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A B S T R A C T

In this paper, we propose an outlier detection algorithm for multivariate data based on their
projections on the directions that maximize the Cumulant Generating Function (CGF). We prove
that CGF is a convex function, and we characterize the CGF maximization problem on the unit 𝑛-
circle as a concave minimization problem. Then, we show that the CGF maximization approach
can be interpreted as an extension of the standard principal component technique. Therefore,
for validation and testing, we provide a thorough comparison of our methodology with two
other projection-based approaches both on artificial and real-world financial data. Finally, we
apply our method as an early detector for financial crises.

1. Introduction

Outlier detection issue has become increasingly important over the years and, as of now, its fields of application range from
medicine and engineering to finance (see, e.g., [1–3]). As for the latter, outliers can be the consequence of human error or fraudulent
activities; similarly, financial crises can be viewed as anomalies since markets experience atypical behaviors in those periods (see,
e.g., [4]). Furthermore, a few outliers can strongly influence the results of an experiment. This can be observed in Portfolio
Optimization, where some portfolio selection models can be highly sensitive to changes in input data (see, e.g., [5–7]). Because of
this widespread practical relevance, many authors tackled this topic. Hence, the theory behind anomaly detection has unsurprisingly
evolved, from the first studies which dealt with more simple instances, i.e., univariate Gaussian data, to more complex cases, such
as multivariate data following non-parametric distributions. We can mention the work of Ferguson [8], who considers univariate
normal samples and identifies outliers as data with mean slippage. Wilks [9] proposes a method to identify outliers in a multivariate
normal distribution with unknown parameters. Gnanadesikan and Kettenring [10] propose outlier detection methods on multivariate
data, based on their projection onto the directions corresponding to the principal components obtained by the standard Principal
Component Analysis (PCA). Schwager and Margolin [11] extend the work of Ferguson [8] to multivariate normal data. Several
works address the problem of outlier detection via the ‘‘local influence’’ analysis framework. Starting from the work by Cook [12],
which studies the local influence based on the likelihood displacement, Shi and Wang [13] extend Cook’s approach to multivariate
data by replacing the likelihood displacement with the Mahalanobis distance. Then, Shi [14] generalizes the statistic developed
by Cook and Weisberg [15] to study local influence in PCA, showing that his method and that of Cook’s are equivalent under
the likelihood framework. Reed and Yu [16] identify outliers by using the so-called RX detector. Such an indicator measures the
location of multivariate data points in the dispersion ellipsoid by means of the Mahalanobis distance. The authors assume that
both ordinary and outlier data follow a multivariate normal distribution with same covariance matrix but different mean vectors.
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Note that, even though Reed and Yu [16] assume the Gaussian distribution, other authors used the RX detector, removing such a
strong distributional hypothesis. For example, Das and Sinha [17], Sinha [18] extend the work by Schwager and Margolin [11] to
(nonnormal) elliptically symmetric distributions, and use the Mahalanobis distance as a detector. Since outliers affect both location
nd scale parameters, one way to overcome this issue is to use robust estimates. For example, Maronna [19] proposes robust M-

estimators of multivariate mean vectors and covariance matrices. Both Stahel [20],Donoho [21] define, in their respective works, an
ffine equivariant robust estimator for location and scatter. Another popular method consists in computing the minimal covariance
eterminant (see e.g. [22–24]). Several authors propose alternative robust approaches adopting the comedian, a measure introduced
y Falk [25], which generalizes the median absolute deviation. For instance, Sajesh and Srinivasan [26] use a method based on the

comedian to detect anomalies for high dimensional data (see also [27]). Kazempour et al. [28] try to overcome the lack of robustness
f PCA by replacing the covariance matrix with the comedian one. Finally, Cabana et al. [29] propose a number of shrinkage
stimators based on the comedian to define a robust Mahalanobis distance with the aim of detecting outliers in multivariate data.

Especially when dealing with high-dimensional multivariate data, many techniques aim to find outliers in the univariate
rojections of such data to reduce the computational effort. For this reason, several studies have been devoted to identifying the

‘‘best’’ directions in which data must be projected to represent the variability of data most effectively. In Peña and Prieto [30,31],
these directions correspond to those that maximize and minimize the kurtosis of the projected data. Domino [32] generalizes the
Prieto and Peña’s approach by choosing the direction that maximizes the fourth cumulant. Following this stream of literature, our

ork aims at detecting outliers, by projecting the data onto the direction that maximizes the Cumulant Generating Function (CGF).
In this paper, we refine some theoretical results of the methodologies proposed by Bernacchia and Naveau [33], Bernacchia et al.

34]. More precisely, we prove that CGF is a convex function, and, then, we characterize the CGF maximization problem on the
unit 𝑛-circle as a concave minimization problem. Then, we extend the outlier detection methodology, based on the projections of
multivariate data on the directions obtained by the classical PCA technique, to the directions that maximize CGF. Finally, we perform
an extensive empirical analysis both on simulated and historical data, comparing our method with those described in [30–32].

The paper is organized as follows. In Section 2, we first introduce some preliminary concepts about the moment generating
function, the cumulant generating function, and cumulants for univariate and multivariate random variables. Then, we report and
refine some results developed in [33,34] for a generalization of the principal component analysis (PCA) technique. In Section 3, we
describe our outlier detection algorithm, and the methods used to comparative purposes. For validation and testing, in Section 4,
we present a thorough comparison of these methodologies both on artificial and real-world data. The real-world data application
identifies the outliers as the materialization of financial crises. Finally, Section 5 contains some concluding remarks.

2. Theoretical framework

For the sake of completeness and readability, we recall below some notions about the moment generating function, the cumulant
generating function, and the cumulants in the case both of a univariate and a multivariate random variable. Furthermore, we also
report and refine some concepts introduced by Bernacchia and Naveau [33], Bernacchia et al. [34] for a generalization of the
principal component analysis (PCA) technique.

Let 𝑋 be a univariate random variable. If E[𝑒𝜉 𝑋 ] exists and is finite ∀𝜉 ∈ R, then the moment generating function of 𝑋 is defined
s follows

𝑀𝑋 (𝜉) = E[𝑒𝜉 𝑋 ] =
+∞
∑

𝑚=0
𝜇𝑚

𝜉𝑚

𝑚!
(1)

where 𝜇𝑚 = E[𝑋𝑚] is the 𝑚th raw moment of 𝑋, that can be obtained by differentiating 𝑚 times w.r.t. 𝜉 and setting 𝜉 = 0, namely
𝑚 = 𝑀 (𝑚)

𝑋 (0). The cumulant generating function (CGF) of 𝑋 can be expressed as the logarithm of (1)

𝐺𝑋 (𝜉) = lnE[𝑒𝜉 𝑋 ] =
+∞
∑

𝑚=1
𝑘𝑚

𝜉𝑚

𝑚!
, (2)

where 𝑘𝑚 is the 𝑚th order cumulant of 𝑋. It is straightforward to see that 𝑘𝑚 can be obtained by differentiating Expression (2)
𝑚 times and setting 𝜉 = 0, namely 𝑘𝑚 = 𝐺(𝑚)

𝑋 (0). Furthermore, the cumulants can be expressed as functions of the moments. For
instance, the first 4 cumulants of 𝑋 are as follows

𝑘1 = E[𝑋]
𝑘2 = E[(𝑋 − E[𝑋])2]
𝑘3 = E[(𝑋 − E[𝑋])3]
𝑘4 = E[(𝑋 − E[𝑋])4] − 3(E[(𝑋 − E[𝑋])2])2

Note that the first two cumulants correspond to the mean and variance respectively, the third coincides with the third central
moment, while from the fourth onward the cumulants are polynomial functions of the central moments with integer coefficients.
rom Expression (2), we also observe that for small values of 𝜉 the cumulant generating function of 𝑋 is essentially determined

by its variance (if 𝑘1 = 0), whereas for large 𝜉 the contributions of the higher order cumulants become dominant. Furthermore, if
𝑋 ∼ 𝑁(𝜇 , 𝜎2), then 𝐺𝑋 (𝜉) = 𝜇 𝜉 + 𝜎2

𝜉2

2
since 𝑘𝑚 = 0 for 𝑚 > 2.

