce upper bound constraints in all the

formulations.

The Strong Duality (SD) reformulation, see (A.6), consists in replacing the CSC by a single

constraint (either with the sum over t ∈ T or for each t ∈ T ) that requires the primal objective

function LLP to be equal to the dual objective function LLD:

LLP = LLD (6.3)

The manual formulation of the single-level model allows a two-step solution process: initially,

a solution is derived by relaxing the CSC (see Def. (3.2.3)), and subsequently, this solution is
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6.2. Linearized version: an exact linearization scheme

employed as a warm start for the complete model.

6.2 Linearized version: an exact linearization scheme

Bilinear terms occur

• in the objective function (5.45) BC
z,t λz,t, BD

z,t λz,t

• in the RA constraints (5.31), (5.56)-(5.59) QK
k,t λz,t , QV

z,t λz,t, QW I
z,t λz,t, QW O

z,t λz,t,

BC
z,t λz,t, BD

z,t λz,t

• (possibly) in the strong duality constraint BC
z,t λz,t, BD

z,t λz,t, nV
z µV

z,t, nW I
z µW I

z,t , nW O
z µW O

z,t ,

γk,t µK
k,t

, γk,t µK
k,t

and can be handled directly by the Gurobi solver (since it can process MIQCP models) or

reformulated (exactly) as follows to create MIP versions of the models.

Bilinear terms that are products between continuous variables (B λ, Q λ) are linearized

through a Binary Expansion, followed by a McCormick Relaxation, [McCormick, 1976]. These

are a generalization of the linearization proposed in the seminal work [Fortet, 1960] which

considers products of only binary variables with the introduction of an extended variable and

a set of linear constraints.

Indeed, for constraints (5.30),(5.29), the clearing price λ can be written as the linear com-

bination λ = ∑
i∈I λ̂i yi , where binaries yi add up to 1. Therefore, we can replace λ with its

linear combination

B λ = B
∑
i∈I

λ̂i yi

Q λ = Q
∑
i∈I

λ̂i yi

Since the new bilinear terms are products of bounded continuous and binary variables, the Mc-

Cormick Relaxation technique can be applied without introducing any approximation. However,

this technique is weak as it is exact only for yi = 1 or yi = 0 and not for any other value that

the branch and bound finds in relaxing the binary.

Auxiliary continuous variables zB
i = B yi, zQ

i = Q yi are introduced so that

B λ = B
∑
i∈I

λ̂i yi =
∑
i∈I

λ̂i zB
i

Q λ = Q
∑
i∈I

λ̂i yi =
∑
i∈I

λ̂i zQ
i
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Chapter 6. Resolution of the proposed models

The following linear constraints link the variables

0 ≤ B − zB
i ≤MB (1− yi)

0 ≤ zB
i ≤MB yi

0 ≤ Q− zQ
i ≤MQ (1− yi)

0 ≤ zQ
i ≤MQ yi

Indeed, if yi = 0, then zB
i = 0, and the constraint B ≤MB is redundant (zB

i and B are not

related); if yi = 1, then zB
i = B. Similarly for zQ

i and Q. The constants MB and MQ must

be chosen large enough not to constrain the variables and cut off their optimal values, but also

not too large to avoid weak LP relaxations. We considered the values shown in Tab. 6.3. Note

Variable M from

BD
z,t Dz,t (5.16)

BC
z,t rtC Bz (5.18), (5.6)

QV
z,t, QW I

z,t , QW O
z,t , QK

k,t Tab. 6.2

Table 6.3: Upper bounds M for the McCormick relaxation constraints

that while discharge is limited by demand, because it makes no sense for batteries to discharge

except to cover demand, the charge could be higher. In fact, if the batteries have the capacity

to charge and the demand is low, the remaining capacity of the generators can be used to charge

the batteries. In the GEP-RA (1) model, a possibly tighter value could be defined, as the charge

is limited by the production of RES according to the constraint (5.17), which in turn is limited

by the constraints (5.4), (5.5) on RES maximum capacity: cfV
z,t V z + cfW I

z,t W z + cfW O
z,t W z.

If the user decides to make the constraints (5.4), (5.5) and (5.6) inactive, the Big-Ms are set to

106. In particular, the revenues (for each z ∈ Z, t ∈ T ) are rewritten as

QK
k,t λz,t = QK

k,t

∑
i∈I

λ̂i yz,t,i =
∑
i∈I

λ̂i zK
k,t,i k ∈ Kz

QV
z,t λz,t = QV

z,t

∑
i∈I

λ̂i yz,t,i =
∑
i∈I

λ̂i zV
z,t,i

QW I
z,t λz,t = QW I

z,t

∑
i∈I

λ̂i yz,t,i =
∑
i∈I

λ̂i zW I
z,t,i

QW O
z,t λz,t = QW O

z,t

∑
i∈I

λ̂i yz,t,i =
∑
i∈I

λ̂i zW O
z,t,i

BD
z,t λz,t −BC

z,t λz,t = BD
z,t

∑
i∈I

λ̂i yz,t,i −BC
z,t

∑
i∈I

λ̂i yz,t,i =
∑
i∈I

λ̂i zBD
z,t,i −

∑
i∈I

λ̂i zBC
z,t,i
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6.2. Linearized version: an exact linearization scheme

so that the RA constraints (5.31), (5.56) - (5.59) become, respectively

∑
t∈T

∑
i∈I

λ̂i zK
k,t,i + uK

k ≥M

[∑
t∈T

(CM
k QK

k,t + CSU
k αk,t) + |T |

8760 IK
k Q

K
k nK

k

]
k ∈ K (6.4)

∑
t∈T

∑
i∈I

λ̂i zV
z,t,i + uV

z ≥M
|T |

8760 IV
z Q

V
nV

z z ∈ Z (6.5)

∑
t∈T

∑
i∈I

λ̂i zW I
z,t,i + uW I

z ≥M
|T |

8760 IW I
z Q

W I
nW I

z z ∈ Z (6.6)

∑
t∈T

∑
i∈I

λ̂i zW O
z,t,i + uW O

z ≥M
|T |

8760 IW O
z Q

W O
nW O

z z ∈ Z (6.7)

∑
t∈T

∑
i∈I

λ̂i zBD
z,t,i −

∑
t∈T

∑
i∈I

λ̂i zBC
z,t,i + uB

z ≥M
|T |

8760 IB
z B nB

z z ∈ Z (6.8)

To link the variables zK
k,t,i, yz,t,i, and QK

k,t, the following constraints are introduced:

0 ≤ QK
k,t − zK

k,t,i ≤ Q
K
k (nK

k,0 + nK
k ) (1− yz,t,i) k ∈ Kz, i ∈ I, z ∈ Z, t ∈ T (6.9)

0 ≤ zK
k,t,i ≤ Q

K
k (nK

k,0 + nK
k ) yz,t,i k ∈ Kz, i ∈ I, z ∈ Z, t ∈ T (6.10)

Similarly for the other variables:

0 ≤ QV
z,t − zV

z,t,i ≤ cfV
z,t V z (1− yz,t,i) i ∈ I, z ∈ Z, t ∈ T (6.11)

0 ≤ zV
z,t,i ≤ cfV

z,t V z yz,t,i i ∈ I, z ∈ Z, t ∈ T (6.12)

0 ≤ QW I
z,t − zW I

z,t,i ≤ cfW I
z,t W z (1− yz,t,i) i ∈ I, z ∈ Z, t ∈ T (6.13)

0 ≤ zW I
z,t,i ≤ cfW I

z,t W z yz,t,i i ∈ I, z ∈ Z, t ∈ T (6.14)

0 ≤ QW O
z,t − zW O

z,t,i ≤ cfW O
z,t W z (1− yz,t,i) i ∈ I, z ∈ Z, t ∈ T (6.15)

0 ≤ zW O
z,t,i ≤ cfW O

z,t W z yz,t,i i ∈ I, z ∈ Z, t ∈ T (6.16)

0 ≤ BD
z,t − zBD

z,t,i ≤ Dz,t (1− yz,t,i) i ∈ I, z ∈ Z, t ∈ T (6.17)

0 ≤ zBD
z,t,i ≤ Dz,t yz,t,i i ∈ I, z ∈ Z, t ∈ T (6.18)

0 ≤ BC
z,t − zBC

z,t,i ≤ rtC Bz (1− yz,t,i) i ∈ I, z ∈ Z, t ∈ T (6.19)

0 ≤ zBC
z,t,i ≤ rtC Bz yz,t,i i ∈ I, z ∈ Z, t ∈ T (6.20)

Bilinear terms that are products between integer and continuous variables (n µ, γ µ, γ µ) are

linearized through a Binary Expansion of the integer variables, as described in (5.4), followed by

a McCormick Relaxation. Indeed, by introducing a set E = {0, ..., E} of exponent of 2, one can
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Chapter 6. Resolution of the proposed models

rewrite the integer variables n, γ as a combination of auxiliary binary variables nBIN
e , γBIN

e :

n =
∑
e∈E

2e nBIN
e

γ =
∑
e∈E

2e γBIN
e

nBIN
e , γBIN

e ∈ {0, 1}

For example, if E = {0, 1, 2, 3}, the expression 20 nBIN
0 + 21 nBIN

1 + 22 nBIN
2 + 23 nBIN

3 can

represent any integer number between 0 and 15. We can now replace the integer variables with

their binary expansions:

n µ = µ
∑
e∈E

2e nBIN
e

γ µ = µ
∑
e∈E

2e γBIN
e

γ µ = µ
∑
e∈E

2e γBIN
e

Since the new bilinear terms are products of continuous and binary variables, the McCormick

Relaxation can be applied: auxiliary continuous variables zn
e = µ nBIN

e , zγ
e = µ γBIN

e , zγ
e =

µ γBIN
e are introduced so that

n µ = µ
∑
e∈E

2enBIN
e =

∑
e∈E

2ezn
e

γ µ = µ
∑
e∈E

2eγBIN
e =

∑
e∈E

2ezγ
e

γ µ = µ
∑
e∈E

2eγBIN
e =

∑
e∈E

2e zγ
e

The following linear constraints link the variables

0 ≤ µ− zn
e ≤Mµ (1− nBIN

e )

0 ≤ zn
e ≤Mµ nBIN

e

0 ≤ µ− zγ
e ≤Mµ (1− γBIN

e )

0 ≤ zγ
e ≤Mµ γBIN

e

0 ≤ µ− zγ
e ≤Mµ (1− γBIN

e )

0 ≤ zγ
e ≤Mµ γBIN

e
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6.2. Linearized version: an exact linearization scheme

All the constants M are set to the V oLL. We defined different sets E for each integer

variables to model the correct number of binary variables; for example, EK+KO
k is the set of

exponents of 2 required to represent the maximum number of ON thermal generators (nK
k,0+nK

k ).

For the linearization of the product Q λ we also applied the piece-wise linearization tech-

nique, later discarded because it had the disadvantages described below.

Following the technique applied in [Vespucci et al., 2013], we approximate the non-linear

revenue terms Q λ by piece-wise linear functions. For any real number Q and λ it holds that

Q λ = s2 − d2, where

s = Q + λ

2 , d = Q− λ

2

The piecewise-linear approximations s2 of s2 and d2 of d2 are constructed as follows.

Q is defined in the interval
[
0, Q

]
, where Q varies based on the technology considered (for

example, for thermal plants Q = Q
K
k (nK

k,0 + nK
k ), according to Tab. 6.2 while λ is defined in

[0, V oLL], in general, or in
[
0, maxi λ̂i

]
more specifically; therefore, the bounds of s and d are:

smin = 0, smax = Q + V oLL

2 ; dmin = −V oLL

2 , dmax = Q

2

Let’s ŝb, b ∈ B, denote |B| breaking points chosen in
[
smin, smax

]
, with ŝ1 = smin and ŝ|B| =

smax, so as to divide the interval into |B| − 1 subintervals. For example, with |B| = 5, 4

subintervals of width ∆s = (smax− smin)/10 are defined, and each of the 5 breakpoints is given

by ŝb = smin + ∆s (b− 1), with b = 1, ..., 11. Let’s scoef
b , b ∈ B, denote variables belonging to

a Special Order Set of type 2 (SOS2), i.e. a set of non-negative ordered variables of which at

most two adjacent ones can take a positive value. The following linear constraints define the

variable s2 as a piecewise-linear approximation of s2:

scoef
b SOS2, b ∈ B

∑
b∈B

scoef
b = 1

Q + λ

2 =
∑
b∈B

ŝb scoef
b s2 =

∑
b∈B

ŝ2
b scoef

b
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Chapter 6. Resolution of the proposed models

The piecewise-linear approximation d2 of d2 is constructed analogously, yielding the constraints:

dcoef
b SOS2, b ∈ B

∑
b∈B

dcoef
b = 1

Q− λ

2 =
∑
b∈B

d̂b dcoef
b d2 =

∑
b∈B

d̂2
b dcoef

b

Therefore, the revenues Q λ = s2 − d2 can be approximated by s2 − d2. In Fig. 6.1, the

values of s2 (dashed parabola) and its approximation s2 (piecewise linear) are compared: s2

overestimates s2. The overestimation error is ϵs = s2 − s2 and its magnitude vary depending

on the position of the curve determined by the optimal values of the SOS2 variables scoef
b .

Figure 6.1: Comparison of s2 (dashed parabola) and its piecewise linear approximation s2

(solid segments), considering the breaking points ŝb, b ∈ B (orange)

Since both s2 and d2 overestimate s2 and d2 respectively, the difference s2−d2 may turn out

to be negative, even though the real (not approximated) revenue is always non-negative. This

could lead to solutions being incorrectly considered infeasible when they are actually feasible.
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Chapter 7

Computing feasible solutions and

proving optimality

The computation of optimal solutions of GEP-RA models has proven to be a difficult task,

due to the complexity arising from the two-level model structure, as well as the presence of

bilinear terms and of binary and integer variables. In particular, two main difficulties have

been observed, namely (i) obtaining a feasible solution of the GEP-RA models; (ii) proving

optimality. This chapter describes some approaches we have introduced to overcome the above

difficulties, which try to exploit the bilevel structure of the GEP-RA models.

7.1 Feasibility cuts, warm starts and heuristic callbacks

Commercial solvers, notably the best-performing Gurobi, struggle to find a feasible solution.

The general-purpose heuristics used by Gurobi, such as the Relaxation Induced Neighborhood

Search or the feasibility pump (see, e.g., [Fischetti and Lodi, 2010]), were not of much help in

determining feasible solutions, especially when more than one representative day was considered

in the GEP-RA model. Since the GEP-RA model is reformulated as a single-level optimization

problem, general-purpose heuristics cannot detect its original special bilevel structure. We have

therefore developed some heuristic approaches that take into account the special structure of

the problem. Our efforts to improve performance have focused in particular on the GEP-RA

(2) model, the UL and LL of which are reported below for the convenience of the reader.

