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Abstract
Covering a graph with cohesive subgraphs is a classical problem in theoretical com-
puter science, for example when the cohesive subgraph model considered is a clique.
In this paper, we consider as a model of cohesive subgraph the 2-clubs, which are
induced subgraphs of diameter at most 2. We prove new complexity results on the
Min 2-Club Cover problem, a variant recently introduced in the literature which asks
to cover the vertices of a graph with a minimum number of 2-clubs. First, we answer
an open question on the decision version of Min 2-Club Cover that asks if it is pos-
sible to cover a graph with at most two 2-clubs, and we prove that it is W[1]-hard
when parameterized by the distance to a 2-club. Then, we consider the complexity of
Min 2-Club Cover on some graph classes. We prove that Min 2-Club Cover remains
NP-hard on subcubic planar graphs, W[2]-hard on bipartite graphs when parameter-
ized by the number of 2-clubs in a solution, and fixed-parameter tractable on graphs
having bounded treewidth.

Keywords Graph algorithm · Cohesive subgraphs · 2-Clubs · Parameterized
complexity

1 Introduction

Covering a graph with cohesive subgraphs, in particular cliques, is a relevant prob-
lem in theoretical computer science with many practical applications. Two classical
problems in this direction are theMinimum Clique Cover problem and theMinimum
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Clique Partition problem [20], which are well-known to be NP-hard [26]. The first
problem asks for the minimum number of cliques in a graph that cover all its edges,
while the second problem asks for the minimum number of cliques in a graph that
cover all its vertices. Notice that while this latter problem asks to cover all the vertices
of a graph with cliques, we can always assume that the cliques partition the set of
vertices. Indeed, if a vertex belongs to more than one clique, we can remove it from
all the cliques except for one.

Covering the vertices of a graph with minimum number of vertices is a fundamental
problem in graphmining, for decomposing a graph into cohesive modules and identify
communities, with applications for example in computational biology [28] or in the
analysis of transportation network [15]. Notice that Minimum Clique Partition is
related to Graph Coloring, since a partition into cliques of the vertices of a graph
corresponds to a coloring of the complement of the graph.

Minimum Clique Partition is known to be NP-hard even in restricted cases when
the input graph is planar and cubic [7], in unit disk graphs [8], while admitting a PTAS
for this graph class [16, 40]. Moreover,MinimumClique Cover andMinimumClique
Partition are not approximable within a factor of |V |1−ε for every ε > 0, unless P
= NP [46]. As for parameterized complexity, Minimum Clique Partition is unlikely
to be in the class XP when parameterized by the number of cliques in the solution,
as deciding if it is possible to color a graph with three colors is an NP-complete
problem [19]. On the other hand,MinimumClique Cover is fixed-parameter tractable
when parameterized by the number of cliques in the solution, [22, 36] and the fastest
parameterized algorithm has time complexity O∗(22k ) and it is based on finding a
kernel of at most 2k vertices for the problem [22].

These two problems are based on the cliquemodel, that is a subgraphwhose vertices
are all pairwise connected, and ask for cliques that cover the input graph. Because the
clique model is often considered too strict, other definitions of cohesive graphs have
been considered in the literature, some of them called relaxed cliques [29], and rather
ask for subgraphs that are “close” to a clique. For example, while each pair of distinct
vertices in a clique are at distance exactly one, an s-club relaxes this constraint and
is defined as an induced subgraph of diameter at most s, that is its vertices are at
distance at most s from each other in the subgraph. A different but related model,
called s-clique, is defined as a subgraph whose vertices are at distance at most s in
the input graph, but not necessarily in the induced subgraph. Another alternative to
cliques are s-plexes, where a subgraph is an s-plex if the minimum degree of a vertex
in it is at least the size of the subgraph minus s. The minimum s-plex partition problem
is studied in [23], the problem of editing edges to obtain an s-plex partition is studied
in [24], and [43] asks to find k s-plexes that cover a maximum number of vertices.

In this paper, we focus on the s-clubmodel, which have several applications. In [38]
the analysis of protein interactions is based on clustering a network with minimum
number of s-clubs. A similar approach has been considered in [6] to analyze social
networks. The s-club model has also been applied to edit a graph into disjoint clusters
(s-clubs) [11, 18, 32]. A 1-club is a clique, so a natural step towards generalizing
cliques using distances is to study the s = 2 case, especially given that 2-clubs have
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applications in social network analysis and bioinformatics [1, 4, 31, 34, 35, 44]. Hence,
we mainly concentrate our efforts on 2-clubs.

Finding 2-clubs and, more generally s-clubs, of maximum size, a problem known
as Maximum s-Club, has been extensively studied in the literature. Maximum s-Club
is NP-hard, for each s ≥ 1 [5]. Furthermore, the decision version of the problem that
asks whether there exists an s-club larger than a given size in a graph of diameter s+1
is NP-complete, for each s ≥ 1 [4].

Maximum s-Club has also been studied in the parameterzied complexity frame-
work. The problem is fixed-parameter tractable when parameterized by the size
of an s-club [9, 30, 42]; the fastest parameterized algorithm has running time
O(|V |(|V |+|E |)+|V |((k−2)k ·k!·k3)) [42].Moreover the problem has been studied
for structural parameters in chordal graphs and weakly chordal graphs [21, 25]. As
for the approximation complexity, Maximum s-Club on an input graph G = (V , E)

is approximable within factor |V |1/2, for every s ≥ 2 [2] and not approximable within
factor |V |1/2−ε, for each ε > 0 and s ≥ 2, unless P = NP [2].

Recently, the relaxation approach of s-clubs has been applied to the problem of
covering a graph with s-clubs instead of the classical approach that asks for covering a
graphwith cliques.More precisely, theMin s-Club Cover problem asks for aminimum
collection {C1, . . . ,Ch} of subsets of vertices (possibly not disjoint) whose union
contains every vertex, and such that everyCi , 1 ≤ i ≤ h, is an s-club. This problem has
been considered in [13], in particular for s = 2, 3. The decision version of the problem
is NP-complete when it asks whether it is possible to cover a graph with two 3-clubs,
and whether is possible to cover a graph with three 2-clubs [13]. Min 3-Club Cover
on an input graph G = (V , E) has been shown to be not approximable within factor
|V |1−ε, for each ε > 0, while Min 2-Club Cover on an input graph G = (V , E) is
approximable within factor O(|V |1/2 log3/2 |V |) and not approximable within factor
|V |1/2−ε [13].

Another combinatorial problem recently introduced that considers s-club as amodel
of cohesive subgraph asks for a set of at most r disjoint s-clubs, each one of size at least
t ≥ 2, that covers the maximum number of vertices of a graph [14, 45]. Notice that in
this case the s-clubs must be disjoint and are not constrained to cover the whole graph.
This problem is NP-hard [14, 45] and fixed-parameter tractable when parameterized
by the number of covered vertices [14].

In this paper, we present results on the complexity ofMin 2-Club Cover. In Sect. 3
we answer an open question on the decision version of Min 2-Club Cover that asks if
it is possible to cover a graph with at most two 2-clubs, and we prove that it is not
only NP-hard, but W[1]-hard even when parameterized by the parameter “distance
to 2-club”. Notice that, in contrast, the decision problem that asks if it is possible to
cover a graph with two cliques is in P. Our hardness result is obtained showing the
W[1]-hardness when parameterized by k of an intermediate problem, called Steiner-
2-Club (that may be of independent interest). Then, we consider the complexity of
Min 2-Club Cover on some graph classes. In Sect. 4 we prove that Min 2-Club Cover
is NP-hard on subcubic planar graphs. In Sect. 5 we prove that Min 2-Club Cover on
a bipartite graph G = (V , E) is W[2]-hard when parameterized by the number of
2-clubs in a solution and not approximable within factor �(log(|V |)). Finally, we
prove in Sect. 6 that Min 2-Club Cover is fixed-parameter tractable on graphs having
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bounded treewidth. We start in Sect. 2 by giving some definitions and by defining
formally the Min 2-Club Cover problem.

2 Preliminaries

Given a graph G = (V , E) and a subsetW ⊆ V , we denote by G[W ] the subgraph of
G induced byW . Given two disjoint subsets X ,Y ⊆ V , we say that X and Y are fully
adjacent if, for every x ∈ X , y ∈ Y , it holds that xy ∈ E . Given two vertices u, v ∈ V ,
the distance between u and v in G, denoted by dG(u, v), is the number of edges on
a shortest path from u to v. The diameter of a graph G = (V , E) is the maximum
distance between two vertices of V . Given a graph G = (V , E) and a vertex v ∈ V ,
we denote by NG(v) the set of neighbors of v, that is NG(v) = {u : {v, u} ∈ E}.
We denote NG [v] = NG(v) ∪ {v}. If G is understood, we may drop the G subscript.
For a vertex v of G, let N 2(v) = N (v) ∪ ⋃

u∈N (v) N (u), i.e. the neighbors of v

plus the neighbors of neighbors of v. We also use N 2[v] = N 2(v) ∪ {v} (notice
that N 2[v] = N 2(v) unless v is an isolated vertex). Given a set V ′ ⊆ V , define
N (V ′) = {u : {v, u} ∈ E, v ∈ V ′}\V ′.
Definition 1 Given a graph G = (V , E), a subset V ′ ⊆ V , such that G[V ′] has
diameter at most 2, is a 2-club.

Notice that a 2-club must be connected, and that dG[V ′](u, v) might differ from
dG(u, v).

Now we present the definition of the problem we are interested in, called Mini-
mum 2-Club Cover.

Problem 1 Minimum 2-Club Cover (Min 2-Club Cover)
Input: A graph G = (V , E).
Output: A minimum cardinality collection C = {V1, . . . , Vh} such that, for each i
with 1 ≤ i ≤ h, Vi ⊆ V , Vi is a 2-club, and, for each vertex v ∈ V , there exists a set
Vj ∈ C such that v ∈ Vj .

Notice that the 2-clubs in C = {V1, . . . , Vh} do not have to be disjoint. We denote
by 2-Club Cover(h), with 1 ≤ h ≤ |V |, the decision version ofMin 2-Club Cover that
asks whether there exists a cover of G consisting of at most h 2-clubs.

We present the definitions of nice tree decomposition of a graph [27], that will be
useful in Sect. 6.

Definition 2 Given a graph G = (V , E), a nice tree decomposition of G is a rooted
tree T = (B, EB) (we denote |B| = l), where each vertex Bi ∈ B, 1 ≤ i ≤ l, is a bag
(that is Bi ⊆ V ), with |Bi | ≤ δ + 1, such that:

1.
⋃l

i=1 Bi = V
2. For every {u, v} ∈ E , there is a bag Bj ∈ B, with 1 ≤ j ≤ l, such that u, v ∈ Bj

3. The bags of T containing a vertex u ∈ V induce a subtree of T .
4. Each Bi ∈ B can be:

(a) An introduce vertex: Bi has a single child Bj , with Bi = Bj ∪ {u}, where
u ∈ V
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(b) A forget vertex: Bi has a single child Bj , with Bi = Bj\{u}, where u ∈ V
(c) A join vertex: Bi has exactly two children Bl , Br with Bi = Bl = Br .

Each leaf-bag is associated with a single vertex of V .

3 W[1]-hardness of 2-Club Cover(2) for Parameter Distance to 2-Club

In this section, we show that the 2-Club Cover(2) problem, i.e. deciding if a graph can
be covered by two 2-clubs, is W[1]-hard for the parameter “distance to 2-club”, which
is the number of vertices to be removed from the input graph G = (V , E) such that
the resulting graph is a 2-club. Note that Max 2-Club is fixed-parameter tractable for
this parameter [42], in fact, Max s-club is FPT in the parameter “distance to s-club”
for all s ≥ 1). This result is given by introducing an intermediate problem, called the
Steiner-2-Club. We first show that Steiner-2-Club is W[1]-hard, even in a restricted
case, then we give a parameterized reduction from this restriction of Steiner-2-Club
to 2-Club Cover(2) for the parameter distance to 2-club, thus showing that also this
latter problem is W[1]-hard.

We start by introducing the Steiner-2-Club problem.

Problem 2 Steiner-2-Club
Input: A graph Gs = (Vs, Es), and a set Xs ⊆ Vs .
Output: Does there exist a 2-club in Gs that contains every vertex of Xs?

We call Xs the set of terminal vertices. We show that Steiner-2-Club is W[1]-hard
for parameter |Xs |, by a parameter-preserving reduction from Multicolored Clique.
Next, we recall the definition of the Multicolored Clique problem.

Problem 3 Multicolored Clique
Input: A graph Gc = (Vc, Ec), where Vc is partitioned into k independent sets
Vc,1, . . . , Vc,k (hereafter called the color classes).
Output:Does there exist a clique V ′

c ⊆ Vc such that |V ′
c | = k and for each 1 ≤ i ≤ k,

|V ′
c ∩ Vc,i | = 1?

It is well-known that Multicolored Clique is W[1]-hard for parameter k [17].
Our proof holds on a restriction of Steiner-2-Club, called Restricted Steiner-2-

Club, where the set Xs is an independent set, |Xs | > 4, and each vertex in Vs\Xs

has at most 2 neighbors in Xs . We start by giving a hardness result for Restricted
Steiner-2-Club.

Theorem 3 The Restricted Steiner-2-Club problem is W [1]-hard with respect to the
number of terminal vertices |XS|.
Proof Let Gc = (Vc, Ec) be an instance of Multicolored Clique, where Vc is par-
titioned into color classes Vc,1, . . . , Vc,k . We construct a corresponding instance
(G = (Vs, Es), Xs) of Restricted Steiner-2-Club, where |Xs | = k + 1, as follows
(see an example in Fig. 1).

