
UNIVERSITY OF BERGAMO
School of Doctoral Studies

Doctoral Degree in Engineering and Applied Sciences

XXXVI Cycle

SSD: ING-INF/05

Fine-grained Access Control Technologies to Protect

Resources in Mobile and Cloud Applications

Advisor

Prof. Stefano Paraboschi

Doctoral Thesis by

Matthew Rossi

Student ID 1025234

Academic Year 2022/2023





To my family and the friends that supported me





Abstract

Over the years operating systems security has greatly evolved and has been able to

address many of the threats originating by an extensive and varied set of adversaries.

The mitigation of security threats is particularly important for mobile operating

systems, due to their wide deployment and the confidential information they hold.

Focusing on Android, we notice that components belonging to the same application

share access to the app internal storage and system services. While this may not

be an issue when the developer trusts all the code belonging to their application, it

clearly becomes one when third-party code is included to achieve monetization and

fast-paced development. Thus, we propose SEApp, a mechanism allowing developers

to isolate the internal components of Android apps and regulate their permissions

on a per-component basis. This is a crucial step to provide strong user privacy

guarantees and meeting data privacy regulations despite the use of third-party code.

With the research conducted on Android it soon became clear that, while secur-

ing Android apps on the user device was very important, it was as much important

to secure the cloud applications those applications interact with. Indeed, modern

cloud applications can quickly grow to an intricate tangle of services, and unfor-

tunately current technologies prove to be overly coarse to effectively restrict access

control of system resources. To address this problem, we propose an approach that

restricts access to file system resources with a resource-based granularity. Then, we

further explore the topic in the context of WebAssembly runtimes (e.g., Wasmtime

and WasmEdge). Specifically, we highlight the security implications of enabling ac-

cess to system resources through the WebAssembly System Interface (WASI), and

identify opportunities for improvement. Finally, we consider the use of JavaScript

(JS) and TypeScript (TS) for the implementation of cloud applications thanks to

JS runtimes (i.e., Node.js, Deno and Bun). These software securely renders JS code

in an isolated sandbox, however access to system resources and the execution of na-

tive code raise security concerns, since they break the JS application isolation. To

address these security issues, we propose NatiSand, a component for JavaScript run-

times to control the filesystem, Inter-Process Communication (IPC), and network

resources available to binary programs and shared libraries.

The technologies described in this thesis advance the state of the art in fine-

grained resource protection in mobile and cloud applications. The implementations

have been released under open-source licenses and can be easily integrated with

existing real systems.





Table of Contents

Abstract 1

1 Introduction 11

1.1 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Methodology 19

3 Fine-grained Access Control in Android Applications 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Android security for apps . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.2 Modular app compartmentalization . . . . . . . . . . . . . . . 27

3.3.3 Compatibility with Android design . . . . . . . . . . . . . . . 28

3.3.4 Compatibility with other proposals . . . . . . . . . . . . . . . 28

3.4 Policy language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Choice of policy language . . . . . . . . . . . . . . . . . . . . 29

3.4.2 Definition of types and type-attributes . . . . . . . . . . . . . 29

3.4.3 Policy constraints . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Policy configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.1 SEAndroid policy structure . . . . . . . . . . . . . . . . . . . 33

3.5.2 SEApp policy structure . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.1 Policy compilation . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.2 Runtime support . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7.1 App installation . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7.2 Runtime performance . . . . . . . . . . . . . . . . . . . . . . . 46

3.8 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Lightweight Cloud Application Sandboxing 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Threat model . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3



TABLE OF CONTENTS

4.2.2 Dependency identification . . . . . . . . . . . . . . . . . . . . 53

4.2.3 Mitigation of bugs . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.4 Performance and usability . . . . . . . . . . . . . . . . . . . . 54

4.3 Approach overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Cloud application instrumentation . . . . . . . . . . . . . . . . . . . . 57

4.4.1 Ptrace-based instrumentation . . . . . . . . . . . . . . . . . . 57

4.4.2 eBPF-based intrumentation . . . . . . . . . . . . . . . . . . . 57

4.5 Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Application sandboxing . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7.1 Mitigation of vulnerabilities . . . . . . . . . . . . . . . . . . . 63

4.7.2 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.8 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Enhancing the Sandbox of WebAssembly Runtimes 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Threat model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Native Code Sandboxing for JavaScript Runtimes 75

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 JS runtimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.2 Components for resource protection . . . . . . . . . . . . . . . 78

6.3 Security motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3.1 Threat model . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Design and implementation . . . . . . . . . . . . . . . . . . . . . . . 83

6.4.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4.2 High level architecture . . . . . . . . . . . . . . . . . . . . . . 84

6.4.3 Integration with JS runtimes . . . . . . . . . . . . . . . . . . . 85

6.4.4 Isolation features . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.5 Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.5.1 Policy structure . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.5.2 Policy generation . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.6 Case study: Deno runtime . . . . . . . . . . . . . . . . . . . . . . . . 95

4



6.6.1 Runtime selection . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.6.2 Deno integration . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.6.3 Support to fast JS calls . . . . . . . . . . . . . . . . . . . . . . 96

6.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.7.1 Exploit mitigation . . . . . . . . . . . . . . . . . . . . . . . . 98

6.7.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . 99

6.8 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Conclusions and future work 107

7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Acknowledgments 111

A Practical showcase of SEApp capabilities 113

A.1 UC#1: fine-granularity in access to files . . . . . . . . . . . . . . . . 113

A.2 UC#2: fine-granularity in access to services . . . . . . . . . . . . . . 115

A.3 UC#3: isolation of vulnerability-prone components . . . . . . . . . . 117

A.4 Policy module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B Policy generated for the curl command 123

References 125





List of Figures

2.1 High-level overview of the research methodology . . . . . . . . . . . . . . 20

3.1 Evolution of the MAC policy in Android . . . . . . . . . . . . . . . . . . 23

3.2 Security Enhanced App . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 SEApp policy structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Installation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Application launch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 File relabeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7 Installation time overhead for apps with different complexity . . . . . . . 43

3.8 Cumulative install time overhead of the top 100 free apps with our policies 44

3.9 Install time overhead for the three policy sizes . . . . . . . . . . . . . . . 45

4.1 Overview of our approach . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Architecture of the ptrace-based instrumentation . . . . . . . . . . . . . 58

4.3 Architecture of the eBPF-based instrumentation . . . . . . . . . . . . . . 59

4.4 Landlock sandbox setup and inheritance . . . . . . . . . . . . . . . . . . 62

4.5 Latency of image processing operations . . . . . . . . . . . . . . . . . . . 65

4.6 Latency of video processing operations . . . . . . . . . . . . . . . . . . . 66

5.1 Current implementation of WASI by runtimes . . . . . . . . . . . . . . . 70

5.2 eBPF-based restriction of Wasm modules . . . . . . . . . . . . . . . . . . 72

6.1 Execution of binary programs and shared libraries by JS runtimes . . . . 79

6.2 Overview of the eBPF architecture . . . . . . . . . . . . . . . . . . . . . 80

6.3 Integration of NatiSand in JS runtimes . . . . . . . . . . . . . . . . . . . 86

6.4 Average latency and throughput of subprocess-based microservices . . . . 101

6.5 Average latency and throughput of native-functions-based microservices . 103

A.1 Showcase app main view . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.2 UC#1 view (initiation, exploitation, and mitigation) . . . . . . . . . . . 115

A.3 UC#1 SELinux denial message in the system log . . . . . . . . . . . . . 115

A.4 UC#2 views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.5 UC#2 malicious gadjet retrieves location data . . . . . . . . . . . . . . . 117

A.6 UC#2 SELinux denial message in the system log . . . . . . . . . . . . . 117

A.7 UC#2 activity termination due to SELinux denial . . . . . . . . . . . . . 117

A.8 UC#3 views (initiation, exploitation, and mitigation) . . . . . . . . . . . 118

A.9 UC#3 SELinux denial message in the system log . . . . . . . . . . . . . 118





List of Tables

3.1 Application policy module CIL syntax . . . . . . . . . . . . . . . . . . . 29

3.2 SEApp macros to grant permissions to local types . . . . . . . . . . . . . 32

3.3 Policy size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Cold and warm start performance for activities and services . . . . . . . 46

3.5 File creation performance . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 List of file system traced hook points . . . . . . . . . . . . . . . . . . . . 60

4.2 Sample of CVEs reproduced in our evaluation . . . . . . . . . . . . . . . 64

5.1 Average execution time of coreutils with and without our approach . . . 73

6.1 Hooks and tracepoints monitored by NatiSand . . . . . . . . . . . . . . 88

6.2 LSMs used by NatiSand to restrict Linux IPC . . . . . . . . . . . . . . . 91

6.3 Sample of CVEs mitigated by NatiSand . . . . . . . . . . . . . . . . . . 99

6.4 Average execution time for common Linux utilities . . . . . . . . . . . . 101

6.5 Average execution time for common native libraries . . . . . . . . . . . . 103





1. Introduction

Over the years operating systems security has greatly evolved and has been able to

address many of the threats originating by an extensive and varied set of adversaries.

The mitigation of security threats is particularly important for mobile operating

systems, due to their wide deployment and the confidential information they hold.

Focusing on Android, which is open source and more accessible to researchers, we

notice that components belonging to the same application share access to the app

internal storage and system services. So, third-party code included by developers in

their applications for monetization and fast-paced-development purposes have the

same access to internal data and system services as the rest of the application. This

represents a threat to the security of applications and the privacy of users. Thus, we

propose SEApp, a mechanism allowing developers to isolate the internal components

of Android apps and regulate their permissions on a per-component basis. As a

natural evolution of the security mechanisms already available in Android, SEApp

design requires to (i) preserve the security of system components, (ii) limit how

it may affect the development of applications, and (iii) minimize the performance

impact. Our evaluations show our proposal meet these requirements, and SEApp is

a crucial step to provide strong user privacy guarantees and comply to data privacy

regulations despite the use of third-party code. This claim is supported by the

current direction Google is following for the development of its Privacy Sandbox on

Android [21].

With the research conducted on Android it soon became clear that, while secur-

ing Android apps on the user device was very important, it was as much important

to secure the cloud applications those applications interact with. Indeed, modern

cloud applications can quickly grow to an elaborate and intricate tangle of services,

and keeping track of all the moving parts and their security boundaries can be very

challenging. Nevertheless, in order to mitigate the impact of security incidents com-

panies need to pay close attention to the security of their cloud applications. Several

research works and industrial standards recommend the integration of least privilege

policies to prevent disruptions such as file system tampering. Unfortunately current

technologies prove to be overly coarse to effectively restrict access control of system

resources. To address this problem, we propose an approach that restricts access

to file system resources with a resource-based granularity. Specifically, we provide

an instrumentation solution to retrieve all the file system resources required by an

application component. Then, we demonstrate how this information can be used

11



CHAPTER 1. INTRODUCTION

to create fine-grained access policies, and introduce sandboxing using recent kernel

security modules, thus strengthening the security boundary of the whole application.

Even though effective in restricting access to an entire microservice, the approach

above can be further improved by considering the specifics of emerging technologies

that enable finer-grined compartmentalization of cloud applications. In the context

of WebAssembly runtimes (e.g., Wasmtime and WasmEdge), we highlight the secu-

rity implications of enabling access to system resources through the WebAssembly

System Interface (WASI), and identify opportunities for improvement. Here, not

only our approach permits to introduce fine-grained policies to restrict file system

access, it also replaces error-prone userspace implementations of the security checks

(and the security issues stemming from them) with a unified eBPF implementation.

In the context of using JavaScript and TypeScript for the development of cloud

applications, we investigate how JS runtimes secure the applications they host, and

identify a few limitations. Modern runtimes (i.e., Node.js, Deno and Bun) render

JavaScript code in a secure and isolated environment, however access to system re-

sources and the execution of native code raise security concerns, since they break

the JS application isolation. Developers commonly rely on native code to speed

up the development and execution of their applications and, despite that, JS run-

times do not provide built-in solutions for the isolation of native code, so we pro-

pose the introduction of NatiSand; a component for JavaScript runtimes to control

the filesystem, Inter-Process Communication (IPC), and network resources avail-

able to binary programs and shared libraries. Our solution is characterized by a

compact, generic architecture that fits nicely with modern runtimes. Internally, it

leverages Seccomp [63] and Linux Security Modules (LSMs), such as Landlock [138]

and eBPF [73] to restrict access to protected resources.

During the research work, considerable attention was dedicated to the usability,

effectiveness, and performance of our proposals. Indeed, in most of our proposals, we

allow developers to take full advantage of the high level security mechanisms without

requiring them to fully comprehend the advanced security features employed under-

neath. The developer is only required to provide a concise and readable policy file,

which details the access privileges available to the components of their application

and may be automatically generated. Moreover, we provide extensive evaluations

showcasing the mitigation capabilities of our proposals with respect to common use

cases and severe CVEs. Alongside the security guarantees introduced, we evaluate

also their performance footprint, and can confirm the introduction of very limited

overhead with respect to the original unsecure systems and significant improvements

with respect to alternative approaches. To promote the reproducibility of our ex-

perimental evaluations, and facilitate the integration of our solutions with existing

real systems our prototype implementations are all available open source.

12



1.1. DOCUMENT STRUCTURE

1.1 Document structure

The thesis is organized in six chapters.

Chapter 1 illustrates the document structure and the publications that set the

basis for this thesis.

Chapter 2 showcases the methodological approach employed to investigate the

use of fine-grained access control technologies to protect resources in mobile and

cloud applications.

Chapter 3 describes SEApp [167], a proposal that provides developers with a

mechanism to isolate the internal components of Android apps and regulate their

permissions on a per-component basis. This is achieved by first executing com-

ponents in dedicated processes, and then restricting access to the app and system

resources with ad hoc SELinux policies. Specifically, it is possible to declare rules to

regulate access to both the internal app storage and system services, which are oth-

erwise shared between all the application components, including third-party libraries

the app depends upon. This is a crucial step to provide strong user privacy guar-

antees despite relying on third-party code to achieve monetization and fast-paced

development of Android applications. The prototype implements a patch to the

Android Open Source Platform (AOSP) to demonstrate the feasibility, effectiveness

and efficiency of the novel approach.

The chapter is organized as follows.

• Section 3.1 provides an overview of how the security architecture of mobile

systems evolved with the maturity of the ecosystem.

• Section 3.2 introduces the techniques currently enforcing access control in An-

droid.

• Section 3.3 presents the motivation for the introduction of intra-app isolation

in Android. Specifically, a set of use cases is used to showcase the security

measures introduced by SEApp.

• Section 3.4 details the SEApp policy module syntax, and its constraints to

ensure proper integration of app and system policies.

• Section 3.5 illustrates the policy configuration files of SEAndroid and how to

use them in SEApp.

• Section 3.6 discusses the changes the SEApp implementation introduced in

Android platform.

• Section 3.7 presents the experimental evaluation, in which we measure both

the installation time and runtime overhead introduced by SEApp.

13



CHAPTER 1. INTRODUCTION

• Section 3.8 discusses the major differences between SEApp and other literature

proposals.

• Section 3.9 concludes the chapter.

Chapter 4 highlights the limitations of the cloud technologies available at the

time of writing with regard to fine-grained access control of system resources. Then,

it addresses the problem proposing an approach that restrict application access

to file system resources with a resource-based granularity. To this end, we develop

Dmng, a flexible and intuitive tool that relies on instrumentation to collect and audit

the activity traces generated by microservices. Finally, we demonstrate how this

information can be used to create fine-grained access control policies and strengthen

the security boundary of the cloud application.

The chapter is organized as follows.

• Section 4.1 presents the challeges of securing cloud applications and briefly

discusses the state of the art to identify opportunities for improvement.

• Section 4.2 discusses the objectives of the solution together with its require-

ments and trust assumptions.

• Section 4.3 illustrates an overview of the approach by highlighting its integra-

tion with both staging and production environments.

• Section 4.4 presents two different techniques to instrument cloud applications

and trace their activity.

• Section 4.5 discusses the generation of access control policies from activity

traces.

• Section 4.6 details how we implement the lightweight enforcement of the poli-

cies.

• Section 4.7 presents an empirical evaluation of the mitigation capabilities of

our approach and its performance.

• Section 4.8 discuss proposals from the literature and how they compare to

ours.

• Section 4.9 concludes the chapter.

Chapter 5 explores the use of WebAssembly outside of web browsers thanks to

WebAssembly runtimes (e.g., Wasmtime and WasmEdge). Specifically, it highlights

the security implications of enabling access to system resources through the Web-

Assembly System Interface (WASI) and it identifies opportunities for improvement.

With specific regard to file system resources, runtimes must prevent hostcalls (i.e.,

functions provided by the runtime to the guest WebAssembly application) from ac-

cessing arbitrary locations. Current implementations introduce security checks to

14



1.1. DOCUMENT STRUCTURE

only permit access to a predefined list of directories. This approach not only suffers

from poor granularity, it is also error-prone and has led to security issues. In this

chapter we propose to replace the security checks in hostcall wrappers with eBPF

programs, enabling the introduction of fine-grained per-module policies.

The chapter is organized as follows.

• Section 5.1 introduces WebAssembly and the challenges WebAssembly run-

times are facing with restricting access to system resources.

• Section 5.2 models the threat an attacker can pose to the implementations of

WASI in WebAssembly runtimes.

• Section 5.3 details the design of current WASI implementations and proposes

an alternative approach.

• Section 5.4 evaluates the overhead introduced by our novel approach in two

different WebAssembly runtimes.

• Section 5.5 discusses the related work.

• Section 5.6 concludes the chapter.

Chapter 6 considers the use of JavaScript (JS) and TypeScript (TS) for imple-

menting the backend of cloud applications. In this setting, the execution of JS code

on the server-side is enabled by JS runtimes (i.e., Node.js, Deno and Bun). These

sophisticated software securely renders JS code in an isolated sandbox, however ac-

cess to system resources and the execution of native code raise security concerns,

since they effectively break the isolation between the JS application and the host OS.

Identifying these clear security issues, this chapter proposes NatiSand, a component

for JavaScript runtimes that leverages Landlock, eBPF, and Seccomp to control the

filesystem, Inter-Process Communication (IPC), and network resources available to

binary programs and shared libraries. We demonstrate the effectiveness and effi-

ciency of our approach by implementing and integrating it into Deno, a modern,

security-oriented JavaScript runtime.

The chapter is organized as follows.

• Section 6.1 presents the development of web applications with the use of

JavaScript runtimes and their limitations with regard to controlling native

code access to system resources.

• Section 6.2 overviews the structure of moderm JS runtimes and provides back-

ground on the components used by NatiSand to build the sandbox.

• Section 6.3 motivates the need of ad hoc access restrictions for native code

highlighting the security implications of an otherwise overpermissive behavior.

• Section 6.4 presents NatiSand objectives and architecture.

15



CHAPTER 1. INTRODUCTION

• Section 6.5 details the policy structure and explains how to generate its per-

mission rules.