In the case of a multivariate random variable 𝑿 = (𝑋1,… , 𝑋𝑛), its CGF becomes
𝑇

𝐺𝑿 (𝝃) = lnE[𝑒𝝃 𝑿 ], (3)

2 
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where 𝝃 = (𝜉1,… , 𝜉𝑛) ∈ R𝑛. Denoting by 𝑟 = ‖𝝃‖2 the euclidian norm of 𝝃 and by 𝜽 the versor of 𝝃, we can write 𝝃 = 𝑟𝜽, and therefore
the cumulant generating function of 𝑿 can be expressed as follows

𝐺𝑿 (𝑟,𝜽) = lnE[𝑒𝑟𝜽𝑇𝑿 ] =
+∞
∑

𝑚=1
𝑘𝑚(𝜽)

𝑟𝑚

𝑚!
. (4)

where 𝑘𝑚(𝜽) =
𝑑𝑚𝐺𝑿 (𝑟,𝜽)

𝑑 𝑟𝑚
|

|

|

|𝑟=0
is the 𝑚th cumulant of 𝑿 projected along the direction 𝜽.

Note that the length 𝑟 of 𝝃 plays the same rule of 𝜉 in the univariate case, namely if 𝑟 is small then the information on 𝑿 through
CGF is basically represented by the covariance matrix of 𝑿 (if data are centered, i.e., E[𝑋𝑗 ] = 0 with 𝑗 = 1,… , 𝑛). Whereas if 𝑟 is
arge then the information about 𝑿 described by its CGF predominantly depends on the higher-order cumulants.

2.1. PCA through CGF

Following the work of Bernacchia and Naveau [33], we look for identifying the largest principal components, namely the
irections that provide most of the variability present in the original data, by exploiting the information contained in the Cumulant
enerating Function (CGF).

Using the classical PCA technique the principal component with the largest eigenvalue is the versor maximizing the variance,
hich, as we will show in the next section, also coincides with the optimal versor maximizing CGF (4) in the case of multivariate
ormal random variables, or in the case of generic random vectors but for small values of 𝑟. As mentioned by Bernacchia and Naveau
33], the CGF maximization aims to find the directions with the largest variability of the multivariate distribution not only through
he first two cumulants, but also through the higher-order ones, which become dominant especially for data points that deviate
idely from the mean of the random vector. Hence, for a fixed 𝑟, our goal is to find the directions that maximize (4), i.e.

max
𝜽

𝐺𝑿 (𝑟,𝜽)

s.t.
𝜽𝑇 𝜽 = 1

(5)

As we will show in Section 2.3, Problem (5) is a constrained concave programming problem, where the main difficulty lies in the fact
hat concave problems normally have many local maxima points. In the next section, we present the CGF maximization approach

on two artificial multivariate random vectors, normal and skew-normal.

2.2. Some special cases: multivariate normal and skew-normal

To better understand the rationale behind the approach of Bernacchia and Naveau [33], we report the CGF maximization
procedure in the case of multivariate normal (Section 2.2.1) and skew-normal (Section 2.2.2) random variables, while in Section 2.3
we address the general case. We show that, in the case of a multivariate normal random vector, the optimal versor maximizing CGF
ollapses to the first principal component of the standard PCA technique. For a skew-normal, we will see that the optimal solution

obtained from Problem (5) tends to the first principal component when the radius of the hypersphere is small, while, in the case
f a large radius, the direction of the optimal versor deviates from the first component toward the direction where the multivariate

distribution presents a fatter tail.
Without loss of generality, we henceforth assume that the data are centered around their mean.1

2.2.1. Multivariate normal case
Let 𝑿 ∼ 𝑁(𝟎,Σ), where, therefore, 𝑿 is mean-centered and Σ is its covariance matrix. Thus, the cumulant generating function

of 𝑿 is

𝐺𝑿 (𝜉) = 1
2
𝝃𝑇Σ𝝃 .

Indeed, similar to the univariate case, for normal random vectors, the first two cumulants are exactly the mean and variance, while
he higher-order cumulants are all equal to zero. Then, Problem (5) can be rewritten as

max
𝜽

𝑟2

2
𝜽𝑇Σ𝜽

s.t.
𝜽𝑇 𝜽 = 1

(6)

This problem can be easily solved by means of the Lagrange multipliers method, where the Lagrangian function is 𝐿(𝜆,𝜽) =
𝑟2

2
𝜽𝑇Σ𝜽 − 𝜆(𝜽𝑇 𝜽 − 1). Hence, the corresponding first order conditions are ∇𝜆𝐿(𝜆,𝜽) = 𝜽𝑇 𝜽 − 1 = 0 and ∇𝜽𝐿(𝜆,𝜽) = 𝑟2Σ𝜽 − 2𝜆𝜽 = 0.

roblem (6) has two optimal solutions, the versors �̂�𝟏 and �̂�𝟐 = −�̂�𝟏, which are both eigenvectors of Σ. Note that applying the
classical PCA technique, the first principal components can be obtained by solving the following problem

max
𝜽

𝜽𝑇Σ𝜽

s.t.
𝜽𝑇 𝜽 = 1

(7)

1 Therefore, for future research, it would be interesting to investigate centering techniques based on robust location estimators.
3 
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Fig. 1. Bivariate normal random variable: the dashed lines represent its isoprobability contours of 𝑿, the red solid lines are the isocurves of 𝐺𝑿 (𝑟,𝜽) = 1
2
𝝃′Σ𝝃,

and the gray solid line is the circle of radius 1.

Since Problems (6) and (7) are equivalent except for the parameter 𝑟2

2
in the objective function of (6), these problems lead to the

same optimal solutions.
In Fig. 1, we give a graphical representation of the CGF maximization procedure in the case of a bivariate normal random variable.

The red solid lines are the isocurves of 𝐺𝑿 (𝝃) = 1
2 𝝃

𝑇Σ𝝃, the gray solid line is the ball of radius 1, and the dashed lines represent the
isoprobability contours of 𝑿 ∼ 𝑁(𝟎,Σ). The points, where the (red solid) isocurves and the (gray solid) circle of radius 1 are tangent,
represent the optimal solutions of Problem (6), which coincide (except for a minus sign) with the first principal component lying on
the major axis of the (dashed) local-dispersion ellipsoids, i.e., the direction of maximum variability of the bivariate random variable.
We point out that the fact that �̂�𝟏 and �̂�𝟐 lie on the same direction is due to the symmetry of the bivariate normal distribution.
Indeed, as we will see in the next section, in the case of a non-symmetric distribution �̂�𝟏 and �̂�𝟐 are in general on different directions,
and these directions depend on 𝑟. Clearly, this phenomenon will be more evident for large 𝑟 and for highly skewed distributions.

2.2.2. Multivariate skew-normal case
We report here the implementation of the CGF maximization procedure in the case of a multivariate skew-normal random

variable.
Let 𝑿 ∼ 𝑆 𝑁(𝜼,Σ,𝜶), where 𝜼, Σ and 𝜶 are the location, the scale and the shape parameters, respectively. As discussed in [35],

the probability density function (pdf) of 𝑿 is

𝑓𝑿 (𝒙) = 2𝜙𝑛(𝒙 − 𝜼;Σ)𝛷(𝜶𝑇 diag(𝝈)−1
(

𝒙 − 𝜼
)

) with 𝒙 ∈ R𝑛, (8)

where 𝜙𝑛(𝒙−𝜼;Σ) is the pdf of an 𝑛-variate Gaussian random variable with mean 𝜼 and covariance matrix Σ, 𝛷(⋅) is the cumulative
distribution function (cdf) of a univariate standard normal random variable, 𝜶 is the degree of skewness (when 𝜶 = 𝟎, (8) collapses to
the normal case), and diag(𝝈) = diag(𝜎1,… , 𝜎𝑛), i.e., it represents the diagonal matrix of the standard deviations. As shown in [36,37],
we have

𝝁𝑿 = E[𝑿] = 𝜼 + diag(𝝈)𝜹 (9)

Σ𝑿 = Var [𝑿] = Σ − diag(𝝈)𝜹𝜹𝑇 diag(𝝈) (10)

𝐺𝑿 (𝝃) = lnE[𝑒𝝃𝑇𝑿 ] = 𝝃𝑇 𝜼 + 1
2
𝝃𝑇Σ𝝃 + ln[2𝛷(

√

𝜋
2
𝜹𝑇 diag(𝝈)𝝃)] , (11)

where 𝜹 = 1
√

𝜋
2 (1 + 𝜶𝑇𝑪 𝜶)

𝑪 𝜶, and 𝑪 = diag(𝝈)−1Σ diag(𝝈)−1.