Define the set Xs of terminal vertices as follows:

Xs = {x0} ∪ {xi : Vc,i is a color class of Gc}
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where x0 is a special dummy vertex.
The set Vs\Xs of non terminal vertices is defined as:

Vs\Xs =
⋃

v∈Vc
Wv

where Wv is defined as follows:

Wv = {wv,i : 0 ≤ i ≤ k}

Formally, we then define the edge set Es = E1
s ∪ E2

s ∪ E3
s ∪ E4

s where:

E1
s = {{wv,i , wv, j } : v ∈ Vc, 0 ≤ i < j ≤ k}

E2
s = {{xi , wv,i } : v ∈ Vc, 0 ≤ i ≤ k}

E3
s = {{xi , wv, j } : v ∈ Vc,i , 1 ≤ i ≤ k, 0 ≤ j ≤ k}

E4
s = {{wu,i , wv,i } : {u, v} ∈ Ec, 1 ≤ i ≤ k}.

In words, the edges of Gs are as follows: (1) each Wv is a clique; (2) for each
i ∈ {0, 1, . . . , k} and each v ∈ Vc, we add an edge between xi and wv,i because
they share i in their subscript; (3) for each i ∈ {1, . . . , k} and each vertex v of color
class i , we add all possible edges between xi and Wv; and (4) for {u, v} ∈ Ec and
each i ∈ {1, . . . , k}, we and an edge between wu,i and wv,i , i.e. there is a matching
between Wu and Wv based on the non-zero i subscripts. Notice that there is no edge
{wu,0, wv,0}, with {u, v} ∈ Ec.

Also note that Gs = (Vs, Es) is an instance of Restricted Steiner-2-Club, since Xs

is an independent set and each vertex wv,i , with v ∈ Vc, j , 0 ≤ i ≤ k and 1 ≤ j ≤ k,
is connected to at most two vertices of Xs , namely xi and x j . We will use that fact a
few times in the proof.

We now show that Gc has a multicolored clique of size k if and only if Gs has a
2-club containing Xs .

(⇒) Suppose that Gc has a multicolored clique v1, . . . , vk , where we assume that
vi ∈ Vc,i , 1 ≤ i ≤ k, i.e. each vi is of color i . We claim thatC := Xs ∪Wv1 ∪ . . .∪Wvk

is a 2-club. Consider two distinct vertices y and z of C . We show that y and z are at
distance at most 2 in Gs[C]. There are three possible cases for vertices y and z.

1. y, z ∈ Xs . Suppose that y = xi and z = x j for some i, j ∈ {0, . . . , k}. If i = 0
and j > 0, then recall that Wv j is included in C , where v j is the vertex of color
j in the multicolored clique. Then wv j ,0 ∈ Wv j is a common neighbor of x0 and
x j in C since {x0, wv j ,0} ∈ E2

s and {x j , wv j ,0} ∈ E3
s . The case j = 0 is similar. If

i, j > 0, then Wvi and Wv j are both included in C . In this case, wvi , j ∈ Wvi ⊆ C
is a common neighbor of xi and x j since {xi , wvi , j } ∈ E3

s amd {x j , wvi , j } ∈ E2
s .

2. y ∈ Xs, z ∈ Wv j for some j ∈ {1, . . . , k}. Then y = xi and z = wv j ,t for some
i, t ∈ {0, . . . , k}. If t �= i , then consider the vertex wv j ,i ∈ Wv j \{wv j ,t }. We have
{xi , wv j ,i } ∈ E2

s and {wv j ,t , wv j ,i } ∈ E1
s , and so wv j ,i is a common neighbor of
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Fig. 1 An illustration of the reduction. Left: a graph Gc with vertices partitioned into 3 colors (1 is white, 2
is black, 3 is gray). Right: the corresponding graph Gs . For clarity, only the cliques W2 and W3 are drawn
and their edges are grayed out (the E1

s edges). The color of the clique vertices corresponds to the second
subscript of the vertex (for instance, w2,3 is gray since it corresponds to color 3, and w2,0 is represented
with a gray stroke). The same color code is used for the xi ’s, since each xi corresponds to color i . Also,
for the xi ’s we only show their incidents edges with an endpoint in W2. Note that x1 has all edges into W2
since v2 is of color 1 (the edges of E3

s ), and the other xi ’s have only one edge shared with W2 (the edges
of E2

s ). There are edges between W2 and W3 because v2v3 ∈ E(Gc) (the edges of E4
s ). Not shown are the

edges between W1 and W3, between W2 and W4, and between W3 and W4

y = xi and z = wv j ,t . If instead t = i , then y = xi and z = wv j ,i share an edge
in E2

s .
3. y ∈ Wvr , z ∈ Wvt for some r , t with 1 ≤ r , t ≤ k. If r = t , then y and z are in

the same cliqueWvr = Wvt , thus they have distance one in Gs[C]. Hence consider
the case that r �= t , and let y = wvr ,i and z = wvt , j for some i, j ∈ {0, . . . k}. If
i = j = 0, then x0 ∈ Xs ⊆ C is a common neighbor of y = wvr ,0 and z = wvt ,0
because of the E2

s edges. Assume that one of i, j is not 0.Without loss of generality,
we suppose that j �= 0. Note that {vr , vt } ∈ Ec. Thus if i = j > 0, because of the
E4
s edges, there is an edge between y = wvr ,i and z = wvt , j = wvt ,i . So assume

that i �= j . Because j > 0, there exists an edge {wvr , j , wvt , j } ∈ E4
s and an edge

{wvr , j , wvr ,i } ∈ E1
s . Then y = wvr ,i and z = wvt , j are at distance at most 2 in

Gs[C].

This shows that every two of vertices in Gs[C] are at distance at most 2, and
therefore that C is a 2-club.

(⇐) Suppose that there is a 2-club C in G with Xs ⊆ C . We first claim that for
each color class i with 1 ≤ i ≤ k, there exists a vertex vi ∈ Vc,i such that wvi ,0 ∈ C .
Indeed, consider vertices x0, xi ∈ C , with 1 ≤ i ≤ k. By construction {x0, xi } /∈ Es ,
hence there must exist a vertex u ∈ C which is a neighbor of both x0 and xi in C .
Note that only E2

s specifies a set of neighbors for x0, and that only vertices of the form
wv,0 are neighbors of x0, where v ∈ Vc. Moreover, the definitions of E2

s and E3
s imply

that the only vertices of the form wv,0 that can be a neighbor of xi are those where
v ∈ Vc,i . It follows that u can only belong to some clique Wv such that v ∈ Vc,i and
u = wv,0. Since this is true for every i ∈ {1, . . . , k}, our claim holds.
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Now, for each i , with 1 ≤ i ≤ k, choose any vertex vi ∈ Vc,i such that wvi ,0 ∈ C
(our previous claim implies that such a vi always exists).We claim that {v1, v2, . . . , vk}
is a clique of Gc.

To prove this, fix any color class i with 1 ≤ i ≤ k. Let j �= i be any other color
class, with 1 ≤ j ≤ k. Note that by the construction of E2

s and E3
s , wvi ,0 and x j do

not share an edge since i �= j and j > 0. Since wvi ,0 and x j are both in C , they must
have a common neighbor in G[C]. Consider such a common neighbor z of wvi ,0 and
x j . The set of neighbors of wvi ,0 in Gs is {x0, xi } ∪ (Wvi \{wvi ,0}), so z must be in
Wvi . Since vi is of color i �= j , the only neighbor of x j in Wvi is wvi , j (because of
E2
s ). Therefore, wvi , j ∈ C for each j �= i . Since this holds for every i , we have that

, for each distinct i, j with 1 ≤ i, j ≤ k, wvi , j ∈ C . Combined with the fact that
wvi ,0 ∈ C , this implies that Wv1, . . . ,Wvk are each entirely contained in C .

We now argue that vi , v j share an edge for any two distinct i, j , with 1 ≤ i, j ≤ k.
Let h /∈ {i, j} with 1 ≤ h ≤ k. We know that wvi ,h ∈ C . Consider the common
neighbor z′ of wvi ,h and wv j ,0 in C (which must exist). The neighbors of wv j ,0 are
{x0, x j } ∪ (Wv j \{wv j ,0}), so z′ must be in Wv j (because the neighbors of wvi ,h in Xs

are xi and xh , which are distinct from x0, x j ). The edge set E4
s implies that the only

possible neighbor of wvi ,h in Wv j is wv j ,h , and the edge {wvi ,h, wv j ,h} exists in Gs if
and only if {vi , v j } ∈ Ec. Since this holds for any i, j pair, this shows that {v1, . . . , vk}
is a clique. 
�

We now prove the hardness of 2-Club Cover(2).

Theorem 4 The 2-Club Cover(2) problem is W[1]-hard for the parameter distance to
2-club.

Proof Let (Gs = (Vs, Es), Xs) be an instance of Restricted Steiner-2-Club, where
k = |Xs | and Vs = {v1, . . . , vn}. Without loss of generality, we will assume that
Xs = {vn−k+1, . . . , vn}. It follows from Theorem 3 that Restricted Steiner-2-Club is
W[1]-hard when parameterized by k. Recall that in Restricted Steiner-2-Club |Xs | =
k > 4.

Starting from (Gs = (Vs, Es), Xs), we construct an instance G = (V , E) of
2-Club Cover(2), where V = H � W � Y � Z (here � means disjoint union). See
Fig. 2 for an illustration of the graph G. First, we define the sets H , W , Y , Z and the
edges of the subgraphs G[H ], G[W ], G[Y ] and G[Z ], then the remaining edges of
G. The subgraph G[H ] = (H , EH ) is a copy of Gs , and is defined as follows:

H = {hi : vi ∈ Vs} EH = {{hi , h j } : {vi , v j } ∈ Es},

Moreover, define HX ⊆ H as follows

HX = {hi ∈ H : vi ∈ Xs}.

Notice that, by construction, since Xs is an independent set, it follows that HX is an
independent set in G.

The subgraph G[W ] = (W , EW ) is a complete graph containing a vertex for each
two vertices vi , v j in V ′

s , where V ′
s = Vs\Xs , with 1 ≤ i < j ≤ n − k, defined as
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Fig. 2 The structure of the graph
G built by the reduction. W , Y ,
Z are cliques, while G[H ] is
isomorphic to Gs . Multiple lines
between two sets represent that
they are fully adjacent. An
example of edges between W
and H\HX and an example of
edges between Y and H\HX are
given

follows:

W = {wi, j : vi , v j ∈ V ′
s } EW = {{wi, j , wh,l} : wi, j , wh,l ∈ W }.

The subgraph G[Y ] = (Y , EY ) is also complete and has a vertex for each vi ∈ V ′
s .

It is defined as follows:

Y = {yi : vi ∈ V ′
s } EY = {{yi , y j } : yi , y j ∈ Y }.

The subgraph G[Z ] = (Z , EZ ) is yet another complete graph, which contains k
vertices.

Z = {zi : 1 ≤ i ≤ k} EZ = {{zi , z j } : zi , z j ∈ Z}.

Finally, we define the edges in E between two vertices that belong to different sets
in H , W , Y and Z .

1. W and Y are fully adjacent;
2. Y and Z are fully adjacent;
3. Each vertexwi, j ofW shares an edge with vertices hi and h j of H . More precisely,

for each distinct vi , v j ∈ V ′
s , {wi, j , hi }, {wi, j , h j } ∈ E .

4. Each vertex yi of W shares an edge with the vertex hi of H . More precisely, for
each vi ∈ V ′

s , {hi , yi } ∈ E .

Notice that, by construction, W ∪ Y and Y ∪ Z are cliques. Also notice that there
are no edges between H and Z .

We first prove that G = (V , E) has a distance to 2-club of exactly k. First note
that a vertex of HX and a vertex of Z are at distance three in G, since there is no edge
between H and Z , and also because vertices of HX and Z do not share any common
neighbor in G. It follows that to obtain a 2-club from G, either all the vertices of HX

or all the vertices of Z have to be removed from G. This implies a distance of at least
k from a 2-club, since |HX | = |Z | = k.

Next we prove in the following claim that V \HX is a 2-club.
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Claim (1). V \HX is a 2-club of G.

Proof We prove that two vertices of V \HX are at distance at most two in G[V \HX ].
First, recall thatW , Y and Z are cliques of G, hence the distance between two vertices
of each of these subsets have distance at most one in G[V \HX ]. Thus it is sufficient
to argue that each vertex of H\HX is at distance at most 2 from any other vertex.
Consider the remaining cases:

– Any two vertices wi, j , yh , with wi, j ∈ W and yh ∈ Y , are adjacent and any two
vertices yh, zl , with yh ∈ Y and zl ∈ Z are adjacent. It then follows that any two
vertices wi, j ∈ W , zl ∈ Z are at distance 2 in G[V \HX ].

– Given two vertices hi , h j ∈ H\HX , with i < j , there exists a vertex wi, j ∈ W
which is adjacent to hi and h j . Hence hi and h j have distance at most two in
G[V \HX ].

– Consider vertices hi ∈ H\HX and w j,l ∈ W , then hi and w j,l are either adjacent
(if i = j or i = l), or there exists a vertex wi,p or wp,i that is adjacent to both hi
and w j,l . Hence they have distance at most 2 in G[V \HX ].

– Consider vertices hi ∈ H\HX and yt ∈ Y , then hi and yt are either adjacent
(when i = t) or there exists a vertex yi that is adjacent to both hi and yt . Hence
they have distance at most 2 in G[V \HX ].

