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A B S T R A C T

Aims: Through a simple machine learning approach, we aimed to assess the risk of all-cause mortality after 5
years in a European population, based on electrocardiogram (ECG) parameters, age, and sex.
Methods: The study included patients between 40 and 90 years old who underwent ECG recording between
January 2008 and October 2022 in the metropolitan area of Modena, Italy. Exclusion criteria established a
patient cohort without severe ECG abnormalities, namely, tachyarrhythmias, bradyarrhythmias, Wolff-
Parkinson-White syndrome, second- or third- degree AV block, bundle-branch blocks, more than three prema-
ture beats, poor signal quality, and presence of pacemakers and implantable cardioverter- defibrillators. Mor-
tality was assessed using a set of logistic regression models, differentiated by age group, to which the Akaike
Information Criterion was applied. Model fitting was evaluated using confusion matrix-related performance
metrics, the area under the receiver operating characteristic (ROC) curve (AUC), and the predictive significance
against the no-information rate (NIR).
Results: 53692 patients were enrolled, of whom 14353 (26.73 %) died within 5 years of ECG registration. The
logistic regression model distinguished between those who died and those who survived based on the predicted
mortality probability for all age groups, obtaining a significant difference between the predicted mortality and
the NIR in 14 of the 55 age groups. Good accuracy and performance metrics were observed, resulting in an
average AUC of 0.779.
Conclusions: The proposed model showed a good predictive performance in patients without severe ECG ab-
normalities. Therefore, this study highlights the potential of ECGs as prognostic rather than diagnostic tools.

Introduction

Cardiovascular (CV) diseases have emerged as the leading cause of
death worldwide over the last half century [1]. In parallel, the use of risk
assessment and prognostic tools has grown in clinical practice, and
several clinical and instrumental scores have been proposed.

However, finding effective, low-cost, non-invasive, and readily

deployable risk stratification methodologies remains a major challenge,
despite the availability of basic disease screening equipment and the use
of electronic health record systems [2].

Among the available CV diagnostic tests, the electrocardiogram
(ECG) provides detailed information on the structure and electrical ac-
tivity of the heart. The ongoing diffusion of digitized ECGs, improve-
ments in ECG processing, and the creation of sizable ECG databases have
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opened up a wide range of new opportunities for ECG-based diagnostics.
Many studies have found clinical relevance for several ECG param-

eters and advances in computational power have recently enabled a
more widespread use of statistical tools, such as neural networks, thus
further expanding the opportunities for ECG interpretation [3,4].

We argue that risk-scoring systems based on ECG parameters and
developed with the use of statistically sound techniques and artificial
intelligence (AI) tools could further improve the prognostic value of the
ECG.

In this study, we exploit standard ECG parameters, age, and sex to
assess the risk of all-cause mortality in an Italian population without
severe ECG abnormalities, using a simple machine learning (ML)
approach. This particular population makes the prediction task more
challenging, due to the heterogeneity of individuals, which makes the
proposed approach a useful tool to support mass screening.

To the best of our knowledge, this is the first European study aiming
to create and validate such an ECG-based ML approach on a large
population.

Methods

Population and data

The study was conducted according to the ethical standards of the
Declaration of Helsinki (1975, revised 2013) and was approved by the
local ethics committee of the Area Vasta Emilia Nord, Modena, Italy
(protocol number 2605/2021, approval date September 21, 2021).

Due to the anonymous, retrospective, and observational nature of
this study, informed consent could not be obtained from the enrolled
patients. All data were anonymized by associating a numerical personal
identification code unique to each patient.

Study population
The potential patient population coincided with the population of

the metropolitan area of Modena, located in central-southern Emilia
Romagna, northern Italy, with a total of 702635 inhabitants spread
across 47 municipalities.1 In this area, as in the whole of Italy, health-
care is provided mainly through the branches of the public National
Healthcare System.

Patients with a digitized ECG stored in any facility in the metropol-
itan area of Modena (emergency departments, hospital units and ser-
vices, and inpatient and outpatient clinics) from January 2008 to
October 2022 were eligible for inclusion in the study.

The main CV risk factors and their prevalence in the resident popu-
lation were as follows: diabetes, 5.7 %; systemic arterial hypertension,
23.4 %; dyslipidemia, 38.8 %; tobacco smoking, 17.4 %. The prevalence
of CV diseases and their main comorbidities in the resident population
were as follows: CV diseases, 7.6 %; cerebrovascular diseases, 1.5 %;
chronic obstructive pulmonary diseases 7.5 %; dementia, 3.1 %; cancer,
4.9 %; chronic kidney disease, 1.2 %.