129



Chapter 7. Computing feasible solutions and proving optimality

UL

min
V ar

∑
z∈Z

∑
t∈T

λz,t (Dz,t − B
D
z,t + B

C
z,t) +

∑
z∈Z

(u
V
z + u

W I
z + u

W O
z + u

B
z ) +

∑
k∈K

u
K
k +

∑
z∈Z

∑
t∈T

c
RNP

RNP z,t (5.45)

Constraints on zonal capacities of RES power plants and batteries in the target year: z ∈ Z

V z ≤ Q
V (n

V
z,0 + n

V
z ) ≤ V z (5.4)

W
z

≤ Q
W I (n

W I
z,0 + n

W I
z ) + Q

W O (n
W O
z,0 + n

W O
z ) ≤ W z (5.5)

B
z

≤ Q
B (n

B
z,0 + n

B
z ) ≤ Bz (5.6)

Constraints on thermal power capacity in the target year: k ∈ Kz , z ∈ Z

n
K
k ≤ n

K
k (5.7)

UC constraints, with avoidance of physical withholding

γk,t − γ
I
k,t = αk,t − βk,t k ∈ K, t ∈ T

I (5.8)

γk,t − γk,t−1 = αk,t − βk,t k ∈ K, t ∈ T ∖ T
I (5.9)

γk,t + γ
SL
k,t = n

K
k,0 + n

K
k k ∈ K, t ∈ T (5.10)

γ
SL
k,t ≥ 1 − x

T F
k,t k ∈ K, t ∈ T (5.11)

γ
SL
k,t ≤ (n

K
k,0 + n

K
k )(1 − x

T F
k,t ) k ∈ K, t ∈ T (5.12)

x
T F
k,t ≥ x

T F
kk,t q ∈ [1, |Q| − 1] , k ∈ Kq, kk ∈ Kq+1, t ∈ T (5.13)

Constraints on operation of batteries: z ∈ Z

B
C
z,t ≤ rt

C
Bz ϕz,t t ∈ T (5.15)

B
D
z,t ≤ Dz,t (1 − ϕz,t) t ∈ T (5.16)

B
C
z,t ≤ rt

C
Q

B (n
B
z,0 + n

B
z ) t ∈ T (5.18)

B
D
z,t ≤ rt

D
Q

B (n
B
z,0 + n

B
z ) t ∈ T (5.19)

Bz,t ≤ Q
B (n

B
z,0 + n

B
z ) t ∈ T (5.20)

Bz,t = (1 − κ) B
I
z,t + κ

C
B

C
z,t − κ

D
B

D
z,t t ∈ T

I (5.21)

Bz,t = (1 − κ) Bz,t−1 + κ
C

B
C
z,t − κ

D
B

D
z,t t ∈ T ∖ T

I (5.22)

Bz,t = B
I
z,t t ∈ T

L (5.23)

Reserve constraints: z ∈ Z, t ∈ T∑
k∈Kz

(Q
K
k γk,t − Q

K
k,t) + df

[
rt

D
Q

B (n
B
z,0 + n

B
z ) (1 − ϕz,t) − B

D
z,t

]
+ RNP z,t ≥ Rz,t (5.24)

Constraints that avoid price indeterminacy: z ∈ Z, t ∈ T

yz,t,1 ≤
∑
z′∈Z

Q
V
z′,t

(5.25)

yz,t,2 ≤
∑
z′∈Z

Q
W I
z′,t

(5.26)

yz,t,3 ≤
∑
z′∈Z

Q
W O
z′,t

(5.27)

yz,t,3+q ≤
∑

k∈Kq

γk,t q ∈ Q (5.28)

∑
i∈I

yz,t,i = 1 (5.29)

λz,t =
∑
i∈I

λ̂i yz,t,i (5.30)
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Revenue adequacy constraints: z ∈ Z∑
t∈T

λz,t Q
K
k,t + u

K
k ≥ M

[
|T |

8760
I

K
k Q

K
k n

K
k +

∑
t∈T

(C
M
k Q

K
k,t + C

SU
k αk,t)

]
k ∈ Kz (5.31)

∑
t∈T

λz,t Q
V
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8760
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V
z Q

V
n

V
z (5.56)
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λz,t Q
W O
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|T |
8760
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W O
z Q

W O
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W O
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∑
t∈T

λz,t (B
D
z,t − B

C
z,t) + u

B
z ≥ M

|T |
8760

I
B
z Q

B
n

B
z (5.59)

LL (for each t ∈ T ) (5.62)

min
Q,Fl,t

∑
z∈Z

(
P

V
Q

V
z,t + P

W I
Q

W I
z,t + P

W O
Q

W O
z,t

)
+

∑
k∈K

P
K
k Q

K
k,t (5.42a)

Q
V
z,t + Q

W I
z,t + Q

W O
z,t +

∑
k∈Kz

Q
K
k,t + B

D
z,t +

∑
l∈BSz

Fl,t ≥ Dz,t +
∑

l∈F Sz

Fl,t + B
C
z,t z ∈ Z (λz,t ≥ 0) (5.62b)

0 ≤ Q
V
z,t ≤ cf

V
z,t Q

V (n
V
z,0 + n

V
z ) z ∈ Z (µ

V
z,t ≥ 0) (5.42c)

0 ≤ Q
W I
z,t ≤ cf

W I
z,t Q

W I (n
W I
z,0 + n

W I
z ) z ∈ Z (µ

W I
z,t ≥ 0) (5.42d)

0 ≤ Q
W O
z,t ≤ cf

W O
z,t Q

W O (n
W O
z,0 + n

W O
z ) z ∈ Z (µ

W O
z,t ≥ 0) (5.42e)

Q
K

k
γk,t ≤ Q

K
k,t ≤ Q

K
k γk,t k ∈ K (µ

K

k,t
≥ 0, µ

K
k,t ≥ 0) (5.42f)

F l ≤ Fl,t ≤ F l l ∈ L (υl,t ≥ 0, υl,t ≥ 0) (5.42g)

The first approach we propose consists of adding to the single-level reformulation the re-

dundant constraint (7.2) for each hour t.

∑
z∈Z

[
cfV

z,t Q
V (nV

z,0 + nV
z ) + cfW I

z,t Q
W I (nW I

z,0 + nW I
z ) + cfW O

z,t Q
W O (nW O

z,0 + nW O
z )

]
+

+
∑
k∈K

Q
K

γk,t ≥
∑
z∈Z

[
Dz,t + BC

z,t −BD
z,t

]
(7.2)

This ensures that the system’s production capacity, defined as a function of the UL variables

(nV
z , nW I

z , nW O
z , γk,t, BC

z,t, BD
z,t), which are treated as parameters in the LL, is sufficient to meet

the total demand. In other words, it establishes a direct relation between the UL variables and

the demand that the LL must meet, thus ensuring that the LL constraints are satisfied as long

as the possible energy exchanges between zones do not conflict with the transmission capacity

constraints (5.42g). Therefore, the constraints (7.2) can be seen as a kind of feasibility cuts.

The constraint (7.2) is derived as follows. The sum over z ∈ Z of inequalities (5.62b) yields

(7.3) since flows cancel out.

∑
z∈Z

QV
z,t + QW I

z,t + QW O
z,t +

∑
k∈Kz

QK
k,t

 ≥ ∑
z∈Z

(
Dz,t + BC

z,t −BD
z,t

)
(7.3)
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Moreover, inequalities (5.42c)-(5.42f) imply the inequality

∑
z∈Z

[
cfV

z,t Q
V (nV

z,0 + nV
z ) + cfW I

z,t Q
W I (nW I

z,0 + nW I
z ) + cfW O

z,t Q
W O (nW O

z,0 + nW O
z )

]
+

+
∑
k∈K

Q
K

γk,t ≥
∑
z∈Z

QV
z,t + QW I

z,t + QW O
z,t +

∑
k∈Kz

QK
k,t

 (7.4)

and from (7.3) and (7.4) inequality (7.2) follows.

We note that when using Gurobi, (7.2) for t ∈ T can be introduced as lazy constraints with

option 3 that cuts off the relaxation solution at the root node if the constraint is violated.

The second approach develops heuristic algorithms that serve a twofold purpose: they are

designed not only to compute an initial feasible solution, i.e. to provide a warm start, but also

to attempt to enhance the solution at any node within the branch-and-cut process, i.e. to act

in a callback setting.

To provide a concise description of the heuristic procedures, we define the following partitions

of the variable set from the GEP-RA (2), which represent the warm start values.

V alA = {nB
z , nK

k , ϕz,t, αk,t, βk,t, γSL
k,t , xT F

k,t , Bz,t, RNPz,t}

V alB = {nV
z , nW I

z , nW O
z , γk,t, BD

z,t, BC
z,t}

V alC = {QV
z,t, QW I

z,t , QW O
z,t , QK

k,t, Fl,t}

V alD = {λz,t, µV
z,t, µW I

z,t , µW O
z,t , µK

k,t
, µK

k,t, υl,t, υl,t}

V alE = {uV
z , uW I

z , uW O
z , uB

z , uK
k }

V alF = {yz,t,i}

In the developed software code, we assign a binary parameter to each variable within the

problem (1 for the variable to be warm started, 0 otherwise), so that the user can activate

a warm start for any combination of selected variables, initializing them according to their

respective values V al. This relies on Gurobi’s ability to handle partially populated warm starts

by optimizing with respect to the variables that are not warm started. The success of Gurobi in

completing the solution depends on which variables are initialized and on the number of branch-

and-cut nodes explored when completing a partial start, which can be set with the parameter

StartNodeLimit.

The heuristic procedures determine feasible solutions by mimicking the hierarchical relation-

ship between the CP, in the UL, and the MO, in the LL. The bilevel configuration described

in Fig 4.8 is recalled: the UL determines the values for RES investments, thermal statuses,
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and battery charging and discharging (referred to as V alB); these values are received by the

LL, which returns the optimal values of accepted quantities (referred to as V alC) and prices

(referred to as V alD). However, assigning values to V alB through a naive approach, as in the

first attempt of Algorithm (6), can lead to an infeasible solution for the LL. In particular, Al-

Algorithm 6: Naive Warm start
Data: An instance of the GEP-RA
Result: V alB, V alC , V alD // V alA, V alE , V alF set by Gurobi (partial WS)

1 begin
2 Set nV

z = V z

Q
V − nV

z,0 // max solar

3 Set nW O
z = 0 ; nW I

z = W z

Q
W I − nW I

z,0 // max wind

4 prodRES
z = cfV

z,t Q
V (nV

z,0 + nV
z ) + cfW I

z,t Q
W I (nW I

z,0 + nW I
z )

5 for z ∈ Z do
6 Order Kz // according to P K

k

7 for t ∈ T do
8 for k ∈ Kz do
9 Set γk,t = 0

10 while
∑

kk∈Kz

Q
K

γkk,t < Dz,t − prodRES
z do

11 if γk,t < nK
k,0 + nK

k then
12 γk,t ← γk,t + 1

13 Set BD
z,t = BC

z,t = 0
14 V alC ← Solve LL (5.62) // considering V alB as defined above
15 V alD ← Marginals of LL constraints

gorithm (6) sets the number of new photovoltaic generators to its maximum, as defined by the

constraint (5.4). The number of new offshore wind generators is set to zero and the number

of inshore wind generators is set to its maximum, as defined by the constraint (5.5), which

limits the sum of inshore and offshore wind capacity. Therefore, the maximum value of RES

production can be calculated accordingly. For each zone z, the set Kz containing the thermal

generators within the zone, is sorted in ascending order of offer price P K
k . This prioritizes gen-

erators with lower offer prices for operational decisions, thus avoiding physical withholding as

required by the original model. For each hour t, the status γk,t of the generator k is initialized

to zero and then updated until the capacity is sufficient to cover the zonal hourly demand (net

of RES production). Setting both the battery charging and discharging to zero may lead to an

infeasible solution when dealing with the LL. This happens in test cases where the batteries

are needed to cover the demand. To overcome this issue, we could set the battery discharges to

match the capacity deficit, calculated as BD
z,t = Dz,t − prodRES

z −
∑

k∈Kz
Q

K
γk,t. However, in

turn, it is difficult to determine the related charges BC
z,t and at the same time, take into account
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flows that can be used to meet demand in one zone with the excess capacity of another zone,

according to the capacity of the lines and to the price signals.

The difficulties outlined underscore the necessity of a more principled approach. Instead of

a procedure that assigns the values V alB manually with, e.g., the logic above, this more formal

approach can be implemented via the formulation of a specific auxiliary optimization problem.

We therefore design this auxiliary problem such that it determines values V alB that are both

feasible for the LL and aligned with UL constraints in terms of battery dynamics.

The idea of the proposed mixed-integer model AUX 1 (7.5) is to hybridize variables and

constraints from both the UL and the LL of GEP-RA (2). Starting from the UL formulation,

AUX 1 therefore considers constraints related to investment capacity (7.5b), operation of both

thermal plants (7.5c) and batteries (7.5d), and reserve requirement (7.5e). Given the final goal

of warm starting the GEP-RA (2), AUX 1 does not take into account market clearing prices,

so we do not consider the RA constraints (5.31), (5.56)-(5.59) and the constraints designed to

prevent price indeterminacy (5.25)-(5.30). This is possible because the presence of side payments

in the original GEP-RA (2) model ensures that the RA conditions can be met, irrespective

of the revenues determined by the LL. Furthermore, the price determination is allocated to

the LL, which operates independently of AUX 1. This separation effectively eliminates the

potential for decisions within AUX 1 to strategically induce price indeterminacy. AUX 1 is

also designed to include constraints (7.5f)-(7.5k) to ensure that the optimal values V alB are

feasible for the LL. In particular, (7.5f) ensures that investments in RES and the operation

of thermal plants and batteries determine a capacity sufficient to meet demand, (7.5g)-(7.5j)

ensures consistency between investments and quantities, while the flows contributing to the

demand constraint are limited by the capacities of the lines through (7.5k). Note that these

constraints are identical to the LL constraints, but nV
z , nW I

z , nW O
z , γk,t, BD

z,t, BC
z,t are variables

instead of parameters. Moreover, the optimal values for the quantities determined by AUX 1 are

not considered by the complete warm start algorithm, to be presented shortly, since they may

differ from those determined by LL, which is a linear problem since nV
z , nW I

z , nW O
z , γk,t, BD

z,t, BC
z,t

are fixed to V alB. Starting from (5.45), the objective function is formulated as (7.5a). This

revised formulation retains the focus on minimizing unmet reserve requirements and costs, now

expressed in terms of quantities rather than prices, but excludes minimizing side payments.