– Consider vertices hi ∈ H\HX and zu ∈ Z , then there exists a vertex yi which is
adjacent to both hi and zu . Hence they have distance 2 in G[V \HX ]. 
�
Thus we have shown that V \HX is a 2-club in G and that G has distance at most

|HX | = k from a 2-club. It follows that G has distance from 2-club exactly k.
In order to complete the proof, we have to show that there exists a solution of

Restricted Steiner-2-Club on instance (Gs, Xs) if and only G can be covered by two
2-clubs.

First assume that Restricted Steiner-2-Club on instance (Gs, Xs) admits a 2-club
Cs containing Xs . Then, we claim that V \HX and C = {hi ∈ H : vi ∈ Cs} are
a solution of 2-Club Cover(2) on instance G, that is they are two 2-clubs of G and
cover every vertex of V . First notice that, since Xs ⊆ Cs , then HX ⊆ C and thus
C ∪ (V \HX ) = V as desired. It remains to show that C and V \HX are 2-clubs of G.
By Claim 1, we already know that V \HX is a 2-club of G. Moreover, since G[H ] is
isomorphic to Gs and Cs is a 2-club of Gs , C is also 2-club of G.

Conversely, suppose that G = (V , E) can be covered by two 2-clubs C1 and C2.
First, recall that vertices of HX and vertices of Z are at distance 3 from each other. It
follows that one of these 2-clubs, say C1, satisfies HX ⊆ C1, while the other, in our
case C2, satisfies Z ⊆ C2. We claim that (W ∪Y )∩C1 = ∅. Assume that there exists
a vertex wi, j ∈ W ∩ C1, where vi , v j ∈ V ′

s are the vertices of Gs corresponding to
wi, j . Since HX ⊆ C1 and HX has only neighbors in H\HX , it must be that any vertex
hl ∈ HX has a common neighbor with wi, j in G[C1]. Consider a common neighbor
r of wi, j and hl in G[C1]. Then r ∈ H\HX . It follows that r = hi or r = h j , since
the only vertices of H\HX adjacent to wi, j are hi or h j . This holds for each hl ∈ HX ,
thus HX ⊆ N (hi ) ∪ N (h j ). Because Gs is a restricted instance, vi , v j ∈ Xs have at
most two neighbors in Vs\Xs , therefore hi , h j ∈ H\HX have at most two neighbors
in HX . Since HX ⊆ N (hi ) ∪ N (h j ), we have |HX | ≤ 4, while |HX | = |Xs | > 4 by
assumption. This is a contradiction, thus there is no vertex in W ∩ C1.
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Assume that there exists a vertex yi ∈ Y ∩ C1, where vi ∈ V ′
s is the vertex of

Gs corresponding to yi . By construction, the common neighbor of each h j ∈ HX

and vertex yi ∈ Y is hi ∈ H\HX . This implies that HX ⊆ N (hi ), again reaching a
contradiction, since Gs is a restricted instance and hence, by construction, hi has at
most 2 neighbors in HX , while |HX | > 4. We can conclude that there is no vertex
yi ∈ C1.

Our arguments imply that (W ∪ Y ∪ Z) ∩ C1 = ∅ and thus C1 ⊆ H . Define a
2-club Cs ⊆ Vs of Gs as follows: Cs = {vi : hi ∈ C1}. Since C1 is a 2-club of G, and
G[H ] is isomorphic to Gs , it follows that Cs is a 2-club of Gs . Moreover, HX ⊆ C1,
implying that Xs ⊆ Cs . Thus Cs is a solution of Restricted Steiner-2-Club, implying
that 2-Club Cover(2) is W[1]-hard when parameterized by distance to a 2-club. 
�

4 Hardness of Min 2-Club Cover in Subcubic Planar Graphs

In this section we prove that Min 2-Club Cover is NP-hard even if the input graph is
connected, has maximum degree 3 (i.e. a subcubic graph) and it is planar. We present
a reduction from the Minimum Clique Partition problem on planar subcubic graphs
(we denote this restriction byMin Subcubic Planar Clique Partition). which is known
to be NP-hard [7].

Problem 4 (Min Subcubic Planar Clique Partition)
Input: A planar subcubic graph GP = (VP , EP ).
Output: A partition of VP into a minimum number of cliques of GP .

We first prove that subcubic graphs have a specific type of matching,1 which will
be useful for our reduction. Moreover, a triangle in a graph is a clique of size 3.

Lemma 5 Let GP = (VP , EP ) be a connected subcubic graph that is not isomorphic
to K4. Then there is a matching FP ⊆ EP in GP that can be computed in polynomial
time, with the following properties:

(i) every triangle of GP contains exactly one edge of FP;
(ii) every edge of FP is contained in some triangle of GP.

Proof First observe that an edge {u, v} ∈ EP can belong to at most 2 distinct triangles,
as otherwise u and v would have degree more than 3, since u and v must have a
distinct neighbor in every distinct triangle. Also note that a vertex of GP , since we
have assumed that GP is not a K4, can belong to at most two distinct triangles. To see
this, assume that u ∈ VP belongs to two distinct triangles T1, T2. Since u has degree
at most 3, T1 and T2 must share an edge. It follows that u has degree 3, and we let
its neighbors be v,w, z. Assume that u belongs to a third triangle T3. Then either this
triangle contains only vertices in v,w, z, thus making {u, v, w, z} a K4 or it contains
a vertex y /∈ {u, v, w, z}. Since y is in a triangle with u, y ∈ N (u), thus u would have
degree greater than three.

Next, we show how to construct the the set FP explicitly, and we will show after
that it indeed a matching, and that it satisfies all required conditions. Starting with
FP = ∅, apply the following two steps:

1 Recall that a matching is a set of edges that share no endpoint.
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1. Add to FP every edge that belongs to 2 triangles;
2. Let TP be the set of triangles with no edge in FP after the previous step. Then, for

every triangle TP ∈ TP , choose one arbitrary edge of TP and add it to FP .

It is clear that every edge of FP is in a triangle of GP , and it is easy to see that FP

can be constructed in polynomial time. Let us argue that FP is a matching. Suppose
for contradiction that two distinct edges {x, y}, {y, z} ∈ FP with a common endpoint
(that is y) are added in Step 1. Then {x, y} belongs to two triangles formed by vertices
{x, y, w} and {x, y, w′} for some w,w′ ∈ VP . But y has neighbors {x, z, w,w′} and
is of degree at most three, which implies that w = z or w′ = z (since x �= z, w,w′
and w �= w′). Let assume w.l.o.g. that w′ = z. Now, {y, z} ∈ EP also belongs to two
triangles, since it is added by Step 1, one of which is {x, y, z} and the other {y, z, r}
for some r ∈ VP , r �= x . If r = w, then GP is a K4 formed by {x, y, z, w}. If r �= w,
then y has four neighbors {x, z, w, r}, all distinct, which is a contradiction.

Suppose instead that an edge {x, y} ∈ EP included in FP at Step 1 shares a vertex
with an edge {y, z} ∈ EP included at Step 2. Then y belongs to 3 distinct triangles,
two from Step 1 and one from Step 2, which is not possible.

Finally, suppose that {x, y} ∈ EP and {y, z} ∈ EP are adjacent edges both included
in FP in Step 2. Assume that {x, y} was added to FP because of triangle {x, y, w},
and that {y, z}was added to FP because of another triangle {y, z, w′}. Ifw = w′, then
the edge {y, w} belongs to these two triangles. In this case, {y, w} would have been
added in Step 1 and {x, y} would not have been added in Step 2 because of {x, y, w}
(since this triangle would be covered by {y, w}). If w �= w′, then y has four neighbors
{x, z, w,w′}, a contradiction. This shows that FP is a matching.

It remains to show that every triangle has an edge in FP . If a triangle TP contains
an edge {x, y} such that {x, y} is in two triangles, then TP will be covered in Step 1.
If TP contains no such edge, one of its edges will be added in Step 2. This concludes
the proof. 
�

We are now ready to describe our reduction. Informally, an instance G of
Min 2-Club Cover, is constructed starting from GP = (VP , EP ) by subdividing every
edge of EP\FP , and, for every vertex obtained by the subdivision of an edge, by
connecting it to a new dangling path of length two.

Next,wedefine the graphG formally.Given a instanceGP = (VP , EP )ofMinSub-
cubic Planar Clique Partition, where VP = {u1, . . . , un}, we first compute a matching
FP of GP that satisfies the requirements of Lemma 5. Then, define G = (V , E), an
instance of Min 2-Club Cover, where V = V ′ ∪ V1 ∪ VB as follows. First, define
V ′ = {vi : ui ∈ VP }.

For each edge {ui , u j } ∈ EP\FP , with 1 ≤ i < j ≤ n, define:

V1 = {vi, j,1 : {ui , u j } ∈ EP\FP } VB = {vi, j,2, vi, j,3 : {ui , u j } ∈ EP\FP }.

Next, we define the edge set E of G

E = {{vi , v j } : vi , v j ∈ V ′, {ui , u j } ∈ FP }
∪ {{vi , vi, j,1}, {v j , vi, j,1} : vi , v j ∈ V ′, vi, j,1 ∈ V1, {ui , u j } ∈ EP\FP }

123



1004 Algorithmica (2023) 85:992–1028

∪ {{vi, j,t , vi, j,t+1} : vi, j,t , vi, j,t+1 ∈ V , t ∈ {1, 2}}.

Notice that G has maximum degree three, since GP has maximum degree three.
Indeed, the vertices in V ′ have the same degree as the corresponding vertices in GP ,
those in V1 have degree exactly three and those in VB degree at most two.

Next we show that, since GP is planar, then also G is planar. Informally, given
a planar embedding of G, one can easily subdivide the edges of G (the V1 vertices)
without changing the embedding, then successively attach vertices of degree one (the
VB vertices) on this embedding.

To be more formal, recall that a graph is planar if and only if it does not contain
a subgraph that is a subdivision of a K5 (a clique of size 5) or a K3,3 (a biclique of
size 3). Indeed, the vertices of VB cannot belong to a subdivision of a K5 or a K3,3,
since they don’t belong to a cycle of G. Hence, it is sufficient to consider the subgraph
G[V ′ ∪ V1]. Notice that the vertices in V1 have degree two in G[V ′ ∪ V1]. But then,
if G[V ′ ∪ V1] contains a subdivision of a K5 or a K3,3, the same property holds for
GP , since the vertices of V1 are obtained by subdiving edges of GP , a contradiction
to the planarity of GP .

For the remainder of this section, set q = |EP | − |FP |, that is q is the number of
edges of GP that were subdivided in the construction of G.

Lemma 6 Given a planar cubic graph GP instance of Min Subcubic Planar Clique
Partition, consider the corresponding instance G of Min 2-Club Cover. If there exists
a clique partition C = {CP,1, . . . ,CP,k} of GP with k cliques, then there exists a
solution of Min 2-Club Cover on instance G consisting of q + k 2-clubs.

Proof Recall that GP is a subcubic graph. Note that if C = {CP,1, . . . ,CP,k} is a
clique partition of GP , then each CP,i , with 1 ≤ i ≤ k, is either a triangle, two
adjacent vertices or a singleton vertex of GP , since we have assumed that GP is not
a K4. For each CP,i ∈ C, with 1 ≤ i ≤ k, we define a corresponding 2-club Ci in
G. If CP,i = {u j }, with 1 ≤ j ≤ n, that is it is a singleton, then define Ci = {v j },
with v j ∈ V ′. Consider the case that CP,i = {u j , ul}, with 1 ≤ j, l ≤ n, i.e. CP,i

is an edge of GP . If {u j , ul} ∈ FP , then Ci = {v j , vl}. If {u j , ul} ∈ EP\FP , then
Ci = {v j , vl , vi,l,1}.

If CP,i = {u j , ul , uz}, then CP,i is a triangle in GP . By construction, the matching
FP contains an edge connecting two vertices of v j , vl , vz . Thus, in G there exists a
cycle D of length 5 that contains v j , vl , vz . Then D is a 2-club of G and we define
Ci = D. Since each vertex of GP belongs to a clique of {CP,1, . . . ,CP,k}, the 2-clubs
C1 . . . ,Ck cover every vertex in V ′. The vertices of V1∪VB are covered with q 2-clubs
as follows. For each vertex of V1, define a 2-club {vi, j,1, vi, j,2, vi, j,3}. It follows that
G admits a cover with at most q + k 2-clubs. 
�
Lemma 7 Given a graph GP instance of Min Subcubic Planar Clique Partition, con-
sider the corresponding graph G instance of Min 2-Club Cover. Then, any 2-club
covering of G contains strictly more than q 2-clubs. Moreover, if there exists a solution
C = {C1, . . . ,Cq+k} of Min 2-Club Cover on instance G, for some k ≥ 1, there exists
a clique partition of GP with at most k cliques.
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Proof First, notice that the set VB contains q vertices of degree 1, each of which
must be covered by a distinct 2-club. Moreover in G, the distance between any such
degree 1 vertex of VB and any vertex of V ′ is at least 3. Therefore, any solution of
Min 2-Club Cover on instance G contains at least q 2-clubs that do not contain any
vertex of V ′, which proves the first part of the lemma.

Now, let C = {C1, . . . ,Cq+k} be a solution of Min 2-Club Cover on instance G. It
follows that there are at most k 2-clubs D1, . . . , Dh of G, h ≤ k, that are used to cover
the vertices of V ′. For each such Di , with 1 ≤ i ≤ h, containing at least one member
of V ′, define a subgraph CP,i of GP as follows:

CP,i = {u j : v j ∈ Di ∩ V ′}.