• Section 6.6 showcases the achievement of the aforementioned objectives by

integrating NatiSand into the Deno runtime.

• Section 6.7 presents the ability of NatiSand to mitigate real-world vulnerabil-

ities while introducing only a negligible overhead compared to a permissive

scenario.

• Section 6.8 discusses the major differences between NatiSand and other liter-

ature proposals.

• Section 6.9 concludes the chapter.

Chapter 7 draws the conclusions of the thesis and discusses future work.

1.2 Publications

This section presents the list of publications authored during the Ph.D. course that

set the basis for this thesis.

Articles in journals

• Sabrina De Capitani di Vimercati, Dario Facchinetti, Sara Foresti, Giovanni

Livraga, Gianluca Oldani, Stefano Paraboschi, Matthew Rossi, Pierangela

Samarati. “Scalable Distributed Data Anonymization for Large

Datasets”. IEEE Transactions on Big Data (TBD), Volume 9, Issue 3. IEEE,

2022.

• Sabrina De Capitani di Vimercati, Dario Facchinetti, Sara Foresti, Gian-

luca Oldani, Stefano Paraboschi, Matthew Rossi, and Pierangela Samarati.

“Multi-Dimensional Flat Indexing for Encrypted Data”. Under sub-

mission.

Papers in proceedings of international conferences

• Sabrina De Capitani di Vimercati, Dario Facchinetti, Sara Foresti, Gian-

luca Oldani, Stefano Paraboschi, Matthew Rossi, and Pierangela Samarati.

“Scalable distributed data anonymization”. Proceedings of the 2021

IEEE International Conference on Pervasive Computing and Communications

Workshops and other Affiliated Events (PerCom Workshops). IEEE, 2021.

• Sabrina De Capitani di Vimercati, Dario Facchinetti, Sara Foresti, Gian-

luca Oldani, Stefano Paraboschi, Matthew Rossi, and Pierangela Samarati.

16



1.2. PUBLICATIONS

“Artifact: Scalable distributed data anonymization”. Proceedings of

the 2021 IEEE International Conference on Pervasive Computing and Com-

munications Workshops and other Affiliated Events (PerCom Workshops).

IEEE, 2021.

• Matthew Rossi, Dario Facchinetti, Enrico Bacis, Marco Rosa, and Stefano

Paraboschi. “SEApp: Bringing Mandatory Access Control to Android

Apps.”. Proceedings of the 30th USENIX Security Symposium (USENIX Se-

curity 21). USENIX, 2021.

• Enrico Bacis, Dario Facchinetti, Marco Guarnieri, Marco Rosa, Matthew

Rossi, and Stefano Paraboschi. “I Told You Tomorrow: Practical Time-

Locked Secrets using Smart Contracts”. Proceedings of the 16th Inter-

national Conference on Availability, Reliability and Security (ARES). ACM,

2021.

• Sabrina De Capitani di Vimercati, Dario Facchinetti, Sara Foresti, Gian-

luca Oldani, Stefano Paraboschi, Matthew Rossi, and Pierangela Samarati.

“Multi-dimensional indexes for point and range queries on out-

sourced encrypted data”. Proceedings of the 2021 IEEE Global Communi-

cations Conference (GLOBECOM). IEEE, 2021.

• Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi, and

Stefano Paraboschi. “Cage4Deno: A Fine-Grained Sandbox for Deno

Subprocesses”. Proceedings of the 2023 ACM Asia Conference on Computer

and Communications Security (ASIACCS). ACM, 2023.

• Marco Abbadini, Michele Beretta, Dario Facchinetti, Gianluca Oldani,

Matthew Rossi, and Stefano Paraboschi. “Leveraging eBPF to enhance

sandboxing of WebAssembly runtimes”. Proceedings of the 2023 ACM

Asia Conference on Computer and Communications Security (ASIACCS).

ACM, 2023.

• Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi, and Ste-

fano Paraboschi. “NatiSand: Native Code Sandboxing for JavaScript

Runtimes”. Proceedings of the 26th International Symposium on Research in

Attacks, Intrusions and Defenses (RAID). ACM, 2023.

• Marco Abbadini, Michele Beretta, Dario Facchinetti, Gianluca Oldani,

Matthew Rossi, and Stefano Paraboschi. “Lightweight Cloud Applica-

tion Sandboxing”. Proceedings of the 14th IEEE International Conference

on Cloud Computing Technology and Science (CLOUDCOM). IEEE, 2023.

17



CHAPTER 1. INTRODUCTION

• Marco Abbadini, Michele Beretta, Sabrina De Capitani di Vimercati, Dario

Facchinetti, Sara Foresti , Gianluca Oldani, Stefano Paraboschi, Matthew

Rossi, and Pierangela Samarati. “Supporting Data Owner Control in

IPFS Networks”. Proceedings of the 2024 IEEE International Conference

on Communications (ICC). IEEE, 2024.

18



2. Methodology

This chapter outlines the foundational methodology employed throughout the thesis.

The research design adheres to a core set of principles, fostering a continuous cycle of

exploration, refinement, and validation. The approach commences with the meticu-

lous identification of security challenges associated with resource protection within

the diverse domains of mobile and cloud applications. This initial phase involves

in-depth analysis of existing access control methods, exposing limitations concerning

their ability to provide fine-grained control. Then, we identify threat models asso-

ciated with the coarse granularity. While there are inherent differences depending

on the specific context investigated, there is a common bottomline associated with

the exploitation of vulnerabilities, and how pervasive the use of third-party software

is in current mobile and cloud applications. Indeed, running application compo-

nents with broader permissions translate into more attractive targets for attackers,

as they can reach a larger set of sensitive assets and escalate the attack. Moreover,

the common practice of using third-party software to speed up development further

exacerbates the problem, with developers lagging behind with dependency updates

and often disregarding the trust implications of using external dependencies.

Informed by this analysis, the next phase involves the design of novel access

control mechanisms that specifically target fine-grained enforcement. The design

process encompasses the meticulous evaluation of enforcement models, creation of

security policies, and careful consideration of integration strategies for seamless op-

eration within the established system architectures. Despite the differences between

mobile and cloud architectures, when we consider Android (i.e., the mobile operat-

ing system holding 69.94% of the market share [178]), Figure 2.1 shows they share a

common foundation: the Linux kernel. By leveraging the built-in security features

of the Linux kernel (e.g., seccomp, eBPF, Landlock, SELinux), this thesis proposes

an efficient approach to establishing fine-grained access control across mobile and

cloud environments. This approach not only addresses specific challenges in each

domain but also demonstrates the versatility and potential of the Linux kernel as a

foundation for diverse application domains.

Following the design of the solution, the next step involves its implementation

utilizing programming languages, frameworks, and tools specifically chosen for their

suitability within the targeted environments. Then, extensive evaluation follows, uti-

lizing a combination of security testing and performance measurement techniques.

Security testing meticulously evaluates the capability of the solution to enforce secu-

19



CHAPTER 2. METHODOLOGY

Linux kernel

seccomp

Landlock

SELinux

LSM

kernel runtime System Calls

VFS

Namespaces

Storage

TCP/IP

Network

ptrace

User Space
Agent

Android App Pod

eth0

AdsBin

Web App
Web

AssemblyBin Lib

Figure 2.1: High-level overview of the methodology for integrating the
use of fine-grained access control technologies in mobile and cloud appli-
cations

rity policies and prevent unauthorized resource access. This consists of reproducing

common vulnerabilities classes and public proofs of concept to appraise the ability

to mitigate attacks. Performance evaluation examines the overheads introduced by

the solution, assessing metrics such as execution time and throughput. The find-

ings serve as the cornerstone for the iterative refinement and improvement of the

proposed solutions. This cyclical process addresses any identified shortcomings, op-

timizes efficiency, and ultimately ensures the robustness of the fine-grained access

control mechanisms. Prototype implementations are open-source to promote repro-

ducibility of our experimental results and ease of integration with existing systems.

While the specific technical details and implementation nuances vary between

mobile and cloud environments due to their inherent differences, the overarching

methodological framework described in this chapter provides a concise summary

of the research approach adopted, but also highlights the potential of leveraging

shared underlying features to address security challenges across diverse technological

domains.

20



3. Fine-grained Access Control in

Android Applications

3.1 Introduction

Security in operating systems has greatly evolved and has been able to address many

of the threats originating by an extensive and varied collection of adversaries.

The mitigation of security threats is particularly important for mobile operating

systems, due to their wide deployment and the confidential information they hold.

Both Android and iOS have seen significant investments toward the realization

of advanced security techniques, which have led to a great increase in the level of

protection offered to users [140]. The strength of security and the value of protected

resources is testified, for instance, by the payouts associated with working exploits

in markets like Zerodium [207], where the payouts for mobile operating systems are

the highest1.

A peculiar threat that characterizes mobile operating systems is the need to

balance on one side the high sensitivity of the information, and on the other hand

the need for users to install into the system a large number of applications (called

simply apps in this domain) often produced by unknown developers, which may

hide malicious functions. A first level of protection is offered, both in iOS and

Android, by a preliminary screening of apps before they are made available on the

platform market [14] or installed to a device, but this approach cannot provide a

strong guarantee. Security mechanisms internal to the operating system are needed

in order to constrain the apps to only operate within the boundaries specified by

the device owner at installation time.

The approach used in the design of mobile operating systems considers as the

first requirement the protection of system resources. Focusing on Android, which

is open source and more accessible to researchers, we notice a significant evolution

in its internal security architecture. This architecture is quite rich and consists

of many security measures [100, 140]. In this environment, we specifically look at

the role of SELinux. SELinux implements the Mandatory Access Control (MAC)

mechanism, which relies on a system-level policy to declare the operations that a

process can execute over a resource based on the security labels associated with them.

1At the time of writing, US$2.5M and US$2M are paid for a zero click solution able to subvert
the security of Androd and iOS, respectively.

21



CHAPTER 3. FINE-GRAINED ACCESS CONTROL IN ANDROID APPLICATIONS

Compared to classical Discretionary Access Control (DAC), still used in Android

in an extensive way, MAC is more rigid and provides stronger guarantees against

unwanted behaviors. When SELinux was introduced into Android 4.3 in 2013 (see

Figure 3.1), it used a limited set of system domains and it was mainly aimed at

separating system resources from user apps. In the next releases, the configuration

of SELinux has progressively become more complex, with a growing set of domains

isolating different services and resources, so that a bug or vulnerability in some

system component does not lead to a direct compromise of the whole system.

The introduction of SELinux into Android has been a clear success. Unfortu-

nately, the stronger protection benefits do not extend to regular apps which are

assigned with a single domain named untrusted app. Since Android 9, isolation of

apps has increased with the use of categories, which guarantees that distinct apps

operate on separate security contexts. Our proposal, SEApp, builds upon the obser-

vation that giving app developers the ability to apply MAC to the internal structure

of the app would provide more robust protection against other apps and internal

vulnerabilities.

3.2 Android security for apps

One of the major requirements considered in the design of mobile operating systems

is the need to constrain the ability of apps to manipulate the execution environ-

ment. Apps may hide functions that are meant to gain system privileges or capture

valuable information from other apps. Compared to classical desktop operating sys-

tems, there is greater reliance on the use of apps to access resources or get services,

with more attention paid to limit the ability of apps to operate in the system. Ad-

vancements in this context can have an impact on how security for applications is

managed in other domains [7].

The basic principle adopted to manage the threat introduced by apps is the

design of a sandbox, a restricted environment for app execution, where anomalous

actions by the app are not able to access resources beyond what has been authorized

at app installation time. The sandbox can be considered a realization of the “least

privilege” security principle.

The construction of the app sandbox is based on three access control mechanisms:

Android permissions [27, 100, 101], Discretionary Access Control (DAC) [66], and

Mandatory Access Control (MAC) [168]; each of them roughly aligning with how

users, developers, and the platform grant consent, respectively.

Permissions restrict access to sensitive data and services. In the

AndroidManifest.xml [29], each app statically lists the Android permissions needed

22



3.2. ANDROID SECURITY FOR APPS

Before
Android 4.3

Android 4.3 -
Android 8

Since
Android 9

Our
Proposal

system servicessystem servicessystem servicessystem services

     app          app      app          app      app          app      app          app1 2 1 2 1 2 1 2

Figure 3.1: Evolution of the MAC policy in Android. Before 4.3, MAC
was not used. Starting with 4.3, MAC protects system components.
Since 9, categories offer rigid MAC protection for apps. Our proposal
offers flexible MAC protection to apps.

to fully operate. Not all of them may be granted; depending on the threat they pose

from a security and privacy standpoint, they may be granted as part of the instal-

lation procedure, or prompted to the user when the app needs them.

DAC restricts access to resources based on user and group identity. By assigning

each application a unique UNIX user ID (UID) and a dedicated directory, Android

isolates apps from each other and from the system. However, UID sandboxing has a

number of shortcomings. As an example, processes running as root are not subject to

these restrictions. For this reason, when such a process is misbehaving, for instance

due to a bug, it can access private app data files. DAC discretionality itself is a

problem. Indeed, as apps and system processes could override safe defaults, they are

more susceptible to dangerous behavior, such as leaking files or data across security

boundaries via IPC or fork/exec. Despite its deficiencies, UID sandboxing is still the

primary enforcement mechanism that separates apps from each other, establishing

the foundation upon which further sandbox restrictions have been built.

MAC dictates which actions are allowed based on the security policy defined by

the system. Specifically, only actions explicitly granted by the policy are permitted.

To decide whether to permit or deny an action, a set of policy rules concerning the

security contexts (i.e., collections of security labels that classify resources) of the

involved parties is evaluated.

In Android, MAC is implemented using SEAndroid, a set of kernel modifications

part of the Linux Security Module (LSM) framework [203]. Since its first introduc-

23



CHAPTER 3. FINE-GRAINED ACCESS CONTROL IN ANDROID APPLICATIONS

tion with the Security Enhanced Android (SEAndroid) project [173], SELinux has

been extensively applied to protect system components. Initially, it was used to

assert the security model requirements during compatibility testing, then its usage

grew further at each release. In the current version Android 11, SELinux is also used

to isolate the rendering of untrusted web content (by the isolated app domain),

to restrict ioctl system calls [122], thus limiting the reachability of potential ker-

nel vulnerabilities, and to support multi-user separation and app sandboxing with

SELinux categories. This last aspect permits to enforce app separation both at DAC

and MAC. Android dynamically assigns categories to apps during app installation,

so that: (i) an app running on behalf of a user cannot read or write files created

by the same app on behalf of another user (since Android 6 [22]); and, (ii) an app

cannot read or write files created by another app (since Android 9[24]). Before An-

droid 9, this separation was only enforced at DAC level. This overlap of security

measures is of extreme relevance to the enforcement of the Android Security Model

and our proposal moves in the same direction. To bypass these protections, a pro-

cess should be granted root permissions, DAC OVERRIDE or DAC READ SEARCH, and

run as SELinux mlstrustedsubject; only a few critical system services run in this

configuration.

Android restricts the SELinux implementation to the policy enforcement, ignor-

ing most policy management functions. The motivation is that the system policy

only changes between releases, therefore support to runtime changes is not needed.

3.3 Motivation

As discussed above, SELinux and the MAC support have been a crucial factor in

the realization of a secure design and the construction of a robust app sandbox. A

limitation of the current design is that this is the only way that apps can benefit

from MAC support. There is currently no option to let the app developer control

the use of the MAC level, as only platform, vendor, ODM and OEM developers

are allowed to introduce new policy segments [38]. Our solution overcomes this

limitation, giving the application developer the power to specify new SELinux types

and associated permissions.

3.3.1 Use cases

We envision several scenarios that justify the use of SEApp. Many of them have

been previously considered by researchers as motivations for the introduction in

Android of dedicated components [49, 93, 120].

24



3.3. MOTIVATION

In this section, we give a tour of SEApp capabilities using a showcase app2.

The architecture of the showcase app is shown in Figure 3.2. Our description is

based on three use cases: fine-granularity in access to files, fine-granularity in ac-

cess to services, and isolation of vulnerability-prone components. Each of the use

cases emphasizes the intra-app security features introduced by SEApp. A dedicated

description, along with policy files that show concretely how to enforce these use

cases, appears in the Appendix A; we provide there a technical demonstration of

how SEApp can provide protection against a number of common security problems

in Android apps [113] that were implemented in the showcase app.

libmedia.so

/data/data/SEApp/files

confidential/

Activity Activity
:core_logic :adlibrary

Activity

ads_cache/

Service
:media

Service

Kernel API
               DAC  +       MAC 

ads_d    → ads_t
core_logic_d → confidential_t

media_d    → media_t

u
se
rs
p
ac
e

fi
le
sy
st
em

ke
rn
el

Service API
Permissions

Binder module

camera
service

location
service

SEApp System Server

Network1 2

3

Figure 3.2: Security Enhanced App

Fine-granularity in access to files

Android apps can collect data from multiple sources, and the system provides many

options to store it. The default one is Internal Storage: a filesystem region, located

at /data/data/packageName, reserved to each package. Its content is available to

all app’s internal components and inaccessible to any other app. Since data can be

extremely sensitive, the developer may be interested in restricting its visibility to

only some internal components, labeling sensitive and non-sensitive data with dis-

tinct SELinux types (use case 1). Yet, in the current Android security model, apps

do not have the option to assign distinct MAC labels to different resources, as all

internal files are labeled app data file. SEApp allows the developer to introduce

dedicated types, and to organize the app’s structure with a separation between com-

ponents managing non-sensitive data and those requiring access to sensitive data.

The sensitive components will be associated with a more stringent MAC domain.

2The showcase app is available in the SEApp repository along with the set of modifications to
the AOSP.

25



CHAPTER 3. FINE-GRAINED ACCESS CONTROL IN ANDROID APPLICATIONS

Figure 3.2 shows an example in which the confidential files are made accessible to

:core logic processes and inaccessible to any other process.

In Appendix A.1 we give a demonstration of how confidential files are made

inaccessible to non-confidential components in the presence of a path traversal vul-

nerability.

Fine-granularity in access to services

Often developers introduce into their applications code coming from external

sources, which they do not fully trust [105, 165, 84]. For instance, a common need of

app developers is to get revenue from their apps and a simple approach is to include

an Ad delivery library within the app. The library is a relatively complex piece of

code, with local computation necessities and the need to manage a dialogue with

remote servers. The app developer is clearly interested in supporting the execution

of the library, but may want to have guarantees that the library cannot abuse the

access privileges granted by the user to the whole application sandbox (use case 2).

A common concern is preventing access to system services such as location. These

requirements can be managed by SEApp with the definition of a separate MAC

domain for the library. The process managing the delivery of Ads will be associ-

ated with this domain, which will provide only the necessary privileges to access

the dedicated resources needed for the library execution. SELinux will then guar-

antee the confinement of the library, preventing access to the location service even

if the ACCESS FINE LOCATION permission is granted to the app. Figure 3.2 shows

an example in which the :adlibrary process is granted access to the network but is

prevented from accessing location service.