Lastly, we observe that the problem (7.5) can be solved in a few seconds.
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min
V ar1

∑
t∈T

∑
z∈Z

(
P V QV

z,t + P W I QW I
z,t + P W O QW O

z,t

)
+

∑
k∈K

P K
k QK

k,t

 +

+
∑
t∈T

∑
z∈Z

cRNP RNP z,t (7.5a)

(5.4)− (5.7) (7.5b)

(5.8)− (5.13) (7.5c)

(5.15), (5.16), (5.18)− (5.23) (7.5d)

(5.24) (7.5e)

QV
z,t + QW I

z,t + QW O
z,t +

∑
k∈Kz

QK
k,t + BD

z,t +
∑

l∈BSz

Fl,t ≥ Dz,t +
∑

l∈F Sz

Fl,t + BC
z,t z ∈ Z (7.5f)

0 ≤ QV
z,t ≤ cfV

z,t Q
V (nV

z,0 + nV
z ) z ∈ Z (7.5g)

0 ≤ QW I
z,t ≤ cfW I

z,t Q
W I (nW I

z,0 + nW I
z ) z ∈ Z (7.5h)

0 ≤ QW O
z,t ≤ cfW O

z,t Q
W O (nW O

z,0 + nW O
z ) z ∈ Z (7.5i)

QK
k

γk,t ≤ QK
k,t ≤ Q

K
k γk,t k ∈ K (7.5j)

F l ≤ Fl,t ≤ F l l ∈ L (7.5k)

V ar1 ≡

nV
z , nW I

z , nW O
z , nB

z ∈ N z ∈ Z

nK
k ∈ N k ∈ K

αk,t, βk,t, γk,t, γSL
k,t ∈ N k ∈ K, t ∈ T

xT F
k,t ∈ {0, 1} k ∈ K, t ∈ T

Bz,t, BC
z,t, BD

z,t, RNP z,t ≥ 0 z ∈ Z, t ∈ T

ϕz,t ∈ {0, 1} z ∈ Z, t ∈ T

QV
z,t, QW I

z,t , QW O
z,t ≥ 0 z ∈ Z, t ∈ T

QK
k,t ≥ 0 k ∈ K, t ∈ T

Fl,t free l ∈ L, t ∈ T (7.5l)

The complete Algorithm (7) considers the auxiliary problem AUX 1 for computing values

V alA and V alB; then V alB are considered as parameters of the LL, which determines V alC
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and V alD. The values V alE and V alF are computed ex-post. Specifically, the side payments

are calculated as the difference between market revenues, which are a function of quantities

and prices (determined by LL), and investment and operational costs, which are a function of

investment and operational decisions (determined by AUX 1). The binary parameters yz,t,i are

determined to identify which among the offer prices λ̂i has been selected as the market clearing

price λz,t by the LL.

Algorithm 7: Warm start and Heuristic callback
Data: An instance of the GEP-RA
Result: V al

1 begin
2 V alA, V alB ← Solve AUX 1 (7.5)
3 V alC ← Solve LL (5.62) // considering V alB from AUX 1
4 V alD ← Marginals of LL constraints
5

V alE ← uV
z =

∑
t∈T

λz,t QV
z,t −M

|T |
8760 IV

z Q
V

nV
z

uW I
z =

∑
t∈T

λz,t QW I
z,t −M

|T |
8760 IW I

z Q
W I

nW I
z

uW O
z =

∑
t∈T

λz,t QW O
z,t −M

|T |
8760 IW O

z Q
W O

nW O
z

uB
z =

∑
t∈T

λz,t (BD
z,t −BC

z,t)−M
|T |

8760 IB
z Q

B
nB

z

uK
k =

∑
t∈T

λz,t Qk,t −M

[
|T |

8760 IK
k Q

K
k nK

k +
∑
t∈T

(CM
k Qk,t + CSU

k αk,t)
]

V alF ← yz,t,i : λz,t =
∑
i∈I

λ̂i yz,t,i
6

Note that a complete warm start of GEP-RA (2), i.e. a warm start of all variables, including

the values RNPz,t for unmet reserve from AUX 1 and the values QK
k,t for thermal accepted

quantities from LL, may lead to an infeasible solution and therefore cause the warm start to

be rejected by Gurobi. In fact, as mentioned above, the quantities determined by AUX 1 can

differ from those determined by the LL and thus violate (5.24). An example of the variables

that can be initialized to obtain a feasible warm start is given in Section (8.7).

In the enhanced proposal presented in Algorithm (8), an alternative approach within the

same framework renders AUX 1 more adherent to the UL. Starting from AUX 1 (7.5), AUX

2 (7.6) integrates RA constraints (7.6c)-(7.6g) with fixed prices from the LL. Moreover, the

objective function, now modified as in (7.6a), now incorporates side payments and the product

of fixed prices for charging and discharging the batteries. In this way, (7.6) leads to more
136



7.1. Feasibility cuts, warm starts and heuristic callbacks

consistent values for the same variables since side payments are included in the optimization

and not computed ex-post. The algorithm begins by setting all zonal clearing prices to the

minimum offer price, which is feasible for AUX 2 due to the inclusion of side payments in the

RA constraints. Prices are then differentiated based on zone and time through the resolution of

LL, and subsequently employed to solve AUX 2 once more. It is noteworthy that the LL returns

prices to AUX 2 solely because the quantities would restrict both investments and operations.

Algorithm 8: Warm start and Heuristic callback - alternative version
Data: An instance of the GEP-RA
Result: V al

1 begin
2 Set λz,t = mini∈I λ̂i

3 V alB ← Solve AUX 2 (7.6)
4 V alC ← Solve LL (5.62) // considering V alB from AUX 2
5 V alD ← Marginals of LL constraints
6 V alA, V alB, V alE ← Solve AUX 2 (7.6) // considering λz,t from LL
7 V alF ← yz,t,i : λz,t = ∑

i∈I λ̂i yz,t,i

min
V ar2

∑
t∈T

∑
z∈Z

(
P V QV

z,t + P W I QW I
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)
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+
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z∈Z
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∑
k∈K

uK
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∑
z∈Z

∑
t∈T

λz,t (BC
z,t −BD

z,t) (7.6a)

(7.5b)− (7.5k) (7.6b)∑
t∈T

λz,t QK
k,t + uK

k ≥M

[
|T |

8760 IK
k Q

K
k nK

k +
∑
t∈T

(CM
k QK

k,t + CSU
k αk,t)

]
k ∈ Kz, z ∈ Z (7.6c)

∑
t∈T

λz,t QV
z,t + uV

z ≥M
|T |

8760 IV
z Q

V
nV

z z ∈ Z (7.6d)

∑
t∈T

λz,t QW I
z,t + uW I

z ≥M
|T |

8760 IW I
z Q

W I
nW I

z z ∈ Z (7.6e)

∑
t∈T

λz,t QW O
z,t + uW O

z ≥M
|T |

8760 IW O
z Q

W O
nW O

z z ∈ Z (7.6f)

∑
t∈T

λz,t (BD
z,t −BC

z,t) + uB
z ≥M

|T |
8760 IB

z Q
B

nB
z z ∈ Z (7.6g)
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V ar2 ≡V ar1(7.5l) ∪

uV
z , uW I

z , uW O
z , uB

z ≥ 0 z ∈ Z

uK
k ≥ 0 k ∈ K (7.6h)

It should be noted that a complete warm start downstream of Algorithm (8) may not be

feasible. In fact, the accepted quantities determined by AUX 2 (to satisfy the RA constraints)

could differ from those determined by the LL (and related to the fixed prices). As the side

payments are determined by AUX 2, a warm start of both the quantities from the LL and the

side payments from AUX 2 could result in an infeasible warm start, with the RA constraints

potentially being violated.

Algorithm (8) can be developed into an iterative approach where V alB are returned to LL

for computing new λz,t and so on. It should be noted that there is no guarantee of a decrease

in the objective function of AUX 2, nor can there be any proof of convergence to optimal values

of the whole problem.

Both algorithms (7) and (8) can also be invoked via a heuristic callback after some iterations,

thus inside the branch-and-cut process. This procedure shares the same underlying logic but

may simplify the task of completing the partial solution and lead to a solution that is closer

to the optimum. In addition, the use of callbacks makes it possible to experiment with fixing

different combinations of variables during the optimization process while the warm start can be

only performed with one single combination at a time.

Additionally, we examine the alternative heuristic callback approach proposed in [Goyal and

Richard, 2024], which considers the relaxed solution at each node of the branch-and-cut tree

of a bilevel problem with binaries in the UL. If the values of the UL binaries in the relaxed

solution exceed a certain threshold, the heuristic rounds them to 1. Conversely, if the values

fall below the threshold, the heuristic sets them to 0. This rounding is then complemented by

adjusting the associated continuous variables for consistency. Once a feasible UL solution has

been obtained, the heuristic proceeds to solve both the primal and the dual of the LL. Although

this method benefits from updating the callback values at different nodes, it falls short in our

context, where securing feasible solutions for both the UL, which contains integer variables, and

the LL presents significant obstacles. In our case, the heuristic rounding procedure results in

a number of generators that either exceeds the limits set by the investment constraints (when

rounding up) or is insufficient to meet demand (when rounding down). Moreover, rounding

could lead to a solution that does not satisfy the RA constraints.
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7.2 Valid inequalities for enhancing the CSC

One of the main reasons why the solver struggles to understand the interplay between levels

is that, in the single-level reformulation determined with the Big-M or the SOS1 approaches,

the dual variables of the LL are loosely coupled or even fully decoupled from the primal upper

and lower level variables. In particular, at each node of the branch-and-cut process constructed

by the solver, the binary variables of type bCC ∈ {0, 1} of the big-M constraints (A.5a)-(A.5q)

are relaxed to be continuous bCC ∈ [0, 1], thus relaxing the optimality of the LL. Using the

SOS1 reformulation, the conditions (A.4a)-(A.4q) are completely omitted at the beginning of

the solution process, thus ignoring the optimality of the LL, and only later reintroduced via

branching. This results in weak (initial) relaxations, indicated by low values for the best bound

in the context of minimization, both at the root node and at each subsequent node in the

branch-and-cut process. It should be noted that the term ‘branch-and-cut’ is used because

the solvers automatically introduce their own cuts after the root node, thus not performing a

pure branch-and-bound. However, these cuts are not bilevel-specific and thus may fall short in

proving optimality. The authors of [Kleinert, 2021] present general cuts that are derived from

strong duality conditions to partially address the issue of missing coupling. The reasons behind

this partial coupling will be clarified shortly. Following their approach, for each t ∈ T the

Strong Duality condition (6.3) is written in the equivalent form (7.7). This form is equivalent

because for the weak duality (which holds when the primal and dual solutions are both feasible)

is LLD ≤ LLP and therefore the inequality (7.7) LLD ≥ LLP can only be satisfied at equality.

∑
z∈Z

Dz,tλz,t +
∑
l∈L

(
F l υl,t − F l υl,t

)
−

∑
z∈Z

[
cfV

z,t Q
V

nV
z,0 µV

z,t + cfW I
z,t Q

W I
nW I

z,0 µW I
z,t + cfW O

z,t Q
W O

nW O
z,0 µW O

z,t

]
+

∑
z∈Z

(−BD
z,t λz,t + BC

z,t λz,t)

−
∑
z∈Z

[
cfV

z,t Q
V

nV
z µV

z,t + cfW I
z,t Q

W I
nW I

z µW I
z,t + cfW O

z,t Q
W O

nW O
z µW O

z,t

]
+

∑
k∈K

(
QK

k
γk,t µK

k,t
−Q

K
k γk,t µK

k,t

)
≥

∑
z∈Z

(
P V QV

z,t + P W IQW I
z,t + P W OQW O

z,t

)
+

∑
k∈K

P K
k QK

k,t (7.7)

The SD (7.7) is then used to derive the valid inequality (7.8) that can be added if violated either

in the root node or in the branch-and-cut tree when using the SOS1 or the Big-M as the main

reformulation of the CSC. For the derivation of (7.8), the bilinear products of (7.7) are relaxed
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by replacing each UL variable with valid approximations: the resulting left-hand side expression

of (7.8) overestimates the left-hand side of (7.7) so that the linearized constraint remains valid.

For example, BD
z,t λz,t is replaced by BD

z,t
−

λz,t, where BD
z,t

− is the minimum value the discharge

can take in zone z, in hour t. Conversely, BC
z,t λz,t is replaced by BC

z,t
+

λz,t, where BC
z,t

+ is the

maximum value the charge can take in zone z, in hour t. Also the approximation of the number

of RES generators, e.g. nV
z,t

−, depends on the time t since it is related to the hourly capacity

factor. The approximated values are computed with the auxiliary MIQCP problems (7.9)-

(7.14), which are derived from each of the primal constraints of the LL. The shared constraint

set Ω is the set of both UL (including the RA constraints with bilinear terms) and LL-primal

constraints, while ΩD is the set of LL-dual constraints. The CSC are ignored in the auxiliary

problems.

∑
z∈Z

Dz,tλz,t +
∑
l∈L

(
F l υl,t − F l υl,t

)
−

∑
z∈Z

[
cfV

z,t Q
V

nV
z,0 µV

z,t + cfW I
z,t Q

W I
nW I

z,0 µW I
z,t + cfW O

z,t Q
W O

nW O
z,0 µW O

z,t

]
+

∑
z∈Z

(−BD
z,t

−
λz,t + BC

z,t
+

λz,t)

−
∑
z∈Z

[
cfV

z,t Q
V

nV
z,t

−
µV

z,t + cfW I
z,t Q

W I
nW I

z,t
−

µW I
z,t + cfW O

z,t Q
W O

nW O
z,t

−
µW O

z,t

]
+

∑
k∈K

(
QK

k
γ+

k,t µK
k,t
−Q

K
k γ−

k,t µK
k,t

)
≥

∑
z∈Z

(
P V QV

z,t + P W IQW I
z,t + P W OQW O

z,t

)
+

∑
k∈K

P K
k QK

k,t (7.8)

It is noteworthy that the cut (7.8) couples the dual variables of the LL to the primal LL variables,

while still leaving the UL variables decoupled.

for each z ∈ Z, t ∈ T

BD
z,t

−
, BC

z,t
+ := min

V ar
BD

z,t −BC
z,t (7.9a)

V ar ∈ Ω× ΩD (7.9b)

nV
z,t

− := min
V ar

nV
z (7.10a)

V ar ∈ Ω× ΩD (7.10b)
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nW I
z,t

− := min
V ar

nW I
z (7.11a)

V ar ∈ Ω× ΩD (7.11b)

nW O
z,t

− := min
V ar

nW O
z (7.12a)

V ar ∈ Ω× ΩD (7.12b)

for each k ∈ K, t ∈ T

γ+
k,t := max

V ar
γk,t (7.13a)

V ar ∈ Ω× ΩD (7.13b)

γ−
k,t := min

V ar
γk,t (7.14a)

V ar ∈ Ω× ΩD (7.14b)

In our applications, most of the approximate values that enter the cut (7.8) with a negative

sign are zero and therefore result in ineffective cuts. In fact, evaluating the left-hand side (for

the LL-dual variables, since the UL variables are approximated) and the right-hand side with

the current values through a callback at any node results in the left-hand side being already

greater than the right-hand side. Therefore, when checking for cut violations, this is never

violated. The reasons behind this are given by the following considerations. First of all, in the

optimization problem (7.9), each hour is treated independently, thereby neglecting the dynamics

of charge and discharge between consecutive hours. The minimization of the discharge for each

hour t leads to zero discharge values (BD
z,t

− = 0), except in hours and zones where discharge is

necessary to meet the demand and avoid infeasibility. The maximization of the charge leads to

the same values for all the hours (rtCBz for (5.6) and (5.18)), except for the last hour of the

representative day, where the level of the battery must be equal to the initial level for (5.23).