We claim that each CP,i , with 1 ≤ i ≤ h, is a clique of GP . To prove this claim, we
show that every distinct u j , ul ∈ CP,i , with 1 ≤ j, l ≤ n, are connected by an edge
in GP . Consider the vertices v j , vl ∈ V ′ corresponding to u j , ul . If {v j , vl} ∈ E ,
then {u j , ul} ∈ EP , and our claim holds. Assume that {v j , vl} /∈ E . Then there exists
a vertex z ∈ V such that z ∈ Di and z is adjacent to both v j and vl , because v j , vl
are at distance 2 in G[Di ]. If z ∈ V1, by construction z = v j,l,1, assuming w.l.o.g.
j < l, then it follows that {u j , ul} ∈ EP . So, suppose that z /∈ V1. Notice that by
construction z /∈ VB , since the vertices of VB are not adjacent to vertices of V ′. Then,
z = vy ∈ V ′, with 1 ≤ y ≤ n, where vy corresponds to vertex uy ∈ VP . It follows
that {v j , vy}, {vl , vy} ∈ E and that {u j , uy}, {ul , uy} ∈ EP . By construction, since
v j,y,1 nor vl,y,1 exist in V1, it follows that {u j , uy}, {ul , uy} ∈ FP . Since the edges
in FP form a matching, this is a contradiction. We thus conclude that {u j , ul} ∈ EP ,
and that CP,i is a clique, for each i with 1 ≤ i ≤ h.

It remains to show that a clique partition of GP of size at most h can be obtained
from CP,1, . . . ,CP,h . Notice that, since D1, . . . , Dh cover V ′, then by construction
CP,1, . . . ,CP,h cover VP . It is easy to see that if two cliques CP,i , CP, j , with 1 ≤
i < j ≤ h, share a vertex, we can remove the vertices from one of the two. We can
repeat this procedure until we obtain a partition of VP . This concludes the proof. 
�

From Lemma 6, Lemma 7 and from the NP-hardness of Min Subcubic Pla-
nar Clique Partition [7], we can conclude thatMin 2-Club Cover is NP-hard on planar
subcubic graphs.

Theorem 8 Min 2-Club Cover is NP-hard on planar subcubic graphs.

5 Hardness of Min 2-Club Cover on Bipartite Graphs

We show that Min 2-Club Cover, on bipartite graphs, is (1) W[2]-hard when param-
eterized by h (the number of 2-clubs in a solution of Min 2-Club Cover) and (2) not
approximable within factor �(log |V |) unless P = N P . We give a reduction from
Minimum Set Cover to Min 2-Club Cover on bipartite graphs. Next, we recall the
definition of Minimum Set Cover.

Problem 5 Minimum Set Cover (Minimum Set Cover)
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Fig. 3 An example of the
reduction from Minimum Set
Cover to Min 2-Club Cover. G is
the bipartite graph that
corresponds to an instance of
Minimum Set Cover that
consists of U = {u1, u2, u3, u4}
and three sets S1 = {u1, u2},
S2 = {u2, u3},
S3 = {u2, u3, u4}

Input: A set U = {u1, . . . , un} of n elements and a collection S = {S1, . . . , Sm} of
sets, where Si ⊆ U , with 1 ≤ i ≤ m
Output:Aminimum cardinality collection S ′ ⊆ S such that for each element ui ∈ U ,
with 1 ≤ i ≤ n, there exists a set of S ′ containing ui .

Minimum Set Cover is W[2]-hard when parameterized by the size of a cover [39].

Theorem 9 Min 2-Club Cover is W[2]-hard on bipartite graphs when parameterized
by the number of 2-clubs in the cover.

Proof We describe the reduction fromMinimum Set Cover to theMin 2 - Club Cover
problem on bipartite graphs. Given an instance (U ,S) of Minimum Set Cover, in
the following we define a bipartite graph G = (V , E), which is an instance of
Min 2-Club Cover, where V = V1 � V2 (for an example see Fig. 3):

V1 = {vi : ui ∈ U , 1 ≤ i ≤ n} ∪ {z1} V2 = {w j : S j ∈ S, 1 ≤ j ≤ m} ∪ {z2}
E = {{vi , w j } : ui ∈ S j , 1 ≤ i ≤ n, 1 ≤ j ≤ m}

∪ {{z1, w j } : 1 ≤ j ≤ m}} ∪ {z1, z2}.

The graph G is bipartite, as there is no edge connecting two vertices of V1 or two
vertices of V2. Next, we prove the main results on which the reduction is based.

Claim 9.1. Let (U ,S) be an instance of Minimum Set Cover and let G = (V , E) be
the corresponding instance of Min 2-Club Cover. Given a solution of Minimum Set
Cover of size z, then a solution C ofMin 2-Club Cover of size z + 1 can be computed
in polynomial time.

Proof First, consider a solution S ′ of Minimum Set Cover consisting of z sets, we
define a solution C of Min 2-Club Cover consisting of z + 1 2-clubs as follows. For
each Si in S ′, for some i with 1 ≤ i ≤ m, then the 2-club N [wi ] belongs to C;
moreover the 2-club N [z1] belongs to C.

We claim that each vertex of G is covered by C. First, notice that N [z1] covers each
vertex wi , with 1 ≤ i ≤ m, and vertices z1, z2. Since S ′ covers each element of U , it
follows by construction that each vertex v j , with 1 ≤ j ≤ n, belongs to a 2-club in C.
Finally, by construction, C contains z + 1 2-clubs. 
�
Claim 9.2 Let (U ,S) be an instance of Minimum Set Cover and let G = (V , E) be
the corresponding instance ofMin 2-Club Cover as described above. Given a solution
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ofMin 2-Club Cover of size h, with h ≥ 2, a set cover of (U ,S) consisting of at most
h − 1 sets can be computed in polynomial time.

Proof Consider a solution C of Min 2-Club Cover of size h, with h ≥ 2. First, notice
that N 2[z2] = {z1, z2} ∪ {w j : S j ∈ S} and that a 2-club containing z2 must be
a subset of N 2[z2]. Since N [z1] = N 2[z2] and z2 must be covered, it follows that
we can assume that N [z1] is a 2-club of C. Note that N [z1] covers all the vertices in
{z1} ∪ {z2} ∪ {w j : S j ∈ S}.

Note that, for each vi ∈ V1, with 1 ≤ i ≤ n, and each w j ∈ V2, with 1 ≤ j ≤ m,
such that ui /∈ S j , we have dG(vi , w j ) ≥ 3, as N (vi ) = {wt : ui ∈ St }, while
N (w j ) = {vp : u p ∈ S j }. As a consequence, each 2-club that contains a vertex
vi ∈ V1, with 1 ≤ i ≤ n, does not contain any w j ∈ V2, with 1 ≤ j ≤ m, such
that ui /∈ S j . Next, starting from C, we compute in polynomial time a solution C′ of
Min 2-Club Cover on instance G such that (1) C′ contains at most as many 2-clubs
as C and (2) each 2-club of C′\{N [z1]} contains exactly one vertex w j ∈ V2, with
1 ≤ j ≤ m. Assume that there exists a 2-club X of C\{N [z1]} containing vertices
w j1 , w j2 , 1 ≤ j1, j2 ≤ m. Notice that, for each vertex vi ∈ X , 1 ≤ i ≤ n, we have
shown that ui ∈ S j1 , S j2 . Thus we can remove w j2 from X , and similarly each vertex
of (X ∩ V2)\{w j1} since X\((X ∩ V2)\{w j1}) is a 2-club of G and each vertex of
(X ∩ V2)\{w j1} is covered by the 2-club N [z1] of C. Hence X contains exactly one
vertex of V2\{z2}. By repeating this procedure, we obtain a set C′ of 2-clubs of G
that, as C, covers U , such that (1) each 2-club of C′ is a subset of N [w j1], for some
w j1 ∈ V2, (2) |C′| ≤ |C|. Indeed, notice that by construction C′ contains at most one
2-club for each 2-club of C; furthermore, note that if a 2-club of C′ does not contain
vertices w j ∈ V2, with 1 ≤ j ≤ m, it follows that it can cover at most one vertex vi ,
with 1 ≤ i ≤ n, thus we can replace this 2-club with a 2-club N [w j ], with 1 ≤ j ≤ m,
such that ui ∈ S j .

Now, starting from C′, we can define a solutionS ′ ofMinimumSet Cover consisting
of the following sets:

{S j : w j belongs to a 2-club of C′\{N [z1]}, 1 ≤ j ≤ m}.

Since each vertex vi , 1 ≤ i ≤ n, is covered by some 2-club in C′\{N [z1]} containing
exactly one vertex w j ∈ V2, it follows that S ′ covers every element in U . Finally, S ′
contains at most h − 1 sets. 
�

From Claim 9.1, Claim 9.2 and from the W[2]-hardness of Minimum Set Cover
[39] when parameterized by h, we can conclude that Min 2-Club Cover is W[2]-hard
on bipartite graphs. 
�

As a consequence of Claim 9.1, Claim 9.2 we can prove also a bound on the
approximation of Min 2-Club Cover on bipartite graphs.

Corollary 10 Min 2-Club Cover is not approximable within factor �(log(|V |)) on
bipartite graphs unless P = N P.

Proof It follows from Claim 9.1 and Claim 9.2 that the reduction described is also
an approximation preserving reduction [3]. Since Minimum Set Cover is not approx-
imable within factor �(log n) , even when n and m are polynomially related [33, 37],
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unless P = N P , it follows that Min 2-Club Cover is not approximable within factor
�(log n). By definition of graph G = (V , E), V = V1 � V2, where |V1| = n + 1 and
|V2| = m + 1, thus |V1| + |V2| = m + n + 2. Since n and m are polynomially related,
it follows thatMin 2-Club Cover is not approximable within factor �(log |V |), unless
P = NP. 
�

6 An FPT Algorithm for Min 2-Club Cover on Graphs of Bounded
Treewidth

In this sectionwe show thatMin 2-Club Cover is fixedparameter tractablewhenparam-
eterized by the treewidth δ of the input graph G.

Let us note that the graph property of “being a 2-club” is expressible in
Monadic Second Order logic (MSO) [41]. If it was possible to also express the
Min 2-Club Cover problem in MSO, it would be fixed-parameter tractable in δ by
Courcelle’s theorem [10]. However, this seems difficult to achieve, since the number
of 2-clubs in an optimal cover could be close to n. This makes it difficult to express
in an MSO formula of bounded size, since the latter would need to specify that the
property of “being a 2-club” applies to �(n) subsets of vertices. We therefore present
a tree decomposition dynamic programming algorithm.

First, we present the algorithm, then we prove its correctness.

6.1 A Dynamic Programming Algorithm

Fromnowon,wewill assume thatwe are given a nice tree decomposition T = (B, EB)

of G (see Definition 2). We will further assume that the width of T is δ, so that every
bag Bi ∈ B has at most δ+1 vertices. We start by introducing some definitions related
to T = (B, EB). We denote by Ti , with 1 ≤ i ≤ l, the subtree of T rooted at Bi , and
we denote by V (Ti ) the vertices contained in at least one bag of Ti .

Given a 2-club X of G such that X ∩ V (Ti ) �= ∅, with 1 ≤ i ≤ l, X ∩ T (Vi ) is
called a partial 2-club. Notice that all the vertices of a partial 2-club have distance
at most 2 in G[X ] but not necessarily in G[X ∩ V (Ti )]. We prove now a property of
partial 2-clubs.

Lemma 11 Given a partial 2-club X, of V (Ti ), with 1 ≤ i ≤ l, then two vertices
u, v ∈ X ∩ (V (Ti )\Bi ) have distance at most 2 in G[X ∩ V (Ti )].
Proof Consider vertices u, v ∈ X ∩ (V (Ti )\Bi ). Since u, v ∈ V (Ti )\Bi , the third
property of a nice tree decomposition implies that N (u) ⊆ V (Ti ) and N (v) ⊆ V (Ti ).
Since u, v in a 2-club of G, then N (u) ∪ N (v) ⊆ V (Ti ), thus concluding the proof. 
�

As a consequence of Lemma 11, it follows that if X ⊆ V (Ti ) does not contain
vertices of Bi , it is indeed a 2-club of G[V (Ti )].

In order to bound the information we store in our dynamic programming tables, we
will need the notion of a succinct partial 2-club.

Definition 12 Let Bi be a bag of T . A succinct partial 2-club at Bi is an object P that
defines the following three components:
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– P[Bi ] is a subset of Bi ;
– given u, v ∈ P[Bi ], P[u, v] is a value in {0, 1, 2,+∞};
– P[out] is a subset of 2P[Bi ], the powerset of P[Bi ].
Roughly speaking, the goal of a succinct partial 2-club is to capture all the infor-

mation of a partial 2-club, but without storing the actual vertices of V (Ti )\Bi . The
set P[Bi ] represents the subset of Bi in the partial 2-club, P[u, v] represents dis-
tances between Bi vertices in the partial 2-club, and P[out] represents all possible
neighborhoods of vertices of V (Ti )\Bi in Bi (see below).

More concretely, we present the following definition.

Definition 13 Consider a solution S of Min 2-Club Cover on G and a 2-club X of S.
For a given bag Bi , let PX be a succinct partial 2-club at Bi . We say that PX describes
X if all of the following holds:

– PX [Bi ] = X ∩ Bi ;
– given u, v ∈ X ∩ Bi ,

PX [u, v] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if u = v

1 if dG[X∩V (Ti )](u, v) = 1

2 if dG[X∩V (Ti )](u, v) = 2

+∞ otherwise

– Z ∈ PX [out] if and only if there is a vertex z ∈ X ∩ (V (Ti )\Bi ) such that
N (z) ∩ PX [Bi ] = Z .

In other words, Z ∈ PX [out]whenever there is some vertex v whose neighborhood
in X ∩ Bi is precisely Z .