In Appendix A.2 we give a demonstration of how the showcase app can support

the execution of the Unity Ads [193] framework with a dedicated SELinux domain.

We also describe in detail how SEApp prevents a malicious component, which was

deliberately injected by us into the library process, to capture the device location.

Isolation of vulnerability-prone components

App developers often have to consider that the input provided to the app can come

from untrusted sources. A typical example is the rendering of complex Javascript

code performed byWebView. The solution currently offered by Android is to execute

these potentially dangerous actions within a sandbox using isolatedprocess, i.e., a

special process that is isolated from the rest of the system and has no permissions

of its own [18]. It runs under a dedicated UID and SELinux domain, and it can only

interact with a restricted number of services [20].

26



3.3. MOTIVATION

A common need of app developers is to take advantage of complex media or

processing libraries, components that are not considered malicious, but due to their

size and complexity are more likely to have security bugs. The developer is then

interested in isolating these potentially vulnerable components (use case 3). Isolat-

edprocess offers a high protection level in Android, however, its use imposes several

restrictions on the developers. For instance, isolatedprocess cannot perform many

of the core Android IPC functions, and the only way to interact with it is through

the bound service API [19]. Also, isolatedprocess can only access already open app

files received over Binder. Another shortcoming is that each invocation of an isolat-

edprocess requires the creation of a new process. If a series of requests are made by

the app, the performance impact can be significant. SEApp offers an easier way to

do this compared to isolatedprocess, as it permits to assign a domain to the process

in which the component is executed, and then configure the required permissions

at MAC level. In terms of performance, the management of multiple requests does

not require the system to activate a new process with a new UID and a dedicated

SELinux category. Figure 3.2 shows how to confine the :media component.

In Appendix A.3 we give a demonstration of how the showcase app can support

the execution of media components relying on a native library in a dedicated process.

We also describe how the developer can leverage SEApp to prevent the code of the

library from the execution of unwanted or unintended operations, like opening a

network connection.

3.3.2 Modular app compartmentalization

The motivations presented above become more frequent as apps increase their size

and complexity, and several important apps see a continuous increase in these pa-

rameters. For instance, Facebook Messenger version 285 contains more than 500

components and WhatsApp Messenger version 2.20 more than 300. This increase in

size and the need to manage it is testified by the development of App Bundles [16],

Android’s new, official publishing format that offers a more efficient way to build

and release modular applications.

In these large and modular apps, developers find it difficult to fully control

which components of an app are using sensitive data3. The availability of a solution

such as SEApp can greatly reduce such risk. A better compartmentalization can

reduce the impact of internal vulnerabilities in modular apps, since each module

can be associated with a dedicated policy fragment. From a security and software

engineering standpoint, SEApp permits to separate the activities of security policy

maintenance and development of new features.

3The topic was explicitly considered in [45], an interview with Android’s VP of Engineering.

27



CHAPTER 3. FINE-GRAINED ACCESS CONTROL IN ANDROID APPLICATIONS

3.3.3 Compatibility with Android design

Looking at the evolution of Android, it is clear that our proposal is consistent

with the evolution of the operating system and the desire of its designers to let

app developers have access to an extensive and flexible collection of security tools.

The major obstacles, as perceived by OS developers, on offering to app developers

the use of MAC services are: weakening of the protection of system components;

performance impact; usability by app developers. The work we did solves these

concerns: our approach guarantees that app policies do not have an impact on

the system policy (Section 3.4.3); the app policy can be specified declaratively and

attention has been paid to let developers adopt the approach in a convenient way

(Section 3.5.2); and, experiments demonstrate the acceptable performance impact,

with a quite limited overhead at app installation time, and a negligible runtime

impact (Section 3.7).

3.3.4 Compatibility with other proposals

As presented in Section 3.3.1, SEApp by itself provides protection against a broad

spectrum of attacks (see Appendix A), but its merit does not end there. As multiple

literature proposals (e.g., [120, 51, 206]) build upon process isolation and use it

to accomplish separation of privileges at the application layer, SEApp could be

used as building block to enforce such restrictions at the MAC layer too, enabling

defense in depth. Moreover, SEApp could also work in conjunction with other

solutions that work at MAC level such as FlaskDroid [59], to benefit of its Userspace

Object Managers (USOMs) coverage of the Android system services and provide

finer granularity in access to services.

3.4 Policy language

To support the use cases presented in Section 3.3, we want the developer to have

control of the SELinux security context of subjects and objects related to her security

enhanced app. To each of them is assigned a type (also called domain when it labels

processes). As types directly relate to groups of permissions, the evaluation of

security contexts is the foundation of each security decision. Since apps may offer

many complex functions, the policy language has to provide the flexibility of defining

multiple domains with distinct privileges so that the app, according to the task it

has to do, may switch to the least privileged domain needed to accomplish the job.

The app policy is specified in a module, provided by the app to describe its own

types. The policy module is processed at app installation time by a component

28



3.4. POLICY LANGUAGE

Policy module syntax

blockStmt → (block blockId cilStmt∗)
cilStmt → typeStmt | typeAttrStmt | typeAttrSetStmt | typeBoundsStmt | type-

TransStmt | macroStmt | allowStmt
typeStmt → (type typeId)
typeAttrStmt → (typeattribute typeAttrId)
typeAttrSetStmt→ (typeattributeset typeAttrId (⟨typeId | typaAttrId⟩+))
typeBoundsStmt→ (typebounds parentTypeId childTypeId)
typeTransStmt → (typetransition sourceTypeId targetTypeId classId [objectName]

defaultTypeId)
macroStmt → (call macroId (typeId))
allowStmt → (allow ⟨sourceTypeId | sourceTypeAttrId⟩ ⟨targetTypeId | targetTy-

peAttrId | self⟩ classPermissionId+)

Table 3.1: Application policy module CIL syntax

of the system, called SEApp Policy Parser, responsible to verify that the policy is

correct and does not introduce vulnerabilities into the system. The addition of a

policy module is managed by combining the new module with the platform policy

and the previous installed ones, producing after policy compilation a single binary

representation of the global policy.

In this section, we provide a description of the SEApp policy language and the

restrictions each module is subject to. Policy configuration is detailed in Section 3.5,

while policy compilation and runtime support are discussed in Section 3.6.

3.4.1 Choice of policy language

SEAndroid supports two languages for policies, Type Enforcement (TE) [189] and

Common Intermediate Language (CIL) [139]. TE was the language available in the

early implementations of SELinux, while CIL was later introduced to offer an easy

to parse syntax that avoids the pervasive use of general purpose macro processors

(e.g., M4 [107]). Another aspect that differentiates them is that, in Android, TE

representations are internally converted into CIL before being compiled into the

SELinux binary policy. To avoid the additional translation step being performed at

each policy module installation, we decided to use CIL over TE.

3.4.2 Definition of types and type-attributes

CIL offers a multitude of commands to define a policy, but only a subset has been

selected for the definition of an app policy module. This was done to control the

impact of the policy module on the system and it may, as a side effect, facilitate the

work of the app developer writing the policy.

29



CHAPTER 3. FINE-GRAINED ACCESS CONTROL IN ANDROID APPLICATIONS

The syntax is described in Table 3.1. To declare a type, the type statement can

be used. This permits to declare the types involved in an access vector (AV) rule,

which grants to a source type a list of permissible actions over a target type. AV

rules are defined through the allow statement.

When writing a policy, there is frequently the need to assign the same set

of authorizations to multiple types. To avoid the repetition of multiple allow

declarations, it is convenient to refer to multiple types using a single entity,

the type-attribute. Using the typeattributeset statement we associate with a

typeattribute a set of types and type-attributes. Each type-attribute essentially

represents the set of types that is produced by the (possibly multi-step) expansion

of its definition. The semantics is that each of the types that directly or indirectly

(using type-attributes) appears as the source of an allow rule will be authorized

to operate with the specified permission on each of the types directly or indirectly

appearing as the target. This improves the conciseness and readability of the policy.

After defining the domains with the least group of permissions necessary to

fulfill the task, the developer can also configure the domain transitions using the

typetransition statement. By doing so, it is possible to ensure that important

native processes run in dedicated domains with limited privileges, leading to intra-

app compartmentalization.

3.4.3 Policy constraints

The introduction of dedicated modules for apps raises the need to carefully consider

the integration of apps and system policies. The first requirement is that an app

policy must not change the system policy and can only have an impact on processes

and resources associated with the app itself. To preserve the overall consistency

of the SELinux policy, each policy module must respect some constraints. Since

Android supports the side-loading of apps [15], we cannot rely on app markets to

verify app policies. Therefore, the enforcement of constraints is done on the device,

by both the SEApp Policy Parser and the SELinux environment. If any of these

components raises an exception, during the verification or compilation of the policy,

app installation is stopped.

To ensure that policy modules do not interfere with the system policy and among

each other, a first necessity is that policy modules are wrapped in a unique names-

pace obtained from the package name. This is done through the block CIL state-

ment, which prevents the definition of the same SELinux type twice, as the result-

ing global identifier is formed by the concatenation of the namespace and the local

type identifier. Also, the use of a namespace specific for the policy module per-

mits to discriminate between local types or type-attributes TA (namespace equal

30



3.4. POLICY LANGUAGE

to the current app package name), types or type-attributes of other modules TA′ ̸=A

(namespace equal to some other app package), and system types or type-attributes

TS (system namespace). At installation time, the SEApp Policy Parser determines

the origin of each type, with an explicit prohibition for policies to refer to types

or type-attributes defined by other policy modules, while use of system types or

type-attributes is subject to restrictions.

With regard to the allow statement, a dedicated analysis is performed by the

SEApp Policy Parser. For each rule, the global origin of source and target types

is determined. We refer to system origin S, when the type is directly or indirectly

associated with a system type in the expansion of its definition, while to local origin

A otherwise. Based on the origin of source and target of each rule, there are four

cases. The case AllowSS, i.e., a permission with system origin both as source and

target, is prohibited, as it represents a direct platform policy modification. The case

AllowAA is always permitted, as it only defines access privileges internal to the app

module. The cases AllowAS and AllowSA are more delicate.

An AllowAS originates when a local type needs to be granted a permission on a

system type. A concrete example is shown in Section 3.3, where the :media process

needs access to the camera service. The case cannot be decided locally by the

SEApp Policy Parser, therefore it is delegated to the SELinux decision engine during

policy enforcement. This crucial postponed restriction depends on the constraint

that all app types have to appear in a typebounds statement [48], which limits

the bounded type to have at most the access privileges of the bounding type. As

Android 11 assigns to generic third-party apps the untrusted app domain, this is

the candidate we use to bound the app types. If the AllowAS rule gives to the local

type more privileges than those associated with untrusted app, and at runtime

these privileges are used, the SELinux decision engine identifies the policy violation

and prohibits the action.

AllowSA rules are the key to regulate how system components access internal

types. To be compliant with Android, the local types introduced by the app policy

module must ensure interoperability with system services crucial to the app lifecycle.

As an example Zygote [43], the native service which spawns and configures new

app processes, can only execute processes labeled with the type-attribute domain,

which is assigned by default to untrusted app. However, giving app developers the

freedom to directly define AllowSA rules would lead to two major issues: (i) the

rules would depend on system policy internals, leading to a solution with limited

abstraction and modularity; (ii) explicit AllowSA rules could lead to violations of the

security assumptions of a system service, with the risk of introducing vulnerabilities

(e.g., leading to a confused deputy attack [58]). For these reasons we prohibit their

explicit use. To limit system types to only those already dealing with untrusted

31



CHAPTER 3. FINE-GRAINED ACCESS CONTROL IN ANDROID APPLICATIONS

Macro Usage

md appdomain to label app domains

md netdomain to access network

md bluetoothdomain to access bluetooth

md untrusteddomain to get full untrusted app permissions

mt appdatafile to label app files

Table 3.2: SEApp macros to grant permissions to local types

content and simplifying the policy, we rely on CIL macros, a set of function-like

statements that, when invoked by the SEApp policy module, produce a predefined

list of policy statements. This approach permits to retain control on the rules

produced, ensuring no violation of the default system policy. Also, it makes the

work of the developer easier, by abstracting away system policy internal details.

To preserve the interoperability with system services, third-party app functionality

has been broken down into the CIL macros listed in Table 3.2. This list has been

identified looking at the internal structure of the untrusted app domain. With this

design philosophy, the developer can grant a basic set of permissions to a type (by

calling one or more macros), and then add to it fine-grained authorizations with

AllowAS rules.

With regard to the typeattributeset statement, the SEApp Policy Parser uses

a verification strategy similar to the one used for allow rules. First, the global

origin of the type-attribute and of the set expression of types and type-attributes

is determined. All statements that directly or indirectly relate to system types are

blocked. This avoids implicit permission propagation from system and local types.

Similarly, for the typetransition statement, the SEApp Policy Parser verifies

the origin of the types involved, with a prohibition for all the statements that relate

to system types, as they may lead to an escalation of privileges.

3.5 Policy configuration

In this section, we explore the structure of application policy modules. Before de-

scribing the content of SEApp configuration files, we give a short description of

how SEAndroid defines the security contexts of processes, files and system services.

There are strong similarities between the structure of system and app policies. In-

deed, we designed our solution as a natural extension of the approach used to protect

the system. Also, our design maintains full backward compatibility. Developers who

are not interested in taking advantage of MAC capabilities do not have to change

their apps.

32



3.5. POLICY CONFIGURATION

3.5.1 SEAndroid policy structure

Compared to a traditional Linux implementation, Android expands the set of con-

figuration files where SELinux [31] security contexts are described, because a wider

set of entities is supported. SEAndroid complements the common SELinux files (i.e.,

file contexts and genfs contexts) with 4 additional ones: property contexts,

service contexts, seapp contexts and mac permissions.xml. Also, the imple-

mentation of the SELinux library (libselinux ) [190] has been modified introducing

new functions (to assign domains to app processes and types to their dedicated

directory). We concisely describe the role of SEAndroid context files.

Processes

With reference to app processes, Android assigns the security context based on the

class the app falls in. The specification of the classes and their security labels are

defined in the seapp contexts policy file. Most classes state two security contexts:

one for the process (domain property) and the other one for the app dedicated di-

rectory (type property). A number of input selectors determine the association of

an app with a class. Among these, seinfo filters on the tag associated with the

X.509 certificate used by the developer to sign the app. The mapping between the

certificate and the seinfo tag is achieved by the mac permissions.xml configura-

tion file. Since the enumeration of all third-party app certificates is not possible a

priori, all third-party apps are labeled with the untrusted app domain by default.

Files

SELinux splits the configuration of security contexts of files between file contexts

and genfs contexts, with the former used with filesystems that support extended

file attributes (e.g., /data), while the latter with the ones that do not (e.g., /proc).

To apply file contexts updates, two approaches are available: either rebuild the

filesystem image, or run restorecon operation on the file or directory to be relabeled

(this is the default method used by permissioned system processes). Conversely, to

apply genfs contexts changes, a reboot of the device or a sequence of filesystem

un-mount and mount operations has to be performed.

Services

Unlike what happens for system processes, a system service requires the assignment

of a security context to both its processes and its Binder [30], to be fully compliant

with SEAndroid. The Binder is the lightweight inter-process communication prim-

itive bridging access to a service. Its retrieval is enabled by the servicemanager , a

33



CHAPTER 3. FINE-GRAINED ACCESS CONTROL IN ANDROID APPLICATIONS

.apk
AndroidManifest.xml
META-INF/
classes.dex
classes2.dex 
policy 

file_contexts
mac_permissions.xml
seapp_contexts 
sepolicy.cil 

res/ 
resources.args

SEApp modificationStock OS

Figure 3.3: SEApp policy structure

process started during device boot-up to keep track of all the services available on

the device. Based on the labels specified in the service contexts file, it is then

possible to control which processes can register (add) and lookup (find) a Binder

reference for the service, and therefore connect to it. However, since Binder handles

resemble tokens with almost unconstrained delegation, denying a process to get the

Binder through the servicemanager does not prevent the process from obtaining it

by other means (e.g., by abusing other processes that already hold it). Furthermore,

preventing a process from obtaining a Binder reference prevents the process from

using any functionality exposed by the service.

3.5.2 SEApp policy structure

Developers interested in taking advantage of our approach to improve the security

of their apps are required to load the policy into their Android Package (APK). A

predefined directory, policy, at the root of the archive, is where the SEApp-aware

package installer will be looking for the policy module (see Figure 3.3). Inside this

directory, the installer looks for four files (which we refer to as local), that outline a

policy structure similar to the one of the system. Specifically, the developer is able

to operate at two different levels: (i) the actual definition of the app policy logic

using the policy language described in Section 3.4 (in the local file sepolicy.cil),

and (ii) the configuration of the security context for each process (in the local files

seapp contexts and mac permissions.xml) and for each file directory (in the local

file file contexts).

34



3.5. POLICY CONFIGURATION

Processes

SEApp permits to assign a SELinux domain to each process of the security en-

hanced app. To do this, the developer lists in the local seapp contexts a set of

entries that determine the security context to use for its processes. For each entry,

we restrict the list of valid input selectors to user, seinfo and name: user is a

selector based upon the type of UID; seinfo matches the app seinfo tag contained

in the local mac permissions.xml configuration file; name matches either a prefix

or the whole process name. The conjunction of these selectors determines a class

of processes, to which the context specified by domain is assigned. To avoid privi-

lege escalation, the only permitted domains are the ones the app defines within its

policy module and untrusted app. As a process may fall into multiple classes, the

most selective one, with respect to the input selector, is chosen. An example of

valid local seapp contexts entries is shown in Listing 3.1, which shows the assign-

ment of the unclassified and secret domains to the :unclassified and :secret processes,

respectively.

In Android, developers have to focus on components rather than processes. Nor-

mally, all components of an application run in a single process. However, it is

possible to change this default behavior setting the android:process attribute of

the respective component inside the AndroidManifest.xml, thus declaring what

is usually called a remote component. Furthermore, with the specification of an

android:process consistent with the local seapp contexts configuration, we sup-

port the assignment of distinct domains to app components. To execute the com-

ponent, the developer is only required to create the proper Intent object [34], as

she would have already done on stock Android for remote components. The assign-

ment to the process of the correct domain is handled by the system. This design

choice allows us to support Android activities, services, broadcast receivers and con-

tent providers, while avoiding changes to the PackageParser [37], as there are no

modifications to the manifest schema.

Files

The developer states the SELinux security contexts of internal files in the

local file contexts. Each of its entries presents three syntactic elements,

pathname regexp, file type and security context: pathname re-

gexp defines the directory the entry is referred to (it can be a specific path or a reg-

ular expression); file type describes the class of filesystem resource (i.e., directory,

file, etc.); security context is the security context used to label the resource. The

admissible entries are those confined to the app dedicated directory and using types

defined by the app policy module, with the exception of app data file. Due to the

35



CHAPTER 3. FINE-GRAINED ACCESS CONTROL IN ANDROID APPLICATIONS

regexp support, a path may suit more entries, in which case the most specific one is

used. Examples of valid local file contexts entries are shown in Listing 3.2: the

first line describes the default label for app files, second and third line respectively

specify the label for files in directories dir/unclassified and dir/secret.