Electrocardiography
ECGs were recorded at rest in the supine position using a standard

12‑lead tracing at 25 mm/s speed and 10 mm/mV amplitude, with a
sampling rate of at least 500 samples/second, and were archived into a
MUSE® centralized electronic archive (GE Marquette Medical System,
Milwaukee, WI, USA). Automated analyses were performed using a
digitized, computer-assisted multi-channel program (GE 12SL ECG
Analysis), a healthcare system that uses validated algorithms.

ECG diagnoses were then supervised and confirmed by experienced
cardiologists to complete the quality control.

The following ECG parameters were automatically measured from
the ECGs stored in the MUSE® electronic archive, to serve as predictors

[5,6]:

• Heart rate (HR), expressed in beats per minute (BPM);
• QRS axis and T wave axis, expressed in degrees (deg), derived from

the limb leads;
• Frontal QRS-T angle, expressed in deg, calculated as the absolute

difference between the QRS and T wave axis [7];
• P wave duration, expressed in milliseconds (msec), obtained by

averaging the wave duration over the 12 ECG leads;
• T wave duration, expressed in msec, obtained by averaging the wave

duration over the 12 ECG leads;
• QRS duration, expressed in msec, obtained by averaging the complex

duration over the 12 ECG leads;
• PR interval, expressed in msec, obtained by averaging the interval

duration over the 12 ECG leads;
• Corrected QT (QTc) interval, expressed in msec, calculated using

Bazett’s, Fridericia’s, and Framingham methods and obtained by
averaging the interval duration over the 12 leads and

• ST-segment upward (ST elevation) or downward (ST depression)
displacement, expressed in millivolts (mV), automatically estimated
in the V5 lead at the J-point (the point where the QRS complex ends
and joins the ST segment) and at the mid-point (the point located
halfway between the J-point and the beginning of the T wave).

Other collected data
Patient’s age in years, collected on the day of ECG registration, and

sex as a binary variable, equal to 1 for females and 0 for males, were also
recorded and included as predictors.

Follow-up
The follow-up period was 5 years. All-cause mortality was evaluated

for each patient within 5 years after the date of the (first) ECG recording
(i.e., the mortality variable was equal to 1 if the patient died within 5
years or equal to 0 if they survived for at least 5 years).

All-cause mortality and emigrations from the metropolitan area of
Modena were anonymously assessed using the electronic medical re-
cords of the Health Authority and Services of Modena, Italy.

Inclusion and exclusion criteria
Patients younger than 40 years and older than 90 years on the date of

ECG recording were excluded, as were patients who emigrated during
the follow-up period. Furthermore, only patients with a follow-up period
of at least 5 years or who died within 5 years of the (first) ECG recording
were included in the study.

ECGs were discarded if they were classified as incomplete or if they
presented technical problems, such as poor signal quality, waveform
recognition errors, or electrode interchanges. The presence of a pace-
maker or an implantable cardioverter-defibrillator was an exclusion
criterion too. ECGs were also excluded in the presence of atrial fibril-
lation or atrial flutter, supraventricular tachycardia, Wolff-Parkinson-
White syndrome, second- or third-degree AV block, complete or
incomplete left or right bundle-branch block, or had more than 3 pre-
mature atrial or ventricular beats.

In the case of patients with more than one ECG stored in the
centralized dataset, only the earliest recorded one was used for this
study. No information was available on the clinical reason(s) the ECGs
were performed for.

Statistical analyses

We considered the all-cause mortality rate after 5 years as the
dependent output variable. We linked this rate to the predictors using a
binomial logistic regression model, the output of which is the proba-
bility ρ ∈ [0,1], that the event of death will occur.

The formulation of a logistic model is as follows:1 Official website of the Provincia di Modena (www.provincia.modena.it), accessed October 1, 2022.
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ρ =
exp

(
α0 +

∑N
i=1αiXi

)

1 + exp
(
α0 +

∑N
i=1αiXi

) (1)

where Xi (i = 1, …, N) denotes the predictors, αi the coefficients to be
estimated, and α0 the intercept of the model.

Different age groups were analyzed, considering all lower bounds
between 40 and 85 years and upper bounds between 45 and 90 years,
with 5-year steps on both bounds, for a total of 55 different age groups.
This differentiation was made because of the impact of age on mortality,
as assessed by preliminary analyses and previous works [8]. The use of
restricted age groups also allowed us to confirm that the performance of
the logistic regression was not inferior when studying large age groups.
This sub-division was also functional in assessing the effect of age-
dependent ECG predictors.