Two succinct partial 2-clubs at Bi , say P and Q, are equal if P[Bi ] = Q[Bi ],
P[u, v] = Q[u, v] for all u, v ∈ P[Bi ] and P[out] = Q[out]. We will have to guess
the succinct partial 2-clubs of a solution, and the following bound on the number of
succinct partial 2-clubs will be useful.

Lemma 14 Let Bi be a bag of T . Then there are at most 24·2
δ+1

distinct succinct partial
2-clubs at Bi .

Proof Let P be a succinct partial 2-club at Bi . There are 2δ+1 possible values for
P[Bi ]. For u, v ∈ P[Bi ], there are 4 possible values for P[u, v], and there are at most
(δ + 1)2 pairs on which P[u, v] is defined, and so there are at most 4(δ+1)2 ways to
define the set of P[u, v] entries. The number of distinct subsets in P[out] is 2δ+1,
and each subset can be present or not. Thus there are at most 22

δ+1
ways to define the

P[out] entries.
Combining the possibilities, the number of distinct succinct partial 2-clubs is

bounded by 2δ+14(δ+1)222
δ+1 ≤ 24·2δ+1

. 
�
Our algorithm is somewhat technical, so we discuss the main intuition before delv-

ing into the details. For each subtree Ti , we want to know if it is possible to cover
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V (Ti )with h partial 2-clubs, with 1 ≤ h ≤ n (since n is an upper bound on the number
of required partial 2-clubs). For technical reasons, we will allow not covering some Bi
vertices yet, and rather ask if Ai ∪ (V (Ti )\Bi ) can be covered with h partial 2-clubs,
where we ask this question for every Ai ⊆ Bi .

We distinguish two types of partial 2-clubs: those that are complete, in the sense
that they are actually 2-clubs and are part of a global solution, and those that are
incomplete, in the sense that they still need vertices from V \V (Ti ) in a global solution
(the notion of complete and incomplete 2-clubs is merely conceptual and not used in
the upcoming formal framework).

For each bag Bi , we must store information on the incomplete partial 2-clubs for
the parent of Bi . They will be completed as we go up the tree decomposition. We
do not need to store the complete 2-clubs, as nothing needs to be added to them.
Actually, it suffices to store only the incomplete partial 2-clubs that have vertices in
V (Ti )\Bi . The information that turns out to be necessary and sufficient for such an
incomplete partial 2-club X is all contained in its succinct representation PX . These
will tell us whether we can add a new vertex of G in an introduce vertex of the given
tree decomposition, or if we can merge two incomplete 2-clubs in a join vertex of the
given tree decomposition.

Obviously, the partial 2-clubs, complete or incomplete, of an optimal solution are
unknown, sowemake a guess by storing every possible combination of succinct partial
2-clubs at each bag Bi . One important difficulty is that in a 2-club cover S of G, there
may be many 2-clubs of S whose succinct representations at Bi are equal. Therefore,
there seems to be no upper bound on the number of partial, incomplete 2-clubs we
need to store for the upper levels of the tree decomposition. However, in order to attain
an FPT algorithm, we need to limit this number by a function of δ. The following is a
first step towards achieving this.

Lemma 15 Let S be an optimal solution of Min 2-Club Cover on instance G and let
Bi , 1 ≤ i ≤ l, be a bag of T . Then there are at most δ + 1 2-clubs of S that have
vertices in both V (Ti )\Bi and V \V (Ti ).

Proof Let Z ⊆ S be the subset of 2-clubs such that Z ∈ Z if and only if Z ∩
(V (Ti )\Bi ) �= ∅ and Z\V (Ti ) �= ∅. Let Z ∈ Z . Then for any u ∈ Z\V (Ti ), u must
have a neighbor in Bi , as otherwise u could not be at distance 2 from a vertex in
V (Ti )\Bi . Similarly, any vertex v ∈ V (Ti )\Bi must have a neighbor in Bi . Therefore,
{{u} ∪ N (u) : u ∈ Bi } is a set of 2-clubs that covers the same vertices as the 2-clubs
of Z that have neighbors in V (Ti )\Bi . By the optimality of S, we may thus assume
that Z has at most δ + 1 such 2-clubs. 
�

Thanks to Lemma 15, we have a bound of δ+1 on the number of partial 2-clubs that
intersect with both the lower and upper levels of a bag Bi in the tree decomposition.

Note that the above does not consider the number of partial, incomplete 2-clubs
that contain only vertices in Bi and V \V (Ti ) (and nothing from V (Ti )\Bi ). There are
examples in which this number is not bounded by a function of only δ. However, we
will not have to store those.

We now introduce the main definition that will be used to formalize the above
intuitions and compute an optimal set of 2-clubs along the tree decomposition.
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Fig. 4 The main components behind Definition 16. C[P, Ai , h] = 1 only when a set S as shown exists

Definition 16 Let P = {P1, . . . , Pt } be a multi-set of succinct partial 2-clubs at Bi ,
and let Ai ⊆ Bi . Define a function C[P, Ai , h] in the range {0, 1} that takes value 1
if and only if there exists a multi-set S = {S1, . . . , Sh} of h ≥ t partial 2-clubs, some
of which are possibly empty, such that all the following conditions are satisfied:

1. for any j with 1 ≤ j ≤ t , Pj describes S j ;
2. for any j with 1 ≤ j ≤ t , S j ∩ (V (Ti )\Bi ) �= ∅;
3. St+1, . . . , Sh are 2-clubs of G;
4. Ai ∪ (V (Ti )\Bi ) ⊆ S1 ∪ S2 ∪ . . . ∪ Sh .

Definition 16 is crucial for our purposes. In our treewidth-based dynamic program-
ming table, we will store the succinct partial 2-clubs that satisfy all properties of the
definition, as these contain exactly the information needed to compute the minimum
2-club cover. Figure 4 illustrates the components of the definition. In what follows,
we will refer to the i-th condition of the definition, where i ∈ {1, 2, 3, 4}, as Def-
inition 16.i . Intuitively speaking, Definitions 16.1 and 16.2 say that P contains the
information on the incomplete partial 2-clubs of a solution that have vertices below
and above Bi . Definition 16.3 says that only the first t partial 2-clubs are incomplete,
and the others are 2-clubs that do not need additional vertices. Definition 16.4 says
that S must cover V (Ti )\Bi , plus the Ai subset. Note that this set Bi\Ai of uncovered
leaves, we assume that it will be covered later (this is needed for technical reasons
regarding join vertices).

The entries of P represent incomplete partial 2-clubs that contain vertices in both
V (Ti )\Bi and V (G)\V (Ti ). As a consequence of Lemma 15, later on we will be able
to limit |P| to δ + 1.

Now, we present a property of the bag at the root of the tree decomposition.

Lemma 17 Let BR be the bag at the root of the tree decomposition, then there exists
a set of h 2-clubs (non-partial) that covers V if and only if C[∅, BR, h] = 1.

Proof Suppose that C[∅, BR, h] = 1. Then since t = 0, Definition 16.3 ensures
that there are h 2-clubs S1, . . . , Sh of G that, by Definition 16.4, cover all of
BR ∪ (V (TR)\BR) = V (TR) = V (G) are covered (since here Ai = BR). Conversely,
if there exists a set of h 2-clubs S1, . . . , Sh that cover V (G), then Definition 16.1 and
Definition 16.2 are vacuously satisfied, and it is easy to verify that the cover satisfies
the remaining two elements of Definition 16, and so C[∅, BR, h] = 1. 
�

Next, we describe the recurrence to compute C[P, Ai , h], with three cases depend-
ing on whether the bag Bi is a leaf, an introduce vertex, a forget vertex or a join
vertex.
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6.1.1 Leaf Case

When Bi is a leaf of the tree decomposition and Bi = {u}, we put:
– C[∅,∅, h] = 1 for any h with 0 ≤ h ≤ n since there is nothing to cover, and we
can use h empty partial 2-clubs to do so;

– C[∅, {u}, h] = 1 for any h with 1 ≤ h ≤ n since we can cover u with the complete
2-club {u}, and have h − 1 empty 2-clubs;

– C[P, Ai , h] = 0 if none of the above conditions are met. In particular, P must
be empty since there cannot exist a partial 2-club with elements in V (Ti )\Bi , as
required by Definition 16.4.

6.1.2 Introduce Vertex

Let Bi be an introduce vertex with child Bj , where Bi = Bj ∪ {u}. Figure 5 shows
how an entry C[Q, A j , h′] at Bj can be used to determine whether C[P, Ai , h] = 1.

Put C[P, Ai , h] = 1 if and only if there exists an integer h′, a multi-set of succinct
partial 2-clubs Q at Bj , and A j ⊆ Bj such that C[Q, A j , h′] = 1, and if there exists
an ordering of the elements ofP andQ so thatP = {P1, . . . , Pt },Q = {Q1, . . . , Qs}
with s ≥ t , and there exists an integer b ≤ t , such that all of the following holds:

• (entries 1 to b at Bj remained the same)
for each k with 1 ≤ k ≤ b, Pk and Qk are equal.

• (we add u to entries b + 1 to t)
for each k with b + 1 ≤ k ≤ t ,

– Pk[Bi ] = Qk[Bj ] ∪ {u};
– for each v,w ∈ Qk[Bj ], let d = 2 if {u, v}, {u, w} ∈ E(G), and d = ∞
otherwise. Then Pk[v,w] = min(d, Qk[v,w]);

– for each v ∈ Qk[Bj ], let d be the distance between u and v in G[Pk[Bi ]] if
this distance is at most 2, or let d = ∞ otherwise. Then Pk[u, v] = d;

– Pk[out] = Qk[out]. Moreover, for each Z ∈ Qk[out], u has at least one
neighbor in Z (otherwise, u cannot be at distance 2 from the vertices with
neighborhood Z ).

• (we added u to entries t + 1 to s, they are now complete)
for each k with t + 1, . . . , s, then adding u to Qk makes it a complete 2-club.
That is, for each v,w ∈ Qk[Bj ], either Qk[v,w] ≤ 2 or {u, v}, {u, w} ∈ E(G);
for each v ∈ Qk[Bj ], dG[Pk [Bi ]](v, u) ≤ 2?; and for each Z ∈ Qk[out], u has a
neighbor in Z .

Fig. 5 Idea behind introduce vertices
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• (all Ai vertices are covered)
there exists a set of 2-clubs R1, . . . , Rp in G[Bi ], each containing u, such that
Ai ⊆ A j ∪ (

⋃t
k=1 Pk[Bi ]) ∪ (

⋃s
k=t+1(Qk[Bj ] ∪ {u})) ∪ (

⋃p
k=1 Rk);

• h = h′ + p, where p is defined in the previous condition.

6.1.3 Forget Vertex

Let Bi be a forget vertex and let Bj be the only child of Bi , with Bi = Bj\{u} (Fig. 6).
PutC[P, Ai , h] = 1 if and only if there exists a multi-set of succinct partial 2-clubs

Q at Bj such that C[Q, A j , h′] = 1, and if there exists an ordering of the elements of
P andQ so that P = {P1, . . . , Pt },Q = {Q1, . . . , Qs} with s ≤ t such that all of the
following holds:

• for each k with 1 ≤ k ≤ s, if u /∈ Q[Bj ], then Pk and Qk are equal;
• for each k with 1 ≤ k ≤ s, if u ∈ Q[Bj ], then

– Pk[Bi ] = Qk[Bj ]\{u};
– for each v ∈ Pk[Bi ], Qk[u, v] ≤ 2 (if not, u and v can never have distance 2
or less, even if we add new vertices);

– for each v,w ∈ Pk[Bi ], we have Pk[v,w] = Qk[v,w];
– Let Qk[out] = {Z1, . . . , Zl}. Then Pk[out] = {Z1\{u}, . . . , Zl\{u}}∪{N (u)∩

Pk[Bi ]}.
• for each k with s + 1 ≤ k ≤ t , Pk[Bi ] ∪ {u} is a partial 2-club, and Pk describes

Pk[Bi ] ∪ {u};
• if s = t , then A j = Ai ∪{u}. Otherwise, A j = Ai\(Ps+1[Bi ]∪ . . .∪Pt [Bi ]∪{u});
• h = h′ + (t − s).

6.1.4 Join Vertex

Let Bi be a join vertex and let Bl , Br the left and right child, respectively, of Bi (Fig.
7). Recall that Bi = Bl = Br .

PutC[P, Ai , h] = 1 if and only if there exist integers hl , hr , a set of succinct partial
2-clubsL at Bl , a set of succinct partial 2-clubsR at Br , and subsets Al , Ar ⊆ Bi such
thatC[L, Al , hl ] = C[R, Ar , hr ] = 1, and there exists an orderingP = {P1, . . . , Pt },
L = {L1, . . . , Ls} and R = {R1, . . . , Rq}, and integers a, b with 0 ≤ a ≤ b ≤
min(s, q) such that:

• t = q − a + s − b;

Fig. 6 Idea behind forget vertices
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Fig. 7 Idea behind join vertices

• for each k with 1 ≤ k ≤ a, Lk and Rk can be merged to form a complete 2-club.
That is, the following holds:

– Lk[Bl ] = Rk[Br ];
– for each u, v ∈ Lk[Bl ] = Rk[Br ], we have min(Lk[u, v], Rk[u, v]) ≤ 2;
– for each Zl ∈ Lk[out] and Zr ∈ Rk[out], we must have Zl ∩ Zr �= ∅ (to ensure
that the vertices with neighborhoods Zl and Zr can be put in the same 2-club).