In SELinux, the security context of a file is inherited from the parent folder,

even though file contexts might state otherwise. Since, for our approach, it is

essential that files are labeled as expected by the developer, we decided to enforce file

relabeling at creation. Therefore, a new native service has been added to the system

(see Section 3.6.2). We then offer to the developer an alternative implementation of

class java.io.File, named android.os.File, which sets file and directory context

upon its creation, transparently handling the call to our service.

System services

To support any third-party app, the untrusted app domain grants to a pro-

cess the permissions to access all system services an app could require in the

AndroidManifest.xml. As an example, in Android 11, the untrusted ap-

p all.te platform policy file [42] permits to a process labeled with untrusted-

app to access audioserver, camera, location, mediaserver, nfc services and

many more.

To prevent certain components of the app from holding the privilege to bind to

unnecessary system services, the developer defines a domain with a subset of the

untrusted app privileges (in the local sepolicy.cil file), and then she ensures

the components are executed in the process labeled with it. Listing 3.3 shows an

example in which the cameraserver service is made accessible to the secret process.

Listing 3.1: seapp contexts example

1 user=_app seinfo=cert_id domain=package_name.unclassified

name=package.name:unclassified

2 user=_app seinfo=cert_id domain=package_name.secret name=

package.name:secret

Listing 3.2: file contexts example

1 .* u:object_r:app_data_file:s0

2 dir/unclassified u:object_r:package_name.unclassified_file

:s0

3 dir/secret u:object_r:package_name.secret_file:s0

Listing 3.3: Granting cameraserver access to secret domain

36



3.6. IMPLEMENTATION

1 (block package_name

2 (type secret)

3 (call md_appdomain (secret))

4 (typebounds untrusted_app secret)

5 (allow secret cameraserver_service (service_manager (find)

))

6 ...

7 )

3.6 Implementation

In this section, we describe the main changes introduced in Android by SEApp.

We first analyze the modifications required to manage policy modules, both during

device boot and at app installation. We then describe how the runtime support was

realized.

3.6.1 Policy compilation

Boot procedure

Since the introduction of Project Treble [23], policy files are split among multiple

partitions, one for each device maintainer (i.e., platform, SoC vendor, ODM, and

OEM). This feature facilitates updates to new versions of Android, separating the

Android OS Framework from the device-specific low-level software written by the

chip manufacturers. Yet, each time a partition policy (i.e., a segment) changes, an

on-device compilation is required.

The init process divides its operations in three stages [32]: (i) first stage (early

mount), (ii) SELinux setup, and (iii) second stage (init.rc). The first stage mounts

the essential partitions (i.e., /dev, /proc, /sys and /sys/fs/selinux), alongside

some other partitions specified as early mounted (since Android 10 using an fstab

file in the first stage ramdisk, in Android 9 and lower adding fstab entries using device

tree overlays). Once the required partitions are mounted, init enters the SELinux

setup. As the name suggests, this is the stage where init loads the SELinux policy.

As the /data partition, where policy modules are stored, is not yet mounted, it

is not yet possible to integrate them with the policy of the system. Then, as last

operation of the SELinux setup stage, init re-executes itself to transition from the

initial kernel domain to the init domain, entering the second stage. As the second

stage starts, init parses the init.rc files and performs the builtin functions listed

37



CHAPTER 3. FINE-GRAINED ACCESS CONTROL IN ANDROID APPLICATIONS

there, among them mounting the /data partition. Now, the policy modules are

available, and we can produce with secilc [40] (the SELinux CIL compiler) the

binary policy consisting of the integration among the system policy, the SEApp

macros and the app policy modules. To trigger the build and reload of the policy, we

implemented a new builtin function, and modified the init.rc to call this function

right after /data is mounted. The policy is considered immediately after the /data

partition is available and this ensures that the policy modules are loaded far before

an application starts, making the policy not bypassable.

Even though most Android devices supporting Android 10 were released

with Treble support and, therefore, execute their SELinux setup stage on the

sepolicy.cil fragments scattered among multiple partitions, init still supports

the use of a legacy monolithic binary policy. For compatibility towards devices us-

ing a monolithic binary policy, additional changes are required, as SEApp needs the

system policy written in CIL to be compiled alongside with app modules. To this

end, we modified the Android build process to push the sepolicy.cil files onto

the device even for non-Treble devices. New entries in the device tree were added

to make the policy segments available during init SELinux setup stage [35].

As previously mentioned, we decided to store the policy modules in the /data

partition; even if this choice required us to adapt the boot procedure of the device,

it smoothly integrates SEApp with the current Android design. In fact, the /data

partition is one of the few writable partitions, it is dedicated to hold the APK the

user installs, as well as their dedicated data directories and, therefore, it represents

the best option to contain also the app policy modules. Moreover, whenever a user

performs a factory reset, Android automatically wipes the /data partition, removing

the customization the user made to the device configuration, including the apps. By

placing the app policy modules and the apps into the same partition, a factory reset

removes the policy modules as well.

App installation

As introduced in Section 3.5.2, the developer willing to define its own policy module

is expected to load it in the app package. At app installation, the PackageManager-

Service [36] inspects the APK to identify whether or not the current installation in-

volves a policy module, by looking for the policy directory at the root of the archive.

When the app has a policy module attached to it (see Figure 3.4), the PackageMan-

agerService extracts it ( 1 ) and uses our PolicyModuleValidator to verify the respect

of all the constraints on sepolicy.cil (through the SEAppPolicyParser, Section

3.4) and on the configuration files (Section 3.5). In case of a violation of the con-

straints, the app installation stops. Otherwise, the policy module is stored within

38



3.6. IMPLEMENTATION

 /data/selinux/packageName 
 file_contexts
 mac_permissions.xml
 seapp_contexts 
 sepolicy.cil 

.apk

policy write
2

installd secilcexec
4

10101
11001
00100

system 
policy 

fragments
+

SEApp
macros

sys/selinux/load

3 call

read

8 write 6 write

binary 
policy

read
5

+

7

SEApp modificationStock OS

PackageManagerService

PolicyModuleValidator
read
1

SEAppPolicyParser

Figure 3.4: Installation process

/data/selinux, in a dedicated directory identified by the package name ( 2 ). Then,

the PackageManagerService invokes installd [33] through the Installer to trigger the

policy compilation with an exec call to the secilc program ( 3 , 4 ). Secilc reads the

system sepolicy.cil fragments, the SEApp macros and the sepolicy.cil frag-

ments of the app policy modules in the /data/selinux directory ( 5 ), and builds

the binary policy ( 6 ). When the secilc execution returns and no compilation errors

have been raised, the binary policy is then read by installd ( 7 ) and loaded with

selinux android load policy , which writes the sys/selinux/load file ( 8 ).

To load the policy files after init , the implementation of SELinux in Android has

been slightly modified. In particular, we modified the policy loading function within

libselinux (function selinux android load policy), and changed the system policy to

allow installd to load the app policy module.

As for the policy configuration files, some changes were introduced to load the

application file contexts, seapp contexts and mac permissions.xml. SELinux-

MMAC [41], i.e., the class responsible for loading the appropriate mac pe-

rmissions.xml file and assigning seinfo values to apks, was modified to load the

new mac permissions.xml specified within the app policy module. The loading

of file contexts and seapp contexts was configured to treat system and app

configuration files apart. So, SEApp-enhanced applications will load exclusively

their configuration files, whereas the loading of system’s and other apps’ configura-

tion files is not needed since their use is prohibited. System services and daemons,

instead, load the base system configurations once, and then load the app policy

module specific configuration files as they are needed. An example of this are Zy-

gote and restorecon services, which need to retrieve at runtime seapp contexts and

39



CHAPTER 3. FINE-GRAINED ACCESS CONTROL IN ANDROID APPLICATIONS

file contexts, respectively (see Section 3.6.2).

Our implementation also supports the uninstallation of SEApp apps. The regular

uninstallation process is extended with a step where the global policy is recompiled,

in order to remove the impact of old modules on the overall binary policy. With ref-

erence to application updates, the native installd runs with the necessary permission

to remove and apply new file types based on the content of the file contexts.

3.6.2 Runtime support

In addition to the steps described above, other aspects have to be considered in

order to extend SELinux support at the application layer.

ActivityManagerService

1. StartActivity 
    (Intent)

Zygote

2. Process.start()

Initialization
set GID

setup seccomp filter
set UID read

set SELinux context
/data/selinux/packageName/

seapp_contexts

Activity Thread

packageName:process

looper.loop()

App class

New Activity3. fork()

4. BIND

5. LAUNCH

SEApp modification
Stock OS

Figure 3.5: Application launch

Processes

Android application design is based on components. Each of them lives inside a

process, and can be seen as an entry point through which the system or the user

can enter the app.

To activate a component, an asynchronous message called intent, containing both

the reference to the target component and parameters needed for its execution, has

to be created. The intent is then routed by the system to the ActivityManag-

erService [25] via Binder IPC. Before delivering the intent request to the target

component, the ActivityManagerService checks if the process in which the target

component should be executed is already running; if not, the native service called

Zygote [43] is executed. Its role is to spawn and correctly setup the new application

process. To achieve this, it first replicates itself by performing a fork, then, using

the input provided by the ActivityManagerService (namely, package name, seinfo,

40



3.6. IMPLEMENTATION

Android RunTime

java.io.Fileandroid.os.File

/data/data/packageName
ap

pl
ic

at
io

n
sy

st
em ServiceManager restorecon /data/selinux/packageName

     file_contexts

file2

Activity
Activity

Activity Service
ServiceService

1

2 3 4 6

B
A

init

5

file1

SEApp modification
confidential_file
app_data_file

Figure 3.6: File relabeling

android:process, etc.), it starts configuring the process GID, the seccomp filter,

the UID and finally the SELinux security context. We adapted the final configura-

tion step, forcing Zygote to set the security context based on the seapp contexts

located at /data/selinux/packageName (i.e., the one provided by the developer for

her app). Process name is used to assign the proper context to the process when it

starts, before the logic of the process kicks in. In case the developer did not specify a

domain, then Zygote uses the system seapp contexts as fallback. After the correct

labeling, the ActivityManagerService finishes the configuration by binding the ap-

plication class, launching the component, and finally delivering the intent message.

Figure 3.5 details the process.

This implementation design offers several benefits, including backward compat-

ibility, support for all components, and ease of use. Indeed, a developer who wants

to use our solution only has to configure some files; changes in the application code

are reduced to a minimum, thus facilitating the introduction of SELinux in already

existing apps.

In our study we have also explored other design alternatives, in which the de-

veloper could explicitly state a domain transition in the code, wherever she needs

it. Although this category of solutions would give the developers more control over

domain transitions, it also has some drawbacks. First, the developer would be

expected to enforce the isolation among source and target domains managing the

multi-threaded scenario, and second, this design implies granting too many per-

missions to the app (e.g., dyntransition, setcurrent and read/write access to

selinuxfs). Moreover, such solution would introduce a new Android API, that

would be quite delicate and, if not used correctly, it might be difficult to control.

41



CHAPTER 3. FINE-GRAINED ACCESS CONTROL IN ANDROID APPLICATIONS

Files

Android applications aiming to create a file can use the java.io.File abstraction.

Each file creation request that is generated is captured by the Android Runtime

(ART) [28], and then converted into the appropriate syscall. The result is the

creation of the target file, to which a security context inherited from the parent

directory is assigned (see flow A , B of Figure 3.6). Since Android 9, the separation

between files of different apps is enforced at MAC level (a unique context based on

UID and SELinux category is assigned); however, all the files stored in the same

app folder are labeled with the app data file type.

To make the most out of SELinux, SEApp complements Android with the im-

plementation of a new service, which we called restorecon (to recall the SELinux

restorecon.c tool). The restorecon service is spawned by init at boot, and works

in its own SELinux domain. Its role is to create and label files as specified by

the developer in the local file contexts. To ease development, we implemented

the new android.os.File abstraction, which exposes an interface equal to that of

java.io.File, and transparently handles the call to our service. Figure 3.6 details

the new control flow. A component running in a SEApp-enhanced process (high-

lighted in green in Figure 3.6) invokes android.os.file, and triggers a new file

creation request ( 1 ). The new API first interacts with the ServiceManager ( 2 ) to

get a handle of the restorecon service ( 3 ), then it interacts with the service using

the AIDL [17] interface we defined for it, informing the restorecon of the target path

( 4 ). The restorecon service verifies whether the caller is the legitimate owner of the

path, it reads the file contexts file located at /data/selinux/packageName ( 5 ),

and finally it creates the target file enforcing the correct labeling ( 6 ).

We also investigated three other implementation approaches: (i) change of the

default security context inheritance behavior for the ext4 filesystem, (ii) execution

of the SELinux restorecon operation by the app, once the file is successfully created,

and (iii) use of restorecond [39]. The first option would change the default behavior

system-wide. As it might cause compatibility issues, we decided not to choose it.

The second option is not ideal from a security standpoint, as it requires to grant

the application too many permissions (e.g., relabelfrom, relabelto, as well as

read/write access to selinuxfs to check the validity of the SELinux context). The

third option refers to the use of restorecond , a system daemon that watches (inodes

of) a configurable list of files and checks that they are labeled as stated in the system

file contexts. Although it may realize the control, restorecond was meant for a

few system files, therefore its performance would hardly scale, especially considering

that SEApp needs to manage all files created by SEApp-aware apps. Another major

issue is that this approach is exposed to race conditions, because there is a delay

42



3.7. EXPERIMENTAL RESULTS

between file creation and its relabeling.

installation order (from Google Play)

0

5

10

15

20

25

30

in
st

al
la

ti
on

ti
m

e
[s

]

basic apps

policy overhead

normal installation

installation order (from Google Play)

0

5

10

15

20

25

30

in
st

al
la

ti
on

ti
m

e
[s

]

ordinary apps

policy overhead

normal installation

installation order (from Google Play)

0

5

10

15

20

25

30

in
st

al
la

ti
on

ti
m

e
[s

]

huge apps

policy overhead

normal installation

Figure 3.7: Installation time overhead for apps with different complexity

3.7 Experimental results

We now present a performance evaluation of SEApp. The experiments have been

conducted on both Android 9 and 10, each with Linux kernel v4.9. However, all the

measurements shown refer to Android 10 (release android-10.0.0 r41). The device

used to run the tests is a Google Pixel 3 (blueline), in which the four gold cores

frequency was set to 2.8 GHz, while the four silver ones were disabled. The change

in CPU configuration has been performed to reduce the variability of measures. The

confidence intervals provided have an associated confidence level of 99%.

3.7.1 App installation

The introduction of dedicated app policies implies further steps to be executed at

app installation time, as each SEApp module has to be validated, compiled, and

loaded. To evaluate the impact on performance, we wrote dedicated tests to stress

the installation procedure with multiple application samples.

To build representative samples of a typical consumer scenario, we first down-

loaded the 150 most popular free apps from Google Play (retrieved in October

2020) [114]. The apps were subsequently divided into three buckets: basic, ordinary

and huge apps, according to the weighted normalized average of the .apk size, the

43



CHAPTER 3. FINE-GRAINED ACCESS CONTROL IN ANDROID APPLICATIONS

1 20 40 60 80 100

# installed apps

0

200

400

600

800

1000

1200

cu
m

ul
at

iv
e

in
st

al
la

ti
on

ti
m

e
[s

]

policy overhead

normal installation

Figure 3.8: Cumulative install time overhead when installing the top 100
free apps on Google Play Store with our policies

number of Android activities and the number of services. Based on the bucket,

each app was equipped with one of the following policy configurations: (i) basic, 1

domain and 1 type per policy module, (ii) ordinary, 10 domains and 25 types, and

(iii) huge, 20 domains and 100 types. The rationale is that larger apps can gain

considerable benefit from the use of a large policy. The basic configuration mimics

how third-party apps are currently handled, but with some key improvements, as

it permits to define the subset of services the domain can use, and it permits to

enforce app isolation, not only based on MAC category, but also through the speci-

fication of its own type. The ordinary and huge policy configurations are meant to

take full advantage of intra-app isolation and flexibility via the definition of multiple

domains. Each test was repeated five times, measuring the time each package took

to install. The measurements were done with the *nix date utility.

Test I. To measure the overhead caused by the presence of the policy module, we

performed on device installation of each of the previously described app buckets

(basic, ordinary and huge) via Android Debug Bridge (adb) [26].

The results of Test I are illustrated in Figure 3.7. In detail, it shows in blue (i.e.,

the lower part of the bar) the time required by the system to install the current

package without the dedicated policy module, while in orange (i.e., the top of the

bar) the overhead caused by the presence of the policy module. The data report that

a limited overhead is associated with apps with huge policies, at most 3.59± 0.04s,

while basic and ordinary policy configurations exhibit a negligible slowdown, never

exceeding 1.22± 0.02s.

Test II. To evaluate the overall impact of SEApp in a typical consumer scenario,

we performed a test evaluating cumulative installations. At first, we repeated the

44



3.7. EXPERIMENTAL RESULTS

1 20 40 60 80 100

# installed apps

0%

20%

40%

60%

80%

100%

ov
er

he
ad

huge policy

ordinary policy

basic policy

Figure 3.9: Install time overhead for the three policy sizes

installation of the top 100 apps on Google Play Store with the same policy con-

figuration as in Test I (see Figure 3.8). In this case, we measured an overhead of

20.98± 1, 31% on total installation time.

As explained in Section 3.6, each time a new application is installed, all policy

fragments stored in the device have to be recompiled to produce the new binary

policy. The installation time overhead then grows with the increase in the number of

installed policy modules. To further analyze this aspect, we repeated the installation

of the top 100 free apps adding to all the packages in three separate experiments

the same basic, ordinary, and huge policy configurations. The experimental results

illustrated in Figure 3.9, show that only the use of huge policy modules introduces

a non-negligible overhead (45.35± 2.44% on total installation time). However, this

policy configuration simulates an edge case, as we do not expect to find 100 of

them in a real scenario. To give a comparison, the huge policy declares 100 types;

public/file.te, i.e., the file used to define all the file types of the system, declares

314 types in Android 10.

In Table 3.3 we report the sizes of the overall policies for the three scenarios

considered in this experiment. We report the number of MAC types, the number of

produced AV rules, and the overall size in KBytes of the binary policy.

policy #types #avrules KB

system 1536 29228 596

system + 100 basic 1836 47028 867

system + 100 ordinary 6036 213228 3512

system + 100 huge 15536 417228 7064

Table 3.3: Policy size

45



CHAPTER 3. FINE-GRAINED ACCESS CONTROL IN ANDROID APPLICATIONS

3.7.2 Runtime performance

We now evaluate the runtime overhead for an app taking full advantage of SEApp.