Since in this framework we work with a centered variable around its mean 𝑿 = 𝑿 − 𝝁𝑿 , its CGF becomes

𝐺𝑿 (𝝃) = −𝝃𝑇𝝁𝑿 + 𝝃𝑇 𝜼 + 1
2
𝝃𝑇Σ𝝃 + ln[2𝛷(

√

𝜋
2
𝜹𝑇 diag(𝝈)𝝃)] . (12)

Exploiting Expression (9) and denoting �̂� = 𝝁𝑿 − 𝜼 and 𝝃 = 𝑟𝜽, we can write

𝐺 (𝑟,𝜽) = −𝑟𝜽𝑇 �̂� + 𝑟2 𝜽𝑇Σ𝜽 + ln[2𝛷(
√

𝜋 𝑟�̂�𝑇 𝜽)], (13)
𝑿 2 2

4 
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Fig. 2. Bivariate skew-normal random variable: the dashed lines represent its isoprobability contours, the red solid lines are the isocurves of 𝐺𝑿 (𝑟,𝜽) =
−𝑟𝝁𝑇 𝜽 + 𝑟

2
𝜽𝑇Σ𝜽 + ln[2𝛷(

√

𝜋
2
𝑟𝝁𝑇 𝜽)], for small 𝑟.

For small 𝑟, using the Taylor expansion of ln(1 + 𝑧) = 𝑧 − 𝑧2

2 + ⋯ and 2𝛷(𝑧) = 1 + er f ( 𝑧
√

2
) = 1 +

√

2
𝜋 𝑧 + ⋯, we have

ln[2𝛷(
√

𝜋
2 𝑟�̂�

𝑇 𝜽)] = ln(1 + er f (
√

𝜋
2 𝑟�̂�

𝑇 𝜽)) ≃ ln(1 +
√

2
𝜋

√

𝜋
2 𝑟�̂�

𝑇 𝜽) ≃ 𝑟�̂�𝑇 𝜽− 1
2 𝑟

2𝜽𝑇 �̂��̂�𝑇 𝜽. Therefore, Expression (13) can be approximated
as follows

𝐺𝑿 (𝑟,𝜽) ≃
𝑟2

2
𝜽𝑇

(

Σ − �̂��̂�𝑇 )𝜽, (14)

where Σ − �̂��̂�𝑇 is exactly the covariance matrix of the skew-normal distribution Σ𝑿 as in (10). Hence, for small 𝑟, the optimal
solution obtained from Problem (5) collapses to the first principal component, namely �̂�𝟏 = 𝑃 𝐶1 and �̂�𝟐 = −𝑃 𝐶1. Fig. 2 exhibits a
numerical example of the CGF maximization procedure in the case of a bivariate skew-normal random variable, when 𝑟 is small.

For large 𝑟, we can examine the behavior of Eq. (13) using the asymptotic expansion of the error function (see, e.g., [38])
and distinguishing the case where �̂�𝑇 𝜽 ≥ 0 and �̂�𝑇 𝜽 < 0. For this aim, we consider the following asymptotic expansion of the
complementary error function for large real 𝑧

er f c(𝑧) = 𝑒−𝑧2

𝑧
√

𝜋

∞
∑

𝑛=0
(−1)𝑛

(2𝑛 − 1)!!
(

2𝑧2
)𝑛 = 𝑒−𝑧2

𝑧
√

𝜋

(

1 − 1
2𝑧2

+ 3
4𝑧4

+⋯
)

(15)

where (2𝑛 − 1)!! = (2𝑛 − 1) ⋅ (2𝑛 − 3)⋯ 3 ⋅ 1. Therefore, for 𝑧 → +∞

er f (𝑧) = 1 − er f c(𝑧) ≃ 1 − 𝑒−𝑧2

𝑧
√

𝜋
+ 𝑒−𝑧2

2𝑧3
√

𝜋
(16)

This means that

2𝛷(𝑧) = 1 + er f
(

𝑧
√

2

)

←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝑧→+∞

2 (17)

Similarly, we obtain

2𝛷(−𝑧) = 1 + er f
(

−𝑧
√

2

)

= er f c
(

−𝑧
√

2

)

←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝑧→+∞

−

√

2𝑒−
𝑧2
2

𝑧
√

𝜋
(18)

ln[2𝛷(−𝑧)] = ln
[

1 + er f
(

−𝑧
√

2

)]

= ln
[

er f c
(

−𝑧
√

2

)]

≃ ln
⎡

⎢

⎢

⎣

−

√

2𝑒−
𝑧2
2

𝑧
√

𝜋

⎤

⎥

⎥

⎦

≃ − 𝑧2

2
(19)

Then, examining Eq. (13) for �̂�𝑇 𝜽 ≥ 0 and large 𝑟, we have

𝐺𝑿 (𝑟,𝜽) ≃
𝑟2

2
𝜽𝑇Σ𝜽 , (20)

while, for �̂�𝑇 𝜽 < 0 and large 𝑟, we can write
𝑇 𝑟2 𝑇 1 𝜋 2 𝑇 𝑇 𝑟2 𝑇 𝜋 𝑇
𝐺𝑿 (𝑟,𝜽) ≃ −𝑟𝜽 �̂� +

2
𝜽 Σ𝜽 −

2 2
𝑟 𝜽 �̂��̂� 𝜽 ≃

2
𝜽 (Σ −

2
�̂� �̂�)𝜽 (21)

5 
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Fig. 3. Bivariate skew-normal random variable: the dashed lines represent its isoprobability contours, the red solid lines are the isocurves of 𝐺𝑿 (𝑟,𝜽) =
−𝑟𝝁𝑇 𝜽 + 𝑟

2
𝜽𝑇Σ𝜽 + ln[2𝛷(

√

𝜋
2
𝑟𝝁𝑇 𝜽)], for large 𝑟.

In Fig. 3, we show a graphical representation of the CGF maximization procedure in the case of a bivariate skew-normal random
variable. The red solid lines are the isocurves of 𝐺𝑿 (𝑟,𝜽), and the dashed lines represent the isoprobability contours of 𝑿 ∼ 𝑆 𝑁(𝟎,Σ),
where the diagonal entries of Σ are 1.2 and 0.5143, while the other entries are equal to 0, and 𝜶 = (4.365,−1.455).

2.3. Maximizing the non-parametric Cumulant Generating Function

In this section we address Problem (5) in the case of a generic discrete multivariate random variable 𝑿𝑡 = (𝑋1,𝑡,… , 𝑋𝑛,𝑡) defined
on a discrete state space, where we assume 𝑇 states of nature, each with probability 𝜋𝑡 with 𝑡 = 1,… , 𝑇 . Therefore, to find the optimal
direction �̂� that maximizes the non-parametric Cumulant Generating Function, we solve the following optimization problem

max
𝜽

𝐺𝑿 (𝑟,𝜽) = ln
( 𝑇
∑

𝑡=1
𝜋𝑡𝑒

𝑟𝜽𝑇𝑿𝑡

)

s.t.
𝜽𝑇 𝜽 = 1

(22)

First, in the following theorem we show that the objective function of this problem is convex. Let us denote, for the sake of notation,

𝑔(𝝃) = 𝐺𝑿 (𝝃) = ln
( 𝑇
∑

𝑡=1
𝜋𝑡𝑒

𝝃𝑇𝑿𝑡

)

= 𝐺𝑿 (𝑟,𝜽) = ln
( 𝑇
∑

𝑡=1
𝜋𝑡𝑒

𝑟𝜽𝑇𝑿𝑡

)

, (23)

where 𝝃 = 𝑟𝜽.