We also applied the Akaike information criterion (AIC) to the model
fitted with the data of each age group to identify the most important
predictors and discard the others, with the ultimate aim of avoiding
overfitting [9].

For each of the 55 age groups, we divided the data into two parts: 80
% were used to train the model, while 20 % were used to test it. Within
the training set, we used a 10-fold cross-validation to train our model,
ensuring that each entry was used as a validation sample only once.
Finally, we stratified the ρ values according to the corresponding
observed mortality data. This allowed us:

1. to analyze whether the logistic model was able to distinguish the two
populations based on ρ. Operatively, a Wilcoxon rank-sum test was
applied to verify whether the two distributions of ρ values were
different. This can be done on both the training set and the test set.

2. to convert the predicted probability ρ into a binary output. Indeed,
we computed a threshold k as the mean between the medians of the
two stratified distributions. This threshold was applied to classify the
patients into those at risk, with ρ > k, or not. Because k is part of the
model, this could only be done on the training set. Medians were
chosen over means to reduce the impact of outliers. In the presence of
class imbalance, as in our case, the value of the threshold k may differ
considerably from 0.5 [10].

All analyses were performed using the R open-source statistical
software, version 4.2.1 (R-project.org).

Performance metrics
The goodness-of-fit of the binarized output, based on the threshold k,

was assessed using the confusion matrix, which reports the totals of true
positive (TP), true negative (TN), false positive (FP), and false negative (FN)
predictions over all subjects in the test set. These values were used to
compute a set of performance metrics, reported in the Supplementary
Materials. Performance was also assessed employing the receiver oper-
ating characteristic (ROC) curve, which evaluates the behavior of a bi-
nary classification model at various classification thresholds by plotting
Sensitivity against 1-Specificity for different threshold values. Based on
the ROC, we also computed the area under the curve (AUC) as a per-
formance metric.

Finally, we conducted a hypothesis test (one-tailed binomial exact
test) to assess whether the accuracy achieved by our model was higher
than the non- information rate (NIR), i.e., the prevalence of the largest
class [11].

A p-value less than 0.05 on the test was used to determine the sig-
nificance of our predictions.

Results

A total of 375207 ECGs were stored in the MUSE® centralized
electronic archive of the National Health System facilities of Modena
from January 2008 to October 2022.

Because some patients had more than one ECG stored in the dataset,
and only the first one for each patient was included, 117630 ECGs were
discarded. Patients with multiple ECGs recorded in different facilities
were detected by tracking an individual identification code in the MUSE
archive. Then, an additional 13466 ECGs were excluded because they
were incorrect or had poor signal quality.

A total of 69023 subjects were excluded because their age was
outside the age range for enrollment, and 80710 were excluded because
they did not complete the follow-up period or emigrated.

Abnormal ECGs were manually flagged as such in the system by
physicians. Based on this information 40686 patients were excluded due
to the following conditions: 2803 had a pacemaker or a cardioverter
defibrillator, 15930 suffered from atrial fibrillation or atrial flutter,
5301 from supraventricular or ventricular tachycardia or numerous
premature beats, 803 from second- or third-degree atrioventricular
block, and 15849 from complete or incomplete left or right bundle-
branch block.

Based on the above-listed criteria, 53692 patients were enrolled;
39339 of them (73.27 %) survived for 5 years, while 14353 (26.73 %)
died within 5 years of the date of ECG registration. The enrolled patients
included 26883 males (50.07 %) and 26809 females (49.93 %). The
enrolled patients’ mean age was 64.49 years (Fig. 1).

A total of 12919 subjects (corresponding to 24.06 % of the sample)
were enrolled from the emergency department. The remaining patients
(40773 subjects, corresponding to 75.94 % of the sample) were enrolled
from hospital units and services (including internal medicine, cardiol-
ogy, surgery, orthopedics, and gynecology) and from inpatient and
outpatient clinics (such as anaesthesiology for preoperative risk assess-
ment, cardiology, diabetology, and geriatrics).

The patients enrolled included healthy subjects and patients with
acute conditions or chronic diseases, provided they had no severe ECG
abnormalities. In the enrolled population, the prevalence of CV risk
factors, CV diseases, and comorbidities aligned with those in the resident
population (see Section 2.1.1) but were not distinguishable at the indi-
vidual level due to the retrospective and anonymous nature of the study.