Moreover, in the optimization problems (7.11) and (7.12), the constraint (5.5) requires that

the combined wind capacity from both inshore and offshore sources is greater than a minimum

threshold. When minimizing inshore, the constraint (5.5) is satisfied by offshore and vice versa
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for the minimization of offshore wind generators. This interplay leads to zero minimum values

for both wind type (nW I
z,t

− = 0, nW O
z,t

− = 0). Furthermore, in the optimization problem (7.14),

the minimization of the number of on-line thermal generators leads to zero values (γ−
k,t = 0),

except in hours when the thermal capacity is necessary to satisfy the demand or the reserve.

We note that the good results of [Kleinert et al., 2021b] are obtained with a large data set

of bilevel problems with both linear UL and LL, while our UL is strongly non-convex because it

contains bilinear terms and integer variables. In addition, the authors use the CPLEX version

12.10 as the solver as well as a customized branch-and-bound and it is possible that Gurobi 11,

which we use, is already much more efficient.

7.3 Hybrid CSC

Starting from the original formulation of the CSC, each reformulation introduced in Section (6.1)

represents a (quite) different method of imposing the optimality of the LL. Recalling the work

of [Kleinert, 2021] described in the previous Section (7.2), which uses the SOS1 reformulation

and introduces a linear cut derived from the SD, the proposal that we present here is more

general and leverages the Gurobi capabilities of handling bilinear components.

In this spirit, we envisioned and implemented a hybrid approach that combines pairs, or

triplets, of selected formulations for the CSC. For example, we consider the Big-M reformulation

(A.5a)-(A.5q) in conjunction with the original Product formulation (6.1a)-(6.1l), treating the

constraints of the former as redundant. It is important to note that in the context of the present

discussion, the term “redundant” takes on a specific meaning. In general, the integration of

redundant constraints has been studied in the literature, see e.g. [Ruiz and Grossmann, 2011]

and [Lalla-Ruiz and Voss, 2016] for examples in a mixed integer linear setting. However, to the

best of our knowledge, this “hybridization” technique has never been proposed in the context of

CSC reformulation within a bilevel optimization setting. Redundant constraints can introduce

an extra level of pruning, propagation activity, cut generation, etc., which in turn can tighten

the LP relaxation of the original problem, improve the quality of the lower bound (in the case

of minimization), and produce better primal solutions, thus speeding up the overall execution.

If we consider the Big-M reformulation logic itself, we note that it is limited to branching on

a single Big-M constraint and does not effectively connect UL variables with LL variables (both

primal and dual) in solving the relaxed problem. In fact, in the LP relaxation, the binaries

can take fractional values and consequently do not strictly impose that the product is null. We

conjecture that this can be done instead by, e.g., the Product constraints in specific moments of

the branch-and-cut procedure. When the solver branches on the binaries of the Big-M, i.e. fixes

the binary variables in the branch-and-cut, it simultaneously fixes to zero one of the two terms
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of the Product constraints. Vice versa the (internal) reformulation of the Product constraints

can lead to a fixing of some binary variables of the Big M formulation.

A third CSC reformulation, given by the SD (A.6), offers an additional, quite different,

perspective on the relations between variables. Moreover, in the SD reformulation, the bilinear

components differ from those of the product mode. We surmise that this ensemble can further

enrich the whole formulation in the spirit discussed above. The computational tests presented

later in (8.7) somehow confirm this belief.

In [Kleinert, 2021], a linear user cut is derived from the SD in order to allow CPLEX to

solve the problem, as CPLEX is not able to deal with bilinearities. This linearization, however,

results in the loss of the relationships between lower and upper-level variables. In contrast,

our approach exploits Gurobi’s ability to handle the bilinear terms of the Product formulation

and/or of the SD, maintaining these variable relationships. It might be tempting to attribute

our improved results solely to Gurobi’s ability to manage bilinearities of the Product formulation

or to the addition of upper bound constraints to each CSC product term as follows, mirroring

the bounds given by the coefficients of the Big-M reformulation.

cp ≤M cp vd ≤Mvd (7.15a)

cd ≤M cd vp ≤Mvp (7.15b)

However, as will be demonstrated in the computational results presented in Section (8.7), merely

relying on formulating CSC as products or on adding these bounds is insufficient for obtaining

good dynamics in terms of the optimality gap in a reasonable time. This underscores the

importance of combining CSC formulations to achieve better computational efficiency.

In order to further enhance the effectiveness of the proposed hybrid approach, it would

be beneficial to investigate which constraints of the combination of the CSC reformulation

should be written in redundant form. In the proposed approach, we have indeed omitted this

step, leaving all constraints. It would also be of interest to examine the most appropriate

reformulations/linearizations for each of these constraints.

Linearization approaches could be employed to handle bilinear terms and ascertain the

efficacy of the hybrid formulation without relying on Gurobi. The work [Bestuzheva et al., 2023]

describes a novel Reformulation Linearization Technique (RLT) cut separation, which appears

to have been implemented in Gurobi. RLT is a deeply analyzed methodology for constructing

tight linear relaxations of non-convex continuous and mixed-integer optimization problems. It

was initially proposed in the seminal papers [Sherali and Adams, 1990], [Sherali and Adams,

1999]. Specifically, RLT constructs relaxations by first multiplying the defining constraints of
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certain region and linearizing the resulting non-linear terms by introducing additional variables

and constraints.
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Computational tests

In this chapter, we describe the application of the model to a real test case. Section (8.1)

details the realized software implementation. Section (8.2) presents the developed test cases,

highlighting their peculiarities, and the results we want to present after solving the models.

Section (8.3) delves into various choices made for the different proposed models, while Section

(8.4) explores other modeling decisions that may impact solution performance. The chapter

concludes with a presentation of the obtained results, notably discussing modeling sensitivity

in Section (8.5) and performance sensitivity in Section (8.6), together with the improvements

obtained with the heuristics and the hybrid CSC in Section (8.7).

8.1 Technology implementation

The proposed bilevel models have all been implemented using the Julia language [Bezanson

et al., 2017], version 1.9.4. Julia is an open-source programming language expressly designed

for quantitative problems, and its ecosystem has a large and fast-growing set of packages to

deal with different mathematical problems.

For modeling the optimization problems, the JuMP package belonging to the Julia ecosystem

is used, [Lubin et al., 2023]. In particular, a sub-package of JuMP called BilevelJuMP [Dias

Garcia et al., 2023] is used to reformulate the bilevel models into single-level models with

different readily available approaches such as StrongDualityMode, ProductMode, or BigMMode.

The optimization solver used is Gurobi, [Gurobi Optimization, LLC, 2023] version 11.0,

which is natively able to handle bilinear terms such as those found in the revenue adequacy

constraints and in some of the proposed objective functions.

For the MILP linearized versions of the models with no bilinear components, we also tested

CPLEX version 22.10, [Cplex IBM, ILOG, 2022] Xpress version 9.2.5, [FICO, 2023] and COPT

version 7.1.1 [Dongdong et al., 2022] commercial solvers, observing worse computational results
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than Gurobi, so the main results will be all related to this last solver. In Tab. 8.4 we will report

a brief comparison of other commercial solvers.

As already mentioned, the Gurobi solver can handle bilinear constraints internally [Achter-

berg, 2019]. To do that it also applies spatial Branch-and-Bound algorithms, that solve the

relaxation of the model obtained by building the McCormick envelopes. Moreover in [Achter-

berg, 2019] it is proposed to add different types of other cuts. By iteratively partitioning the

domain of continuous variables, tighter relaxations can be achieved to prune infeasible solutions

(one McCormick polyhedron is turned into two smaller McCormick polyhedra after branching).

This means that the bounds of the McCormick relaxation change during the solving algorithm

(local bounds).

The PC used for the computational tests is based on a AMD Ryzen 9 7950X CPU with 16

cores and 32 threads, 32 GB RAM DDR5 type running Windows 10 OS.

8.2 Test cases development and output structure

With the support of MBS Consulting Company, a comprehensive Italian, real-size, test case has

been defined, which considered one, two, and five representative days. The data were derived

from proprietary scenarios subject to non-disclosure agreements based on the objectives of the

National Integrated Plan for Energy and Climate (PNIEC) and the Fit for 55 targets. We also

defined a small synthetic test case with one zone only, which is useful for testing real optimality

and some modeling options for performance issues. The real-size Italian test case is a database

of several data visioned to the year 2040 circa. It has been developed with the following main

peculiarities and educated considerations:

• starting from a certain set of existing power plants of different technologies derived from

the installed capacity at the year 2022, several additional capacities per zone and each

selected technology are made available for the model to be selected. We focus on fossil-

fueled technology1 such as Combined Cycle Gas Turbine (CCGT), (Open Cycle) Gas

Turbine (OCGT) and RES technology such as Photovoltaic, Onshore Wind, Offshore

Wind. Additionally, Storage with specific requirements is also envisioned;

• notably for the storage, at the time of writing (December 2023), the EC accepted under EU

State aid rules the Italian proposal for long-term auctions in order to install a significant

amount of storage2. However, the quantity per zone is still unknown3 and it will be
1The existing coal-fired plants are not considered because their phase-out will be completed by the target year

2040
2The so called meccanismo di approvvigionamento di capacità di stoccaggio elettrico (MACSE) ex Art. 18 of

the Legislative Decree 210/21 and regulated by ARERA Decision n. 247/2023/R/eel
3An estimate of 9 GW in power and 71 GWh/year in energy has been proposed
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precisely defined by Terna later in 2024. Therefore starting from an as-is situation, where

almost nothing is available, we estimate a minimum and maximum power to be installed

for the storage;

• for each possible future installation with different technologies, investment costs, operative

costs and useful life length have been estimated;

• the five representative days are selected from the MBS scenarios by considering the day of

2040 with the expected highest load and one representative day for each season; the two

representative days are selected by considering the day of 2040 with the expected highest

load and the representative day for autumn, which is the season with the expected lowest

load;

• hourly load zonal curves are defined for each day(s);

• each RES technology has a capacity factor (i.e. estimate hourly profile of production) for

each day(s);

• we do not consider hydropower production explicitly within the GEP model since no ad-

ditional investments are possible in the Italian system. However, we do take into account

their contributions in a simplified manner, i.e. by subtracting from the load zonal profile a

typical hydro hourly production profile and adding to it a typical hourly consumption pro-

file for pumping w.r.t the hydro installed in the Italian system using historical aggregated

data;

• the electricity market(s) MGP-MI is considered as in the Italian cases with the current

several zones, therefore a set of equivalent network constraints were imposed accordingly

with an estimate of their future maximum capacity. At the present time, it is unknown

if zones will be changed or removed from the Italian market design in the future; this

bidding zone review is however a competence of the Italian Authority;

• we set minimum (and maximum) RES penetration level in terms of installed capacity,

in accordance with the EC policy targets as declined in the newly modified PNIEC of

the Italian Government of July 2023. These minimum and/or maximum levels can be

imposed as constraints in the model forcing the model to respect them;

• we set minimum (and maximum) installation level for batteries;

• we set a maximum conventional (CCGT/GT) future level in terms of installed capacity,

also estimating the effect of the present Italian CRM and its possible evolution. These
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maximum levels can be imposed as constraints in the model forcing the model to respect

them;

• all thermal offers (CCGT and GT) are set accordingly with their estimated marginal cost,

i.e. we simulate a perfect competitive market with no strategic bid-up. This choice has

been also made considering that the proposed model is a simil-capacity one with possible

side payments;

• as motivated in (4.1.4), we assume that all RES technologies offer their energy at their

estimated LCOE;

• at the beginning of each representative day, all thermal units are assumed to be off-line

(γI
k,t = 0) to account for the maximum start-up costs that these generators could incur

in ensuring their revenue adequacy. Additionally, all batteries are assumed to be fully

discharged (BI
z,t = 0);

• a level of reserve on top of the estimated load has been simply defined as a percentage of

the load itself, in order to obtain reserve-proof production systems in terms of adequacy

as explained in (5.1.5).

Given the data sets described above, a set of results has been extracted from the solutions

of the models and post-aggregated within the Julia code. These are as follows:

1. For each zone z and for each hour t in the Italian market:

ZonRes.1 Net Import/Export from zone, NetFz,t

ZonRes.2 Thermal Accepted Production, AQk
z,t

ZonRes.3 Photovoltaic Accepted Production, AQv
z,t

ZonRes.4 Inshore Wind Accepted Production, AQwi
z,t

ZonRes.5 Offshore Wind Accepted Production, AQwo
z,t

ZonRes.6 Storage Charge Quantity, BC
z,t

ZonRes.7 Storage Discharge Production, BD
z,t

ZonRes.8 Required Reserve, RRe
z,t

ZonRes.9 Obtained Reserve, ROb
z,t

ZonRes.10 Zonal Price, λz,t

2. For the whole system and for each hour t Aggregated values4:
4a unique buying price could be obtained ex-post as an average of the zonal prices λz,t weighed on the total

accepted quantities in zone z
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AggRes.1 Thermal Accepted Production, AQk
t

AggRes.2 Photovoltaic Accepted Production, AQv
t

AggRes.3 Inshore Wind Accepted Production, AQwi
t

AggRes.4 Offshore Wind Accepted Production, AQwo
t

AggRes.5 Storage Charge Quantity, BC
t

AggRes.6 Storage Discharge Production, BD
t

AggRes.7 Required Reserve, RRe
t

AggRes.8 Obtained Reserve, ROb
t

AggRes.9 Number of new generators for each technology and number of new batteries

3. For the whole system and for each technology

Aggπ.1 πT OT

Aggπ.2 u

8.3 Modeling Sensitivity

The several quantities in the output may vary depending on the different conceptual choices

made in terms of modeling. Keeping fixed the data set, we therefore performed a modeling

sensitivity primarily w.r.t the GEP-RA (1) and GEP-RA (2) model described in Section (4.2)

and subsequently detailed in the whole Chapter (5).