Theorem 1. Let 𝑔(𝝃) be as in (23), where 𝝃 ∈ R𝑛. Then, 𝑔(𝝃) is a convex function.

Proof. Let 𝝃, 𝜻 ∈ R𝑛, and 𝛾 ∈ [0, 1]. Thus,

𝑔(𝛾𝝃 + (1 − 𝛾)𝜻) = ln
( 𝑇
∑

𝑡=1
𝜋𝑡𝑒

(𝛾𝝃𝑇 +(1−𝛾)𝜻𝑇 )𝑿𝑡

)

= ln
( 𝑇
∑

𝑡=1
𝜋𝑡𝑒

𝛾𝝃𝑇𝑿𝑡 𝑒(1−𝛾)𝜻
𝑇𝑿𝑡

)

Now, let 𝑢𝑡 = 𝜋𝑡𝑒𝝃
𝑇𝑿𝑡 and 𝑣𝑡 = 𝜋𝑡𝑒𝜻

𝑇𝑿𝑡 ∀𝑡 = 1,… , 𝑇 , hence

𝑔(𝛾𝝃 + (1 − 𝛾)𝜻) = ln
( 𝑇
∑

𝑡=1
𝑢𝛾𝑡 𝑣

1−𝛾
𝑡

)

(24)

From Hölder’s inequality, we have
𝑇
∑

𝑡=1
|𝑥𝑡𝑦𝑡| ≤

( 𝑇
∑

𝑡=1
|𝑥𝑡|

𝑝
)

1
𝑝
( 𝑇
∑

𝑡=1
|𝑦𝑡|

𝑞
)

1
𝑞
,

where 𝒙, 𝒚 ∈ R𝑇 and 𝑝, 𝑞 ∈ [1,∞), with 1 + 1 = 1.

𝑝 𝑞
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Table 1
Pseudocode of the CGF maximization procedure [44,45].

1. Generate 𝑁 starting points (directions) 𝜽(𝑗)
0 with 𝑗 = 1,… , 𝑁 belonging to the unit 𝑛-sphere (see [44]). Fix the step size 𝛿𝑖 = 𝛿 = 1

𝑟
and the

tolerance 𝜖 sufficiently small (see [45]).

2. for 𝑗 = 1,… , 𝑁
3. Set 𝑖 = 0
4. while ‖

‖

‖

𝜽(𝑗)
𝑖+1 − 𝜽(𝑗)

𝑖
‖

‖

‖

> 𝜖
5. Compute the ascent direction as ∇𝜽𝑖𝐺𝑿 (𝑟,𝜽

(𝑗)
𝑖 )

6. Update 𝜽(𝑗)
𝑖+1 = 𝜽(𝑗)

𝑖 + 𝛿𝑖∇𝜽𝑖𝐺𝑿 (𝑟,𝜽
(𝑗)
𝑖 )

7. Project by rescaling 𝜽(𝑗)
𝑖+1 to unit norm, i.e., 𝜽(𝑗)

𝑖+1 =
𝜽(𝑗)𝑖+1

‖

‖

‖

𝜽(𝑗)𝑖+1
‖

‖

‖

8. Update 𝑖 = 𝑖 + 1
9. end while
10. end for

Now, considering 𝑥𝑡 = 𝑢𝛾𝑡 , 𝑦𝑡 = 𝑣1−𝛾𝑡 , 1
𝑝
= 𝛾 and 1

𝑞
= 1 − 𝛾, we can apply Hölder’s inequality to Expression (24) as follows

𝑔(𝛾𝝃 + (1 − 𝛾)𝜻) = ln
( 𝑇
∑

𝑡=1
𝑢𝛾𝑡 𝑣

1−𝛾
𝑡

)

≤ ln
([ 𝑇

∑

𝑡=1
𝑢
𝛾 1
𝛾

𝑡

]𝛾[ 𝑇
∑

𝑡=1
𝑣
1−𝛾 1

1−𝛾
𝑡

]1−𝛾)

=

= ln
([ 𝑇

∑

𝑡=1
𝑢𝑡

]𝛾[ 𝑇
∑

𝑡=1
𝑣𝑡

]1−𝛾)

=

= 𝛾 ln
( 𝑇
∑

𝑡=1
𝑢𝑡

)

+ (1 − 𝛾) ln
( 𝑇
∑

𝑡=1
𝑣𝑡

)

=

= 𝛾 𝑔(𝝃) + (1 − 𝛾) 𝑔(𝜻)

which completes the proof. □

Therefore, Problem (22) consists in maximizing a convex function on an 𝑛-sphere, that is a nonconvex set. However, thanks to
he following proposition we can relax such an 𝑛-sphere into an 𝑛-ball.

Proposition 2. Problem (22) is equivalent to

max
𝜽

𝐺𝑿 (𝑟,𝜽) = ln
( 𝑇
∑

𝑡=1
𝜋𝑡𝑒

𝑟𝜽𝑇𝑿𝑡

)

s.t.
𝜽𝑇 𝜽 ≤ 1

(25)

Proof. Since the 𝑛-ball 𝜽𝑇 𝜽 ≤ 1 can be seen as the convex hull of the 𝑛-sphere 𝜽𝑇 𝜽 = 1, we can apply Theorem 32.2 of Rockafellar
[39], which concludes the proof. □

Thus, Problem (25) is a concave programming problem, which is NP hard [40]. Indeed, the problem of globally maximizing a
convex function on a convex set may have many local minima, hence finding the global maximum is a computationally difficult
roblem, and several approaches have been proposed in the literature to address this problem (see, e.g., [41,42] and references

therein.

2.4. A heuristic for maximizing CGF

Similar to Bernacchia et al. [34], to solve Problem (25) we use a multistart method, which consists in generating several
andom initial points belonging to the 𝑛-sphere to determine a point in a neighborhood of a global maximum, and in using a

local maximizer to efficiently determine a global maximum. We point out that we randomly generate initial points on the 𝑛-
sphere, because, if there exists at least a global maximum of CGF on an 𝑛-ball, this belongs to its frontier (see Corollary 32.3.1
of [39]). Furthermore, since the constraint of Problem (25) defines a convex set, we use the projected gradient algorithm as the
local maximizer (see [43]). In Table 1, we summarize the CGF maximization procedure and make its MATLAB code public in the
web page https://www.francescocesarone.com/papers.
7 
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More precisely, in Expression (23), as in Peña and Prieto [30], Bernacchia et al. [34], and Domino [32], we assume to work with
 sample coming from the data generating process, hence 𝜋𝑡 =

1
𝑇

for 𝑡 = 1,… , 𝑇 , and, therefore, the CGF of a discrete multivariate
variable 𝑿𝑡 = (𝑋1,𝑡,… , 𝑋𝑛,𝑡) becomes

𝐺𝑿 (𝑟,𝜽) = ln 1
𝑇

𝑇
∑

𝑡=1
𝑒𝑟𝜽

𝑇𝑿𝑡 . (26)

We point out that the proposed methodology works for any statistical assumption on the discrete probability distribution of 𝑿𝑡,
ith 𝑡 = 1,… , 𝑇 .