Of the subjects included in the study, 19602 presented one or more of
the following non-severe ECG abnormalities: QRS-T angle >90 deg,
found in 2720 records; PR interval > 200 msec, found in 3611 records;
QTc > 460 msec, found in 8663 records; QRS axis < − 15 deg, found in
10110 records and QRS axis > +90 deg, found 841 records.

5-years all-cause mortality rates for the 55 age groups are reported in
Table 1.

Preliminary analyses suggested to not consider two of the three QTc

Fig. 1. Age distribution of the enrolled population.
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methods and one of the two points used for ST-segment evaluation from
the pool of predictors because of their strong collinearities. Therefore,
because Bazett’s formula for QTc and ST fluctuation at the midpoint of
the V5 derivation revealed greater predictive power, the other variables
were not considered. Regarding QTc, we acknowledge that there is no
consensus regarding the best correction method; however, despite its
limitations, Bazett’s formula revealed a greater prognostic value in some
works [12,13], in particular in Giovanardi et al. [14], who considered
the same study population as this work.

Table 2 shows the values of the predictors included in the regression
model, distinguishing between males and females. Continuous variables
are reported as medians together with 2nd and 98th percentiles, as none
of the variables resulted to be normally distributed (normality assessed
by means of Q-Q plots). After applying the AIC in all age groups, we
assessed the goodness-of-fit of the logistic regression models in terms of
the p-values of the Wilcoxon rank- sum test, as described at the end of
Section 2.2. The test was employed to verify whether the distributions of
ρ values, stratified according to the observed mortality, were statistically
different. All tests performed returned p-values of less than 0.001,
considering the predictions made in both the training and test sets.
These results implied that the logistic regression model was always
capable of distinguishing the two populations (deceased and survivors)
based on the predicted ρ. The values obtained for threshold k in each age
group are reported in Table 3(a), while the boxplots of the stratified
distributions can be found in the Supplementary Materials.

The comparison of model performance with respect to the NIR on the
test set is reported in Table 3(b), in terms of the p-values of the hy-
pothesis test. Results showed a significant difference in 14 of the 55 age
groups, mainly because there were too few patients in the less repre-
sented age groups, which led to non- significant differences.

Therefore, we report the performance metrics of the models only for
the 14 significant age groups (Table 4). Interestingly, in all age groups,
the values of accuracy and balanced accuracy do not differ substantially
(average absolute difference equal to 0.65 %), further supporting good
performance of the regression in these age groups, despite the imbalance
between those who died and those who survived after 5 years.

Fig. 2 reports the ROCs for these age groups. The resulting average
AUC over these groups was equal to 0.779. Details about the individual
ROCs with their AUCs are reported in the Supplementary Materials.

Table 5 reports the results of model fitting, averaged over the 14
significant age groups. The Weight column reports the average value of
the coefficient across the age groups multiplied by the average value of
the predictor over the entire population. This approximates the impact
of each predictor on the calculation of ρ to distinguish between pre-
dictors that tend to drive predictions and those that impact them only
marginally, as sorted by the Ranking column. Columns Global results give
general information on the predictors across the age groups. The column
Appearance tally reports how many times the predictor was not discarded
by the AIC in the 14 age groups analyzed, while Effect direction sum-
marizes the effect of the predictor intuitively. The symbol “+” is used to
denote that a predictor contributed positively to the value of ρ,
increasing its value, and vice versa for symbol “-”.

Discussion

This work presents a simple ML model to assess the risk of long-term
mortality, built using standard ECG parameters, age, and sex. The model
was trained on a large Italian population over a period of 15 years, and
with the target of assessing the 5-year all-cause mortality, which is a
clinically meaningful and well-defined endpoint.

We believe that this model has the potential for application in a
variety of settings: in primary care, to evaluate the mortality risk; in
surgical units, to assess the risk of surgical procedures; in hospital
medical units and emergency departments, for the management of CV
and other diseases.

The clinical scores currently in use may present limitations, and they
rely heavily on CV risk factors, comorbidities, and blood analyses, which
are available only for a subset of patients. These scores generally do not
use ECG parameters, with the notable exception of TIMI and GRACE,
which include an evaluation of the ST segment [15].

We purposely built the model using standard ECG parameters, age,
and sex (and not clinical data, laboratory tests, or waveform analysis)

Table 1
All-cause mortality at 5 years stratified over the age groups.