By construction, we have:

• For GEP-RA (1) we keep fixed modeling decisions related to:

M1F.1 OF Model, (5.3)

M1F.2 UseRA for Thermal, (5.31)

• For GEP-RA (2) we keep fixed modeling decisions related to:

M2F.1 OF Model, (5.45)

M2F.2 UseRA for Thermal, (5.31)

M2F.3 UseRA for Photovoltaic, (5.56)

M2F.4 UseRA for Inshore Wind, (5.57)

M2F.5 UseRA for Offshore Wind, (5.58)

M2F.6 UseRA for Battery, (5.59)
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A user can also discard for GEP-RA (1) the RA for thermal and some RA for a specific

technology, e.g. Offshore Wind, in the GEP-RA (2).

These are additional modeling parameters are valid for both GEP-RA (1) and GEP-RA (2):

Add.1 Avoid Physical Withholding, (5.11)-(5.13) ∈ {Y,N}

Add.2 Use Thermal UB, relaxing (5.7) ∈ {Y,N}

Add.3 Use RES LB and UB, relaxing one of the constraints in (5.4) and (5.5) ∈ {Y,N}

Add.4 Use Battery LB and UB, relaxing one of the constraints in (5.6) ∈ {Y,N}

Add.5 UseReserve, relaxing (5.24) ∈ {Y,N}

Add.6 HowToReserve, if UseReserve == Y, setting (5.24) or (5.43)

8.4 Performances Sensitivity

Given the data set, and a set of modeling choices as defined in (8.3), another sensitivity di-

mension is related to performance sensitivity. Indeed the complete bilevel model appears very

complex to solve even for the best-chosen solver, Gurobi. We compared specific choices com-

bining different parameters as defined below:

P.1 UseOF linearized for GEP-RA (2) only, (5.45) as derived in (6.2) ∈ {Y,N}

P.2 UseRA linearized for all RA considered as derived in (6.2) ∈ {Y,N}

P.3 AddBound dual using values defined in Tab. 6.1 ∈ {Y,N}

P.4 Extended formulation for price setting as derived in (5.3) ∈ {Y,N}

P.5 Monolithic Approach ∈ {Y,N}

P.6 Non-default solver’s parameters ∈ {Y,N}

Using the automatic reformulation of BilevelJuMP we observed a clear superiority of the

SOS1 reformulation, SOS1Mode, when compared to alternative reformulation approaches such

as StrongDualityMode, ProductMode, or BigMMode.

Using the monolithic approach (P.5 == Y) of the software implementation, therefore using

only JuMP and not BilevelJuMP, we can reformulate the Lower Level CSC in different ways

as described in (6.1). In particular, for the Fortuny-Amat and McCarl reformulation, with

the manually derived single-level model we are able to set tighter values of big-M, as defined

in Tab. 6.1 and Tab. 6.2, than the general values (one for primary variables and constraints
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and one for dual ones) allowed by the automatic reformulation. In this way, we are also able

to implement a two steps mode, that as step one envisions a relaxation of the CSC, i.e. an

High-Point Relaxation, see Def. (3.2.3), and as step two uses the complete, or partial solution,

of this relaxation as a warm start for the complete model5. Additionally, using only JuMP with

this monolithic version enables other possibilities such as imposing as lazy constraints some

set of linear constraints or setting custom branching priorities, see [Gurobi Optimization, LLC,

2023] and [Lubin et al., 2023]. These advanced settings are not possible at the moment using

BilevelJuMP.

8.5 Modeling Results and discussion

The models that we compared are

1. Complete GEP-RA (1) as defined in (M1F.1),(M1F.2)

2. Complete GEP-RA (2) as defined in (M2F.1)-(M2F.6)

3. GEP-RA (1) without RA, referred to as GEP (1), as defined in (M1F.1)

4. GEP-RA (2) without RA, referred to as GEP (2), as defined in (M2F.1)

including as Y all the additional parameters (Add.1)-(Add.6).

We report the results obtained with one representative day of 2040. It is important to note

that this representative day is a summer-time day, with the highest forecast consumption to

ensure that the system is adequately designed to meet peak demand. The cardinality of each

set is given in Tab. 8.1. The MIQCP GEP-RA (2) model with the Product formulation (6.1)

for CSC results in 9,591 (2,647 integer, 2,664 binary, 4,280 continuous) variables and 15,940

(3,464 quadratic, 12,476 linear) constraints, with 41,864 non-zeros.

|T | 24

|Z| 7

|K| 27

|L| 6

|I| 10

|Q| 7

Table 8.1: Cardinality of the main sets of the model considering one representative day
5Gurobi accepts also partial MILP solution as a warm start and tries to recover a feasible solution
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Tab. 8.2 provides a comparison of objective function values and possible economic losses for

each model. The economic losses are calculated after the optimal solutions have been obtained,

and, when combined with the objective function values, allow the total cost to be calculated. For

models (1), the total cost encompasses investment costs, operational costs, and side payments

— both those included in the OF value and those computed ex-post; in particular, losses in

GEP-RA (1) refer to all technologies except thermal, as its RA is guaranteed within the model.

On the other hand, for models (2), the total cost represents the expenses incurred by consumers,

combining market costs and side payments; in GEP-RA(2), losses are zero, as RA is guaranteed

within the model for all technologies.

For models with RA, we did not achieve a zero optimality gap within the imposed time limit

(7,200s); therefore, we present the best results in terms of primal objective values, among those

in Tab. 8.5.

[e] GEP (1) GEP-RA (1) [e] GEP (2) GEP-RA (2)

Costs Inv+Op(+u) 1.104E+08 1.115E+08 Costs_system(+u) 1.342E+08 1.483E+08

Losses 2.876E+06 8.913E+05 Losses 1.901E+07 0

TOT 1.133E+08 1.124E+08 TOT 1.532E+08 1.483E+08

Table 8.2: Comparison of total costs, given by the sum of objective function values and
economic losses. Losses are calculated ex-post for those technologies whose revenue adequacy
is not guaranteed within the model.

A comparison of the models in terms of investment decisions is presented in Fig. 8.1. The

left-hand graph illustrates the variation in the number of new RES generators and batteries

(each with a capacity of 10 MW) between GEP (1) - that can be considered the “traditional”

model due to the absence of RA constraints and the minimization of investment and operational

costs - and the other models incorporating RA constraints or different objective functions. In

GEP-RA (1), the consideration of the RA for thermal plants leads to investing in a smaller

number of photovoltaic units, which are those presenting offers at the lowest price. In GEP (2),

the rethinking of the objective function, aimed at minimizing consumer costs, results in larger

investments in solar, offshore wind, and especially batteries. Conversely, in GEP-RA(2), where

the RA is guaranteed for all technologies, there is a notable decrease in offshore wind and an

increase in inshore wind. The right-hand graph shows the total installed capacity, including

thermal capacity and the capacity of both the existing and the new generators. The thermal

capacity is reduced in the model GEP-RA (2).

In Fig. 8.2, we compare the aggregated values (AggRes.1)-(AggRes.8) for different models,

illustrating the typical M-shaped curves representing demand and its fulfillment by accepted
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Figure 8.1: Comparison of changes in the number of new RES and batteries between models,
with GEP (1) as baseline (left) and total installed capacity between models (right); both are
derived from (AggRes.9)

quantities for different technologies. The required reserve is often obtained but in some hours,

for the fixed value that we choose for the penalty. The profiles of the technologies involved in

meeting the demand vary from hour to hour: in all four models, the accepted quantity of inshore

and offshore wind decreases when solar energy is available; the accepted quantity of photovoltaic

offers follows a typical bell-shaped curve, except for the central hours, where excess energy is

not wasted but used to charge batteries. This charging is not included in the accepted quantity

for models (1) (8.2a), (8.2b), as they do not account for the charge in the lower-level balance

constraints. On the other hand, models (2) (8.2c), (8.2d), include the charge in the accepted

quantities. In models (1), charging occurs mainly during the central hours of the day when

solar energy is available. Discharging takes place during the nighttime hours when prices are

higher, as shown in Tab. (8.3). Models (2) exhibit a higher level of battery operation overall.

Figures 8.3, 8.4, and 8.5 present a detailed breakdown of the previous results based on the

market zones NORD, SUD, and SICI, respectively. They allow us to check that charge and

discharge are mutually exclusive since we model one battery for each zone, as correctly required

by the models. These figures also include additional information such as zonal prices and net

network flows, calculated as the difference between exports and imports. Specifically, NORD -

the zone with the higher demand - operates as an importing zone, SUD functions as an exporting

zone, and SICI primarily engages in exports. This distinction in roles provides valuable insights

into the dynamics of each zone and their contributions to the overall results. For example, the

zone SICI imports only in some hours in the models without RA. The thermal accepted quantity

in the zone NORD exhibits an inverse correlation compared to imports. In the two other zones,

instead, the exports are mainly influenced by solar availability in the central hours and by wind

in the other hours. The primal contribution of inshore wind is evident in the SICI zone, while

offshore wind gains significance in the SUD zone during hours when photovoltaic sources are
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(a) GEP (1) (b) GEP-RA (1)

(c) GEP (2) (d) GEP-RA (2)

Figure 8.2: (AggRes.1)-(AggRes.8) for each model: the demands, reserves (AggRes.7, Ag-
gRes.8) and accepted quantities for thermal (AggRes.1) and photovoltaic (AggRes.2) are plotted
with respect to the vertical axis on the left, while the accepted quantities for wind (AggRes.3,
AggRes.4) and battery operations (AggRes.5, AggRes.6) are plotted with respect to the vertical
axis on the right

unavailable. Thermal generators set the prices in the nighttime hours allowing the discharge

to be profitable. In the NORD zone, batteries efficiently charge during periods of lower zonal

prices and discharge when prices rise. The battery capacity is sufficient to store excess energy

effectively. However, in the other two zones, there are losses of energy (the photovoltaic offered

quantity is not fully accepted) as the capacity of lines is not sufficient to export it, and thus

the accepted quantity follows the export. This gives a clear indication that the considered

transmission capacity could be enlarged. In models (1), where the battery investment cost is

in the OF, the energy losses may also be caused by the model’s decision to build a number of

batteries that is inadequate to store all the excess energy as the reduction in costs achievable

by load shifting does not justify the investment costs.

A detailed comparison of the zonal prices is given in Tab. 8.3. The zones are ordered

according to the equivalent transmission lines shown in Fig. 4.4, highlighting line congestion

when prices between two connected zones differ. For example, in the GEP (1) model during hour

1, the SARD>CSUD line experiences congestion in the opposite direction to the convention:
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(a) GEP (1) (b) GEP-RA (1)

(c) GEP (2) (d) GEP-RA (2)

Figure 8.3: (ZonRes.1)-(ZonRes.10) in relation to the zone NORD for each model: only the
price (ZonRes.10) is plotted with respect to the vertical axis on the right while all other outputs
are plotted with respect to the vertical axis on the left

(a) GEP (1) (b) GEP-RA (1)

(c) GEP (2) (d) GEP-RA (2)

Figure 8.4: (ZonRes.1)-(ZonRes.10) in relation to the zone SUD for each model
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(a) GEP (1) (b) GEP-RA (1)

(c) GEP (2) (d) GEP-RA (2)

Figure 8.5: (ZonRes.1)-(ZonRes.10) in relation to the zone SICI for each model

the flow saturates the capacity of the line from CSUD to SARD (Fl,t = F l), resulting in a

higher price in the import zone (SARD). Congestion is also present in some cases even if the

price is the same since we consider the same offer price for photovoltaic in different zones.

Models incorporating RA exhibit slightly higher prices compared to those without RA, while

still maintaining the interpretability of prices. Conversely to the model of [Guo et al., 2022],

where the RA is fictitiously guaranteed by artificial price spikes, that cannot be replicated in

reality, in our model the price is set by the offer of the marginal generator.

The national single price, PUN, is in this context ex-post calculated as the weighted average

of zonal clearing prices for each hour, considering the respective accepted quantities, also because

it is known that at some point in 2024 will be removed from the ex-ante calculation within the

clearing model that requires a non-convex equality constraint.

Fig. 8.6 shows total profits (Aggπ.1) and side payments (Aggπ.2) for different models, as

the sum on zones for a given technology. If a specific model presents a negative total profit also

for a single technology, that model is not worth considering.