• for each k with a + 1 ≤ k ≤ b, Lk and Rk are merged into an incomplete 2-club.
That is, the following holds:

– Pk−a[Bi ] = Lk[Bl ] = Rk[Br ];
– for each u, v ∈ Pk−a[Bi ], we have Pk−a[u, v] = min(Lk[u, v], Rk[u, v]);
– Pk−a[out] = Lk[out] ∪ Rk[out]. Moreover, for each Zl ∈ Lk[out] and Zr ∈

Rk[out], we must have Zl ∩ Zr �= ∅ (as in the previous case, to ensure that the
vertices with neighborhoods Zl and Zr can be put in the same 2-club).

• (the other entries are copied into P)
for each k with b + 1 ≤ k ≤ s, Pk−a and Lk are equal, and for each k with
b + 1 ≤ k ≤ q, Pk−a+(s−b) and Rk are equal.

• h = hl + hr − b.
• Ai = Al ∪ Ar .

6.2 Correctness Proof

Next, we prove the correctness of the dynamic programming algorithm described in
Sect. 6.1

Lemma 18 Consider a nice tree decomposition (T , B) of a graph G = (V , E)

instance of Min 2-Club Cover, and let Bi be a vertex of T , with 1 ≤ i ≤ l. Given
a set P of succinct partial 2-clubs at Bi , Ai ⊆ Bi and h ∈ N, then C[P, Ai , h] = 1
if and only if there exists a set of h partial 2-clubs S such that Definition 16 holds for
S,P, Ai and h.

Proof We prove the lemma by induction on the structure of T .

As a base is, suppose that Bi is a leaf, with Bi = {u}. The correctness easily follows
from the description of the base case given in the recurrence.
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We now consider the inductive step. Given an internal vertex Bi of the tree decom-
position T , we assume that the lemma holds for each child of Bi and we prove that
the lemma holds for Bi .
(�⇒) Assume that C[P, Ai , h] = 1. We show that there exists a collection S of h
partial 2-clubs such that satisfies Definition 16.

We distinguish three cases, depending on the fact that Bi is an introduce vertex, a
forget vertex or a join vertex.

6.2.1 Introduce Vertex

Assume that Bi is an introduce vertex, having child Bj , with u ∈ Bi\Bj . By the
definition of the recurrence, there exist a set of succinct partial 2-clubs Q at Bj ,
A j ⊆ Bj and h′ such that C[Q, A j , h′] = 1. Moreover, we may apply a labeling
P = {P1, . . . , Pt },Q = {Q1, . . . , Qs}, and there exists an integer b such that the
recurrence is satisfied. By induction, there exists a set S ′ = {S′

1, . . . , S
′
h′ } of h′ =

h − p partial 2-clubs of V (Tj ), where p is defined as in the recurrence, that satisfies
Definition 16. Now, compute a set S = {S1, . . . , Sh} of h partial 2-clubs of V (Ti )
starting from S ′ as follows. We show that Definition 16.1 holds while presenting the
construction of S. Consider an integer k and the following cases:
Case 1 1 ≤ k ≤ b.
Put Sk = S′

k . By the induction hypothesis, Qk describes S′
k . By the recurrence, Pk is

equal to Qk , so it correctly describes Sk , so Definition 16.1 is satisfied.
Case 2 b + 1 ≤ k ≤ t .
Put Sk = S′

k ∪ {u}. Let us first argue that Sk is indeed a partial 2-club. We only need
to ensure that u is at distance at most 2 from vertices below Bi . Let z ∈ S′

k\Bj , and
let Z be the neighbors of z in Bi . By induction, Z ∈ Qk[out] since Qk describes S′

k .
Moreover, the recurrence requires that u has a neighbor in Z , ensuring that u and z
have distance at most 2 in Sk . Thus under the assumption that S′

k is a partial 2-club,
Sk is also a partial 2-club.

We now argue that Pk describes Sk . By induction, Qk[Bj ] = S′
k ∩ Bj . By the

recurrence, Pk[Bi ] = Qk[Bj ] ∪ {u} = Sk ∩ Bi .
Let v,w ∈ Qk[Bj ]. If the shortest path between v and w in Sk has length

at most 2, then this path is either the same as in S′
k , or it uses u. Hence putting

Pk[v,w] = min(d, Qk[v,w]) as in the recurrence is correct. Now let v ∈ Qk[Bj ].
By the properties of a tree decomposition, u has no neighbor in V (Ti )\Bi , so if
the distance between u, v in Sk is at most 2, the shortest path only uses vertices of
Sk ∩ Bi = Pk[Bi ]. Thus putting Pk[u, v] = d as in the recurrence is correct. Thus the
Pk[v,w] and Pk[u, v] entries correspond to the distances between Bi elements in Sk .

Now let Z ∈ Pk[out]. By the recurrence, Z ∈ Qk[out] as well. Having Z ∈ Pk[out]
is therefore correct since any z ∈ V (Ti )\Bi has the same neighborhood in either
S′
k ∩ Bj or Sk ∩ Bi . Consider some Z /∈ Pk[out]. If u ∈ Z , this is appropriate since no

z ∈ V (Ti )\Bi has u as a neighbor. Otherwise, Z /∈ Qk[out] as well, which is correct
by induction. It follows that Pk describes Sk , as desired.
Case 3 t + 1 ≤ k ≤ s.
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In this case, put S[t + k−b] = S′
k ∪{u}. Since this partial 2-club does not correspond

to any entry of P , it must be an actual 2-club to satisfy Definition 16.3. It is easy to
verify from the recurrence that S′

k ∪ {u} is indeed a 2-club.
We have shown that Definition 16.1 is satisfied with P and S so far.

To finish the construction of S, add to S all of S′
s+1, . . . , S

′
h′ , which are 2-clubs by

induction. Also add R1, . . . , Rp to S as they are described in the recurrence. Note that
these p 2-clubs ar the only ones in S not in S ′, so |S| = h′ + p, as desired.

Since each entry Sk , 1 ≤ k ≤ t , is either S′
k or S

′
k ∪ {u}, it follows by induction that

Definition 16.2 holds (i.e. each Sk has vertices in V (Ti )\Bi ). Definition 16.3 holds
because after St , we only add 2-clubs (either those resulting from S′

b+1, . . . , S
′
s by

adding u, those in S′
s+1, . . . , S

′
h′ that were already 2-clubs, or R1, . . . , Rp which are

2-clubs).
Finally, we must show that Definition 16.4 holds. This is because S ′ covers A j by

induction, and if any element of Ai\A j is not in S1, . . . , Ss , then by the recurrence,
such an element will be covered by some 2-club in R1, . . . , Rp.

6.2.2 Forget Vertex

Assume that Bi is a forget vertex,with child Bj , and u ∈ Bj\Bi . By the definition of the
recurrence, there exist a set of succinct partial 2-clubsQ satisfying C[Q, Ai , h′] = 1.
Moreover, we may apply a labeling P = {P1, . . . , Pt },Q = {Q1, . . . , Qs} such that
the recurrence is satisfied.

By the induction hypothesis, there exists a set S ′ = {S′
1, . . . , S

′
h′ } of h′ partial

2-clubs of V (Tj ) that satisfies Definition 16 with respect to Q.
We construct the set S = {S1, . . . , Sh} of partial 2-clubs at Bi as follows:

(1) for k with 1 ≤ k ≤ s, put Sk = S′
k ;

(2) for k with s + 1 ≤ k ≤ t , put Sk = Pk[Bi ] ∪ {u};
(3) for k with t + 1 ≤ k ≤ h′, append S′

k to S (i.e. put S′
k among St+1, . . . , Sh).

We show that S satisfies Definition 16 with respect to P .
To see thatDefinition 16.1 holds, consider k with 1 ≤ k ≤ s. If u /∈ Qk[Bj ], then Qk

describes S′
k = Sk and Pk describes Sk since it is made equal to Qk . If u ∈ Qk[Bj ],

then Qk describes S′
k = Sk . In that case, Pk[Bi ] = Qk[Bj ]\{u} = Sk ∩ Bi . Let

v,w ∈ Pk[Bi ]. Since S′
k = Sk , putting Pk[v,w] = Qk[v,w] = dG[S′

k ](v,w) correctly
describes the v,w distance. Next, consider z ∈ Sk\Bi . If z �= u, then by induction
N (z) ∩ Qk[Bj ] is in Qk[out], and it follows from the recurrence that N (z) ∩ Pk[Bi ]
is in Pk[out]. If z = u, then N (u) ∩ Pk[Bi ] is in Pk[out] by the recurrence. Therefore,
P1, . . . , Ps describes the first s entries of S. As for k with s+1 ≤ k ≤ t , Pk describes
Sk since we explicitly put Sk = Pk[Bi ]∪ {u}. Thus Definition 16.1 holds for P and S.

Consider Definition 16.2. For k with 1 ≤ k ≤ s, by induction S′
k = Sk has vertices

in V (Tj )\Bi , and thus in V (Ti )\Bi . For k with s + 1 ≤ k ≤ t , Sk = Pk[Bi ] ∪ {u},
and thus Sk has vertices in V (Ti )\Bi (since u /∈ Bi and Pk[Bi ] �= ∅). Therefore,
Definition 16.2 holds for P and S.

The elements St+1, . . . , Sh of S are obtained from S′
t+1, . . . , Sh′ , which are 2-clubs

by induction. Therefore, Definition 16.3 holds for P and S.
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Finally, consider Definition 16.4. If A j = Ai ∪ {u}, then by assumption S ′ covers
Ai ∪ {u} ∪ (V (Tj )\Bj ), from which it follows that S covers Ai ∪ (V (Ti )\Bi ). If
A j = Ai\(Ps+1[Bi ]∪. . .∪Pt [Bi ]∪{u}), thenS ′ covers V (Tj )∪A j , and Ss+1, . . . , St
contain the remaining vertices (in particular, u). Therefore, Definition 16.4 is satisfied.

We deduce that there exists a set of partial 2-clubs S such that Definition 16 is
satisfied with respect to P and Ai .

6.2.3 Join Vertex

Assume that Bi is a join vertex, with children Bl and Br , where Bi = Bl = Br .
Assume that

C[L, Al , hl ] = C[R, Ar , hr ] = 1,

for some set of succinct partial 2-clubs at Bl and Br , respectively, subsets Al , Ar ⊆
Bi = Bl = Br , and integers hl , hr , defined as in the recurrence. These exist, since
C[P, Ai , h] = 1. Let us write P = {P1, . . . , Pt },L = {L1, . . . , Ls} and R =
{R1, . . . , Rq}. Let a and b be integers defined as in the recurrence.

By the induction hypothesis, there exists Sl (Sr , respectively) of hl (hr , respec-
tively) partial 2-clubs that covers vertices in Al ∪ (Tl\Bl) (in Ar ∪ (Tr\Br ),
respectively) and that satisfies Definition 16. Let us write Sl = {Sl1, . . . , Slhl } and

Sr = {Sr1, . . . , Srhr }, where the first s elements of Sl are in correspondence with L,
and the first q elements of Sr in correspondence with R. Now, starting from Sl and
Sr construct a set S = {S1, . . . , Sh} of h = hl + hr − b partial 2-clubs as follows:

– for k with a + 1 ≤ k ≤ b, put Sk−a = Slk ∪ Srk ;
We argue now that Pk−a describes Sk−a to satisfy Definition 16.1. By the recur-
rence and by induction, Pk−a = Rk[Br ] = Lk[Bl ] = Sll ∩ Bl = Srk ∩ Br =
Sk−a ∩ Bi , as desired. Consider distinct u, v ∈ Pk−a[Bi ]. If {u, v} ∈ E(G), then
they have distance 1 in Slk and, by induction, Lk[u, v] = 1. Clearly, Pk−a =
min(Lk[u, v], Rk[u, v]) = 1 = dG[Sk−a ](u, v). If dG[Sk−a ](u, v) = 2, then u, v

share a common neighbor in Slk or S
r
k , and Pk−a = min(Lk[u, v], Rk[u, v]) = 2

describes Sk−a . If dG[Sk−a ](u, v) > 2, then min(Lk[u, v], Rk[u, v]) will be ∞,
which is correct. Finally, let u ∈ Sk−a\Bi . Then either u ∈ Slk\Bl or u ∈ Srk\Br .
In either case, if Z is the neighborhood of u in Bi , then Z ∈ Lk[out] or Z ∈ Rk[out]
since Bi = Bl = Br . By the recurrence, Z ∈ Lk[out] ∪ Rk[out] = Pk−a[out].
Thus, Pk−a describes Sk−a .
Moreover, Sk−a satisfies Definition 16.2 because by assumption, Slk and Srk satisfy
Definition 16.2 (i.e. they have vertices in V (Tl)\Bl and V (Tr )\Br , respectively.
We must also show that Sk−a is a partial 2-club. By assumption, Sl

k and Sr
k are

partial 2-clubs, and so each u, v ∈ Slk\V (Tl) are at distance at most 2 in Slk and
each u, v ∈ Srk\V (Tr ) are at distance at most 2 in Srk . Since Sk−a = Slk ∪ Srk ,
these u, v distances cannot increase, and so their distance is also at most 2 in Sk−a .
Moreover, each u ∈ Slk\V (Tl) and each u ∈ Srk\V (Tr ) is at distance at most 2
with each v ∈ Sk−a ∩ Bi . Consider v ∈ Sl

k\V (Tl) and w ∈ Sr
k\V (Tr ), and let Zl
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and Zr be their neighborhoods in Pk−a[Bi ], respectively. The recurrence requires
Zl ∩ Zr �= ∅, and so v and w have distance at most 2 in Sk−a .

– for k with b + 1 ≤ k ≤ s, put Sk−a = Slk . Hence Sk−a is a partial 2-club and,
since by induction Lk describes Slk and Pk−a is equal to Lk in the recurrence, Pk−a

describes Sk−a , satisfyingDefinition 16.1.Moreover, Sk−a satisfiesDefinition 16.2
since Slk does, by induction.