Age upper bound

90 85 80 75 70 65 60 55 50 45

Age lower bound 85 82.03 %
80 72.30 % 65.72 %
75 60.25 % 53.62 % 44.06 %
70 51.36 % 45.44 % 37.59 % 31.33 %
65 43.98 % 38.64 % 31.79 % 26.04 % 20.60 %
60 38.96 % 34.10 % 27.99 % 22.81 % 18.18 % 15.26 %
55 35.17 % 30.71 % 25.16 % 20.45 % 16.36 % 13.78 % 11.69 %
50 31.88 % 27.72 % 22.61 % 18.24 % 14.46 % 11.96 % 9.90 % 8.07 %
45 29.02 % 25.13 % 20.36 % 16.25 % 12.69 % 10.26 % 8.22 % 6.39 % 4.81 %
40 26.73 % 23.05 % 18.56 % 14.67 % 11.32 % 8.98 % 7.04 % 5.34 % 3.94 % 2.93 %

Table 2
Values of the predictors included in the regression for all patients included in the study and stratified by sex (median values with 2nd and 98th percentiles in brackets).

Predictor All patients Males Females
Median [2 %, 98 %] Median [2 %, 98 %] Median [2 %, 98 %]

Age [years] 65 [41, 89] 65 [41, 88] 66 [41, 89]
HR [bpm] 71 [49, 110] 70 [48, 109] 73 [51, 110]
QRS axis [deg] 18 [− 57, 87] 14 [− 60, 88] 21 [− 51, 87]
T wave axis [deg] 41 [− 21, 140] 39 [− 23, 137] 42 [− 18, 142]
Frontal QRS-T angle [deg] 24 [1, 150] 26 [1, 152] 23 [1, 149]
P wave duration [msec] 102 [44, 130] 104 [44, 132] 100 [44, 128]
T wave duration [msec] 196 [35, 254] 192 [54, 248] 202 [1, 256]
QRS duration [msec] 88 [68, 124] 92 [72, 130] 84 [66, 116]
PR interval [msec] 156 [114, 230] 160 [116, 238] 152 [112,220]
QTc [msec] 433 [382, 507] 428 [379, 505] 437 [388, 507]
ST elevation/depression at midpoint [mV] 1.9 [− 6.9, 11.7] 2.9 [− 6.9, 13.1] 0.9 [− 6.4, 7.8]
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because these parameters are accurate, quick and easy to measure, and
have established clinical relevance [16,17,18]. Moreover, as in some
previously published studies [19,20], we were unable to accurately
characterize the enrolled population from a clinical perspective because
of the retrospective nature of this work such as the previous studies cited
above. In addition, ECG parameters and intervals have precise reference
values. Some of them show linear behaviors with respect to aging [8]
and are continuous variables, as opposed to clinical data, which are
often coarsely expressed in binary form.

Many ECG parameters have demonstrated clinical and prognostic
value due to the influence of CV risk factors and aging on heart con-
duction tissue [21,22,23]. The contemporary use of multiple ECG pa-
rameters in risk models improves their clinical relevance, and the use of
AI could provide further added value. Indeed, ECG represents an ideal
substrate for AI models, as it is standardized, widely available, repro-
ducible, and easy to transfer in a digital format [3,24].

Previous studies have already explored the prognostic importance of
ECG with AI and ML techniques, albeit with some key differences with

respect to our work. Sun et al. [25] recently developed an ECG-based ML
model to predict short- and long-term mortality in a large cohort of
Canadian hospitalized patients, combining ECG parameters, ECG traces,
and laboratory tests. Similarly, Raghunath et al. [19] used a large
regional electronic record from Geisinger, US, to train a deep neural
network to predict 1-year mortality from voltage- time traces. Addi-
tionally, Tsai et al. [26] trained a deep learning model to predict 1-year
all-cause mortality and major CV events (MACES) in a Chinese hospital
population. Finally, Hughes et al. [20] developed a long-term mortality
risk estimator using yet another deep learning model trained on a large
ECG dataset from three American universities. Other authors applied
ECG-based ML approaches to predict mortality or the appearance of
MACES in specific risk categories, e.g., in patients with COVID-19
infection, in patients hospitalized in intensive care units, or in patients
with acute myocardial infarction or pulmonary hypertension
[27,28,29,30].

The above-mentioned studies included all types of ECG and heart
rhythm abnormalities and therefore observed high mortality rates. In

Table 3
k threshold values as determined in the training set (a) and p-values of the comparisons of the logistic regression with respect to the NIR (b) for the different age groups.