We focus on the creation of processes and files, as they are the entities directly

affected by the changes made in the implementation. The data shown refer to the

creation time of each resource. The measurements have been acquired via Sys-

tem.nanoTime and have been repeated 100 times for each test. Also, all outliers

diverging more than 3 standard deviations from the mean have been suppressed.

Processes

As discussed in Section 3.6, in SEApp the creation of a process is originated from the

request of execution of an Android component. Thus, the slowdown occurs between

the request for the component and the execution of the method onCreate, which is

the time interval subject to measurement. Our evaluation is limited to activities

and services, as these are the components most used by developers. Our analysis

showed identical behavior for broadcast receivers and content providers, the other

two components supporting the android:process attribute in the manifest.

Separate test cases have been identified based on the type of process that sup-

ports the component. We refer to Local, Remote, Isolated or SEApp components

when we run components respectively in the current process, in another process,

in another process with the isolated app domain (using the isolatedprocess we de-

scribed in Section 3.3.1), or in a package specific domain (declared in the app policy

module). Furthermore, we cover cold and warm start scenarios. The cold start cor-

responds to the first time the application brings up the component, and the warm

start to the subsequent times the app reuses a previously instantiated one.

Cold start (ms) Warm start (ms)

Component
Stock OS SEApp Stock OS SEApp
µ σ µ σ µ σ µ σ

LocalActivity 39.102 1.094 38.689 0.980 21.052 6.046 18.685 5.001
RemoteActivity 123.468 3.176 124.649 3.526 15.722 2.682 15.933 3.256
SEApp Activity - - 127.356 3.542 - - 15.188 2.394

LocalService 19.164 1.444 18.835 1.392 1.399 0.208 1.328 0.208
RemoteService 105.467 2.800 106.935 2.565 2.617 0.879 2.676 0.593
IsolatedService 103.923 2.425 104.260 3.727 - - - -
SEApp Service - - 106.925 3.774 - - 2.528 0.675

Table 3.4: Cold and warm start performance for activities and services

The results shown in Table 3.4 demonstrate that the performance of a stock

version of the OS and SEApp are equivalent. Also, we observe that apps willing to

benefit of the intra-app isolation feature get from the use of SEApp the same perfor-

46



3.8. RELATED WORK

mance they would get from the use of remote components. Our approach also proves

to outperform the IsolatedService, as the isolatedprocess option forces the creation

of a new process every time an IsolatedService that was previously unBind-ed is

activated. This introduces a slowdown of 102± 1ms compared to the SEAppService

warm start, which instead benefits from the system caching mechanism.

Files

Alongside the usual creation method, SEApp introduces in Android the possibility

of creating files with a security domain defined by the app dedicated file contexts.

Table 3.5 shows the time required to create a file, for each of the methods discussed.

We observe no overhead on direct file creation, but the overall execution time be-

comes larger due to the invocation, as described in Section 3.6.2, of the restorecon

service, which requires approximately 374± 30µs. This overhead only occurs at file

creation and every subsequent operation on the file does not exhibit any performance

degradation.

File creation

Test µ (µs) σ (µs)
Stock OS 57.077 5.174

SEApp 60.696 6.782

SEApp +
431.472 109.494

restorecon

Table 3.5: File creation performance

3.8 Related work

In traditional desktop operating systems significant effort has been spent in

retrofitting legacy code for authorization policy enforcement leveraging MAC. An

approach is to place reference monitor calls to mediate sensitive access locations

through the use of static and dynamic analysis [109, 147]. An evolution of this solu-

tion is the multi-layer reference monitor [119], in which the MAC policy is enforced

at different levels (e.g., application, OS, Virtual Machine Manager). Another ap-

proach is to identify integrity-violating permissions through the use of information-

flow analysis [170].

Android’s open source nature and popularity made it the target of careful security

investigations (e.g., [7, 106, 98, 97]) and several proposals aiming at strengthen its

security properties. In the following we discuss the ones that try to address app

isolation and modularity, underlining the key differences with our methodology.

47



CHAPTER 3. FINE-GRAINED ACCESS CONTROL IN ANDROID APPLICATIONS

Our approach presents similarities with Secure Application INTeraction (Saint)

proposed by Ongtang et al. in [158], in which the authors also try to address the

issue of allowing developers to define policies that can be verified at both installation

time and runtime, to better specify the permissions for each component of their

app. However, since the paper has been published in 2010, Saint could not leverage

SEAndroid [173], which was introduced later, thus the authors had to define their

own Android security middleware, which would not fit into the current Android

architecture [140].

FlaskDroid [59] defines a versatile middleware and kernel layer policy language.

It is based on Userspace Object Managers (USOMs), which control access to services,

intents and data stored in Content Providers. However, FlaskDroid does not focus

on intra-app compartmentalization, a central aspect in our proposal.

ASM [118] and ASF [50] promote the need for a programmable interface that

could serve as a flexible ecosystem for different security solutions. The generality

of these solutions, however, requires to introduce several changes to the current

Android security model.

AppPolicyModules [47] is another proposal that allows app developers to create

dedicated policy modules. The authors focus more on how apps could use SEAndroid

to better protect their resources from the system and from other apps, paying limited

attention to internal compartmentalization.

DroidCap [76] is a recent contribution proposed by Dawoud and Bugiel, in which

the authors propose to replace Android’s UID-based ambient authority (DAC) with

per-process Binder object capabilities. The proposal is interesting as it permits to

achieve security compartmentalization between different app components. To intro-

duce capability-based access control on files, DroidCap had to integrate Capsicum

for Linux [110] in Android. Overall, DroidCap is a nicely engineered solution, which

shares similar objectives with ours, and the two could work in parallel as they do not

interfere with each other. However, as our proposal relies on SELinux and SEAn-

droid, which are already part of the Android security framework, our architecture

appears to be more aligned with the natural evolution of the Android ecosystem.

Boxify [51] is a virtualization environment for Android apps, which could be

used to achieve a higher level of privacy and better control over app permissions.

The authors also describe how their solution could be used to compartmentalize

Ads libraries to reduce the risk of sensible information leakage. Yet, since the

virtualization environment acts as a mediator between the applications and the

system, it extends the set of trusted components the app has to rely on.

AFrame [206] and CompARTist [120] propose to compartmentalize third-party

libs from their host app using a separate process with a dedicated UID. In AFrame

the Android Manifest is modified with the introduction of library ad-hoc permissions,

48



3.9. CONCLUSIONS

while CompARTist uses compile time app rewriting. Both proposals do not extend

the protection at the MAC level.

To summarize, the main differences that characterize our proposal are: (i) we

propose a natural extension of the role of SELinux to apps leveraging what is already

used to protect the system itself, thus minimizing the impact on it, and (ii) we

empower the developers while limiting the amount of changes an application must

undergo in order to take advantage of our solution.

3.9 Conclusions

This chapter proposed an extension to the current MAC solution (SELinux) already

available in Android. Developers can use SELinux to define domains that are internal

to their apps, in such a way that it is possible to leverage the modules that are already

providing protection to the system. By mapping SELinux domains to activities

and services, developers can limit the impact that a vulnerability has on the app

processes and files. We described in the chapter the changes that we introduced into

Android, and our experimental evaluation shows that the overhead introduced by

our proposal is compatible with the additional security guarantees.

Availability

The implementation and the artifacts produced for the evaluation of our proposal

are freely available at https://github.com/matthewrossi/seapp

49

https://github.com/matthewrossi/seapp




4. Lightweight Cloud Application

Sandboxing

4.1 Introduction

With the research conducted on Android it soon became clear that, while securing

Android apps on the user device was very important, it was as much important to

secure the cloud applications those applications interact with. Cloud applications

are often built of many components, each implementing a specific set of business

requirements. Components naturally evolve, their requirements may change, and

as the overall scale of the application grows it can be challenging to ensure a high

security standard. Many factors contribute to making this objective hard to achieve;

the most common ones are: the presence of buggy components, the reliance on

potentially vulnerable native libraries written with memory unsafe languages, and

broad access to system resources.

Several research works have investigated the scenario (e.g., [177, 67, 6, 208]).

For instance, Staicu et al. [177] explain the security problems that arise when web

applications interact with native extensions. BinWrap [67] and NatiSand [6] analyze

recent vulnerabilities and integrate new security measures in the Node.js and Deno

runtimes to improve isolation and limit access to confidential resources. Lastly,

Zimmermann et al. [208] present an extensive study of third-party dependencies,

finding that large parts of the entire web ecosystem can be impacted by security

issues even when individual packages are vulnerable or they include malicious code

on purpose.

Recently, industry standards have also emerged to encourage organizations to

proactively include new security measures. A notable example is the NIST SP 800-

190 [151], which focuses on environments that adopt microservices, containers and

Kubernetes. The production environment is given particular attention, with the

goal of finding and stopping malicious threats in real time. The directive clearly

indicates that there is a need for policies to defend against vulnerabilities that could

lead to disruptions, such as modification of important files. The same regulation

also provides instructions to prevent the tampering of the file system, prompting

that applications and containers must be run with a set of permissions as minimal

as possible, namely following the least privilege principle.

Powered by the recent eBPF kernel technology, frameworks like Tetragon [191]

51



CHAPTER 4. LIGHTWEIGHT CLOUD APPLICATION SANDBOXING

and Falco [185] have been proposed to monitor cloud applications, identify unex-

pected security-relevant events, and act on them (e.g., denying access). While effec-

tive, they tend to introduce non-negligible overhead when fine-grained policy rules

are used [186]. We argue that the combined use of classical operating system access

control and sandboxing mechanisms may lead to a more resource efficient solution

to isolate application components. For instance, the recent Landlock LSM [138] per-

mits a process to restrict itself ensuring strong security guarantees with minimum

performance footprint. Furthermore, the integration of Landlock, or an equivalent

security mechanism, in cloud applications significantly mitigates the risk associated

with the exploitation of a vulnerability, as the amount of resources available to a

potential attacker is greatly reduced.

Unfortunately, to benefit from this protection developers must obtain a policy

that clearly states the resources an application component must be granted access

to, and the related permissions. This is far from trivial in the case of complex

applications. Indeed, the list of resources can vary based on the production environ-

ment, or be subject to changes when different inputs are provided. All these reasons

hold back the potential of sandboxing, and cloud applications may solely rely on

the coarse isolation provided by the virtual machine or the container in which the

application is executed.

Our contribution In this chapter we propose a new approach to systematically

integrate fine-grained sandboxing in cloud applications that is aligned with the cur-

rent regulations and best practices. In detail, we provide an intuitive, open-source

solution to retrieve all the file system resources required by an application compo-

nent, to build and customize least privilege policies. We then showcase how policies

are used to sandbox programs with Landlock, mitigating the impact of severe CVEs.

The approach we propose is flexible and does not depend on the toolchain leveraged

to build each application component. The experiments showcase the minimal per-

formance footprint at runtime, and highlight the ability to monitor the application

without affecting its execution state.

4.2 Motivation

This Section explains the threat model and the motivation.

4.2.1 Threat model

We assume that the code part of the cloud application (including native code exe-

cuted by it) is trusted and not malicious, but potentially affected by vulnerabilities

52



4.2. MOTIVATION

due to bugs. In this scenario, an attacker may leverage web interfaces or program-

matic APIs to send the application malicious payloads with the goal of exploiting

such vulnerabilities. This attack vector may leave the application exposed to, e.g.,

arbitrary file read and write, file system compromise, and execution of arbitrary

programs; all of which can lead to an inconsistent state of the application and its

volumes. We aim at the creation of fine-grained, component-specific policies that

are used by developers to gradually introduce sandboxing, mitigating the impact of

vulnerabilities. This approach is complementary to the use of containers, as a com-

promised process running in a container can still damage all the resources available

to it.

4.2.2 Dependency identification

An important use case for cloud applications is represented by services that handle

media resources such as videos, photos, and audio. These applications typically rely

on an extensive set of editing libraries and codecs to perform a number of opera-

tions like crop, scale, introduction of effects, format conversion, and compression.

This software is usually available as dynamic libraries that are loaded and executed

depending on the type of operation to be performed, on the input source, and on

the hardware support available. A solution able to automatically collect all the

resources used by a component for a set of test cases can significantly help the

developer detecting and isolating the dependencies of the application.

4.2.3 Mitigation of bugs

Open source libraries and programs are used extensively while developing cloud

applications. Examples include database drivers, media processing libraries, and

encoding utilities. This software is often trusted, but it may be subject to vulner-

abilities as explained in Section 4.2.1. When vulnerable third-party code is exe-

cuted by the application, it can be targeted and compromised by an attacker who

sends malicious payloads, as described in [11, 5, 102]. Popular cases are the Server-

Side Request Forgery and Arbitrary File Read vulnerabilities found in FFmpeg

and exploited against TikTok [117], and the Remote Command Execution vulner-

ability found in ExifTool and exploited against GitLab [74]. Other examples in-

clude: 1) CVE-2020-24020, CVE-2022-2566, CVE-2020-2499 associated with video

processing software, 2) CVE-2022-1292, CVE-2022-2068, CVE-2022-2274 related to

cryptographic software, and 3) CVE-2021-4118, CVE-2021-37678, CVE-2022-0845

targeting machine learning software.

53



CHAPTER 4. LIGHTWEIGHT CLOUD APPLICATION SANDBOXING

With our approach we aim to support the progressive introduction of fine-grained

policies that are used to sandbox the application or any of its components, making

harder for an attacker to tamper the file system, corrupt data, or exfiltrate sensitive

information such as private keys or database entries.

4.2.4 Performance and usability

Modern cloud applications are often deployed as Kubernetes Pod instances and

executed in one or more containers. Kubernetes provides several tools to improve the

security and isolation of Pods. Relevant to this scenario are the support for RBAC

policies and the availability of restricted Seccomp profiles. RBAC policies by default

permit to define access of human users, however, they can also be used to govern

the behavior of software resources through service accounts. Unfortunately, these

policies can only restrict access to Kubernetes APIs, therefore they are not suitable

for fine-grained restriction of permissions at an application component level. The

same limitation is shared with Seccomp profiles, which can limit the kernel interface

available to the cloud application, but are only applied at container level [188] and

cannot operate depending on the specific requested resource [123].

Recent solutions based on eBPF, like Tetragon and Falco, enable the introduc-

tion of fine-grained policy rules to overcome the previous limitations. To this end,

they load into the kernel dedicated filters which are run system-wide every time a

security event like the opening of a file or the execution of a program occurs. Based

on the content of the policy, and therefore the filters, these frameworks can grant

or deny a particular action, effectively restricting the privileges available to a cloud

application. However, as mentioned in Falco’s documentation [186], the main prob-

lem associated with this approach is that performance overhead can have a large

variability. This is mainly due to the fact that filters are evaluated every time a

certain hook point (e.g., a syscall) is triggered, and that many hooks may need to

be controlled to enforce a given security policy. Furthermore, these frameworks do

not assist the developer in the generation of application-specific policies.

With our proposal we aim at giving the developer a complementary approach to

secure applications and limit the file system resources accessible to them. Our idea

is that the developer can benefit from the advantages brought by technologies like

Landlock (i.e., strong security guarantees, low overhead), while at the same time rely

on eBPF-based technologies, but only to monitor a restricted subset of important

security events.

54



4.3. APPROACH OVERVIEW

ST
AG

IN
G

Cloud Application

Component C

Requirements
extraction

Analysis and
customization

Policy 
template

PR
O

DU
CT

IO
N Cloud

Application

Activity traces

+

{ ; }
JSON

Sa
nd

bo
xe

r

Sandbox A Sandbox B

Dmng

Traced by Dmng

Component B

Component A
10101
11000

10101
11000

Policy

{ ; }
 JSON L

Cloud Application

Component C

10101
11000

Component B

Component A

Policy

{ ; }
 JSON L

Figure 4.1: Approach overview: 1) Dmng uses probes to trace the appli-
cation components A and B, 2) activity traces are saved into a SQLite
DB, 3) requirements are extracted from the traces and used to build se-
curity policies, finally 4) policies are leveraged by the sandboxer to secure
the application in production

4.3 Approach overview

Frequently, developers start building cloud applications from base container images,

which are subsequently customized and extended with third-party software (e.g.,

web frameworks, database drivers, etc.). Once the application has been developed,

it is released to the staging area, a replica of the production environment, not

accessible from the outside, where developers and cloud architects can test new

features so to detect design flaws and prevent unexpected errors to hit the production

environment. The similarity to the production area makes it the best candidate to

generate accurate least privilege policies to restrict the permissions available to the

application.

To operate as intended, each application component requires access to system

resources like programs, scripts, dynamic libraries, shared memory, and files. We

simply call these resources requirements. In order to collect them, we provide an

intuitive open source tool called Dmng that performs service instrumentation as

55



CHAPTER 4. LIGHTWEIGHT CLOUD APPLICATION SANDBOXING

shown in Figure 4.1. In detail, the tool leverages ptrace and eBPF to setup and

activate temporary probes that register the actions performed by an application

component, making it possible to track file-opening requests, reading and writing

of data, use of shared memory and execution of native code via subprocesses and

shared libraries. All these requests are automatically registered into a database

and subsequently used to generate policy templates. Together with the file system

path, each requirement is associated with permissions. Compatibly with Unix-like

systems, three permissions are available: read, write, and exec. The policy templates

generated by Dmng can then be interactively modified by the developer with the

addition, modification or removal of policy rules. After the changes are committed,

the policy is serialized into a JSON file and it is ready to be used to sandbox the

application.

Sandboxing can be introduced with several technologies and frameworks; given

that we aim to restrict file system resources, we provide a sandboxing utility based

on Landlock that parses the set of requirements needed by the application (i.e.,

path and permission pairs) from the JSON policy file generated by Dmng, and it

restricts the permissions accordingly. We selected Landlock due to its outstanding

performance and stackability property. Indeed, the use of Landlock allows us to

be compatible with systems that already rely on other LSMs (e.g., AppArmor,

SELinux). We highlight that, whenever two or more LSMs are available on the

host, a single denial prevents the access to a resource (i.e., deny takes precedence).

After the cloud application has been deployed to the production environment it

is important to ensure that services are running as expected, there are no anomalies,

and proactive measures are taken to identify potential threats. By default, access

to any file system resource not listed in the policy is blocked by Landlock. However,

there may be cases in which the developer would like to generate reports on the set

of requested resources by the application. To enable this, Dmng allows to temporar-

ily observe and record the activity traces generated by any application component

without changes to the application itself nor its execution state. These checks are

not bypassable, which is a considerable advantage compared to alternative tech-

niques that either rely on LD PRELOAD or perform instrumentation through code

dependency injection.

The following sections are organized as follows. Section 4.4 details the tech-

nologies used to support policy generation and implement monitoring. Section 4.5

clarifies the structure of the policy. Section 4.6 describes sandboxing through Land-

lock. Lastly, Section 4.7 showcases the mitigation capabilities and investigates the

performance overhead.