– for k with b + 1 ≤ k ≤ q, put Sk−a+(s−b) = Srk . Hence Sk−a+(s−b) is a partial
2-club and, since by induction Rk describes Srk and Pk−a+(s−b) is equal to Rk

in the recurrence, Pk−a+(s−b) describes Sk−a+(s−b), satisfying Definition 16.1.
Moreover, Sk−a satisfies Definition 16.2 since Srk does, by induction.

– for k with 1 ≤ k ≤ a, put St+k = Slk ∪ Srk . Then St+k must be a 2-club to satisfy
Definition 16.3. One may check that the recurrence has all the conditions required
on Lk and Rk , which describe Slk and Srk , respectively, for S

l
k ∪ Srk to be a 2-club.

– for k with s + 1 ≤ k ≤ hl , add Slk , which is a 2-club, to S. Thus Definition 16.3
is satisfied.

– for k with q + 1 ≤ k ≤ hr , add Srk , which is a 2-club, to S. Thus Definition 16.3
is satisfied.

We have argued that Definition 16.1, 16.2 and 16.3 are satisfied. Summing over
the above cases, the number of partial 2-clubs in S is b − a + s − b + q − b + a +
hl − s + hr − q = hl + hr − b = hl + hr − b = h, as desired. It remains to show
that Definition 16.4 holds. We see that Ai is covered since Ai = Al ∪ Ar and, by
assumption, Sl covers Al , Sr covers Ar , and every vertex in a partial 2-club in Sl ∪Sr

is added in S.
We conclude that Definition 16 holds for S.

(⇐�)Assume that there exists a setS = {S1, . . . , Sh} of h partial 2-clubs that satisfies
Definition 16 with respect to P and Ai . We prove that C[P, Ai , h] = 1 according to
the recurrence.We distinguish three cases depending on the fact that Bi is an introduce
vertex, a forget vertex or a join vertex. Let us write P = {P1, . . . , Pt }. Since we may
relabel elements of P , we will often assume that the Pk’s are ordered conveniently for
our purposes.

6.2.4 Introduce Vertex

Assume that Bi is an introduce vertex and that Bj is the child of Bi in T , with
u ∈ Bi\Bj .

To show that C[P, Ai , h] = 1, we construct a list S ′ of h′ partial 2-clubs, a set Q
of succinct partial 2-clubs at Bj , and A j ⊆ Bj such that Definition 16 is satisfied.
If we achieve this, by induction we know that C[Q, A j , h′] = 1. We also prove that
Q, A j and h′ satisfy all the conditions of the recurrence to have C[P, Ai , h] = 1.

We assume that we have ordered S and P so that there exist integers b and s, with
b ≤ t ≤ s, satisfying:

(1) P1, . . . , Pb, and thus S1, . . . , Sb, do not contain u;
(2) Pb+1, . . . Pt , and thus Sb+1, . . . , St , contain u;
(3) St+1, . . . , Ss are 2-clubs that contain u but are not subsets of Bi ;
(4) Ss+1, . . . , Ss+p are 2-clubs that contain u and are subsets of Bi ;
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(5) Ss+p+1, . . . , Sh are 2-clubs that do not contain u.

The reader may observe that every element of P and S fits somewhere in these
cases. We define A j = Ai\({u} ∪ Ss+1 ∪ . . . ∪ Ss+p) and h′ = h − p.

We now define S ′ and Q as follows:

– for each k with 1 ≤ k ≤ b: (Sk does not contain u)
Then put S′

k = Sk , and make Qk equal to Pk . Since by assumption Pk describes
Sk , we know that Qk describes S′

k . We also know that Sk has vertices not in Bi , and
so does S′

k . Thus Definitions 16.1 and 16.2 are satisfied by Qk and Sk . Moreover,
Qk satisfies the recurrence.

– for each k with b + 1 ≤ p ≤ t : (Sk contains u)
Then put S′

k = Sk\{u}, and define Qk so that it describes S′
k in order to satisfy

Definition 16.1. Since S′
k has vertices outside Bi , Sk satisfies Definition 16.2. We

want to show that Qk satisfies the recurrence.
We have Qk[Bj ] = S′

k ∩ Bj = (Sk ∩ Bi )\{u} = Pk[Bi ]\{u} as in the recurrence.
Let v ∈ Qk[Bj ]. Since u has no neighbor in V (Ti )\Bi , the distance between u
and v in Sk could be 3 or more, or uses only vertices in Pk[Bi ], so Pk[u, v] = d
as in the recurrence is correct. Let v,w ∈ Qk[Bj ]. The distance between v and w

in Sk is either the same as in S′
k , i.e. it is Qk[v,w], or the addition of u changes

this distance, in which case we take the shortest path in G[Pk[Bi ]]. It follows that
Pk[v,w] is defined as in the recurrence.
Finally, consider Pk[out]. Since a vertex z ∈ V (Ti )\Bi has the same neighbor-
hood in either Bi or Bj , it follows that Pk[out] = Qk[out], as in the recurrence.
Therefore, Qk satisfies all the recurrence conditions.

– for each k with t + 1 ≤ k ≤ s: (Sk is a 2-club containing u but is not a subset of
Bi )
Put S′

k = Sk\{u}, and define Qk so that it describes S′
k in order to satisfy Defini-

tion 16.1. Since Sk is not a subset of Bi , it contains vertices in V (Ti )\Bi . Then so
does S′

k , and Definition 16.2 is satisfied.
Since Sk is a 2-club and k > t , it is easy to see in this case that all the conditions
in the recurrence must be satisfied.

– for each k with s + 1 ≤ k ≤ s + p: (Sk contains u and Sk ⊆ Bi )
Define {R1, . . . , Rp} = {Ss+1, . . . , Ss+p} for later reference. These do not have
any correspondent in S ′ or Q.

– for each k with s + p + 1 ≤ k ≤ h: (Sk is a 2-club not containing u)
Then append Sk to S ′.
Note that S ′ has h′ = h − p partial 2-clubs since the only 2-clubs of S without a

correspondent in S ′ are the Rk 2-clubs. For the same reason, S ′ covers A j as we have
defined it. Thus Definition 16.4 holds on Q and S ′. The above construction shows
that S ′ and Q satisfy Definitions 16.1 and 16.2. It is also clear that Definition 16.3 is
satisfied with Q and S ′. Therefore, C[Q, A j , h′] = 1.

The only requirement of the recurrence not demonstrated to hold is that concerning
Ai , which must be a subset of

Y := A j ∪
(

t⋃

k=1

Pk

)

∪
(

s⋃

k=t+1

(Qk[Bj ] ∪ {u})
)

∪
( p⋃

k=1

Rk

)
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= A j ∪
(

b⋃

k=1

Qk[Bj ]
)

∪
(

s⋃

k=b+1

Qk[Bj ] ∪ {u}
)

∪
( p⋃

k=1

Rk

)

Assume that there existsw ∈ Ai\Y . Thenw /∈ A j andw /∈ R1, . . . , Rp. Recall that
we defined A j = Ai\({u}∪R1∪. . .∪Rp). This implies thatw = u. In turn, this implies
that b = t = s (otherwise, if b < t , there would be Pb+1[Bi ] = Qb+1[Bj ] ∪ {u} in
Y , and if s > t , there would be Qt+1[Bi ] ∪ {u} in Y , thereby covering u). This also
implies that p = 0, i.e. there is no Rk 2-club, as otherwise they would cover u. Thus
the partial 2-clubs of S are S1, . . . , Sb, Ss+p+1, . . . , Sh , none of which covers w = u.
This contradicts the fact that S satisfies Definition 16.4, and thus w cannot exist. We
have thus shown that all recurrence conditions are met.

We therefore have C[Q, A j , h′] = 1. Moreover, all recurrence conditions are met,
so it sets C[P, Ai , h] to 1.

6.2.5 Forget Vertex

Assume that Bi is a forget vertex, and that Bj is the child of Bi in T , with u ∈ Bj\Bi .
Assume that the elements of S are ordered as S = {S1, . . . , Sh} so that S1, . . . , St

are described by P and St+1, . . . , Sh are 2-clubs (this ordering is possible since S
satisfies Definition 16). Also order S1, . . . , St so that S1, . . . , Ss have vertices in
V (Ti )\(Bi ∪ {u}), and Ss+1, . . . , St ⊆ Bi ∪ {u}.

Consider the set of partial 2-clubs S ′ = {S1, . . . , Ss, St+1, . . . , Sh} at Bj . Let h′ be
such that h = h′ + (t − s), noting that |S ′| = h′. Moreover, letQ = {Q1, . . . , Qs} be
the set of succinct partial 2-clubs at Bj that describe S1, . . . , Ss . Let A j = Ai ∪ {u}
if s = t and no element of S1, . . . , St contains u, and let A j = Ai\(Ss+1 ∪ . . . ∪ St )
otherwise. We argue that C[Q, A j , h′] = 1 and that the recurrence is satisfied.

We note that Q and S ′ satisfy Definition 16.1 since we just constructed Q so that
they describe S1, . . . , Sk . Definition 16.2 is satisfied byQ and S ′ since S1, . . . , Ss are
chosen to have vertices in V (Ti )\(Bi ∪ {u}) = V (Tj )\Bj . Definition 16.3 is satisfied
since St+1, . . . , Sh are 2-clubs. Finally, Definition 16.4 is satisfied: if A j = Ai ∪ {u},
then this case occurs when s = t and thus S ′ = S. In that situation, S covers Ai ∪ {u}
by Definition 16.3, and thus S ′ covers A j . Otherwise, A j = Ai\(Ss+1, . . . , St ). Since
S covers Ai ∪ V (Ti )\Bi by assumption, S ′ covers A j since S ′ = S\{Ss+1, . . . , St }.
Thus Q and S ′ satisfy Definition 16 and by induction, C[Q, A j , h′] = 1.

Let us show that the requirements of the recurrence are met to have

C[P, Ai , h] = 1.

Consider k with 1 ≤ k ≤ s. Note that Sk = S′
k . Assume that u /∈ Sk . Then Qk

and Pk describe the same partial 2-club and must be equal, as in the recurrence.
Assume instead that u ∈ Sk . Then Pk = Sk ∩ Bi = (Sk ∩ Bj )\{u} = Qk[Bj ]\{u}
as in the recurrence. For each v ∈ Pk[Bi ], it is clear that dG[Sk ](u, v) ≤ 2 by the
definition of a partial 2-club, and thus Qk[u, v] ≤ 2. For v,w ∈ Pk[Bi ], we must have
Pk[v,w] = Qk[v,w] since they both describe Sk . Consider Pk[out] and Qk[out].
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Since u ∈ Bj\Bi , it follows that if Z ∈ Pk[out], then Z ∪ {u} ∈ Qk[out] and that
N (u) ∩ Pk[Bi ] is in Pk[out] and not in Qk[out].

The value of A j is set here as in the recurrence, as well as h′. We therefore conclude
that C[P, Ai , h] = 1.

6.2.6 Join Vertex

Assume that Bi is a join vertex with children Br and Bl . Let Sl ⊆ S be the subset of
partial 2-clubs that intersect with V (Tl)\Bi or that are subsets of Bi , and let Sr ⊆ S be
the subset of partial 2-clubs that intersect with V (Tr )\Bi (note the difference between
Sl and Sr , i.e. that Sr does not have partial 2-clubs that are subsets of Bi , and that
S = Sl ∪ Sr ). Denote hl = |Sl | and hr = |Sr |.

Let b be the number of partial 2-clubs of S that are in both Sl and Sr , and let a
be the number of such partial 2-clubs that are described by some Pk ∈ P . Assume
without loss of generality that Sl = {Sl1, . . . Slhl } and Sr = {Sr1, . . . , Srhr } are labeled
so that the following holds:

(1) Slk = Srk for each 1 ≤ k ≤ b.
(2) Pk−a describes Slk = Srk for each a + 1 ≤ k ≤ b. For later reference, note that

since no entry of P describes Sl1, . . . , S
l
a and since S satisfies Definition 16.3, we

know that Sl1, . . . , S
l
a are actual 2-clubs.

(3) there is an integer s such that entries Slb+1, . . . , S
l
s are described by some Pk

entry, and Sls+1, . . . , S
l
hl
are not. Assume further that Pk−a describes Slk for each

b + 1 ≤ k ≤ s.
(4) there is an integer q such that entries Srb+1, . . . , S

r
q are described by some Pk entry,

and Srq+1, . . . , S
r
hl
are not. Assume further that Pk−a+(s−b) describes Srk for each

b + 1 ≤ k ≤ q.

Note that since Definition 16.3 holds, Sls+1, . . . , S
l
hl

, Srq+1, . . . , S
r
hr

are 2-clubs
because no entry of P describes them. Also, summing cases (2), (3), (4), we note that
t = (b − a) + (s − b) + (q − b) = q − a + s − b, as in the recurrence.

Also notice that for each Slk ∈ Sl , Slk∩V (Tl) is a partial 2-club at Bl . This is because
by the properties of a tree decomposition, vertices of (Slk ∩ V (Tl))\Bl have distance
at most 2 from each other, and distance at most 2 to vertices of Skl ∩ Bl , whether the
vertices of V (Tr )\Bi are present or not. By the same argument, for each Srk ∈ Sr ,
Srk ∩ V (Tr ) is a partial 2-club.