Photovoltaic and inshore wind are profitable in all four models, even if their RA is not

enforced by constraints. Batteries, on the contrary, are always loss-making unless the model

guarantees their RA through side payments, that lead them to break even; note that in the test
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λ̂i

GEP (1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 V 65

NORD 129 129 129 129 129 129 129 129 129 129 122 122 65 65 75 122 124 129 129 171 171 171 148 129 WI 75

CNOR 129 129 129 129 129 129 129 129 129 129 122 122 65 65 75 122 124 129 129 171 171 171 148 129 WO 115

CSUD 129 129 129 129 129 129 129 129 129 129 122 122 65 65 75 122 124 129 129 171 171 171 148 129 K1 122

SARD 148 129 129 129 129 129 129 129 115 65 65 65 65 65 65 65 65 65 115 171 171 171 148 148 K2 124

SUD 129 129 129 124 124 124 124 124 115 65 65 65 65 65 65 65 75 122 124 129 148 171 148 129 K3 129

CALA 129 129 129 124 124 124 124 124 115 65 65 65 65 65 65 65 75 122 124 129 148 171 148 129 K4 148

SICI 129 129 129 124 124 124 124 122 65 65 65 65 65 65 65 65 65 65 122 129 148 171 148 129 K5 163

PUN 129.16 129 129 127 127.01 127.05 127.17 127.17 119.98 108.11 103.15 103.44 65 65 71.74 103.59 106.98 119.80 126.74 158.22 164.03 171 148 129.20 K6 166

K7 171

GEP-RA (1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

NORD 166 129 129 129 129 129 129 129 129 129 122 122 65 65 75 122 124 129 129 171 171 171 163 148 k Pk

CNOR 166 129 129 129 129 129 129 129 129 129 122 122 65 65 75 122 124 129 129 171 171 171 163 148 n_5_CCGT 122

CSUD 166 129 129 129 129 129 129 129 129 129 122 122 65 65 75 122 124 129 129 171 171 171 163 148 n_7_GT 122

SARD 166 129 129 129 129 129 129 129 115 65 65 65 65 65 65 65 65 65 115 171 171 171 163 148 cs_2_CCGT 122

SUD 166 129 129 129 124 124 124 122 115 115 65 65 65 65 65 65 115 122 124 148 163 171 163 148 s_2_CCGT 122

CALA 166 129 129 129 124 124 124 122 115 115 65 65 65 65 65 65 115 122 124 148 163 171 163 148 s_5_CCGT 122

SICI 166 129 129 129 124 124 124 122 115 75 65 65 65 65 65 65 75 122 124 148 163 171 163 148 cal_1_CCGT 122

PUN 166 129 129 129 127 127.05 127.17 126.68 124.09 118.85 103.15 103.44 65 65 71.74 103.59 115.92 124.29 126.90 164.02 168.57 171 163 148 sic_1_CCGT 122

sic_2_CCGT 122

GEP (2) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 cs_3_CCGT 124

NORD 129 129 129 124 124 124 129 129 129 122 65 65 65 65 65 65 75 129 129 129 148 148 129 129 s_1_CCGT 124

CNOR 129 129 129 124 124 124 129 129 129 122 65 65 65 65 65 65 75 129 129 129 148 148 129 129 cal_3_CCGT 124

CSUD 129 129 129 124 124 124 129 129 129 122 65 65 65 65 65 65 75 129 129 129 148 148 129 129 n_3_CCGT 129

SARD 129 129 129 124 124 124 129 129 65 65 65 65 65 65 65 65 65 65 65 129 148 148 129 129 n_8_CCGT 129

SUD 124 124 124 122 122 115 115 115 65 65 65 65 65 65 65 65 65 65 115 124 124 124 124 124 cn_2_CCGT 129

CALA 124 124 124 122 122 115 115 115 65 65 65 65 65 65 65 65 65 65 115 124 124 124 124 124 sic_5_CCGT 129

SICI 122 115 115 115 115 115 115 65 65 65 65 65 65 65 65 65 65 65 65 122 124 124 124 124 n_6_CCGT 148

PUN 127 126.39 126.31 122.39 122.44 120.38 124.65 120.97 107.12 100.59 65 65 65 65 65 65 71.51 109.29 118.24 127.22 140.58 140.46 127.36 127.44 cn_1_GT 148

cn_4_CCGT 148

GEP-RA (2) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 cs_5_CCGT 148

NORD 129 129 129 124 124 124 124 75 65 65 65 65 65 65 65 65 65 65 75 129 171 171 148 129 sar_1_CCGT 148

CNOR 129 129 129 124 129 129 129 129 124 124 65 65 65 65 65 75 75 129 129 129 171 171 148 129 sar_2_GT 148

CSUD 129 129 129 124 124 124 124 115 75 65 65 65 65 65 65 65 65 75 124 129 171 171 148 129 sic_6_GT 148

SARD 129 129 129 124 129 129 129 129 124 124 65 65 65 65 65 75 75 129 129 129 171 171 148 129 s_3_GT 163

SUD 148 148 129 124 129 129 129 129 65 65 65 65 65 65 65 65 65 65 65 129 171 171 148 129 cs_1_GT 166

CALA 129 129 129 124 124 124 124 115 75 65 65 65 65 65 65 65 65 75 124 129 171 171 148 129 cn_3_GT 171

SICI 129 129 129 124 129 129 129 129 124 124 65 65 65 65 65 75 75 129 129 129 171 171 148 129 cal_2_GT 171

PUN 129.17 129.15 129 124 127.22 127.26 127.28 121.38 103.74 103.43 65 65 65 65 65 71.50 71.37 110.52 120.86 129 171 171 148 129 sic_4_GT 171

Table 8.3: Zonal market clearing prices (ZonRes.10) for each model: in columns are the 24
hours and in rows are the zones, followed by the PUN computed ex-post. The colors indicate
which technology sets the price: Photovoltaic (yellow), Inshore Wind (green), Offshore Wind
(blue), Thermal (orange). Shades of orange represent the offer prices of the thermal power
plants, with darker shades indicating higher prices. The legend on the right lists the offer price
for each of the 27 thermal plant types considered.

case considered we do not ask for a return on investment but only for cost recovery. Offshore

wind incurs losses in the GEP(1) and GEP(2) models but achieves positive profits in the GEP-

RA(1) model, even though its RA is not enforced. In the GEP-RA(2) model, total offshore

profits are non-zero, but side payments are positive because, despite considering the same

offshore investment costs in different zones, market profits are positive in some zones (not

requiring side payments) while negative in others (requiring side payments). In particular, the

offshore wind generators in the CALA and SUD zones are profitable within the market (125.5 ke

and 391.1 ke), while those in the CSUD zone incur market losses of 335.6 ke, which are covered

by the side payment. Thermal generators make losses in the models without RA, especially the

Combined Cycle Gas Turbine (CCGT). Conversely, in the models with RA, they either make

a market profit or break even thanks to the side payments. In particular, in GEP-RA (1), the

total thermal profits are positive, indicating that some generators are profitable in the market,

whereas in GEP-RA (2), all generators with new investments experience losses in the market.

It is worth noting that photovoltaic generators enjoy quite high profits in all the models.

The model GEP-RA (2) considers side payments for those technologies that incur losses on
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Figure 8.6: Comparison of total profits (Aggπ.1) and side payments (Aggπ.2) among different
models; side payments refer only to models with RA: GEP-RA(1) guarantees RA exclusively
for thermal power plants, while GEP-RA(2) guarantees RA for all technologies

the market while getting the market clearing prices. One may also hypothesize a two-ways CfD,

with a strike price that would redistribute the economic matches and thus possibly increase the

side payments required for RA.

8.6 Performances Results and discussion

Tab. 8.4 shows the performance superiority of Gurobi over other solvers. The comparison

is made on the MIP version of the GEP-RA model (2), with OF and RA linearized (P.1,P.2

== Y) and CSC reformulated using the big-M approach. No additional parameters are taken

into account (P.6 == N). Xpress and CPLEX produce suboptimal solutions, while COPT fails

to find a feasible solution within the given time limit, even with the non-default parameter

HeurLevel set to 3, imposing an aggressive use of heuristics. It is worth mentioning that the

warm start solution obtained by Algorithm (7) is accepted by COPT, which however is not able

to improve the initial solution provided, working only on the best bound and showing a gap of

20.50% after 7,200 seconds.

Solver Gap [%] Time2FSol GapFSol [%] Expl. nodes

GUROBI 4.41 312 10.30 28,913

XPRESS 9.01 1,741 12.42 5,271

CPLEX 20.76 3,627 63.07 9,596

COPT no sol no sol no sol 8,021

Table 8.4: Comparison of solvers for the linearized GEP-RA (2) model (P.1,P.2 == Y) with a
time for the last solution set to 7,200 secs. Both the dual variable bounds and the monolithic
version with the Big-M reformulation for CSC are considered (P.3,P.5 == Y), while the extended
formulation and non-default parameters are not considered (P.4,P.6 == N). The gap for the
last solution, both the time and the gap for the first solution, and the number of explored nodes
are shown.
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8.6. Performances Results and discussion

Focusing on Gurobi, in Tab. 8.5, the models are compared according to performance criteria

(P.1)-(P.6). With reference to (P.6), as default parameters we consider Nonconvex=2, which

allows Gurobi to handle non-convex quadratic terms, and the stop criteria TimeLimit=7,200

secs, MIPGap=1e-7 controlling the resolution time and the MIP optimality gap. It should be

noted that Gurobi is only guaranteed to be deterministic if exactly the same model is solved with

exactly the same parameters; even a small change, such as decreasing or increasing the required

MIPGap, could change the solution path. In fact, Gurobi uses this information in a proprietary

way, possibly differentiating the cuts, the heuristics, and many other internal strategies, thus

(slightly) altering the entire path solution. As additional parameters, we consider:

• MIPFocus, that allows to modify the focus between finding new feasible solutions and

proving that the current solution is optimal

• PreSOS1BigM, that allows to specify the largest big-M that can be introduced by the

internal automatic reformulation of SOS1 constraints into binary form

In particular, we set the MIPFocus parameter to 1 due to challenges encountered by the solver

when seeking feasible solutions for models involving RA. For models without RA, we exclude

the consideration of this parameter as feasible solutions are quickly identified, and the solver

can prove their optimality. We set the value of PreSOS1BigM to 50, 000, which corresponds to

an upper approximation of the maximum big-M calculated for our test case, as derived from the

analysis of the upper bounds presented in Tab. 6.1 and Tab. 6.2. The PreSOS1BigM parameter

is omitted when the reformulation directly entails big-M constraints instead of SOS1 constraints.

For GEP (1) and GEP (2) it is possible to achieve a zero MIP gap in reasonable times.

Conversely, GEP-RA (1) and GEP-RA (2) fail to close the MIP gap within the TimeLimit.

The higher computational cost is justified by the results shown in Tab. 8.2: although the

solutions with RA have a MIP gap greater than 0, they have a lower total cost.

For GEP-RA (2), i.e. the most complex model that includes RA constraints for all tech-

nologies, Gurobi fails to find a feasible solution within the TimeLimit without the activation of

performance parameters (P.1-P.6 == N), notably with P.1, P.2 == N which consider a natural

bilinear formulation; instead, the linearization of the model (P.1, P.2 == Y) allows to obtain

feasible solutions up to a minimum gap of about 4.34%. The inclusion of bounds for dual vari-

ables (P.3 == Y), as well as additional parameters (P.6 == Y), further reduces the gap to 1.76

%, although the time to find the first feasible solution remains high. The monolithic approach

(P.5 == Y) significantly diminishes this time by about 90%; in particular, the two-step version

performs better in terms of the gap. The best gap of 1.65% is achieved by the extended formu-

lation (P.4 == Y) in addition to the dual bounds and the non-default parameters, which shows
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also an improved root relaxation value. The best primal objective value is instead obtained

with the linearized version (P.1, P.2 == Y), together with the dual bounds and the non-default

parameters, but the gap is large due to the worst best bound.

For GEP-RA (1), the best gap of 1.12% is obtained by the extended (P.4 == Y) linearized

(P.2 == Y) version, with bounds for dual variables (P.3 == Y) and additional parameters (P.6

== Y) thanks to the better best bound, with 60% fewer nodes explored than in other tests. The

monolithic version (P.5 == Y), in this case as well, has the ability to reduce the time to find

the first feasible solution. Moreover, it shows the best primal objective value.
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8.7 Performances Results with heuristics and hybrid CSC

In Section 8.6, the focus was on the SOS1 reformulation for CSC, highlighting its superior

performance, especially when using the Gurobi parameter PreSOS1BigM. We now turn our

attention to presenting the results of using the formulations detailed in Chapter 7. Here the

objective is to isolate the impact of the proposed feasibility cuts, warm starts, and, above

all, hybridization. Consequently, the comparison of results is conducted without leveraging

additional Gurobi parameters (P.6 == N).

The analysis in Tab. 8.6 is carried out by comparing baseline formulations, which comprise

a single CSC formulation, with hybrid formulations, which consider different combinations of

CSC. The monolithic version of the code is used (P.5 == Y) since BilevelJuMP does not support

combining multiple CSC reformulations6.

In addition to the previous parameters (P.1)-(P.6), the following parameters are considered:

P.7 CSCReformulation ∈ {1,2,3,4,5}

1 Product Formulation (6.1a)-(6.1l)

2 Single CSC (A.3)

3 Big-M (A.5a)-(A.5q)

4 SOS1 (A.4a)-(A.4q)

5 SD (A.6)

P.8 HybridPM (6.1a)-(6.1l) as redundant ∈ {Y,N}

P.9 HybridSD (A.6) as redundant ∈ {Y,N}

P.10 MultipleSD one SD constraint for each t ∈ T ∈ {Y,N}

P.11 BoundsPM as defined in (7.15)7 ∈ {Y,N}

P.12 AddFeasCut as defined in (7.2) ∈ {Y,N}

P.13 UseWS as illustrated in Algorithm (7) ∈ {Y,N}

P.14 UsealternativeWS as illustrated in Algorithm (8) ∈ {Y,N}

P.15 MyPrimalHeur callbacks ∈ {Y,N}
6The Mixed mode of BilevelJuMP allows for the selection of a specific reformulation for each CSC. However,

it restricts the choice to only one reformulation per CSC, preventing the use of multiple reformulations for a
single CSC simultaneously as we propose here.

7utilizing the Ms of Tab. 6.1 and Tab. 6.2
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When either UseWS == Y or UsealternativeWS == Y, each model variable can be warm started

by setting the corresponding binary parameter Start == 1.

The following additional indicators are also considered, where UB and LB denote the upper

and lower bounds of the model at the time or node of evaluation for the run under consideration,

while BestUB and BestLB denote the best UB and LB found among different runs:

IG1 = UB − LB

UB
· 100 IG2 = UB − LB

LB
· 100

PG = UB −BestLB

BestLB
· 100 DG = BestUB − LB

LB
· 100

The Inherent Gap (either IG1, as determined by Gurobi, or alternatively IG2) is specific to

each run and does not consider the best UB or LB across different runs. For a more detailed

analysis, it is useful to calculate both the Primal Gap (PG) and the Dual Gap (DG), which

take into account the best LB and UB, respectively. The PG assesses the quality of the feasible

solution, thereby evaluating the efficacy of heuristics and branching, while the DG estimates the

ability to prove optimality. In particular, the DG at the root node before and after cuts can be

used to assess the tightness of different formulations and the capability of generating useful cuts

for a given formulation. We recall that Gurobi performs a branch-and-cut [Gurobi Optimization,

2016]: after the presolve, which tightens the formulation and reduces the problem size, the

solver starts from the root node and performs a continuous relaxation that ignores integrality

and gives a lower bound (in the case of minimization and referred to as root relaxation value)

on the optimal integral objective. The solver then adds cuts to eliminate fractional solutions

at the root node, then proceeds along the trees by selecting branching variables and possibly

adding more (local) cuts.

The BestUB and BestLB are determined by analyzing the outcomes over both Tab. 8.5 and

Tab. 8.6, focusing on identifying the highest lower bound and the lowest upper bound. Notably,

the run described in the last row of Tab. 8.5 achieves the best upper bound (the lowest primal

objective value is 148,292,836), but falls short of proving optimality (the highest dual value of

that table is 145,936,474). In contrast, the results of Tab. 8.6 give a slightly worse upper bound

(148,298,344), but show a significant improvement in the lower bound (148,153,221).

Hybridization has been found to be highly effective: its application has resulted in signifi-

cantly faster primal-dual convergence, as shown in Fig. 8.7. The inherent gaps with single CSC

(left) and hybrid CSC (right) are compared in Fig. 8.8.