56



4.4. CLOUD APPLICATION INSTRUMENTATION

4.4 Cloud application instrumentation

Our solution implements two methods to collect the requirements and generate the

policy. The first is uses ptrace and is based on syscall argument inspection, the

second leverages eBPF, which dynamically extends the kernel attaching dedicated

probes on relevant in-kernel file system-related events. Both the approaches are

used to instrument the application, however, using ptrace significantly affects per-

formance and thus is meant to be used only during staging. On the other hand,

eBPF has lighter impact on performance, hence it can be used also in production.

4.4.1 Ptrace-based instrumentation

Ptrace is a functionality implemented by the kernel aimed at debuggers and code

analysis tools that permits a process, called the tracer, to control and observe the

activity performed by another process, the tracee. In our implementation, Dmng

acts as the tracer for any application component. To this end, it prepares a parent

and a child process as shown in Figure 4.2, and then uses the ptrace system call

to instruct the kernel that the child will be traced by the parent (through the

PTRACE TRACEME request). After this step is completed, Dmng injects into

the child process the component to be run, and then starts it. While being traced,

every time an event occurs, the tracee is stopped by the kernel and a notification is

sent to the tracer, which has the possibility to inspect and perform changes before

the execution of the tracee is resumed. Dmng leverages ptrace to capture all file

system-related syscalls, effectively monitoring the requests issued to the kernel by the

component. The syscalls and their arguments are recorded by the tracer and saved to

the SQLite database mentioned in Section 4.3. The set of monitored syscalls includes

interfaces such as open, openat, creat, execve, link, linkat, mkdir, and the related

permission flags (e.g., O APPEND, O CREAT, O RDONLY). It is important to

point out that Dmng automatically captures and monitors the possible children

spawned by the tracee, and it is also capable to identify the set of dynamic libraries

they depend upon.

When the developer wants to stop the tracing process, Dmng detaches itself

from the tracing of the child process with the PTRACE DETACH request and it

terminates the child process by sending a SIGKILL signal.

4.4.2 eBPF-based intrumentation

Similarly to other recent security and observability frameworks, like Cilium [183],

and Tetragon [191], Dmng relies on the eBPF technology to implement continuous

57



CHAPTER 4. LIGHTWEIGHT CLOUD APPLICATION SANDBOXING

TRACER TRACEE
clone

resume
inspection

Dmng Child process

exec(application)

ptrace(PTRACE_TRACEME)

notify
syscall entry

Figure 4.2: Dmng acts as a tracer for the application, inspecting the
arguments of every syscall

monitoring. The eBPF subsytem allows to change at runtime the behavior of the

kernel without changing its implementation nor adding new modules. Briefly, it

permits to do so by loading compact programs within the kernel, which are evaluated

(without preemption) by a virtual machine-like component every time a certain

hook point is reached. There are many types of hook within the kernel, examples

are network events, tracepoints, and LSM functions. To store data persistently

between different eBPF program invocations and to share data between kernel and

user space, data structures called maps are used. They provide abstractions such

as arrays and hashmaps. It is important to mention that eBPF programs must

be safe to run within the kernel and must not introduce bugs. To ensure these

conditions are met, the eBPF susbsystem automatically performs the two stages

of Program Verification and Just-In-Time Compilation at load time; only if both

terminate without exceptions then the loading of the program is successful.

Dmng activates eBPF-based tracing on a given application component using its

thread identifier. To this end, it leverages the libbpf [129] frontend to load into

the kernel the eBPF programs and maps needed to perform tracing, and then starts

collecting data. The process is shown in Figure 4.3. The set of eBPF programs com-

prises of: 1) dedicated programs to trace the application component lifetime, and

2) programs to monitor the file system-related events generated by the component.

The former group of programs ensure that monitoring extends to tasks spawned

through the clone system call by the component. Hence, they are attached to the

sched process fork and sched process exit kernel tracepoints. Instead, the programs

that record file system-related events are attached to hooks reported in Table 4.1.

Whenever one of these hooks is triggered, the attached program writes the require-

ment path and the related permission to a ring buffer shared with the Dmng user

58



4.5. POLICY

eBPF programs
& maps

load time

user
kernel

resource

libbpf

bpf syscall

runtime

ring
buffer

Verifier

JIT 
compiler

AAA
task storage

eBPF
programs

A

Dmng Application
Component A

syscalls

Figure 4.3: Dmng uses libbpf to load the eBPF tracing programs and
maps, then it polls data from the shared ring buffer

space process. This permits Dmng to poll data regularly, and then to save it in the

already mentioned SQLite database (Section 4.3).

We highlight that the collection of data using this method has minimal inva-

siveness: no changes must be introduced in the code of the application, nor it is

necessary to restart it to setup the process. Indeed, when the developer wants

to stop tracing, the eBPF programs and maps loaded by Dmng are automatically

removed, leaving the system unmodified.

4.5 Policy

In this section we present the structure of the policy, explaining how it can be

customized. We also discuss aspects such as coverage and effectiveness.

Policy structure The policy obtained from Dmng is a JSON file structured as a

list of objects as shown in Listing 4.1. For each of them, a field policy name identifies

the application component the policy applies to, while the sections read, write and

exec are used to configure the related permissions. The structure of the policy is

flexible, and for each object only the field policy name is required. Since the policy

implements a default-deny model, an object that does not list any section in its body

has no runtime permission, hence the corresponding component cannot access any

file system resource. Listing 4.1 shows an example in which a component called filter

is granted execution access to the Awk program (together with its shared libraries)

to process the read-only users.csv dataset.

59



CHAPTER 4. LIGHTWEIGHT CLOUD APPLICATION SANDBOXING

Table 4.1: List of file system traced hook points

Hook name

fentry/security file fcntl

fentry/security file ioctl

fentry/security file lock

fentry/security file mprotect

fentry/security file open

fentry/security file receive

fentry/security file set owner

fentry/security inode getattr

fentry/security path chmod

fentry/security path chown

fentry/security path chroot

fentry/security path link

fentry/security path mkdir

fentry/security path mknod

fentry/security path rename

fentry/security path rmdir

fentry/security path symlink

fentry/security path truncate

fentry/security path unlink

lsm/bprm check security

lsm/mmap file

Policy customization Dmng provides a CLI interface that work simultaneously

with multiple data sources to produce the list of requirements. By default, it imple-

ments the logic to automatically merge the requirements collected with ptrace and

the eBPF programs. Moreover, it permits to customize the policy interactively,

adding, changing and removing requirements. For instance, it allows to delete

requirements based on the permission mask (e.g., r x, r--), or change the per-

mission associated with all the requirements that match a given path regex (e.g.,

/usr/bin/libnet.*).

A useful feature implemented by Dmng is permission pruning. This function takes

advantage of the structure of the Directory Tree [134] to help the developer lower

the number of requirements in the policy by reducing the granularity of permissions.

The reduction in granularity is based on a pruning goal set by the developer that

represents the desirable maximum number of policy rules associated with an appli-

cation component. To implement this feature, Dmng first uses the policy template

to build a trie (or prefix tree), then starts pruning its branches iteratively following

a best effort approach, until the pruning goal is achieved. The rationale is that

there are areas of the file system in which fine granularity brings strong security

guarantees (e.g., /lib), but there are also many other areas where fewer rules make

60



4.5. POLICY

Listing 4.1: Example of JSON file with single policy

1 {
2 "policies": [{
3 "policy_name": "filter",

4 "read": [

5 "/lib/x86_64 -linux -gnu/libsigsegv.so.2",

6 "/lib/x86_64 -linux -gnu/libreadline.so.8",

7 "/lib/x86_64 -linux -gnu/libmpfr.so.6",

8 "/lib/x86_64 -linux -gnu/libgmp.so.10",

9 "/lib/x86_64 -linux -gnu/libm.so.6",

10 "/lib/x86_64 -linux -gnu/libc.so.6",

11 "/lib/x86_64 -linux -gnu/libtinfo.so.6"’,

12 "/lib64/ld-linux -x86 -64.so.2",

13 "/usr/bin/awk",

14 "users.csv"

15 ],

16 "exec": [

17 "/lib/x86_64 -linux -gnu/libsigsegv.so.2",

18 "/lib/x86_64 -linux -gnu/libreadline.so.8",

19 "/lib/x86_64 -linux -gnu/libmpfr.so.6",

20 "/lib/x86_64 -linux -gnu/libgmp.so.10",

21 "/lib/x86_64 -linux -gnu/libm.so.6",

22 "/lib/x86_64 -linux -gnu/libc.so.6",

23 "/lib/x86_64 -linux -gnu/libtinfo.so.6"’,

24 "/lib64/ld-linux -x86 -64.so.2",

25 "/usr/bin/awk"

26 ]

27 }]
28 }

the policy more concise without affecting security (e.g., /share). So, it is impor-

tant to consider contextual information about the current prefix path to guide the

pruning process. Moreover, we want to comply with the write xor execute memory

protection policy whereby every file may be either writable or executable, but not

both. Thus, limiting the propagation of potentially insecure configurations (e.g., no

dynamic library stored in /lib must be writable and executable by the application).

After the pruing process terminates, the changes to the template are audited by the

developer, and can be committed or discarded.

Coverage and effectiveness To generate the policy templates, Dmng registers

the activity performed by the application while a set of test cases is executed. This

approach is similar to the one proposed by the Slim toolkit [172] to identify the

dependencies of a container and minify its image, and to the one followed by the

Google Sandbox2 utility [112] to retrieve the requirements of programs distributed

as ELF files. However, test-based policy generation can be subject to coverage issues

if the set of test cases is not exhaustive. Another aspect worth mentioning is that

applications poorly structured may benefit less from the isolation properties pro-

61



CHAPTER 4. LIGHTWEIGHT CLOUD APPLICATION SANDBOXING

Sandboxer Cloud 
application

Component A

1) Sandboxer starts the app
2) Sandboxer activates the app sandbox
3) App starts component A (who inherits the 

parent sandbox)
4) Sandboxer restricts component A’s sandbox

1)
2)

3)

4)

{ ; }
  JSON L

Figure 4.4: Landlock sandbox setup and inheritance

vided by sandboxing. Indeed, on a traditional Unix operating system, components

executed within the same thread will inevitably share the same policy. Since Dmng

supports the sandboxing of components with a per-thread policy, we recommend to

leverage this function and execute potentially vulnerable components in dedicated

compartments.

4.6 Application sandboxing

In this chapter we implement the sandbox leveraging Landlock, an unprivileged

sandboxing mechanism officially merged into the Linux kernel in 2021 (version 5.13),

with the goal of mitigating the security impact of bugs and unintended or malicious

behavior in user-space application. The main reasons why Landlock was preferred

to alternative sandboxing solutions such as Google Sandbox2 [112] are: 1) it does

not rely on a proxy to implement the restrictions, hence it ensures low overhead

at runtime, and 2) it is directly implemented within the kernel, thus it provides

strong security guarantees. This section clarifies how policies are enforced with

Landlock. Furthermore, it explains how rwx policy rules are translated into the

Landlock permission model, and how restrictions are inherited by new components

dynamically spawned at runtime.

The sandboxer is an extension of Dmng written in Rust that receives the JSON

policy as input and modifies the application start procedure setting the permissions

available to components before they are executed. The first task performed by the

sandboxer is then to translate the rwx policy rules into the action-based permis-

sion model implemented by Landlock. In detail, Landlock groups permissions into

rulesets, which collect the actions (e.g., FS EXECUTE, FS READ FILE) permitted

on each object (e.g., file, directory). The sandboxer separates the available actions

to match the rwx categories, and then leverages the landlock create ruleset() and

landlock add rule() interfaces to populate the rulesets accordingly. To activate the

62



4.7. EXPERIMENTS

restrictions, a call to landlock restrict self() is perfomed. The process is illustrated

in Figure 4.4.

An important property defined by Landlock is policy inheritance. Whenever a

new component is dynamically spawned by the application in a child process, it

automatically inherits the restrictions set on the parent. Moreover, after a ruleset

has been activated, no new permissions can be granted to a component, as the ruleset

can only be further restricted. Figure 4.4 shows the policy inheritance process for

a generic application. The figure also shows how the inherited ruleset is further

narrowed with a subsequent call to landlock restrict self() by the component.

4.7 Experiments

This section presents our experimental evaluation. In the first part (Section 4.7.1),

we show the benefits coming from the introduction of sandboxing in cloud applica-

tions. In detail, we reproduce a sample of CVEs affecting open source software, and

showcase how the sandbox mitigates the exploits. In the second part (Section 4.7.2),

we analyze the performance overhead. Specifically, we implement an application that

performs various operations on media resources, and then evaluate the degradation

of latency when sandboxing and eBPF-based monitoring are activated. The tests

have been executed on a workstation with Arch Linux, kernel version 6.4, an AMD

Ryzen 5 7600X CPU, 32 GB RAM, and 1 TB SSD.

4.7.1 Mitigation of vulnerabilities

To demonstrate the importance of the introduction of sandboxing, we selected the

sample of high severity vulnerabilities reported in Table 4.2. These vulnerabilities

affect software extensively used in cloud application development such as FFmpeg,

ImageMagick, OpenSSL and Exiftool. For each of them, we installed on the system

a vulnerable version of the program or library, and then verified it was exploitable

using public Proof of Concepts when the input is sent through programmatic APIs or

web interfaces. Subsequently, we leveraged Dmng to generate least privilege policies

as explained in Section 4.4. Finally, we repeated the execution of the previous

tests starting each vulnerable component with our sandboxer. When benign input

was submitted to the application, we were successfully able to conduct the tests

without loss of functionality. When instead malicious input was used, Landlock

correctly blocked the exploit, limiting access to only resources listed in the policy.

We highlight that, in general, similar protections extend to a broader set of CVEs.

63



CHAPTER 4. LIGHTWEIGHT CLOUD APPLICATION SANDBOXING

Table 4.2: Sample of CVEs reproduced in our evaluation

CVE Software Version Description

CVE-2016-1897
FFmpeg v2.x

A crafted AVI video is used to read arbitrary
CVE-2016-1898 files

CVE-2020-29599 ImageMagick v7.0.10-36 A bug in the PDF codec enables arbitrary
code execution

CVE-2022-1292 OpenSSL v3.0.2 Improper sanitisation allows command
injection

CVE-2021-22204 ExifTool v12.23 Improper neutralization of user data in the
DjVu file format is used to run arbitrary
executables

4.7.2 Overhead

As mentioned in Section 4.2, an important use case for cloud applications is rep-

resented by services that handle media resources such as videos, photos and audio.

Therefore, to evaluate the overhead associated with our approach we implemented a

Rust application that, upon receiving a request, leverages third-party software to ap-

ply several transformations on a media resource. Our goal is to measure the latency,

or rather the time taken by the application to perform a given operation. Three test

configurations are used: 1) no sandboxing is applied, hence no protection, 2) sand-

boxing is enabled leveraging our Landlock-based sandboxer, and 3) sandboxing is

enabled plus eBPF-based continuous monitoring provided by Dmng is activated.

Each operation is repeated 1000 times, and the measures are reported with 95%

confidence intervals. Moreover, we focus on the server-side execution time, hence

we do not consider the delay introduced by the network, which may make harder to

visualize latency degradation for short-lived operations.

The first set of experiments focuses on image processing. In detail, the appli-

cation leverages convert to copy, enhance, resize, sharpen, rotate and swirl images

with 32x32, 640x480 and 1920x1080 resolutions. The results are shown in Fig-

ure 4.5. Inevitably, sandboxing introduces a slight degradation of latency compared

to a scenario without protection. However, the overhead is non-negligible only for

short-lived operations that last less than 10 ms, a duration that is considerably less

than the average network delay. When instead eBPF-based monitoring is enabled,

the data show worse latency degradation, especially for operations that last less than

50 ms. Remarkable is the case 640x480, in which the average operation overhead

associated with eBPF-based monitoring is 47.6%.

The second set of experiments focuses on video processing. In detail, the appli-

cation leverages ffmpeg to decode, copy, cut, loop and extract audio from videos with

480p resolution and with 6 seconds, 1 minute, and 10 minutes duration respectively.

64



4.8. RELATED WORK

Copy Enhance Resize Sharpen Rotate Swirl0

2

4

6

8

Ti
m

e 
[m

s] 13
.7

% 9.
6%

4.
6% 2.

1%

8.
5% 14
.9

%

42
.5

% 33
.3

%

27
.7

%

13
.6

%

19
.2

% 28
.3

%

None Landlock Landlock+eBPF

(a) 32x32 image resolution

Copy Enhance Resize Sharpen Rotate Swirl0

5

10

15

20

25

30

35

Ti
m

e 
[m

s]

78
.7

%

4.
2%

0.
9%

0.
5%

0.
4%

0.
2%91

.9
%

10
.3

%

72
.6

%

21
.4

%

60
.5

% 28
.8

%

None Landlock Landlock+eBPF

(b) 640x480 image resolution

Copy Enhance Resize Sharpen Rotate Swirl0

25

50

75

100

125

150

175

200

Ti
m

e 
[m

s]

10
.3

%

0.
1%

0.
7%

0.
5%

0.
1%

0.
6%

16
.4

%

1.
7%

18
.5

%

4.
0%

7.
8%

4.
1%

None Landlock Landlock+eBPF

(c) 1920x1080 image resolution

Figure 4.5: Latency associated with various operations for an image pro-
cessing application

The results are shown in Figure 4.6. The overhead introduced by sandboxing is per-

ceptible only for the decode and copy operations on the shortest video (6 seconds).

However, it never exceeds 18.3%. As expected, the overhead becomes practically

negligible for operations that take longer than 100 ms. The same considerations

extend to the eBPF-based monitoring, which again confirms to be associated with

more degradation compared to the Landlock-only solution.

4.8 Related work

Several research works have highlighted the importance of sandboxing and isolation

techniques in modern software [126, 203, 55, 149, 167, 10]. Indeed, sandboxing plays

a key role in many plaftorms (e.g., Linux, Windows, iOS, Android), and is integrated

in widely used software such as browsers (e.g., Chrome [68], Firefox [145]), service

65



CHAPTER 4. LIGHTWEIGHT CLOUD APPLICATION SANDBOXING

Decode Copy Cut Loop Extract Audio0

20

40

60

80

Ti
m

e 
[m

s]

14
.7

%

18
.3

%

2.
1% 1.

4%

0.
7%

36
.0

%

18
.8

%

20
.3

% 21
.8

%

10
.5

%

None Landlock Landlock+eBPF

(a) 6 seconds 480p video

Decode Copy Cut Loop Extract Audio0

100

200

300

400

500

600

Ti
m

e 
[m

s]

6.
7% 0% 1.

0%

0.
1%

0.
2%

15
.5

%

6.
3%

7.
4%

4.
4%

0.
2%

None Landlock Landlock+eBPF

(b) 1 minute 480p video

Decode Copy Cut Loop Extract Audio0

1000

2000

3000

4000

5000

Ti
m

e 
[m

s]

3.
5%

1.
0%

0.
3%

1.
4%

0.
8%

15
.1

% 1.
1%

2.
8%

2.
8%

1.
1%

None Landlock Landlock+eBPF

(c) 10 minutes 480p video

Figure 4.6: Latency associated with various operations for a video pro-
cessing application

managers (e.g., Systemd [82]) and document viewers (e.g., Acrobat [8]).