(a)

Age upper bound

90 85 80 75 70 65 60 55 50 45

Age lower bound 85 0.817
80 0.710 0.653
75 0.590 0.531 0.429
70 0.510 0.452 0.367 0.306
65 0.452 0.391 0.316 0.258 0.198
60 0.408 0.351 0.283 0.228 0.180 0.152
55 0.374 0.323 0.259 0.208 0.163 0.140 0.119
50 0.353 0.302 0.235 0.191 0.148 0.123 0.102 0.078
45 0.335 0.284 0.224 0.173 0.134 0.107 0.084 0.063 0.047
40 0.320 0.269 0.210 0.165 0.123 0.100 0.074 0.056 0.039 0.031

(b)

Age upper bound

90 85 80 75 70 65 60 55 50 45

Age lower bound 85 1.000
80 1.000 1.000
75 <0.001 <0.001 <0.001
70 <0.001 <0.001 0.254 0.999
65 <0.001 <0.001 0.999 1.000 1.000
60 <0.001 <0.001 1.000 1.000 1.000 1.000
55 <0.001 <0.001 1.000 1.000 1.000 1.000 1.000
50 <0.001 0.224 1.000 1.000 1.000 1.000 1.000 1.000
45 <0.001 0.328 1.000 1.000 1.000 1.000 1.000 1.000 1.000
40 <0.001 0.799 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 4
Performance metrics in the age ranges with a significant difference with respect to the NIR.

Age group Sensitivity Specificity Accuracy Balanced
accuracy

PPV NPV Detection
rate

Detection
prevalence

Cohen’s
κ

F1-score

75–90 69.04 % 70.43 % 69.60 % 69.73 % 77.69 % 60.40 % 41.33 % 53.20 % 38.42 % 73.11 %
75–85 64.72 % 66.23 % 65.42 % 65.48 % 68.79 % 62.01 % 34.62 % 50.33 % 30.81 % 66.69 %
75–80 62.64 % 65.59 % 64.28 % 64.11 % 59.39 % 68.61 % 27.91 % 46.99 % 28.08 % 60.97 %
70–90 68.20 % 73.57 % 70.80 % 70.89 % 73.27 % 68.54 % 35.13 % 47.95 % 41.68 % 70.64 %
70–85 64.96 % 68.63 % 66.98 % 66.79 % 62.92 % 70.50 % 29.26 % 46.50 % 33.49 % 63.93 %
65–90 69.75 % 75.02 % 72.80 % 72.38 % 66.97 % 77.35 % 29.35 % 43.82 % 44.51 % 68.33 %
65–85 67.28 % 71.21 % 69.72 % 69.25 % 58.91 % 78.02 % 25.58 % 43.42 % 37.47 % 62.82 %
60–90 68.85 % 75.81 % 73.10 % 72.33 % 64.50 % 79.23 % 26.82 % 41.59 % 44.13 % 66.60 %
60–85 68.07 % 72.76 % 71.16 % 70.41 % 56.32 % 81.53 % 23.17 % 41.14 % 38.87 % 61.64 %
55–90 70.58 % 75.52 % 73.76 % 73.05 % 61.45 % 82.28 % 25.13 % 40.89 % 44.61 % 65.70 %
55–85 69.60 % 73.60 % 72.37 % 71.60 % 53.83 % 84.55 % 21.34 % 39.65 % 39.94 % 60.71 %
50–90 71.27 % 77.28 % 75.37 % 74.28 % 59.41 % 85.22 % 22.67 % 38.16 % 46.10 % 64.80 %
45–90 71.36 % 78.80 % 76.66 % 75.08 % 57.61 % 87.21 % 20.52 % 35.62 % 46.83 % 63.75 %
40–90 71.96 % 80.47 % 78.19 % 76.21 % 57.34 % 88.72 % 19.24 % 33.55 % 48.50 % 63.82 %
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contrast, we believe that our work presents the following unique
contributions:

1. To the best of our knowledge, this is the first such study conducted in
a European population. AI models may perform differently on
different populations and ethnicities [31,32], and previously pub-
lished studies on this topic were conducted on American or Asian
populations.

2. Our study enrolled subjects without severe ECG abnormalities or
arrhythmias, whose ECGs are often overlooked by physicians
because they do not contain relevant clinical findings per se. The
enrolled population represents a wide spectrum of patients for whom
the estimation of the individual risk is crucial and remains a major
challenge. The perspective with which this study was developed

included risk estimation in primary prevention and in subjects with
low CV risk. In comparison, previous studies enrolled subjects with a
complete spectrum of ECG abnormalities, including tachyarrhyth-
mias, bradyarrhythmias, and bundle branch blocks; only Raghunath
et al. made a specific analysis of a subgroup of patients with normal
ECGs [25,19,26].