For a fixed 𝑟, we set 𝑁 = 100 and 𝛿𝑖 =
1
𝑟 , where 𝑁 is the number of starting points of the multistart heuristic and 𝛿𝑖 is the step

size of the projected gradient algorithm (see Table 1). Furthermore, from Expression (26), for a given 𝑟, the gradient of 𝐺𝑿 (𝑟,𝜽) is

∇𝜽𝐺𝑿 (𝑟,𝜽) = 𝑟
1
𝑇
∑𝑇

𝑡=1 𝑿𝑡𝑒𝑟𝜽
𝑇𝑿𝑡

1
𝑇
∑𝑇

𝑡=1 𝑒
𝑟𝜽𝑇𝑿𝑡

(27)

Therefore, in Step 6 of the pseudocode in , the iterative scheme to find a local optimum is defined by

𝜽𝑖+1 − 𝜽𝑖 = 𝛿𝑖∇𝜽𝑖𝐺𝑿 (𝑟,𝜽𝑖) =
∑𝑇

𝑡=1 𝑿𝑡𝑒
𝑟𝜽𝑇𝑖 𝑿𝑡

∑𝑇
𝑡=1 𝑒

𝑟𝜽𝑇𝑖 𝑿𝑡
, (28)

while, in Step 7, 𝜽𝑖+1 is normalized to one.
Thus applying the CGF maximization procedure to Problem (25), we can obtain the local maxima �̂� = �̂�(𝑟), which, except for

ymmetric distributions (see Section 2.2.1), depend on 𝑟. As discussed in Section 2, if 𝑟 (the distance between data points and the
enter) is small, then the CGF maximization procedure essentially picks the first principal component of the classical PCA. Whereas,

if 𝑟 is large, then the optimal directions �̂� maximizing 𝐺𝑿 (𝑟,𝜽) strongly depend on the higher-order cumulants. On the other hand,
higher values of 𝑟 produce a less accurate estimate of the function 𝐺(𝑟,𝜽), since the data sample is finite and a few outliers could
eavily influence the higher-order cumulants. Therefore, when setting the value of 𝑟, one must consider the trade-off between finding
̂ (𝑟) with large 𝑟 (thus involving higher-order cumulants in the procedure) and obtaining an accurate estimate of (26). As suggested
y Bernacchia et al. [34], we set a value �̄� such that the CGF estimation error is limited. We identify such an error by means of
he relative variance of the CGF estimate, 𝜀2𝐺, that, as shown in Appendix A, assuming i.i.d. normally distributed random vectors
𝑿𝑡 ∼ 𝑁𝑛(𝟎,Σ) ∀𝑡 = 1,… , 𝑇 , is as follows

𝜀2𝐺 = Var [𝐺]
(E[𝐺])2

≃ 4
𝑇

𝑒�̄�2𝜆1 − 1
�̄�4(𝜆1)2

, (29)

where 𝑇 is the number of data points, and 𝜆1 is the largest eigenvalue computed by the standard PCA technique. In the experimental
analysis, �̄� is found through (29) by setting 𝜀𝐺 = 10%.

3. Outlier detection methodologies

In this section, we introduce the proposed outlier detection algorithm for multivariate data, named the MaxCGF algorithm,
onsisting in finding outliers in univariate projections of such data. Our approach is compared with two other projection-based

methods, i.e., one developed by Peña and Prieto [30,31] and the other developed by Domino [32]. Their main difference relies on
the selected directions onto which the data are projected. More precisely, Peña and Prieto [30,31] consider the directions for which
he kurtosis of the projected data shows the highest and lowest values. Domino [32] takes into account the projection directions for

which a multivariate series exhibits the highest absolute value of the 4th order cumulant. We propose a more general approach that
is based on the projection directions that maximize the Cumulant Generating Function of the multivariate data. In the following we
report the main steps of our procedure.

1. Preprocess the original data 𝑿, yielding centered data 𝒀 . Note that while both Peña and Prieto [30,31], Domino [32]
standardize 𝑿, we only center them.2

2. Find the directions that maximize CGF of 𝒀 .
3. Compute the univariate projection 𝒁 of 𝒀 in the directions identified in Step 2.
4. Remove outliers. Note that to identify whether a generic element 𝑧𝑡 of 𝒁 = {𝑧𝑡}𝑡=1,…,𝑇 is an outlier, similar to Peña and Prieto

[30,31], Domino [32], we compute the following quantity

𝑞𝑡 =
|𝑧𝑡 − median(𝒁)|

𝑀 𝐴𝐷(𝒁)
, 𝑡 = 1,… , 𝑇 , (30)

where 𝑇 is the length of the time series, and 𝑀 𝐴𝐷(𝒁) represents the median absolute deviation of 𝒁. Then, a generic outcome
𝑧𝑡 is classified as an outlier if its corresponding 𝑞𝑡 exceeds a fixed threshold 𝛽. Such a threshold is selected to cover the whole
detection range both in terms of True Positive Rate and in terms of False Positive Rate (for more details, see Section 4). In
order to determine the optimal 𝛽, we consider equally spaced values of 𝛽 ranging from 0.5 to 10 with a step of 0.25.

2 Indeed, as explained in Bernacchia and Naveau [33], the focus of the procedure developed by the authors consists in finding large anomalies, whereas the
tandardization would identify independent components, making it a special case of Independent Component Analysis (see e.g. [46,47]).
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Table 2
Pseudocode of the MaxCGF algorithm.

1. Fix the threshold 𝛽;
2. Center data, i.e., 𝒀 (0) = 𝑿 − 𝝁;
3. Find the 𝑁 directions �̂�(0)

1 , �̂�(0)
2 ,… , �̂�(0)

𝑁 , maximizing CGF of 𝒀 (0) (see Table 1);

4. for 𝑗 = 1 ∶ 𝑁 (i.e., for each direction �̂�(0)
𝑗 )

5. Set 𝑖 = 0;
6. Project 𝒀 (0) on �̂�(0)

𝑗 , thus obtaining the vector 𝒁 (0)
𝑗 = 𝒀 (0)�̂�(0)

𝑗 ;

7. Compute K ur(0)𝑗 = Kur (𝒁 (0)
𝑗 ), i.e., the kurtosis of 𝒁 (0)

𝑗 ;

8. Compute K0 =
1
𝑁

√

∑𝑁
𝑗=1(K ur(0)𝑗 )2, i.e., the mean squared kurtosis over the 𝑁 directions;

9. while K𝑖 < K𝑖−1 or 𝑖 = 0
10. Compute the vector 𝒒𝑗 = {𝑞𝑗 ,𝑡}𝑡=1,…,𝑇 as in Eq. (30) for 𝒁 (𝑖)

𝑗 ;

11. Remove the outliers when max
1≤𝑗≤𝑇

𝑞𝑗 ,𝑡 > 𝛽, thus obtaining 𝒀 (𝑖+1);

12. From 𝒀 (𝑖+1), compute �̂�(𝑖+1)
𝑗 by using the algorithm in Table 1;

13. Project 𝒀 (𝑖+1) on �̂�(𝑖+1)
𝑗 , thus obtaining the vector 𝒁 (𝑖+1)

𝑗 = 𝒀 (𝑖+1)�̂�(𝑖+1)
𝑗 ;

14. Compute K𝑖+1, i.e., the mean squared kurtosis of 𝒁 (𝑖+1)
𝑗 , with 𝑗 = 1,… , 𝑁 ;

15. Update 𝑖 = 𝑖 + 1
16. end while
17. 𝒀 (0) = 𝒀 (𝑖+1), �̂�(0)

𝑗 = �̂�(𝑖+1)
𝑗

18. end for

5. Repeat Steps 2, 3 and 4 until the mean squared kurtosis over the projections 𝒁 increases (see [32]).

In Table 2, we summarize the MaxCGF algorithm (pseudocode) and make its MATLAB code public in the web page https://www.
francescocesarone.com/papers.

In the next section, we compare the outlier detection ability of our method with that of two alternative methods proposed by Peña
and Prieto [30,31], Domino [32].