Among the baseline runs, the one with the product reformulation (P.7 == 1) obtains a good

LB, as evidenced by the low value of DG; however, it is not able to find a good UB, as evidenced
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Figure 8.7: Evolution of upper (dashed) and lower (solid) bounds of GEP-RA (2) as a function
of solver iterations, given a TimeLimit of 7200 secs: single CSC and hybrid CSC formulations
are compared. The numbers indicate the CSC formulations: product (1), big-M (3), SOS1 (4),
and SD (5). Extended formulation (E), feasibility cut (FC), and warm start (WS) are also
considered.

Figure 8.8: Inherent gaps comparison between single CSC (left) and hybrid CSC (right)
formulations. The numbers indicate the CSC formulations: product (1), big-M (3), SOS1 (4)
and SD (5). The formulation with the upper bounds for each term of the CSC products (B),
the extended formulation (E), and the feasibility cut (FC) are also considered.

by the high value of PG. Upon consideration of the M bounds (P.11 == Y), there is a slight

improvement in the results. The big-M reformulation (P.7 == 3) yields the most favorable

results, particularly in terms of the UB; the application of either the extended reformulation

(P.4 == Y) or the feasibility cut (P.12 == Y) enhances the LB. The SOS1 reformulation (P.7

== 4) exhibits suboptimal performance. Finally, the SD reformulation (P.7 == 5), either

applying SD for each t ∈ T or through a singular constraint summing over t, exhibits the least

favorable outcome, being unable to obtain a feasible solution within 7,200 secs.

Among the hybrid runs with the combination of two CSC formulations, the one with big-M
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8.7. Performances Results with heuristics and hybrid CSC

(P.7 == 3) and product (P.8 == Y) shows improved results. The addition of the product to

the already effective big-M formulation in terms of good UB helps the solver prove optimality by

improving the LB. Enlarging the hybridization approach by combining the three formulations:

big-M, product, and SD (P.9 == Y) further improves the result, also in terms of the first feasible

solution found in a shorter time and with a smaller IG1. The extended formulation (P.4 ==

Y) and the feasibility cuts (P.12 == Y) allow to even further improve the DG values.

The tightness of the hybrid formulations is evidenced by the reduction of the root gap both

before cuts (GDBC) and after cuts (GDAC), together with the decrease in the number of

explored nodes.

With one representative day, the warm start (P.13 == Y) facilitates an efficient initial-

ization of the branch-and-cut process, although the gap after 7,200 seconds is similar to the

one obtained without the warm start. The warm start has been performed with Start == 1

for γk,t, nK
k , nV

z , nW I
z , nW O

z , nB
z , ϕz,t, QK

k,t, QV
z,t, QW I

z,t , QW O
z,t , Fl,t but many other combinations are

possible. On the other hand, with more than one representative day (two or five days), the

solver without a warm start is not able to find a single feasible solution after 12 hours of com-

putation or more, even if general purpose heuristics are applied within Gurobi. When using the

proposed algorithms (with either P.13 == Y or P.14 == Y), the solver instead is able to start

with a feasible solution from the beginning and then proceeds with the branch-and-cut path.
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Chapter 9

Future Research Directions

The GEP models that we have proposed in this thesis can be the subject of several future

research directions, involving both modeling and formulation as well as algorithmic approaches.

In this chapter, we sketch and discuss a few of them.

9.1 Better formulations and specialized heuristics

Some blocks of constraints, and the shape of some objective functions, are difficult to deal with

since their inherent nonconvexity. Therefore better formulations of the bilinear components may

be identified. In (7.1) we presented a promising heuristic that enhanced the solver’s capabilities

to find and improve primal solutions. Other specialized heuristics could be developed starting

from e.g. some relaxation of the original problem, notably the High-Point Relaxation, see Def.

(3.2.3), or the relaxation of the RA coupling constraints such as (5.31) for thermal generators.

9.2 Deepening of the Hybrid CSC approach

Somehow inspired by the approach of [Kleinert, 2021], that in our context did not work well

as explained in (7.2), in (7.3) we proposed a novel hybrid CSC formulations for the LL that

ensembles different known single reformulations in a reasoned way. In a dedicated section of

the computational tests, (8.7), we confirm our intuition by showing enhanced performances on

our test instance. Indeed several questions are still open: first of all, a deeper interpretation

of the reasons for this better performances, possibly doing an analysis of the (convex hull) set

formed by the intersections of the various constraints of the different hybrid CSC formulations.

Secondly, it would be of interest to analyze the generality of the approach, even in different

contexts. Additionally, we envision possible improvements related to a selective and reasoned

inclusion of constraints from each CSC reformulation in order to form different ensembles,

possibly lighter in terms of the number of constraints. Lastly, it would be of interest to study

the most appropriate reformulations/linearization for those constraints that are bilinear, not to
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Chapter 9. Future Research Directions

rely solely on the capabilities of the Gurobi solver.

9.3 Decomposition

Decomposition techniques provide an approach for addressing complex problems in a decen-

tralized or distributed manner. They can reduce computational time if the problem under

consideration has one of the following structures [Conejo et al., 2006]:

1. primal block angular: the original problem is decomposed by relaxing complicating con-

straint(s)

2. dual block angular: the original problem is decomposed by fixing complicating variable(s)

to given values

In fact, both (1) and (2), make the problem more difficult to solve, preventing a straightforward

or block-wise solution. The decomposition approach transforms the problem into a set of sub-

problems, each of which is easier to solve than the original (non-decomposed) problem.

In our model, the RA constraints, such as (5.31) for thermal generators, link different

representative days. In fact, these constraints state that revenue adequacy must be ensured

throughout the entire time horizon considered. The Consensus Alternating Direction Method

of Multipliers (ADMM) can be applied by imposing RA constraints for each representative day

and reformulating the problem. This reformulation entails making the investment decision n

day-dependent, while ensuring it assumes the same value for each day through the complicating

constraint (9.1), where zAUX serves as an auxiliary variable.

nc = zAUX , c ∈ {1, 2, . . . , C} (9.1)

The ADMM relaxes the constraints that complicate the problem and penalizes their violation

in the objective function. Over the iterations, the subproblems defined for each day update

the value of nc, penalizing its difference with respect to the average value among days of the

previous iteration; if the penalty is sufficiently large, the optimal solution to the relaxed problem

will satisfy the original constraints.

An alternative approach could be the Variable Splitting ADMM [Wuijts et al., 2023], where

additional variables are introduced as copies of the variable λ, representing the market-clearing

price optimized by the lower level and used in the upper level. This separation aims to distin-

guish the pricing variable used in the upper level from that in the lower level. Throughout the

iterations, these two variables are expected to ultimately converge to the same value.

Other general approaches include Lagrangian relaxation, which can be used to obtain lower
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9.4. Network inclusion, from GEP to GTEP

bounds on the optimal objective value. The key advantage is that when the coupling constraints

are dualized, the problem decomposes by blocks. Also, Lagrangian relaxation can provide

stronger bounds w.r.t. linear programming (LP) ones.

An alternative, related approach is the Dantzig-Wolfe reformulation [Vanderbeck and Savels-

bergh, 2006], which decomposes the problem into a master problem, which may have an expo-

nential number of columns and several subproblems.

9.4 Network inclusion, from GEP to GTEP

On one hand, the GEP assumes a separate process for the electrical network development and of

course, this is a simplification. On the other hand Transmission Expansion Planning considers

only the grid expansion problem. However, the network is, and must be considered, an electrical

asset that facilitates the goals production side, especially if these are strongly driven by policy

goals. It is therefore natural to think of integrated models called Generation and Transmission

Expansion Planning (GTEP).

Therefore also the proposed models could be enriched by incorporating the planning or

reinforcement of the transmission networks. In [Hemmati et al., 2013] the authors survey GEP,

TEP, and GTEP approaches, in [Deng and Lv, 2020] is given a perspective on how optimization

models have evolved due to the widespread integration of variable renewable energy. The authors

identified and analyzed 34 studies related to power system planning that address the growing

influence of variable renewable energy.

9.5 Introducing uncertainty

The proposed models could also be enhanced by taking into account long-term uncertainty

about, e.g., fuel and CO2 costs as in [Micheli and Vespucci, 2020], along the load or investments

costs avenue. Remaining in the bilevel modeling settings, one could use approaches such as those

reviewed in the recent [Beck et al., 2023] where a survey of bilevel modeling under uncertainly

is presented. In this work, the authors review classic approaches such as stochastic or robust,

e.g. [Bertsimas et al., 2011], techniques.
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Chapter 10

Conclusions

This thesis navigates the evolving landscape of global electrical systems, driven by technology,

environmental concerns, and changing energy consumption patterns. Focused on one of the

most relevant issues of Generation Expansion Planning, the research emphasizes the pivotal

role of quantitative models, particularly optimization models.

The proposed innovations are manifold, including significant advances in both modeling

frameworks and algorithmic strategies. The main modeling contributions are

• Modeling of a bilevel optimization problem that minimizes the cost of the system while

ensuring the Revenue Adequacy for different technologies: alternatively to the conven-

tional approach of centralized GEP models, GEP-RA (2) minimizes the total costs for

consumers by considering the investment and operational costs incurred by the generators

in the RA constraints, rather than in the objective function;

• Optimal solutions in contrast to heuristic solutions, with the aim of achieving the minimum

cost of the problem, rather than an approximation calculated ex-post;

• Comprehensive examination of the energy system, encompassing a diverse array of new

energy sources and storage options as well as the existing resource mix: the model eval-

uates the interrelationship between the evolution of battery technology and renewable

sources, as well as ensuring revenue adequacy across all technologies;

• Revenue Adequacy with meaningful revenues from the market: zonal hourly prices are

determined endogenously and reflect the operations of the Italian electricity market;

• Zonal investments: the incorporation of multiple zones brings to the surface the issue of

investment location, particularly relevant in generation expansion, and recently addressed

by Italian rulers within the framework of investment adequacy;
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Chapter 10. Conclusions

• Accounting for start-up costs: the model addresses the non-convexities associated with

start-up costs, ensuring a more accurate representation of operational expenses of thermal

plants;

• Inclusion of side payments: integration of payments outside of the market as envisaged

by the Italian policymakers, with the Capacity Market, the MACSE, and the FERX;

• Innovative offer strategy for RES: solar and wind generators offer at their Levelized Cost

of Energy;

• Realistic model decisions: introduction of specific constraints to avoid both strategic with-

holding and price indeterminacy.

The main algorithmic contributions are

• Exact linearization technique for the revenues: exploits the discretized prices determined

by market clearing;

• Warm-Start algorithms: ensure a feasible starting solution at the outset of the solution

process;

• Hybrid modeling for CSC: enhances the model’s ability to prove the optimality of solutions.

Each of these contributions is explored in depth across the thesis, as detailed below:

• Chapter 1:

- Acknowledges the ongoing transformation of electrical systems worldwide;

- Explores the intricacies of electricity markets, emphasizing the central theme of missing

money and some remedies given by the Capacity Remuneration Mechanisms, thus

paving the way for the concept of revenue adequacy.

• Chapter 2:

- Conducts a thorough literature review on pricing schemes in diverse markets;

- Reviews the literature on GEP, distinguishes between traditional GEP and those con-

sidering revenue adequacy, addressing non-convexity issues.

• Chapter 3:

- Introduces elements of Mathematical Programming and presents a general taxonomy

for optimization problems;
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- Focuses on bilevel optimization problems and their hierarchical structure;

- Discusses reformulation approaches, laying the groundwork for subsequent modeling.

• Chapter 4:

- Explores modifications to the Italian Market Operator (MO) model;

- Addresses technical minimum inclusion for thermal power plants in MO;

- Analyzes the modeling of the GEP Objective Function and introduces two high-level

GEP models.

• Chapter 5:

- Details the two main proposed GEP models, namely GEP-RA (1) and GEP-RA (2),

with a formal discussion of the Objective Functions and of all constraints;

- Introduces innovative formulations to tackle specific issues like withholding strategies;

- Enhances formulations related to price indeterminacy and presents a mixed-binary ver-

sion of the models.

• Chapter 6:

- Derives reformulations of GEP proposed models that can be solved by general-purpose

solvers;

- Explicitly defines optimality conditions of the Lower Level of the resulting bilevel prob-

lems;

- Proposes a simple yet effective linearization of relevant bilinear components in objective

functions and constraints.

• Chapter 7:

- Provides tailored approaches, including feasibility cuts and heuristic algorithms. This

significantly improves the solver’s ability to find feasible solutions that otherwise

cannot be found;

- Applies cuts proposed by the literature to address the issue of proving optimality and

studies why these are ineffective in our context;

- Introduces an innovative combination of different CSC formulations, in an “hybridized”

way, that produces a tighter formulation. This in turn significantly improves the

solver’s ability in proving the optimality of the solution.
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Chapter 10. Conclusions

• Chapter 8:

- Describes the real software implementation made and the construction of an Italian test

case;

- Utilizes the test case for computational tests, comparing proposed models conceptually

and in terms of resolution performance;

- Presents disaggregated and aggregated outputs, discussing simulation results;

- Highlights the performance improvements obtained with new formulations, in particular

the ability to find an initial solution and to narrow the optimality gap.