Define

Sl∗ = {Sl1 ∩ V (Tl), . . . , S
l
hl ∩ V (Tl)} and

Sr∗ = {Sr1 ∩ V (Tr ), . . . , S
r
hr ∩ V (Tr )}

which are respectively partial 2-clubs at Bl and Br . Our goal is to show that
C[L, Al , hl ] = C[R, Ar , hr ] = 1 for some L and R, and that all requirements
of the recurrence are met to have C[P, Ai , h] = 1. Here, Al and Ar are defined as

Al = Ai\(Srb+1 ∪ . . . ∪ Srhr )
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Ar = Ai\Al

We note that Ai = Al ∪ Ar as in the recurrence.
Now, consider L = {L1, . . . , Ls} such that Lk describes Slk ∩ V (Tl) for each

1 ≤ k ≤ s, and R = {R1, . . . , Rq} such that Rk describes Srk ∩ V (Tr ) for each
1 ≤ k ≤ q. Definition 16.1 is obviously satisfied for L and R.

Let us argue that Definition 16.2 holds for L and Sl∗, and for R and Sr∗. Let
Slk ∈ Sl with 1 ≤ k ≤ s. We must show that Slk ∩ V (Tl) has vertices in V (Tl)\Bl .
First consider k with 1 ≤ k ≤ b. Recall that Slk = Srk , as described by Point (1) of
the Joint Vertex proof. Also recall that Sr only contains partial 2-clubs that intersect
with V (Tr )\Bi , and hence Slk ∩ (V (Tr )\Bi ) �= ∅. Moreover, Sl only contains partial
2-clubs that either intersect with V (Tl)\Bi , or that are subsets of Bi . We just argued
that Slk is not a subset of Bi , so it must be the case that Slk intersects with V (Tl)\Bi .
It follows that Slk ∩ V (Tl) also intersects with V (Tl)\Bi , as desired. Also note that Srk
intersects with V (Tr )\Bi , by the definition of Sr .

Now, consider Slk ∈ Sk , with b + 1 ≤ k ≤ s. As described by (3) above, Slk is
described by Pk−a . Since S satisfies Definition 16.2, Slk has vertices in V (Ti )\Bi .
Moreover, when b + 1 ≤ k ≤ s, Slk is not in Sr , so it has no vertices in V (Tr )\Br .
It follows that Slk ∩ V (Tl) has vertices in V (Tl)\Bl . For k with b + 1 ≤ k ≤ q, we
may argue in the same manner that Srk ∩ V (Tr ) has vertices in V (Tr )\Br . Therefore,
Definition 16.2 holds for L and Sl∗, and for R and Sr∗.

We next consider Definition 16.3. We have already argued that Sls+1, . . . , S
l
hl

are

2-clubs, but we must argue that Sls+1 ∩ V (Tl), . . . , Slhl ∩ V (Tl) are also 2-clubs. This

follows from the fact that only Sl1, . . . , S
l
b have vertices in V (Tr )\Bi , and thus that

Slk ∩V (Tl) = Slk for each s+1 ≤ k ≤ hl . Therefore,L and Sl∗ satisfy Definition 16.3.
by the exact same reasoning, R and Sr∗ satisfy Definition 16.3.

We now turn toDefinition 16.4. Since by assumptionS covers V (Ti )\Bi ,Sl∗ covers
V (Tl)\Bl . Now assume that Sl∗ does not cover some u ∈ Al . Since S covers Ai , S
contains a partial 2-club S′ with u ∈ S′. Because Slk ∩ V (Tl) ∩ Bi = Slk ∩ Bi for each
Slk ∈ Sl , S′ /∈ Sl as otherwise u would be covered. Thus, S′ ∈ Sr\Sl , which is equal
to Srb+1∪ . . .∪Srhr . But then note that u ∈ Al = Ai\{Srb+1∪ . . .∪Srhr }, a contradiction.
Hence, Definition 16.4 is satisfied by L and Sl∗. Consider nowR and Sr∗. We know
that Sr∗ covers V (Tr )\Bi . Let u ∈ Ar . Then u ∈ Ai\Al = Ai ∩ (Srb+1 ∪ . . . ∪ Srhr ).
Since Srk ∩ V (Tr ) ∈ Sr∗ for each 1 ≤ k ≤ hr , it follows that Sr∗ covers u. Therefore,
Definition 16.4 is also satisfied byR and Sr∗.

We have thus shown that Definition 16 is satisfied by L and Sl∗, and by R and
Sr∗. It follows that C[L, Al , hl ] = C[R, Ar , hr ] = 1. It remains to show that all
requirements of the recurrence are met to have C[P, Ai , h] = 1.

We have already argued that t = (s − b) + (q − b) + (b − a). For each k with
1 ≤ k ≤ a, Slk = Srk = (Slk ∩ V (Tl)) ∪ (Srk ∩ V (Tr )) is a 2-club. In that case,
Lk[Bl ] = Rk[Bl ], as desired. Since merging the partial 2-clubs described by Lk and
Rk forms a 2-club, it is not hard to see that the remaining elements of the recurrence
must hold, so that all distances are at most 2 after merging.
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For each k with a+1 ≤ k ≤ b, Slk = Srk = (Slk ∩V (Tl))∪ (Srk ∩V (Tr )) is a partial
2-club which, by construction, is described by Pk−a . Thus Pk−a[Bi ] = Lk[Bl ] =
Rk[Br ]. Moreover, since merging the partial 2-clubs described by Lk and Rk forms a
partial 2-club, it is not hard to see that the remaining elements of the recurrence must
hold (in particular, Pk−a[u, v] = min(Lk[u, v], Rk[u, v]) follows from the properties
of tree decomposition.

For each k with b + 1 ≤ k ≤ s, Pk−a and Lk describe the same partial 2-club Slk ,
and for each k with b + 1 ≤ k ≤ q, Pk−a+(s−b) and Rk describe the same partial
2-club Srk , as in the recurrence.

Finally, h = hl +hr −b since Sl and Sr have exactly b partial 2-clubs in common,
and Ai = Al ∪ Ar was argued above.

All requirements of the recurrence are satisfied, and therefore C[P, Ai , h] = 1. 
�
Even though the recurrence is shown to be correct, we have not discussed the bounds

on |P| to be considered yet. The recurrence assumes that, for the children of a given
bag Bi , we have access to an unbounded number of P entries in the children, whereas
we would like to store a limited number of such entries. Specifically, for we would
like to consider only the succinct partial 2-club of size at most δ + 1. Consider the
following algorithm.

Algorithm 1: Main algorithm on the treewidth decomposition.
1 for each bag Bi of T in a postorder traversal do
2 Initialize a map C∗ whose purpose is to store the recurrence entries
3 for each P of cardinality at most δ + 1, each Ai ⊆ Bi , and each h ∈ {0, . . . , n} do
4 Compute and store C[P, Ai , h] using the recurrence of Lemma 18 and the C entries of

the child or children of Bi

Themain difference betweenAlgorithm 1 and the recurrence of Lemma 18 is that in
the algorithm, we only have access to the succinct partial 2-clubs of size at most δ + 1
when using the C entries of the child or children of Bi . More specifically, denote by
C∗[P, Ai , h] the value computed by the algorithm at bag Bi onP, Ai and h (we name
it C∗ to distinguish it from the true value of C[P, Ai , h] as defined in Definition 16).
First, notice that if C∗[P, Ai , h] = 1, then the recurrence proof constructs an actual
solution, and it follows that C[P, Ai , h] = 1. The converse may not hold: since the
algorithm has access to a limited number of entries in the children of Bi , it is possible
that C∗[P, Ai , h] = 0 whereas we would have found C[P, Ai , h] = 1 if we had
stored larger succinct partial 2-clubs at the children of Bi . Nevertheless, we show that
C[∅, BR, h] = 1 at the root BR for the optimal value h. We consider this aspect in the
following lemma.

Lemma 19 For each P, Ai , h triple, denote by C∗[P, Ai , h] be the value computed
by Algorithm 1 on this triple. Then the following holds:

– if C∗[P, Ai , h] = 1, then C[P, Ai , h] = 1.
– Assume that S is an optimal 2-club cover of G that contains h 2-clubs. Then
C∗[∅, BR, h] = 1.
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Proof The fact that C∗[P, Ai , h] = 1 implies C[P, Ai , h] = 1 can be proved by
inductively on T . If Bi is a leaf, the statement is easy to verify. So assume that the
statement holds for every child of Bi . Suppose that C∗[P, Ai , h] = 1. Assume that
Bi is an introduce node with child Bj . Then there is some entry C∗[Q, A j , h′] = 1
satisfying all properties of the recurrence of Lemma 18. By induction,C[Q, A j , h′] =
1 as well and also satisfies the recurrence, meaning that C[P, Ai , h] = 1. The idea is
the same if Bi is a forget or join node. This proves the first point.

Now, let S be an optimal 2-club cover of G. For a bag Bi , let Xi be the set of
2-clubs of S that have vertices in both V (Ti )\Bi and in V (G)\V (Ti ). By Lemma 15,
we may assume that |Xi | ≤ δ + 1. Let Pi be the set of succinct partial 2-clubs at Bi
corresponding to Xi . LetSi be the set of 2-clubs ofS that are either inPi , or that have all
their vertices in V (Ti ), and let hi = |Si |. Finally, let Ai be the vertices of Bi that belong
to some 2-club of Si . One can see, also by induction, that C∗[Pi , Ai , hi ] = 1 for each
Bi . Indeed, for a leaf Bi = {u}, we have Pi = ∅ and C∗[∅,∅, h] = C∗[∅, {u}, h] = 1
for all h. Consider an internal bag Bi . If Bi is an introduce vertex with child Bj , then
by induction C∗[P j , A j , h j ] = 1. The recurrence is able to reconstruct solution Si
from S j , and thusC∗[P j , A j , h j ] can be used to obtainC∗[Pi , Ai , hi ] = 1. The same
argument holds if Bi is a forget vertex with child Bj , and similarly, if Bi is a join vertex
with children Bl , Br , the recurrence is able to reconstruct Si from Sl ,Sr , given that
C∗[Pl , Al , hl ] = C∗[Pr , Ar , hr ] = 1. 
�

We can conclude with the following result.

Theorem 20 A solution of Min 2-Club Cover on a graph G having treewidth bounded
by δ can be computed in time 2O(δ2δ+1)n4.

Proof We first argue that returning the smallest h such that C∗[∅, BR, h] = 1, where
C∗ is the table constructed by Algorithm 1, is correct. Suppose that S is an optimal
2-club cover of G with h = |S|. By Lemma 17, C[∅, BR, h] = 1 and, for any h′ < h,
C[∅, BR, h′] = 0. By the second point of Lemma 19, we have C∗[∅, BR, h] = 1.
Moreover, Lemma 19 also implies that, for any h′ < h, C∗[∅, BR, h′] = 0, as other-
wise the the first point of the lemma would imply C[∅, BR, h′] = 1, a contradiction.
This proves the correctness.

Lemma 19 implies that it is sufficient to compute C[Pi , Ai , h] for only entries in
which |Pi | ≤ δ + 1 for each bag Bi . Since there are at most 24·2δ+1

possible partial
2-clubs at Bi , which includes the empty partial 2-club, the number of ways to form P
is bounded by (24·2δ+1

)δ+1, which is 2O(δ2δ+1). Moreover, the number of possible Ai

subsets is at most 2δ+1 and the number of possible h values is at most n. Therefore,
we need to compute at most 2O(δ2δ+1) · 2δ+1 · n entries, which is n · 2O(δ2δ+1).

To compute a specific entryC[P, Ai , h], in the worst case Bi is a join vertex and we
must consider all the (n2O(δ2δ+1))2 possible entries for C[L, Al , hl ] and C[R, Ar , hr ]
for the children Bl and Br , where L (R, respectively) is a multi-set of partial 2-clubs
at Bl (Br , respectively); the number of such entries is n22O(δ2δ+1). Furthermore, we
need to find a matching ordering of P,L and R (that is a correspondence between
partial 2-clubs of P,L andR), which requires testing all the ((δ + 1)!)3 permutations
of the three sets.
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Consider the time required to check each condition of the recurrence, ignoring the
condition on finding the 2-clubs R1, . . . , Rp in the introduce vertices for now. Each
such condition can be verified in time O(2δ+1), the most time-consuming verification
being to check P[out] (possible neighborhoods of vertices of a succinct partial 2-
clubs).

As for finding the 2-clubs R1, . . . , Rp, they must cover the uncovered elements of
Ai ⊆ Bi . It is clear that δ+1 2-clubs will always suffice to do so, so we can enumerate
every way of obtaining at most δ + 1 2-clubs from Bi . There are at most (2δ+1)δ+1

combinations of subsets to enumerate, which is 2O(δ2). This is the leading term in the
recurrence verification. To sum up, computing the recurrence for one specific entry
takes time in

n22O(δ2δ+1) · ((δ + 1)!)3 · 2O(δ2)

which is n22O(δ2δ+1).
Therefore, the total spent at one particular Bi is bounded byn·2O(δ2δ+1)·n22O(δ2δ+1),

which is n32O(δ2δ+1). As the tree decomposition has O(n) vertices, the complexity
result follows. 
�

7 Conclusion

We have considered the problem of covering a graph with 2-clubs, given complexity
results on the problem. We have shown that the decision problem that asks whether
there exists a covering of a graph with 2-clubs is W[1]-hard for parameter distance to
2-club. Moreover, for the problem that asks for a covering with minimum number of
2-clubs, on restricted graph classes, we have given negative (subcubic planar graphs,
bipartite graphs) and positive (graphs of bounded treewidth) results. There are inter-
esting open problems related to covering a graph with clubs. It would be interesting to
extend some of the results for the problem of covering with s-clubs, with s > 2. For
example, is it possible to extend the FPT algorithm on graphs of bounded treewidth to
any s > 2?Moreover, the parameterized complexity of the problem has to be analyzed
for other graph classes, like chordal graphs and, more generally, graphs that have a
bounded distance from this class.
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