4. Experimental analysis

We provide here a thorough empirical analysis, where the three outlier detection procedures discussed in Section 3 are tested and
ompared both using simulated data (see Section 4.1) and financial real-world data (see Section 4.2). Performances are evaluated

using the Receiver Operating Characteristic (ROC) curves, which are built by plotting the True Positive Rate (TPR) vs. the False
ositive Rate (FPR) of each methodology for different levels of the threshold 𝛽. TPR is the rate of truly detected outliers w.r.t. all
ossible outliers, and FPR (i.e., the type I error) is the rate of falsely detected outliers w.r.t. all the non-outlier data. Furthermore,

we also provide two other performance measures related to the ROC curve, namely the Area Under the Curve (AUC) and Youden’s J
tatistic (YJS). AUC is the area underneath the ROC curve: if a method perfectly distinguishes between outlier and non-outlier data,
hen its AUC is equal to 1; if, on the other hand, AUC is less than or equal to 0.5, then this measure is uninformative, i.e., there is
o difference in performance between the analyzed method and one that relies on random choices. YJS represents the difference
etween TPR and FPR, and again, the higher, the better. The Best Cutoff Value (BCV) is the largest YJS, and 𝛽∗ is the threshold value
orresponding to BCV. Although 𝛽∗ is not a performance measure in the strict sense, it provides information about the practical use
f algorithms and allows one to identify whether there is an optimal range of 𝛽 for which algorithms work best.

Note that in our experiments we report the computational results for all the three methods only in three instances (standard
normal, normal, and real-world data from the Dow Jones market). In the remaining cases, we report only the computational results
of two methods since the Peña–Prieto algorithm does not provide reasonable results, and the generated ROC curves do not show a
nondecreasing trend at some points, or yield AUC values less than 0.5.

We implemented all the experiments on a workstation with Intel(R) Xeon(R) CPU (E5-2623 v4, 2.6 GHz, 64 Gb RAM) under MS
indows 10, using MATLAB 9.12.0.

4.1. Computational results for simulated data

Artificial simulated returns are drawn from four different distributions: standard normal (Section 4.1.1), normal (Section 4.1.2),
skew-normal (Section 4.1.3) and Student’s t (Section 4.1.4), with different values of 𝑛 (the number of marginals, i.e., assets) and 𝑇
the number of scenarios). We consider three instances, i.e., 𝑛 = 10 and 𝑇 = 100, 𝑛 = 20 and 𝑇 = 250, and 𝑛 = 30 and 𝑇 = 500. As for
9 
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Table 3
Performances for the standard normal dataset. We mark in green the best, in yellow the intermediate, and in red the
worst results.

Method AUC BCV Time (min.) 𝜷∗

MaxCGF 0.9843 0.9533 0.6032 3.25
Domino 0.9316 0.7489 21.6774 4.25
Peña–Prieto 0.9867 0.9867 66.6850 2.25

Fig. 4. ROC curves of the three algorithms for the standard normal market.

the outliers matrix 𝑶(𝑇out×𝑛out), we set its size to 𝑇out × 𝑛out. Specifically, we examine the cases with 𝑛out = 0.4 𝑛 and 𝑇out = 0.05 𝑇 ,
𝑛out = 0.5 𝑛 and 𝑇out = 0.1 𝑇 , and 𝑛out = 0.6 𝑛 and 𝑇out = 0.2 𝑇 . Below, we report the main steps for generating outliers and
substituting them into the ordinary data.

1. Compute the sample covariance matrix Σ from a real-world dataset (here, the Dow Jones dataset from 07/2004 to 07/2006,
see Section 4.2).

2. Generate the ordinary data 𝑿(𝑇×𝑛) with 𝑇 scenarios from an 𝑛-dimensional random vector using Σ (in the standard normal
case, Σ = 𝑰); generate the outlier data 𝑶(𝑇out×𝑛out) using Σ multiplied by 𝑐 = {2, 5, 10, 15}.

3. Substitute the elements of 𝑶(𝑇out×𝑛out) in 𝑿(𝑇×𝑛). More precisely, randomly select 𝑛out columns (with 𝑇out elements) of 𝑿(𝑇×𝑛)
and substitute them with the columns of 𝑶(𝑇out×𝑛out).

For the sake of readability, in the following sections, we report and discuss only the cases where 𝑛 = 30 and 𝑇 = 500, 𝑛out = 0.5 𝑛
and 𝑇out = 0.1 𝑇 , and 𝑐 = 15. The remaining cases are provided in the online supplemental material. In Section 4.1.1, we report the
standard normal case, while in Sections 4.1.2 (normal), 4.1.3 (skew-normal), and 4.1.4 (Student’s t), we report the cases where the
covariance matrix Σ is estimated from a real-world dataset, thus generating correlated random variables.

4.1.1. The standard normal random vector case
For this experimental case, the ordinary and outlier data are 𝑿(𝑇×𝑛) ∼ 𝑁(𝟎, 𝑰) and 𝑶(0.1𝑇×0.5𝑛) ∼ 𝑁(𝟎, 15𝑰).
In Table 3, we report the computational results obtained by using the three methods described in Section 3. More precisely, the

Peña–Prieto method obtains an almost perfect score of 0.9867 both for the AUC and the BCV performance measures. The Domino
algorithm shows the lowest performance w.r.t. the other two methods, both in terms of AUC (= 0.9316) and BCV (= 0.7489). The
MaxCGF method almost achieves the highest values in terms of accuracy and clearly shows a significant advantage in terms of
computational burden. Its running time is less than 1 min, compared with 15 min and more than 1 h spent by the Domino and
Peña–Prieto methods, respectively.

Fig. 4 reports the ROC curves of the three methods, which, as already noted, show high outlier detection abilities in this
experiment.
10 
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Fig. 5. ROC curves of the three algorithms for the normal market.

Table 4
Performances for the normal dataset.

Method AUC BCV Time (min.) 𝜷∗

MaxCGF 0.8811 0.6067 0.9592 8.00
Domino 0.8809 0.6311 14.3293 7.50
Peña–Prieto 0.9847 0.9644 67.2382 1.75

Table 5
Performances for the skew-normal dataset.

Method AUC BCV Time (min.) 𝜷∗

MaxCGF 0.9140 0.6911 1.0387 7.25
Domino 0.8896 0.6467 15.8041 6.50
Peña–Prieto – – – –

.1.2. The normal random vector case
In this case, the ordinary and outlier data are 𝑿(𝑇×𝑛) ∼ 𝑁(𝟎,Σ) and 𝑶(0.1𝑇×0.5𝑛) ∼ 𝑁(𝟎, 15Σ).
The empirical results of the ROC analysis are shown in Fig. 5 and in Table 4. Here, the ranking of the three algorithms is similar

o that of the standard normal dataset. Again, the Peña–Prieto algorithm outperforms the other two both in terms of AUC and BCV,
hile the MaxCGF algorithm is the most efficient; however, the Domino algorithm yields the second best BCV. It is noteworthy that,

ompared to the standard normal case, the introduction of a correlation structure seems to worsen the results for the MaxCGF and
omino algorithms, while that of Peña–Prieto does not experience noticeable changes.

.1.3. The skew-normal random vector case
For this experiment, the ordinary and outlier data are 𝑿(𝑇×𝑛) ∼ 𝑆 𝑁(𝟎,Σ,𝜶) and 𝑶(0.1𝑇×0.5𝑛) ∼ 𝑆 𝑁(𝟎, 15Σ,𝜶), where 𝜶 is a vector

hose elements are uniformly distributed in the interval [−1, 4].
As shown in Table 5 and in Fig. 6, the MaxCGF algorithm provides, in the case of asymmetric distribution, the highest AUC

= 0.9140) and BCV (= 0.6467), and it is the most efficient approach. The Domino method also performs well, although lower than
he MaxCGF method. Its AUC is 0.8896, and its BCV is 0.6467, while its running time is 15 min compared with 1 min spent by the
axCGF method.

.1.4. The Student’s t random vector case
Here, the ordinary and outlier data follow an 𝑛-variate Student’s t distribution, 𝑿(𝑇×𝑛) ∼ 𝑆 𝑡(𝟎,Σ, 𝜈) and 𝑶(0.1𝑇×0.5𝑛) ∼ 𝑆 𝑡(𝟎, 15Σ, 𝜈),

here 𝜈 is set to 5, 10, 100, 1000. Clearly, when 𝜈 is sufficiently high, the Student’s t random vector approaches the normal one.
Before testing the three methods described in Section 3, we examine the outlier detection procedure by using the projection

irections provided by the CGF maximization and by the classical PCA.
As shown in Table 6, the latter is much more efficient in terms of running time, but, except for 𝜈 = 1000, the MaxCGF method

s more precise, as shown by the values of AUC and BCV. Furthermore, the accuracy of the classical PCA tend to increase with 𝜈,

amely when the simulated data tend to have a normal distribution. Fig. 7 exhibits the ROC curves of such experiments.