With specific reference to the cloud scenario, many recent proposals have investi-

gated the use of sandboxing to mitigate vulnerabilities [6, 5, 4, 11, 177, 67, 208, 102].

In NatiSand [6] and Cage4Deno [5] the authors modify the Deno runtime to con-

trol the permissions available to applications running native code. BinWrap [67]

proposes similar measures to restrict the permissions available to Node.js native

add-ons. SandDriller [11] describes an approach based on dynamic analysis for de-

tecting sandbox escape vulnerabilities for Node.js applications. Zimmermann et

al. [208] and Ferreira et al. [102] study the risks associated with vulnerable or mali-

cious third-party dependencies and propose possible install (and update) time coun-

termeausures. In general, all the previous proposals address the issues associated

with a specific runtime ecosystem. Conversely, we aim to secure applications inde-

pendently of their build toolchain or runtime.

66



4.9. CONCLUSIONS

Virtual machines and containers are two fundamental technologies in modern

cloud architectures. Both permit to virtualize resources and execute applications in

an isolated environment. Virtual machines ensure stronger security guarantees at

the cost of higher resource utilization with respect to containers. The main reason

is that applications executed in separate virtual machines have a distinct set of

resources and do not share the same kernel [65, 64]. With specific reference to our

scenario, both these technologies are associated with coarse granularity. Indeed,

when working with them developers grant the application access to volumes rather

than single resources. So, we provide a complementary approach to enable the

introduction of fine-grained, per-resource access rules.

Modern industrial platforms like Cilium [182] and Falco [185] rely on eBPF

as the primary means to enforce security policies in cloud applications. Cilium

provides networking, observability, and security functions for container workloads,

while Falco implements a threat detection engine for clusters. Both solutions are

enterprise-oriented, hence the developer may find difficult to set up fine-grained poli-

cies leveraging them. Moreover, as already mentioned in the chapter, the perfor-

mance of eBPF-based solutions is associated with large variability when fine-grained

rules are used [186]. Therefore, we propose to complement these solutions by as-

sisting the developer in the generation of least privilege security policies and using

recent sandboxing technologies like Landlock, to reduce the overhead and strengthen

the security boundary of the application.

4.9 Conclusions

The mitigation of security bugs and vulnerabilities that affect cloud applications

is an important topic. In this chapter, we presented an approach to support the

introduction of security policies to restrict the file system resources available to an

application. To facilitate adoption, a central aspect in our proposal is the support to

policy generation. We provide an open source tool to generate and customize least

privilege policies leveraging the powerful, yet complex, ptrace and eBPF kernel

technologies. Compared to virtualization technologies such as VMs and containers,

which are associated with coarse granularity, we demonstrate that our proposal

enables the introduction of fine-grained, per-resource access rules. The experiments

showcase the capability of our approach to mitigate severe CVEs at the cost of

limited, often negligible, overhead.

While currently the protection is limited to the file system, the isolation can

be extended to other subsystems (e.g., the network). This is a promising line of

research we aim to explore in the future.

67



CHAPTER 4. LIGHTWEIGHT CLOUD APPLICATION SANDBOXING

Availability

The source code and artifacts produced for the evaluation of our proposal are avail-

able open source at https://github.com/unibg-seclab/dmng

68

https://github.com/unibg-seclab/dmng


5. Enhancing the Sandbox of

WebAssembly Runtimes

5.1 Introduction

While effective in restricting filesystem access to an entire microservice, the ap-

proach described in the previous chapter can be further improved by considering

the specifics of emerging technologies that enable finer-grined compartmentalization

of cloud applications.

WebAssembly (Wasm) [116] is a popular binary instruction format that enables

the execution of untrusted code in a safe, isolated environment. Moreover, it is a

portable compilation target for different languages, and can be executed efficiently

on a wide range of platforms without the need of dedicated hardware. Wasm was

originally meant to be run inside web browsers, but given the considerable advan-

tages it brings, many runtimes that allow execution in standalone mode have been

developed recently. Popular examples are Wasmtime, WasmEdge, Wasmer, and

WAMR.

To answer the developers’ need to access resources of the host system from

within the runtime, a standardization effort called WebAssembly System Interface

(WASI) [202] is undergoing. Its goal is to provide a stable and multi-platform

system interface. To be WASI-compliant, each runtime must implement all the

calls defined in the interface with dedicated functions, which are named hostcalls.

However, implementing these functions is non-trivial, since (i) the code must not

introduce violations to the Wasm memory model, and (ii) it is possible to break the

separation between the system and the isolated environment in which the Wasm

module is executed. The solution adopted by current runtimes leverages WASI

Libc [200], a library providing POSIX-compatible APIs built on top of hostcalls.

Currently, every WASI-compliant runtime implements the proposed file system

interface with a libpreopen-like layer [146]. Whenever the runtime receives a request

to open a file, it first checks whether the path belongs to the authorized list of

directories, then it opens the file on behalf of the Wasm program, redirecting the

content to the caller. Previous work [124, 56, 128] proved the approach to be error-

prone, leaving the system unprotected when a vulnerability was introduced in a

hostcall wrapper (Figure 5.1). Moreover, this approach provides limited flexibility,

as it is associated with directory-based granularity instead of file-based. Lastly, in

69



CHAPTER 5. ENHANCING THE SANDBOX OF WEBASSEMBLY RUNTIMES

Wasm 
module

+r +rw

hostcalls

No
Access

Pre-open
RO

Pre-open 
RW

Buggy Security Checks

Wasm + WASI runtime

Figure 5.1: Current implementation of WASI by runtimes. A bug present
in a hostcall wrapper permits the module to read the unauthorized di-
rectory on the left (red dotted arrow)

order to audit the policy regulating resource access, one must find the permissions by

looking at the code. We claim that there is no practical advantage in having several

implementations of the same access control checks for different runtimes. Our idea

is to replace the user-space runtime-specific security checks with a single in-kernel

implementation that leverages eBPF [187]. There are considerable advantages in

doing so: (i) it permits to decouple the implementation of hostcall wrappers and

the access control details, minimizing the risk of bugs [125, 167, 5], (ii) it enables

the introduction of per-module policies with file-based granularity, and (iii) it fulfills

Wasm’s promise of portability as eBPF programs are portable across different kernel

versions [148] and also operating systems, thanks to Microsoft’s undergoing effort

to port eBPF to Windows [143].

5.2 Threat model

Our assumptions reflect the threat model employed by Wasm runtimes. We assume

that the code executed by the runtime is either untrusted or it is trusted but po-

tentially affected by security vulnerabilities due to bugs. The goal of the attacker

providing the code is to bypass the security checks enforced by the runtime to get

access to the host file system. To fulfill this objective, the attacker can leverage the

interface provided by WASI and send any argument. Runtime escapes caused by

memory corruption or alteration of the program flow are out of scope of our work,

since protection can be provided by other existing solutions (e.g., [56]).

70



5.3. ARCHITECTURE

5.3 Architecture

Our analysis starts from the scenario illustrated in Figure 5.1. Currently, WASI-

compliant runtimes implement dedicated user-space wrappers to enforce the security

boundaries of hostcalls. File system access is granted by the user on a set of pre-

opened directories that are specified via CLI before the Wasm module is run (e.g.,

with the --dir option). We follow a similar approach, asking the user to state

the permissions of each Wasm module in a JSON policy file. Contrary to existing

runtimes, permissions can be granted with file-based granularity. Three permissions

are available: (i) read to open and read a file, (ii) write to modify, truncate and

append content to a file, and (iii) delete to remove the file. When permissions are

related to a directory, read translates to listing its content, write allows to create

and delete files within it. We extended the Wasmtime and WasmEdge runtimes to

load the policy at startup, and, instead of pre-opening the directories available to the

Wasm module, we enforce the policy with eBPF. eBPF code is split into programs

attached to a kernel- or user-space function called hook point and executed whenever

the hook is reached. Programs have visibility of function parameters, they can

persist state and share it with user space usingmaps, and most of all they can enforce

security checks based on this information. Once the policy is encoded inside the

map and the eBPF programs are loaded, the runtime instantiates the Wasm module

selected by the user (arrow A in Figure 5.2). At this stage, the modified runtime

invokes a dedicated user probe specifying as a parameter the policy that confines the

loaded Wasm module ( B ). The argument is captured by a dedicated eBPF program

that also annotates the identifier of the thread running the Wasm interpreter in a

tracing map. We highlight that the policy is activated before the runtime executes

the module (i.e., before untrusted code is interpreted). The consequence is that,

from this point on, all the hostcalls performed by the Wasm module are restricted

by our eBPF programs (arrows 1 , 2 ). The eBPF programs that make the security

decisions are evaluated every time a file-related kernel security hook is reached (e.g.,

security file open), and any access decision is enforced at kernel level. When an

unauthorized request is performed by the Wasm code ( 3 ), the related eBPF program

detects the violation and denies the request, returning to the caller a permission

denied error. When the execution of untrusted Wasm code terminates, another

eBPF program is responsible for removing the access restriction from the thread

executing the Wasm runtime. No further intervention from the runtime is required,

as the maps and the eBPF programs are automatically removed from the kernel

immediately after the process running the runtime terminates.

This architecture offers several advantages. First, it eliminates the risks coming

from buggy user-space security checks (e.g., wrong filepath resolution [142], wrong

71



CHAPTER 5. ENHANCING THE SANDBOX OF WEBASSEMBLY RUNTIMES

configure
access policy

Dir2Dir1

Wasm + WASI 
runtime

Wasm 
module

A

2

Dir0

instantiate

open file
to read 3 open file

to write

BPF LSM

B

hostcalls1

No access Read-only access Read and write access

Figure 5.2: eBPF-based restriction of Wasm modules. The runtime in-
stantiates the Wasm module ( A ), and configures the associated policy
calling the traced user probe ( B ). After the Wasm module is run, all the
hostcalls issued by the program ( 1 ) are restricted by eBPF ( 2 , 3 )

directory removal [69]). Then, by leveraging kernel hook points [187], our approach

allows the runtime developer to focus on the interaction between Wasm code and the

memory unsafe system call, leaving aside authorizations and policy-related issues.

Lastly, access constraints can be audited by simply looking at the JSON policy,

instead of inspecting the code.

5.4 Experiments

To investigate the overhead introduced by our solution we implemented it in

WasmEdge and Wasmtime, two industrial state-of-the-art Wasm runtimes. The

evaluation has been performed in the following test environment: an Ubuntu 22.04

LTS server powered by an AMD Ryzen 2950X CPU with 16 cores, 128 GB RAM,

and 2 TB SSD. In order to assess the performance, we tested one of the most

popular binaries that can be compiled to Wasm with support to WASI: uutils

coreutils, the porting of the coreutils in Rust [184]. First, we compiled the core-

utils with the wasm32-wasi target, and applied runtime-specific optimization (with

wasmedgec [199] for WasmEdge and with wasmtime compile [12] for Wasmtime) to

further speed up the code. Then, we reproduced the benchmarks reported in the

72



5.5. RELATED WORK

Utility WasmEdge WasmEdge* Wasmtime Wasmtime*

head 32 34 (+6.25%) 14 16 (+14.29%)
sum 134 137 (+2.24%) 130 136 (+4.62%)
tac 149 150 (+0.67%) 152 155 (+1.97%)
wc 285 287 (+0.70%) 309 310 (+0.32%)
shuf 298 300 (+0.67%) 356 358 (+0.56%)
ls 512 526 (+2.73%) 1077 1113 (+3.34%)
seq 1155 1157 (+0.17%) 1526 1533 (+0.46%)
cut 1403 1411 (+0.57%) 359 360 (+0.28%)
join 1601 1603 (+0.12%) 2054 2065 (+0.54%)
split 4416 4694 (+6.30%) 4933 4998 (+1.32%)

Table 5.1: Average execution time in ms of the coreutils without and
with* our approach (% overhead in parenthesis)

coreutils repository, with the exception of those that are not portable to WASI due

to temporary lack of support (e.g., the dd utility needs to spawn threads, a feature

that is yet to be implemented [99]). Finally, we repeated the experiments with our

protection in place. The Hyperfine benchmarking tool [75] was used to log measures,

and 1000 runs were performed (with 100 warmups). As shown from the results in

Table 5.1, our approach introduces a limited overhead, ranging from an additional

0.12% to 6.30% for WasmEdge, and from 0.28% to 14.29% for Wasmtime. As ex-

pected, the highest overhead is experienced by short-living utilities (e.g., head). We

also observe that there are notable differences between the WasmEdge and Wasm-

time test execution time for some utilities (e.g., ls and cut); from our analysis these

differences are mostly caused by the specific post-compilation optimizations.

5.5 Related work

There are several successful solutions that leverage Wasm to sandbox untrusted

code [149, 164, 108]. RLBox [149] is a framework that facilitates the isolation of

third-party libraries in pre-existing software. eWASM [164] optimizes the execution

of Wasm in embedded systems with constrained resources. Sledge [108] enables

efficient Wasm-based serverless execution on the edge. The use of our approach for

restricting access to the file system within these frameworks can strengthen their

security assurance.

The memory safety guarantees of Wasm depend on the runtime implementa-

tion [128]. Hence, Bosamiya et al. [56] explore the problem of producing provably

safe sandboxes. WaVe [124] explains that any interaction with the unsafe inter-

faces exposed by WASI can introduce security and safety violations. Thus, the

73



CHAPTER 5. ENHANCING THE SANDBOX OF WEBASSEMBLY RUNTIMES

authors proposed a verified secure runtime system implementing WASI. However,

both works require to redesign the runtime toolchain, while our solution can be

directly integrated into existing runtimes.

The academic and industrial communities have investigated the use of eBPF for

the isolation of software [104, 103, 183, 185]. BPFBox [104] and BPFContain [103]

use an eBPF daemon to confine processes and services. Cilium [183] provides eBPF-

based networking, observability and security for container workloads. Falco [185]

enables lightweight threat detection in the cluster. These solutions highlight the

potential of eBPF, and provide a simple and flexible confinement of system resources.

However, they focus on containers or services, while our solution aims at enforcing

fine-grained per-sandbox policies.

5.6 Conclusions

The results achieved by our approach are promising: not only it permits to introduce

fine-grained policies to restrict file system access, it is also associated with a limited

overhead which is aligned with the needs of a modern sandbox. The protection is

currently applied only to the file system, but our approach has the potential to be

extended also to network sockets, which are in the first stage of the standardization

process [52]. We believe this could be an interesting line of research for future work.

74



6. Native Code Sandboxing for

JavaScript Runtimes

6.1 Introduction

Nowadays the use of JavaScript and TypeScript for the development of cloud ap-

plications is quite enstablished in the industry. In this chapter, we highlight its

security features and limitations. Then, we propose NatiSand, a novel way to con-

trol, with fine granularity, access to system resources by native dependencies of cloud

applications written in runtime-based, interpreted languages.

JavaScript (JS) and TypeScript (TS) are popular choices for the implementation

of web applications. This success is motivated by their flexibility, since both are

simple to use for the development of frontend and backend services, and by the vast

ecosystem of open source packages that are available. For instance, the sole npm

registry collects more than 1.3 million packages [152].

The execution of JS code on the server-side is enabled by a JS runtime. Since

its introduction in 2009, Node.js [162] has been the de facto solution selected by

developers, but recently Deno [87] and Bun [62] have received considerable attention

by the community. While the three platforms provide distinctive features, they

all depend on a key external component, namely the JS engine, V8 [195] in the

case of Node.js and Deno, JavaScriptCore [44] in the case of Bun. The engine is

a sophisticated software that securely renders the JS code in an isolated sandbox.

Runtimes extend the engine providing components to access resources and functions

that are not directly available to the web application from within the sandbox [159,

89]. Prominent examples are the functions to access the network and to read/write

the filesystem. Runtimes also provide support for the execution of native code –

i.e., running binary programs installed on the host operating system and calling

functions from the available shared libraries.

The support provided by the runtime for the execution of native code greatly

simplifies the work of the developer building the backend of a web application. How-

ever, the APIs enabling access to system resources and the execution of native code

also raise security concerns, since they effectively break the isolation between the JS

application and the host OS. The ability to control the resources accessible to a JS

program was indeed one of the reasons that led to the creation of Deno in 2018 [166],

and the solution identified by the community was to configure the resources available

75



CHAPTER 6. NATIVE CODE SANDBOXING FOR JAVASCRIPT RUNTIMES

to an application with simple permission flags [90]. This change also influenced the

design of Node.js, which introduced a similar flag-based control model1 two years

later [160]. Unfortunately, while permissions are effective in restricting access to

the JS application, they do not provide isolation guarantees when native code is

executed, leaving the host exposed to security breaches [90].

Previous research [177, 102] has already shown that frequently JS modules de-

pend on components written in native languages such as C or C++. The reuse of

existing utilities permits to take advantage of popular high performance libraries

and, in addition to performance, it minimizes the cost of development. Notable

examples are: the node-sqlite3 [192] and deno-sqlite3 [92] database drivers; modules

to perform image/video conversions, such as sharp [156], fluent-ffmpeg [153] and

gm [154]; OCR engines like Tesseract [181]; and the cryptography modules relying

on bcrypt [155]. The 2022 State of Open Source Security [175] claims that each

open source JS project relies on an average of 174 third-party dependencies; also,

each project is estimated to be affected by 40 vulnerabilities when its dependencies

are taken into account. Taking into consideration that web applications in most

cases process untrusted input, the risk of security incidents is high. For instance,

we identified a sample of 32 high severity CVEs2 that affect native code used by

popular packages (with 2.6M downloads/week), and allow an adversary to corrupt

the filesystem, perform privilege escalation, execute arbitrary code, open network

connections to exfiltrate data, etc.

Our contribution We see a security gap in the way modern JS runtimes execute

native code, as neither Node.js, nor Deno, nor Bun sandbox it. In this chapter we

propose NatiSand, a framework to provide strong isolation guarantees against the

execution of native code. In detail, NatiSand allows the developer to control on

a native-component basis, access to filesystem, Inter-Process Communication, and

network, effectively reducing the risks coming from the execution of binary programs

and shared libraries. Our solution is characterized by a compact, generic architec-

ture that fits nicely with modern runtimes. Internally, it leverages Seccomp [63]

and Linux Security Modules (LSMs), such as Landlock [138] and eBPF [73] to re-

strict access to protected resources. In the design of our solution we paid attention

to usability by developers; it is not necessary to have a full understanding of its

advanced security features to use it. The developer is only required to provide a

concise and readable JSON-formatted policy file, detailing the ambient rights – i.e.,

the access privileges available to the components of the web application that rely on

native code. To this end, we provide the developer a comprehensive and interactive

1Node.js support for creating security policies is still experimental as of 2023.
2The list is reported in Table 6.3.