3. Our model was intentionally built using only common ECG param-
eters, age, and sex. Notably, previous studies showed the superiority
of ML models constructed through waveform analysis [25,19].
Despite using rather simple parameters, we obtained only slightly
lower AUC values than in previous studies (average AUC over the age
groups equal to 0.779). Accuracy, sensitivity, and specificity values
were all comparable with those reported in the literature. Moreover,
the average value of the obtained F1- scores was 65.23 %, a moderate
value aligned with those obtained in other published works dealing
with the prediction of the same endpoint. For example, our F1-score
is comparable to that of Sun et al. [25] and higher than that of
Hughes et al. [20]. Similarly, our average positive predictive value
(PPV) was higher than the one reported by Hughes et al. [20]
(average PPV of 11.12 % over the various tested datasets) and
comparable with the one reported by Sun et al. [25] (63.66 %) in all
age groups, supporting the claim that our model is able to predict
mortality, as almost two thirds of its positive predictions were cor-
rect. Regarding negative predictive value (NPV), its average value of
76.73 % confirmed the ability of our model to predict true negatives,
determining which patients are not at risk. Comparing the values of
detection rate and detection prevalence with raw data on 5-year
mortality (Table 1), it is possible to observe that they both showed
monotonicity with respect to the latter; in particular, detection
prevalence was only − 2.78 % lower than the mortality rate on
average. In any case, the model produced a number of false positives,
with an average difference between detection rate and mortality
prevalence of 12.99 %. Finally, Cohen’s κ values obtained showed
moderate agreement, according to Landis & Koch’s guidelines [33].

4. We followed the enrolled subjects over a 5-year follow-up, whereas
previous studies have focused mainly on a shorter follow-up (e.g.,
30-day or 1-year). Our longer follow-up period was linked to the
lower mortality rates that we observed, given the exclusion of sub-
jects with severe ECG abnormalities. The main advantage of this
approach is that, using a longer follow-up, we can assess risk farther
back in time, potentially providing opportunities for preventive
interventions.

5. Previous studies have shown that clinical scores may have a lower
predictive value in middle-aged and elderly adults [34,35], despite
the increased prevalence of age related CV diseases. In contrast, our
model performed better by including middle-aged and elderly
patients.

6. Finally, our logistic regression model is simple and quick to use. It
can also be easily retrained, as its coefficients can be updated after
further observations. Therefore, it could play a useful role in mass
screening. Another reason we chose such a simple ML model is that it
is fully explainable and easily applicable, as the relationship between
predictors and outcomes was of great interest in this study.

Several ECG parameters are known to play a clinical role in the
monitoring of CV and non-CV diseases, but previous studies did not
clearly reveal which predictors may be the most significant. In a cohort
of 4615 elderly subjects, Lu et al. [36] observed that left ventricular
hypertrophy, QTc, and PR interval were the ECG features mostly
correlated with all-cause mortality, CV death, and unexplained death
and developed a prognostic score based on the number of ECG abnor-
malities counted in each patient. Hirota et al. [37] simultaneously
evaluated 438 ECG parameters, observing different correlations with all-
cause and CV death, showing that the most important predictors were
related to the QRS complex and the ST segment.

Our study showed that the ECG parameters considered have a

Fig. 2. ROC curves for the age ranges with a significant difference with respect
to the NIR.

Table 5
Summary of model fitting over the 14 age groups with a significant difference
with respect to the NIR.

Predictor Weight
Value

Ranking Global results

Appearance
tally

Effect
direction

(Intercept) (13.917) 1 (14)
Age [years] 7.911 2 14 +

QTc [msec] 4.423 3 14 +

HR [bpm] 1.287 4 14 +

P wave duration [msec] 0.766 5 14 −

QRS duration [msec] 0.725 6 14 −

Female sex 0.559 7 14 −

PR interval [msec] 0.428 8 14 −

T wave duration [msec] 0.371 9 14 −

Frontal QRS-T angle
[deg]

0.183 10 14 +

ST elevation/
depression at
midpoint [mV]

0.140 11 1 −

QRS axis [deg] 0.058 12 14 +

T wave axis [deg] 0.049 13 9 +

Columns weight report the average value of the coefficient across the age groups
multiplied by the average value of the predictor over the entire population,
specifying the ranking of the predictors based on the computed values. Columns
global results give general information on the predictors: column appearance tally
reports how many times the predictor was not discarded by the AIC, while for
effect direction the symbol “+” denotes that the predictor contributes positively
to the value of ρ, increasing its value, and vice versa for symbol “-”.
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different prognostic importance, based on a global ranking of the pre-
dictors that we constructed regardless of the direction of the effect
(Table 5). In particular, age, QTc, and HR had the greater prognostic
impact with respect to the others. Notably, these parameters are well-
known predictors of mortality [18,38,39].