11 
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Fig. 6. ROC curves of the MaxCGF and Domino algorithms for the skew-normal market.

Table 6
Outlier detection performances using the CGF maximization and the classical PCA for the Student’s t random vector.

𝜈 Method AUC BCV Time (min.)

5 Classical PCA 0.7757 0.4467 0.8389
MaxCGF 0.8544 0.5933 22.5747

10 Classical PCA 0.7988 0.4089 0.7955
MaxCGF 0.8333 0.5356 10.0730

100 Classical PCA 0.8434 0.5600 0.7952
MaxCGF 0.8525 0.6311 21.8163

1000 Classical PCA 0.8504 0.5756 0.7755
MaxCGF 0.8409 0.5489 17.5729

Table 7
Performances for the Student’s t dataset for 𝜈 = 10.

Method AUC BCV Time (min.) 𝜷∗

MaxCGF 0.8333 0.5356 10.0730 7.25
Domino 0.8498 0.5622 8.6374 7.50
Peña–Prieto – – – –

Table 8
Performances for the Student’s t dataset for 𝜈 = 30.

Method AUC BCV Time (min.) 𝜷∗

MaxCGF 0.9116 0.7044 8.0739 7.75
Domino 0.8903 0.6267 19.1567 7.25
Peña–Prieto – – – –

For these experiments, we also compare the performances of the Peña–Prieto, Domino, and MaxCGF methods considering the
egrees of freedom of the Student’s t random vector, 𝜈 = 10 and 𝜈 = 30. Note that, as mentioned at the beginning of Section 4, the
eña–Prieto algorithm does not provide reasonable results. Tables 7 and 8 show the values of AUC, BCV, and CPU time for 𝜈 = 10
nd 𝜈 = 30, respectively. In the former case, the Domino approach slightly outperforms the MaxCGF one, while in the latter case,
he MaxCGF method yields better results in terms of AUC, BCV, and running time. Fig. 8 exhibits the two methods’ ROC curves,
ighlighting elevated outlier detection abilities in these experiments.

.2. Computational results for financial real-world data

In this section, we use the three outlier detection methods to identify financial crises, which, as mentioned in the introduction,
an be seen as periods when markets experience atypical behavior. More precisely, we apply the outlier detection analysis to six real-
orld financial datasets belonging to major stock markets across the world. In Table 9, we provide some details about these datasets,

hich consist of daily prices, adjusted for dividends and stock splits, obtained from the data provider LESG Data & Analytics (formerly

12 
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Fig. 7. ROC curves using the CGF maximization and the classical PCA for the Student’s t random vector.

Fig. 8. ROC curves of the MaxCGF and Domino algorithms for the Student’s t random vector.

known as Refinitiv-Datastream, see LSEG [48]). From prices, we use both linear and logarithmic returns for the empirical analysis.
The time series of these daily asset returns are publicly available on the web page https://www.francescocesarone.com/data-sets.
Since the results obtained are practically identical, we report here only those obtained by means of the linear returns. The data
analyzed are daily returns from April 9, 2019, to March 23, 2020 (approximately one financial year). We have chosen this time
horizon because it contains a period of high instability due to the COVID-19 pandemic, the effects of which occur approximately in
early February 2020 (see, e.g. Shu et al. [49]).

In Tables 10–15, we report the computational results for all the datasets listed in Table 9. These tables show that AUC obtained
by the MaxCGF approach is between 0.8021 and 0.9057, and is always higher than that achieved by the other two methods.
13 
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Table 9
List of the daily datasets analyzed.
Market Abbrev. # assets Country From-To

Dow Jones Industrial Average DJIA 30 USA

09/04/2019-23/03/2020

Euro Stoxx 50 STOXX50 47 Eurozone
DAX 30 DAX 28 Germany
CAC 40 CAC 40 France
FTSE 100 FTSE 98 UK
EuroNext 100 N100 98 Eurozone

Table 10
Performances for DJIA.

Method AUC BCV Time (min.) 𝜷∗

MaxCGF 0.9057 0.7156 5.9174 6.75
Domino 0.8282 0.6178 25.6869 5.75
Peña–Prieto 0.7873 0.5511 84.0113 6.50

Table 11
Performances for STOXX50.

Method AUC BCV Time (min.) 𝜷∗

MaxCGF 0.8312 0.5666 3.6558 8.00
Domino 0.7480 0.4713 92.4653 7.50
Peña–Prieto – – – –

Table 12
Performances for DAX.

Method AUC BCV Time (min.) 𝜷∗

MaxCGF 0.8866 0.6555 3.8149 5.75
Domino 0.7924 0.5701 17.2033 7.00
Peña–Prieto – – – –

Table 13
Performances for CAC.

Method AUC BCV Time (min.) 𝜷∗

MaxCGF 0.8326 0.5187 3.7390 8.25
Domino 0.7391 0.4637 75.1684 6.50
Peña–Prieto – – – –

Table 14
Performances for FTSE.

Method AUC BCV Time (min.) 𝜷∗

MaxCGF 0.8021 0.5207 5.4309 7.50
Domino 0.7061 0.4641 2644.9669 7.50
Peña–Prieto – – – –

Table 15
Performances for N100.

Method AUC BCV Time (min.) 𝜷∗

MaxCGF 0.8643 0.5474 6.2306 7.75
Domino 0.6794 0.3624 2986.0548 7.75
Peña–Prieto – – – –

In Figs. 9–14, we also provide the ROC curves for all the financial market analyzed. Interestingly, TPR of the MaxCGF algorithm
is high for values of FPR slightly higher than 0.1. This means that our algorithm is able to correctly detect a large portion of outliers
misclassifying only few ordinary data (as outlier) even for high values of the threshold 𝛽. Furthermore, the MaxCGF method is always
the least time-consuming, only taking a few minutes to complete the analysis for all the financial datasets analyzed. Conversely,
both the Domino and the Peña–Prieto algorithms are heavily influenced by the number of assets 𝑛. Indeed, on the one hand, the
Peña–Prieto procedure is able to produce results only for DJIA. On the other hand, for the Domino approach, the running time
ranges from about 17 min for DAX (𝑛 = 28) to around two days for the N100 (𝑛 = 98). Summing up, as highlighted in the tables,
the MaxCGF method always shows better results for all the examined performance measures, followed by the Domino method.
14 
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Fig. 9. DJIA dataset.

Fig. 10. STOXX50 dataset.

Fig. 11. DAX dataset.
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Fig. 12. CAC40 dataset.

]

Fig. 13. FTSE100 dataset.

Fig. 14. N100 dataset.
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5. Conclusions

In this paper, we have proposed a non-parametric approach to detect anomalies in multivariate financial data by examining their
nivariate projections on appropriate directions that depend on cumulants of any order. Such directions, where the original data
ave been projected, are those that maximize the cumulant generating function (CGF).