• Chapter 9:

- Explores future research directions, including considerations for modeling the contextual

transmission network planning and addressing uncertainty;

- Highlights possible directions for developing more efficient solving methodologies, such

as enhanced formulations of specific components and decomposition approaches;

- Advocates for additional research into the hybrid CSC formulations, focusing on the

reasons behind their performance advantages and their versatility across different

bilevel problems;

- Suggests selecting specific constraints for each CSC formulation and exploring advanced

linearization techniques.
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Appendix A

The CSC of the lower level problem

Starting from the primal of the LL (2) problem defined for each t ∈ T and provided again for

convenience, the corresponding dual is subsequently derived as (A.2).

min
Q,Fl,t

LLP =
∑
z∈Z

(
P V QV

z,t + P W I QW I
z,t + P W O QW O

z,t

)
+

∑
k∈K

P K
k QK

k,t (5.42a)

QV
z,t + QW I

z,t + QW O
z,t +

∑
k∈Kz

QK
k,t + BD

z,t

+
∑

l∈BSz

Fl,t ≥ Dz,t +
∑

l∈F Sz

Fl,t + BC
z,t z ∈ Z (λz,t ≥ 0) (5.62b)

0 ≤ QV
z,t ≤ cfV

z,t Q
V (nV

z,0 + nV
z ) z ∈ Z (µV

z,t ≥ 0) (5.42c)

0 ≤ QW I
z,t ≤ cfW I

z,t Q
W I (nW I

z,0 + nW I
z ) z ∈ Z (µW I

z,t ≥ 0) (5.42d)

0 ≤ QW O
z,t ≤ cfW O

z,t Q
W O (nW O

z,0 + nW O
z ) z ∈ Z (µW O

z,t ≥ 0) (5.42e)

QK
k

γk,t ≤ QK
k,t ≤ Q

K
k γk,t k ∈ K (µK

k,t
≥ 0, µK

k,t ≥ 0) (5.42f)

F l ≤ Fl,t ≤ F l l ∈ L (υl,t ≥ 0, υl,t ≥ 0) (5.42g)
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max
λz,t,

µK
k,t

,µK
k,t,

µV
z,t,µW I

z,t ,µW O
z,t ,

υl,t,υl,t

LLD (A.2a)

LLD =
∑
z∈Z

(
Dz,t −BD

z,t + BC
z,t

)
λz,t −

∑
z∈Z

[
cfV

z,t Q
V (nV

z,0 + nV
z ) µV

z,t]
]

−
∑
z∈Z

[
cfW I

z,t Q
W I (nW I

z,0 + nW I
z ) µW I

z,t

]
−

∑
z∈Z

[
cfW O

z,t Q
W O (nW O

z,0 + nW O
z ) µW O

z,t

]
+

∑
k∈K

(
QK

k
γk,t µK

k,t
−Q

K

k γk,t µK
k,t

)
+

∑
l∈L

(
F l υl,t − F l υl,t

)
(A.2b)

P V − λz,t + µV
z,t ≥ 0 z ∈ Z (QV

z,t ≥ 0) (A.2c)

P W I − λz,t + µW I
z,t ≥ 0 z ∈ Z (QW I

z,t ≥ 0) (A.2d)

P W O − λz,t + µW O
z,t ≥ 0 z ∈ Z (QW O

z,t ≥ 0) (A.2e)

P K
k − λz,t − µK

k,t
+ µK

k,t k ∈ K (QK
k,t ≥ 0) (A.2f)

λztail
l
− λzhead

l
− υl,t + υl,t = 0 l ∈ L (Fl,t free) (A.2g)

The Product formulation of the CSC of LL (2) for each t ∈ T is thus defined as (6.1).

(
QV

z,t+QW I
z,t +QW O

z,t +
∑

k∈Kz
QK

k,t+
∑

l∈BSz
Fl,t−

∑
l∈F Sz

Fl,t−Dz,t+BD
z,t−BC

z,t

)
⊥ λz,t z ∈ Z (6.1a)(

cfV
z,t ·Q

V · (nV
z,0 + nV

z )−QV
z,t

)
⊥ µV

z,t z ∈ Z (6.1d)(
cfW I

z,t ·Q
W I · (nW I

z,0 + nW I
z )−QW I

z,t

)
⊥ µW I

z,t z ∈ Z (6.1e)(
cfW O

z,t ·Q
W O · (nW O

z,0 + nW O
z )−QW O

z,t

)
⊥ µW O

z,t z ∈ Z (6.1f)(
QK

k,t −QK
k
· γk,t

)
⊥ µK

k,t
k ∈ K (6.1g)(

Q
K
k · γk,t −QK

k,t

)
⊥ µK

k,t k ∈ K (6.1h)

(Fl,t − F l) ⊥ υl,t l ∈ L (6.1b)(
F l − Fl,t

)
⊥ υl,t l ∈ L (6.1c)
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(
P K

k − λz,t − µK
k,t

+ µK
k,t

)
⊥ QK

k,t k ∈ Kz, z ∈ Z (6.1l)(
P V − λz,t + µV

z,t

)
⊥ QV

z,t z ∈ Z (6.1i)(
P W I − λz,t + µW I

z,t

)
⊥ QW I

z,t z ∈ Z (6.1j)(
P W O − λz,t + µW O

z,t

)
⊥ QW O

z,t z ∈ Z (6.1k)

The single constraint aggregating all the CSC conditions for each t ∈ T is defined as (A.3).

∑
z∈Z

QV
z,t + QW I

z,t + QW O
z,t +

∑
k∈Kz

QK
k,t +

∑
l∈BSz

Fl,t −
∑

l∈F Sz

Fl,t −Dz,t + BD
z,t −BC

z,t

 · λz,t

+
∑
z∈Z

(
cfV

z,t ·Q
V · (nV

z,0 + nV
z )−QV

z,t

)
· µV

z,t +
∑
z∈Z

(
cfW I

z,t ·Q
W I · (nW I

z,0 + nW I
z )−QW I

z,t

)
· µW I

z,t

+
∑
z∈Z

(
cfW O

z,t ·Q
W O · (nW O

z,0 + nW O
z )−QW O

z,t

)
· µW O

z,t +
∑
k∈K

(
QK

k,t −QK
k
· γk,t

)
· µK

k,t

+
∑
k∈K

(
Q

K
k · γk,t −QK

k,t

)
· µK

k,t +
∑
l∈L

(Fl,t − F l) · υl,t +
∑
l∈L

(
F l − Fl,t

)
· υl,t

+
∑
z∈Z

∑
k∈Kz

(
P K

k − λz,t − µK
k,t

+ µK
k,t

)
·QK

k,t +
∑
z∈Z

(
P V − λz,t + µV

z,t

)
·QV

z,t

+
∑
z∈Z

(
P W I − λz,t + µW I

z,t

)
·QW I

z,t +
∑
z∈Z

(
P W O − λz,t + µW O

z,t

)
·QW O

z,t = 0 (A.3)

The SOS1 reformulation of the CSC for each t ∈ T is defined as (A.4).

For each z ∈ Z:

sCC1
z,t,1 = QV

z,t + QW I
z,t + QW O

z,t +
∑

k∈Kz

QK
k,t +

∑
l∈BSz

Fl,t −
∑

l∈F Sz

Fl,t −Dz,t + BD
z,t −BC

z,t

sCC1
z,t,2 = λz,t (A.4a)

sCC2
z,t,1 = cfV

z,t ·Q
V · (nV

z,0 + nV
z )−QV

z,t sCC2
z,t,2 = µV

z,t (A.4b)

sCC3
z,t,1 = cfW I

z,t ·Q
W I · (nW I

z,0 + nW I
z )−QW I

z,t sCC3
z,t,2 = µW I

z,t (A.4c)

sCC4
z,t,1 = cfW O

z,t ·Q
W O · (nW O

z,0 + nW O
z )−QW O

z,t sCC4
z,t,2 = µW O

z,t (A.4d)

{sCC1
z,t,1 , sCC1

z,t,2 }, {sCC2
z,t,1 , sCC2

z,t,2 }, {sCC3
z,t,1 , sCC3

z,t,2 }, {sCC4
z,t,1 , sCC4

z,t,2 } ∈ SOS1 (A.4e)

187



Appendix A. The CSC of the lower level problem

For each k ∈ K:

sCC5
k,t,1 = QK

k,t −QK
k
· γk,t sCC5

k,t,2 = µK
k,t

(A.4f)

sCC6
k,t,1 = Q

K
k γk,t −QK

k,t sCC6
k,t,2 = µK

k,t (A.4g)

{sCC5
k,t,1 , sCC5

k,t,2}, {sCC6
k,t,1 , sCC6

k,t,2} ∈ SOS1 (A.4h)

For each l ∈ L:

sCC7
l,t,1 = Fl,t − F l sCC7

l,t,2 = υl,t (A.4i)

sCC8
l,t,1 = F l − Fl,t sCC8

l,t,2 = υl,t (A.4j)

{sCC7
l,t,1 , sCC7

l,t,2 }, {sCC8
l,t,1 , sCC8

l,t,2 } ∈ SOS1 (A.4k)

For each k ∈ K:

sCC9
k,t,1 = P K

k − λz,t − µK
k,t

+ µK
k,t sCC9

k,t,2 = QK
k,t (A.4l)

{sCC9
k,t,1 , sCC9

k,t,2} ∈ SOS1 (A.4m)

For each z ∈ Z:

sCC10
z,t,1 = P V − λz,t + µV

z,t sCC10
z,t,2 = QV

z,t (A.4n)

sCC11
z,t,1 = P W I − λz,t + µW I

z,t sCC11
z,t,2 = QW I

z,t (A.4o)

sCC12
z,t,1 = P W O − λz,t + µW O

z,t sCC12
z,t,2 = QW O

z,t (A.4p)

{sCC10
z,t,1 , sCC10

z,t,2 }, {sCC11
z,t,1 , sCC11

z,t,2 }, {sCC12
z,t,1 , sCC12

z,t,2 } ∈ SOS1 (A.4q)

The Big-M reformulation of the CSC for each t ∈ T is defined as (A.5).

For each z ∈ Z, t ∈ T :

QV
z,t + QW I

z,t + QW O
z,t +

∑
k∈Kz

QK
k,t +

∑
l∈BSz

Fl,t −
∑

l∈F Sz

Fl,t −Dz,t + BD
z,t −BC

z,t ≤M cp · (1− bCC1
z,t )

λz,t ≤Mvd · bCC1
z,t (A.5a)
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cfV
z,t ·Q

V · (nV
z,0 + nV

z )−QV
z,t ≤M cp · (1− bCC2

z,t ) µV
z,t ≤Mvd · bCC2

z,t (A.5b)

cfW I
z,t ·Q

W I · (nW I
z,0 + nW I

z )−QW I
z,t ≤M cp · (1− bCC3

z,t ) µW I
z,t ≤Mvd · bCC3

z,t (A.5c)

cfW O
z,t ·Q

W O · (nW O
z,0 + nW O

z )−QW O
z,t ≤M cp · (1− bCC4

z,t ) µW O
z,t ≤Mvd · bCC4

z,t (A.5d)

bCC1
z,t , bCC2

z,t , bCC3
z,t , bCC4

z,t ∈ {0, 1} (A.5e)

For each k ∈ K, t ∈ T :

QK
k,t −QK

k
· γk,t ≤M cp · (1− bCC5

k,t ) µK
k,t
≤Mvd · bCC5

k,t (A.5f)

Q
K
k · γk,t −QK

k,t ≤M cp · (1− bCC6
k,t ) µK

k,t ≤Mvd · bCC6
k,t (A.5g)

bCC5
k,t , bCC6

k,t ∈ {0, 1} (A.5h)

For each l ∈ L, t ∈ T :

Fl,t − F l ≤M cp · (1− bCC7
l,t ) υl,t ≤Mvd · bCC7

l,t (A.5i)

F l − Fl,t ≤M cp · (1− bCC8
l,t ) υl,t ≤Mvd · bCC8

l,t (A.5j)

bCC7
l,t , bCC8

l,t ∈ {0, 1} (A.5k)

For each k ∈ K, t ∈ T :

P K
k − λz,t − µK

k,t
+ µK

k,t ≤M cd · (1− bCC9
k,t ) QK

k,t ≤Mvp · bCC9
k,t (A.5l)

bCC9
k,t ∈ {0, 1} (A.5m)

For each z ∈ Z, t ∈ T :

P V − λz,t + µV
z,t ≤M cd · (1− bCC10

z,t ) QV
z,t ≤Mvp · bCC10

z,t (A.5n)

P W I − λz,t + µW I
z,t ≤M cd · (1− bCC11

z,t ) QW I
z,t ≤Mvp · bCC11

z,t (A.5o)

P W O − λz,t + µW O
z,t ≤M cd · (1− bCC12

z,t ) QW O
z,t ≤Mvp · bCC12

z,t (A.5p)

bCC10
z,t , bCC11

z,t , bCC12
z,t ∈ {0, 1} (A.5q)

The SD reformulation of the CSC for each t ∈ T is defined as

LLP = LLD (6.3)
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The primal objective functions of LL (1) and LL (2) are identical while the dual objective

functions differ as in LL (1) the charge is not considered in the balance constraint:

LLP =
∑
z∈Z

(
P V QV

z,t + P W IQW I
z,t + P W OQW O

z,t

)
+

∑
k∈K

P K
k QK

k,t
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z∈Z
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Dz,t −BD

z,t

)
λz,t −
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z∈Z

cfV
z,t Q

V (nV
z,0 + nV

z ) µV
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[
cfW I

z,t Q
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+
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k
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−Q

K
k γk,t µK
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)
+

∑
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)
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)

Considering LLD2, the SD equality is thus defined as (A.6) or equivalently (A.7).
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P V QV
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)
(A.6)
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(
P V QV
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k
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k,t
−Q

K

k γk,t µK
k,t

)
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∑
l∈L

(
F l υl,t − F l υl,t

)
(A.7)

Therefore, the objective function (5.45) of the GEP-RA (2) can be reformulated by replacing

the left-hand terms of (A.7) with the right-hand terms, albeit with the addition of new bilinear

terms.

190


	Acknowledgement
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Thesis motivation and objectives 
	Introduction to Electricity Markets 
	The missing money problem

	Literature review
	Pricing schemes literature review
	US market clearing
	Bidding behavior on the Italian day-ahead market

	GEP literature review
	Traditional GEP models
	GEP models that account for the Revenue Adequacy


	Bilevel optimization models
	Mathematical Programming and optimization taxonomy
	Bilevel optimization brief history and generalities
	Bilevel optimization single level reformulations

	Development of bilevel models for GEP
	Stepwise evolution of the models
	The Italian Market Clearing problem
	Introducing the minimum power output 
	Strategic withholding
	RES offer at LCOE: their offer quantity can be partially accepted 
	Batteries to reduce energy losses 
	The need for a fully-adequate model with side payments 
	Price indeterminacy

	Models description

	The proposed models
	GEP-RA (1)
	Capacity of RES power plants, thermal power plants and batteries in the target year
	Unit commitment with avoidance of physical withholding
	Determination of accepted quantities and zonal prices
	Operation of batteries
	Reserve
	Price indeterminacy
	Revenue adequacy
	Objective function

	GEP-RA (2)
	Determination of accepted quantities and zonal prices
	Revenue Adequacy
	Objective function

	An improved version of the constraints on the choice of the left extreme of the price indeterminacy interval
	Mixed-binary version

	Resolution of the proposed models
	Reformulation of the bilevel model into a single-level model
	Linearized version: an exact linearization scheme

	Computing feasible solutions and proving optimality
	Feasibility cuts, warm starts and heuristic callbacks
	Valid inequalities for enhancing the CSC
	Hybrid CSC

	Computational tests
	Technology implementation
	Test cases development and output structure
	Modeling Sensitivity
	Performances Sensitivity
	Modeling Results and discussion
	Performances Results and discussion
	Performances Results with heuristics and hybrid CSC

	Future Research Directions
	Better formulations and specialized heuristics
	Deepening of the Hybrid CSC approach
	Decomposition
	Network inclusion, from GEP to GTEP
	Introducing uncertainty

	Conclusions
	References
	The CSC of the lower level problem