We emphasize that if a predictor increased the value of ρ, that was
not necessarily correlated with mortality (and vice versa). This is espe-
cially true for predictors with low fitted coefficients. Higher-order in-
teractions could be present among predictors, and the effect direction of
a particular predictor could also be the result of these effects, as a
mathematical artifact to improve model fitting by counterbalancing
linear and non-linear intra-predictor interactions. In our results, effect
directions that did not match the literature were observed for P wave
duration, QRS duration, PR interval, and QRS axis. It is worth noting
that these predictors contributed only marginally to the estimation of ρ
(see Table 5), but their presence contributed to the good fitting of the
model, although their sign did not match the literature. To verify this,
we retrained the model for the different age groups by not considering
these predictors, and the performance of the alternative models
decreased, albeit only slightly. Performance decreased (still marginally)
when removing these predictors from the model without retraining. This
shows that the fitted coefficients helped the models to make better
estimates.

We also conducted analyses using only age and sex (without ECG
parameters), obtaining consistently worse performance metrics and
confirming the importance of ECG in predicting all-cause 5-year mor-
tality. This justifies our methodological decision to perform the analyses
in age-ranges and strengthens our assertion about the importance of
considering ECG records that would otherwise have been overlooked as
not clinically relevant. Biological age is an obvious predictor of
outcome, but heart age, computed via ECG signals, and the gap between
the two are receiving increasing recognition as interesting and helpful
predictors of outcome, as reported by Lima et al. [40].

Finally, we believe that the appearance of acute diseases and the
evidence of severe ECG abnormalities should be diagnosed, investigated,
and treated regardless of the use of ECG-based prognostic tools. How-
ever, risk assessment remains a great challenge, and an ECG without
severe abnormalities can give false reassurance, especially in asymp-
tomatic or unconscious patients. The results of this study could prove
useful in this field, as a decision aid tool to improve clinical evaluations,
reduce costs, and optimize resource use.

Of course, although the ECG is increasingly becoming a prognostic
tool rather than a diagnostic test, these innovative technological op-
portunities should still be considered as complementary to good clinical
practice.

Limitations

Because of its anonymous nature, this work presents some clinical
and methodological limitations. It was not possible to determine, at the
individual level, the exact presence of CV risk factors, CV diseases, and
comorbidities. Similarly, the prevalence of patients using QTc modifying
drugs, cardiotoxic drugs, and HR modifying drugs in our study popu-
lation was unknown. For the same reason, we could not precisely esti-
mate the prevalence of MACES or distinguish between CV mortality and
other causes of death. Another limitation is also one of the innovative
points of the study, namely it being carried out in a European popula-
tion, thereby determining an inherent bias.

Another limitation is the inclusion only of patients with a follow-up
period of at least 5 years or who died within 5 years; excluding patients
with an observation period shorter than 5 years unless they died may
have over-represented mortality. However, as we were not interested in
describing the population, this was done on purpose because of the low
mortality rate in the data and in light of the patient-specific approach
considered in the study.

Finally, external validation testing was not possible, but we

performed an internal cross-validation with a 10-fold strategy on a
segregated 20 % of the enrolled population.

Conclusions

This is the first European study using a simple ML approach to assess
long- term all-cause mortality risk, trained on a large Italian population.
Despite the limitations, we claim that the results are interesting and
useful for clinical practice because the proposed ML tool is easily
interpretable, reproducible, and applicable. The sample size is large and
significant, and the endpoint is relevant and accurate. The ML tool was
intentionally developed using a simple mathematical description (lo-
gistic regression) and includes only common ECG parameters, together
with age and sex. Further studies can be conducted, but our results
underline the potential prognostic role of the proposed ECG- based ML
approach, especially in subjects who do not show severe or clinically
manifest ECG abnormalities. Indeed, this is a large and heterogeneous
group of patients in whom estimating mortality risk remains a major
challenge.
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