In this respect, we have first refined some theoretical results of Bernacchia and Naveau [33], Bernacchia et al. [34] investigating
the directions that maximize CGF of data with normal and skew-normal distributions. Then, we have proved in the general non-
arametric case that CGF is a convex function and characterized the CGF maximization problem on the unit 𝑛-circle as a concave
inimization problem. Furthermore, we have extended the outlier detection methodology based on the projections of multivariate
ata on the directions obtained by the classical PCA technique to the directions that maximize CGF. Finally, we have presented an

extensive empirical analysis testing the performance of our outlier detection procedure, named MaxCGF, and comparing it with two
ther methods, proposed by Domino [32], Peña and Prieto [30]. From the computational results, we have observed that the Peña–

Prieto method shows high performance for standard normal and normal simulated data, while, in other cases, its ability to detect
outliers seems to be low. The Domino method typically provides intermediate performance, but favorable in the case of Student’s
t distributed data. The MaxCGF approach also performs well for normal and Student’s random vectors. However, for skew-normal
data or real-world financial data, the MaxCGF method always shows better results for all performance measures examined, including
fficiency.
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Appendix A. Relative variance of the CGF estimator

The sample estimate of the Cumulant Generating Function (CGF) of a discrete multivariate variable 𝑿𝑡 = (𝑋1,𝑡,… , 𝑋𝑛,𝑡) with
𝑡 = 1,… , 𝑇 is

𝐺𝑿 (𝝃) = ln 1
𝑇

𝑇
∑

𝑡=1
𝑒𝝃

𝑇𝑿𝑡 = ln𝑀𝑿 (𝝃) ,

where, therefore, 𝑀𝑿 (𝝃) denotes the sample estimate of the moment generating function. The relative variance of the CGF estimator
is then defined as

𝜀2𝐺 = Var [𝐺]
(E[𝐺])2

. (31)

To find an explicit expression for (31), we exploit the Taylor expansion for moments of functions of random variables (see, e.g., [50]).
More precisely, we use the Taylor expansion around 𝜇𝑀 = E[𝑀], namely

𝐺 = ln𝑀 = ln𝜇𝑀 + 1
𝜇𝑀

(𝑀 − 𝜇𝑀 ) − 1
2

1
𝜇2
𝑀

(𝑀 − 𝜇𝑀 )2 +⋯ (32)
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Using the first order approximation, we obtain

E[𝐺] = E[ln𝑀] ≃ E[ln𝜇𝑀 + 1
𝜇𝑀

(𝑀 − 𝜇𝑀 )] = ln𝜇𝑀 (33)

Var [𝐺] = Var [ln𝑀] ≃ Var [ln𝜇𝑀 + 1
𝜇𝑀

(𝑀 − 𝜇𝑀 )] = 1
𝜇2
𝑀

𝜎2𝑀 . (34)

Thus,

𝜀2𝐺 ≃
𝜎2𝑀

𝜇2
𝑀 (ln𝜇𝑀 )2

, (35)

where 𝜇𝑀 = E[𝑀] and 𝜎2𝑀 = Var [𝑀].
The sample estimate of the moment generating function of a discrete multivariate variable 𝑿𝑡 = (𝑋1,𝑡,… , 𝑋𝑛,𝑡) with 𝑡 = 1,… , 𝑇

is

𝑀𝑿 (𝝃) = 1
𝑇

𝑇
∑

𝑡=1
𝑒𝝃

𝑇𝑿𝑡 , (36)

where, as mentioned in Section 2.4, to explicitly find (35), we assume i.i.d. normally distributed random vectors 𝑿𝑡 ∼ 𝑁𝑛(𝟎,Σ)
𝑡 = 1,… , 𝑇 . Then, the expectation of the estimator (36) is

E[𝑀] = 1
𝑇

𝑇
∑

𝑡=1
E[𝑒𝝃

𝑇𝑿𝑡 ] , (37)

where E[𝑒𝝃𝑇𝑿𝑡 ] = ∫ ⋯ ∫ 𝑒𝝃 𝒙𝑓𝑿𝑡
(𝒙)𝑑𝒙 and 𝑓𝑿𝑡

(𝒙) = 2𝜋− 𝑛
2 det (Σ)−

1
2 𝑒−

1
2 𝒙

𝑇Σ−1𝒙. Hence,

E[𝑒𝝃
𝑇𝑿𝑡 ] = 2𝜋− 𝑛

2 det (Σ)−
1
2
∫ ⋯∫ 𝑒𝝃 𝒙𝑒− 1

2 𝒙
𝑇Σ−1𝒙𝑑𝒙

= 𝑒
1
2 𝝃

𝑇Σ𝝃 2𝜋− 𝑛
2 det (Σ)−

1
2
∫ ⋯∫ 𝑒−

1
2 (𝒙−Σ𝝃)𝑇Σ−1(𝒙−Σ𝝃)𝑑𝒙

= 𝑒
1
2 𝝃

𝑇Σ𝝃 , (38)

since 2𝜋− 𝑛
2 det (Σ)−

1
2 ∫ ⋯ ∫ 𝑒−

1
2 (𝒙−Σ𝝃)𝑇Σ−1(𝒙−Σ𝝃)𝑑𝒙 = 1. Thus, using (38) in (37), we obtain

𝜇𝑀 = E[𝑀] = 1
𝑇

𝑇 𝑒 1
2 𝝃

𝑇Σ𝝃 = 𝑒
1
2 𝝃

𝑇Σ𝝃 (39)

For the variance of the estimator (36), we have

Var [𝑀] = E[𝑀2] − E[𝑀]2 , (40)

where

E[𝑀2] = E
[

1
𝑇

𝑇
∑

𝑡=1
𝑒𝝃

𝑇𝑿𝑡 1
𝑇

𝑇
∑

𝑗=1
𝑒𝝃

𝑇𝑿𝑗

]

= 1
𝑇 2

E
[ 𝑇
∑

𝑡=1
𝑒2𝝃

𝑇𝑿𝑡 +
𝑇
∑

𝑡≠𝑗
(𝑒𝝃

𝑇𝑿𝑡 )(𝑒𝝃
𝑇𝑿𝑗 )

]

= 1
𝑇 2

𝑇
∑

𝑡=1
E
[

𝑒2𝝃
𝑇𝑿𝑡

]

+
𝑇
∑

𝑡≠𝑗
E
[

(𝑒𝝃
𝑇𝑿𝑡 )(𝑒𝝃

𝑇𝑿𝑗 )
]

.

Now, similarly to (38), we obtain that

E[𝑒2𝝃 𝑿𝑡 ] = 𝑒2𝝃
𝑇Σ𝝃 . (41)

Furthermore, since, by assumption, 𝑿𝑡 are i.i.d. ∀𝑡 = 1,… , 𝑇 , we have

E[𝑀2] = 1
𝑇 2

(𝑇E[𝑒2𝝃
𝑇𝑿 ] + (𝑇 2 − 𝑇 )(E[𝑒𝝃

𝑇𝑿 ])2)

= 1
𝑇
E[𝑒2𝝃

𝑇𝑿 ] + (1 − 1
𝑇
)(E[𝑒𝝃

𝑇𝑿 ])2

= 1
𝑇
𝑒2𝝃

𝑇Σ𝝃 + (1 − 1
𝑇
)𝑒𝝃

𝑇Σ𝝃 . (42)

Substituting (42) in Expression (40), we can write

𝜎2𝑀 = Var [𝑀] = 1
𝑇
𝑒2𝝃

𝑇Σ𝝃 + (1 − 1
𝑇
)𝑒𝝃

𝑇Σ𝝃 − 𝑒𝝃
𝑇Σ𝝃

= 1
𝑇

(

𝑒2𝝃
𝑇Σ𝝃 − 𝑒𝝃

𝑇Σ𝝃
)

(43)

Thus, using (39) and (43) in (31),

𝜀2𝐺 ≃
𝜎2𝑀

2 2
=

1
𝑇

(

𝑒2𝝃𝑇Σ𝝃 − 𝑒𝝃𝑇Σ𝝃
)

𝝃𝑇Σ𝝃 1 𝑇 2
= 1

𝑇
𝑒𝝃𝑇Σ𝝃 − 1
1 𝑇 2

. (44)

𝜇𝑀 (ln𝜇𝑀 ) 𝑒 ( 2 𝝃 Σ𝝃) ( 2 𝝃 Σ𝝃)
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Denoting 𝝃 = 𝑟𝜽, we obtain

𝜀2𝐺 ≃ 4
𝑇

𝑒𝑟2𝜽𝑇Σ𝜽 − 1
𝑟4(𝜽𝑇Σ𝜽)2

. (45)

Simplifying the issue, we substitute 𝜽𝑇Σ𝜽 with its largest eigenvalue 𝜆1 (computed by the standard PCA), and, therefore, Expression
45) becomes

𝜀2𝐺 ≃ 4
𝑇

𝑒𝑟2𝜆1 − 1
𝑟4(𝜆1)2

. (46)

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cam.2024.116457.

Data availability

Data will be made available on request.
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