76



6.2. BACKGROUND

CLI tool to support policy generation, which, as best practice suggests, can also be

integrated into CI/CD pipelines and run against a set of test cases [9, 172]. Another

key advantage of our approach is that it permits to sandbox native code preserv-

ing backward compatibility, namely it does not require to change existing modules

(including third-party dependencies) to leverage the new security features.

We implemented NatiSand and integrated it into Deno. We demonstrate the se-

curity benefits showing how our solution mitigates a number of recent, high-severity

vulnerabilities. We performed an extensive experimental evaluation to assess its

performance. We compare the overhead introduced by our solution to scenarios in

which no native code sandboxing is performed, and when sandboxing is achieved

through other general purpose, state of the art solutions. The experiments show

that, compared to the alternatives, NatiSand exhibits substantial performance im-

provements. In addition it also provides an easier interface that does not require

any specific security expertise to be correctly configured.

6.2 Background

This section overviews the structure of a modern JS runtime. It also provides

a concise description of the components that are used by NatiSand to build the

sandbox.

6.2.1 JS runtimes

JS code rendering is a complex process, involving tasks such as code compilation,

code optimization, memory allocation, runtime garbage collection of objects no

longer needed, and many others. To perform these critical tasks, modern JS run-

times rely on engines, dedicated components implementing the ECMAScript spec-

ification that were originally developed for web browsers. As already mentioned

in Section 6.1, Node.js and Deno embed Google’s V8 [195], while Bun relies on

JavaScriptCore [44]. The interoperability between runtime and engine is achieved

with specialized bindings, which are defined in the node:v8 [161] module in the case

of Node.js, in the rusty v8 [91] library for Deno, and by webcore [163] in Bun.

While an engine provides all the tools to securely execute JS code in an isolated

context (we call it the JS context), a development platform requires complementary

features to be fully functional. For instance, a backend web application may need to

open network connections, handle several concurrent HTTP requests, or access the

filesystem to read configuration files. To address these requirements, the architecture

of a modern runtime extends the engine with various runtime-specific components

dedicated to the interaction with the host system. A few well-known functions

77



CHAPTER 6. NATIVE CODE SANDBOXING FOR JAVASCRIPT RUNTIMES

implemented following this design pattern are: interaction with the filesystem (e.g.,

fs, Deno.FsFile), creation of UNIX sockets (e.g., net), and exposure of HTTP servers

(e.g., http, Deno.serveHttp).

From the web application perspective there is no difference between the functions

defined by the ECMAScript standard, and the ones provided by the runtime (and

its extensions) [57, 94]. However, non-standard APIs are not served directly by the

engine, but are redirected to the runtime leveraging the aforementioned bindings.

Since these APIs deliberately permit to break the isolation between the environment

controlled by the engine and the underlying system, JS runtimes allow developers to

restrict them through the definition of permissions [160, 90]. Based on the runtime,

permissions work with different granularities (e.g., single API vs set of APIs) and

different default behavior. For example, Deno uses a default-deny model requiring

the developer’s explicit consent to access system resources, with effect on multiple

APIs [90].

Permissions are intuitive and effective, but they do not offer significant security

guarantees when a module needs to run binary programs, or import shared libraries

to leverage cross-language function calls [90]. To do so, the web application must be

granted the permissions to call APIs like command or dlopen (e.g., with allow-run

and allow-ffi flags in Deno). In the case of dlopen, native code is directly copied

into one of the processes owned by the runtime itself before being executed, while

with command, the runtime first delegates to the OS the creation of a process with

the clone system call, then performs an exec to replace the process image and

run the desired program. Independently of the runtime used, both APIs require to

execute code outside of the isolated context managed by the engine, as shown in

Figure 6.1, which means that this code runs with the same privileges of the user

executing the entire JS application.

6.2.2 Components for resource protection

Landlock

Landlock [138] is a Linux Security Module (LSM) introduced in the kernel starting

from release 5.13. The goal of Landlock is to enable unprivileged applications to re-

strict their ambient rights in accordance with the least privilege principle. Ambient

rights are specified by rulesets – i.e., simple structures that associate a set of permis-

sible actions with a filesystem path (e.g., read and exec over the resources stored in

/tmp). Several rulesets can be combined to determine the final set of actions available

to an application. To make them effective, a call to the landlock restrict self()

function is performed.

78



6.2. BACKGROUND

JS Runtime
Core module

JS Engine

exec /usr/bin/prog args
JS context

JS Web Application

Rt.dlopen(lib:function)

Rt.command(prog,args)

op call 1library
lib:function(...)

subprocess
op call 2

Native context

Figure 6.1: Execution of binary programs and shared library functions
by the JS runtime

The ambient rights granted by Landlock are thread-based, and are automatically

inherited by all the children subsequently created via clone. After a Landlock

sandbox is enforced (either by self restriction or inheritance), it is only possible

to further narrow it. It is also important to mention that Landlock is stackable,

hence it is fully composable with other LSMs already available on the host, such as

SELinux, AppArmor and SMACK. Although Landlock offers a simple, yet powerful,

sandboxing API, currently, the protection offered is only limited to the filesystem.

BPF

Berkeley Packet Filter (BPF) was originally devised in 1992 [141]. The goal was

to provide an in-kernel facility to filter and multiplex network packets, similarly

to what was proposed by Mogul et al. [144]. This version of BPF, which is now

commonly referred to as classic BPF (cBPF), was greatly revised in 2014 resulting

in extended BPF (eBPF) [73]. The new framework provides an environment to

execute programs inside the kernel [115, 125]. This permits to extend the kernel

safely, without changing its source code nor loading new modules. eBPF has a

wide variety of use cases, ranging from low overhead observability and tracing, to

load-balancing, and container runtime security enforcement.

eBPF code is organized into compact units called programs. Each program is at-

tached to a specific function named hook point, and is executed in a non-preemptable

fashion every time the hook is reached. There are several types of hook point both

in kernel space and in user space. Valid examples are [187]: system calls, kernel tra-

cepoints, network events, function entry/exit points, and LSM hooks. Specifically,

79



CHAPTER 6. NATIVE CODE SANDBOXING FOR JAVASCRIPT RUNTIMES

resource

eBPF program
& maps

eBPF
program

load time

user

Verifier

JIT 
compiler

syscallskernel

Thread

eBPF maps

bpf syscall

eBPF-aware 
thread

eBPF frontend

bpf syscall

runtime

eBPF-aware
thread

Figure 6.2: Overview of the eBPF architecture

LSM hooks correspond to the functions used by LSMs (e.g. SELinux) to perform

security decisions and are characterized by operating entirely on arguments in kernel

memory. To persist information between distinct invocations of the same program,

data structures named maps are used. Maps also permit to share data among eBPF

programs and user space applications.

eBPF programs are written in bytecode and are loaded into the kernel using

the bpf syscall [130]. This is a privileged operation that requires a few capabilities,

which vary with the nature of the program [1]. Briefly, CAP BPF is always required,

CAP PERFMON is necessary to load tracing-related programs, while CAP NET ADMIN is

used to load networking-related ones. After being loaded, each program undergoes a

two-phase process comprising program verification and JIT compilation. The former

is required to guarantee that the program is safe to execute by the kernel. The second

phase instead ensures the bytecode is optimized, hence it can be run as efficiently

as compiled kernel code on the underlying architecture. In case no errors are raised,

the eBPF program is attached to the proper hook and it is ready to be executed.

Modern eBPF development is facilitated by the presence of frontends. These

frameworks permit to write eBPF programs in a C dialect, and also assist the devel-

oper in automatically performing the steps needed to load and attach the programs

to the intended hooks (see Figure 6.2). In the work presented in this chapter we

rely on libbpf [129], a modern library leveraging the Compile Once-Run Everywhere

(CO-RE) approach [13], which ensures that the bytecode produced at compile time

works correctly across different kernel versions.

80



6.3. SECURITY MOTIVATION

Seccomp

Seccomp [63] is a mechanism provided by the Linux kernel to restrict the system

calls available to a userspace application. The rationale is that the implementation

of system calls may be affected by bugs or errors, therefore reducing the kernel

surface exposed to an unprivileged application narrows the attack surface.

The initial implementation of Seccomp restricted the set of allowed system

calls only to exit, sigreturn, read and write (on previously opened file descrip-

tors) [121]. The implementation was greatly extended in 2012, and it now permits

to intercept system calls and determine whether each of them is safe to execute. To

this purpose a filter program written in the cBPF dialect must be provided. Unfor-

tunately, a classic program has only access to the values of the arguments passed to

the system calls (e.g., configuration flags), and pointers cannot be dereferenced to

avoid TOCTOU issues [95].

6.3 Security motivation

JS runtimes let developers specify the set of access privileges given to a web ap-

plication [90, 160]. This is possible through a set of configuration flags that, when

specified, allow to constrain how JS code can access system resources. This is a sig-

nificant security improvement compared to the past, where applications were able

to access any underlying system resource [176, 208]. However, these constraints only

apply to JS code; any function written in other languages is executed unconstrained,

either through a subprocess or the use of Foreign Function Interfaces (FFI). Indeed,

native code does not access system resources using the APIs provided by the JS

runtime and the reference monitor of the JS runtime is bypassed [90].

There is a broad variety of applications that rely on the use of native code. One

well-known example is the use of database drivers; low latency of queries is cru-

cial to satisfy the constraints on response time of a web application and a pure JS

implementation may not be able to match them. This led to the development of

third-party modules that depend on the code of shared libraries corresponding to

the required database driver (e.g., libsqlite3.so and libmysqlclient.so). To testify the

wide adoption of this practice, popular modules for both Node.js (e.g., node-sqlite3)

and Deno (e.g., deno-sqlite3) report more than 600 thousand downloads/week. No-

tably, the deno-sqlite3 module was part of the official showcase of the performance

of Deno when invoking the native code of a shared library [86]. Previous work [177]

demonstrated how this module can be exploited with harmful effects for the web

application and the underlying system.

81



CHAPTER 6. NATIVE CODE SANDBOXING FOR JAVASCRIPT RUNTIMES

Database drivers are just one example of how web application development relies

on native code. Other popular use cases are audio encoding (e.g., libopus), image

processing (e.g., ImageMagick, libvips), video manipulation (e.g., FFmpeg), optical

character recognition (e.g., Tesseract), and many others. The native code may

contain vulnerabilities, which may be exploited and lead to a variety of security

violations.

Filesystem compromise Guaranteeing the integrity and confidentiality of the

application host filesystem is crucial to mitigate risks of data corruption and exfil-

tration [55]. As a whole a web application often has access to many critical resources:

databases, executables, private keys, user confidential files, etc. When native code is

executed, it can use the same privileges of the web application. In line with the least

privilege principle, the potentially vulnerable components should be able to access

only the files needed to perform their duties. Authorizing access only to the needed

portions of the filesystem restricts what can be read, written or run by an attacker,

highly limiting the security risk associated with the presence of vulnerabilities.

Escalation of privileges Another relevant attack surface is the privilege of using

the IPC channels provided by the operating system (e.g., pipes, message queues, unix

sockets). By leveraging IPC, a compromised binary can establish a communication

channel with system components and attempt a confused deputy attack to achieve

privilege escalation on the host [171, 60]. Given the potential of this attack vector,

it is important to limit the scope and set of IPC channels available to a specific

native component only to those strictly necessary for its benign behavior.

Malicious network channels Network access is a precious resource that a mali-

cious actor can leverage during an attack. A significant portion of malicious payloads

open reverse shells to gain control of the victim system over the network [61]. In

addition, attackers may open network channels to remotely recover data obtained

on the vulnerable host [169]. Restrictions on how a single native component of the

web application can access the network can greatly improve the overall security of

the application. Network access should be forbidden or restricted only to domains

defined by the developer, thus restricting the ability of adversaries to perform data

exfiltration or fetch malicious payloads.

Notice that the JavaScript application may require a significant number of privileges

to ensure all of its components operate as intended. Therefore, the application

of sandboxing at runtime-level rather than native component-level not only is in

contrast with the least privilege principle, it also increases the attack surface, so the

chances of an attack to be successful.

82



6.4. DESIGN AND IMPLEMENTATION

6.3.1 Threat model

We consider the operating system trusted, although binary utilities may be malicious

due to supply chain attacks, or affected by vulnerabilities due to incorrect memory

management, improper data validation, etc. Protection against attacks targeting

JS code is out of the scope of our proposal, since we consider JS engines and the

permissions system enforced by JS runtimes able to securely render JS code. Nati-

Sand aims to constrain the execution of potentially malicious, or vulnerable, binary

utilities and functions used by JS applications. This native code accesses system

resources unconstrained by the security mechanisms offered by the JS runtime, and

its actions may cause severe security breaches. Moreover, the input processed by the

web application is often untrusted and can be unsanitized, due to errors in the sani-

tization process, misconfiguration or lack of awareness by the developer. Therefore,

a malicious actor can exploit this attack vector by submitting specifically crafted

requests targeting the unconstrained native dependencies of the web application,

compromising the host system. The attack vectors may take multiple forms, e.g.,

strings, videos, images, and audio files, depending on the input provided by the JS

application to the vulnerable components. The goal of our proposal is to mitigate

the security risk by empowering developers with a way to establish clear security

boundaries for the execution of binary utilities and components depending on them

with a per-native-component granularity.

6.4 Design and implementation

In this section we present NatiSand, our proposal to enable the isolation of native

code for JS runtimes.

6.4.1 Objectives

We start with the definition of the design objectives.

Security As a secure sandbox, NatiSand must provide protection against recent,

high-severity vulnerabilities affecting native components used by web applications.

Furthermore, the additional protection must not result in a loss of functionality. The

goal is to enable the developer to follow the least privilege principle when designing

its application, reducing the attack surface in the presence of vulnerabilities. To do

so, NatiSand must be able to execute distinct native code in separate lightweight

compartments isolated from the rest of the application, and characterized by policy-

based ambient rights. The security restrictions must be enforced independently of

83



CHAPTER 6. NATIVE CODE SANDBOXING FOR JAVASCRIPT RUNTIMES

the method leveraged by the application to execute native code, giving the devel-

oper the power to confine executables, shared libraries, and functions. Lastly, no

root permission should be used at runtime to configure and activate the isolated

compartments.

Usability An important requirement to consider is usability by developers. We

cannot force them to rewrite their application (or large parts of it) just to use the

sandbox. At the same time, we cannot expect them to be aware of the internal

structure of the third-party native code used by the application, nor to fully under-

stand the advanced security mechanisms that can be leveraged to securely sandbox

a program. The effort required to take advantage of NatiSand should be extremely

low. Ideally, a single configuration file specifying the ambient rights associated with

each compartment should be enough to successfully configure it. To facilitate the

transition from no sandboxing to complete isolation, a valuable solution should per-

mit to start by sandboxing the components associated with the highest risk, and

then gradually extend the protection to the remainder of the application.

Compatibility A valuable solution should be generic enough to be integrated into

different JS runtimes without requiring substantial changes to the internal architec-

ture. This also means that it must be aligned with the current permission-based

model implemented by the most widely used platforms. Moreover, it must be com-

patible with other access control mechanisms already enabled by the underlying OS.

This refers to the potential of stacking the sandbox on top of security mechanism

adopted by other software.

Performance Latency and throughput are critical metrics for web applications,

therefore it is important to reduce their degradation to a minimum. NatiSand aims

to introduce lower overhead compared to current state of the art sandboxing and

isolation frameworks.

6.4.2 High level architecture

NatiSand permits to transparently execute code in ad hoc contexts, isolated com-

partments that are characterized by policy-based ambient rights. This allows the

developer to configure fine-grained access to confidential or privileged system re-

sources, such as files, message queues, shared memory areas, sockets, and other

resources.

NatiSand separates system resources into three categories: filesystem, IPC, and

network. By default, native code sandboxed by our solution cannot access any

84



6.4. DESIGN AND IMPLEMENTATION

privileged resource in each category. Indeed, the developer must explicitly grant

access to resources using a JSON-formatted policy file. JSON is a popular format

among the web community and the ability to configure fine-grained permissions

using a single, easy-to-read text file greatly simplifies the development activity. No

specific knowledge is required to configure the policy, and no effort needs to be spent

by the developer to understand how permissions are enforced.

Internally, NatiSand leverages dedicated Linux Security Modules to restrict ac-

cess to each resource category. Filesystem-related permissions are enforced using

Landlock, while the availability of IPC channels to interact with other processes or

services already running on the host is controlled with Seccomp and eBPF. Finally,

eBPF constrains the ability to open new connections and limits the devices reach-

able by a context. Three important characteristics are shared by the selected LSMs:

(i) they are lightweight, (ii) they do not require to leverage root permissions while

the application is running, and (iii) they operate in stacking mode [174], hence they

are compatible with other LSMs already running on the host, such as AppArmor,

SELinux, and SMACK. The stacking behavior also means that whenever the access

decisions of two LSMs do not match, deny takes precedence. To give an example,

Seccomp can deny the application to create a fifo file, even when Landlock grants

the permission to write in the target directory.

The architecture of our solution is shown in Figure 6.3. Shortly after the JS

runtime is executed, NatiSand parses the policy file input by the developer. Based on

the policy, a set of sandboxing and tracing programs along with maps are initialized

and loaded into the kernel. A pool of isolated contexts is also prepared by the

sandbox. At runtime, NatiSand intercepts all the calls to native code performed by

the application and executes them safely in the proper isolated context. A technical

description of how our proposal is integrated into a modern JS runtime is given in

Section 6.4.3, while details about its isolation features are reported in Section 6.4.4.

The policy syntax used by NatiSand to configure permissions, along with the support

to policy generation, are described in Section 6.5.

6.4.3 Integration with JS runtimes

NatiSand complements the architecture of the JS runtime with the addition of the

sandboxer, a component that parses the policy and enforces the isolation of native

code accordingly. In the following we explain the operations performed by the

runtime to use it, referring to Figure 6.3.

Bootstrap The JS runtime boot procedure is modified to read the JSON policy

file, which is then parsed by the sandboxer α to retrieve the information associated

85



CHAPTER 6. NATIVE CODE SANDBOXING FOR JAVASCRIPT RUNTIMES

Native context

JS runtime

taskcontext pool

JS engine

eBPF
programs
& maps

user
kernel

resource access

eBPF 
mapsJS context

JS runtime changes

α

1β

bpf landlock seccomp

eBPF frontend

JS application
Rt.command(prog,args)
Rt.dlopen(lib:function)

eBPF
programs

sandboxer

executable / library

2

Core module

1

b

c

Policy

JSON

Landlock

ipc net

3

4c4a

fs

4b

cBPF filters

a

Figure 6.3: Integration of NatiSand in the JS runtime. Bootstrap: import
security contexts (α, β), creation of the context pool (a, b, c). Applica-
tion runtime: isolated execution of binary programs and shared library
functions (1, 2, 3, 4a, 4b, 4c)

with each security context. Based on the policy, the sandboxer (i) configures the re-

quired Seccomp filters, and (ii) prepares and loads into the kernel the necessary eBPF

programs and maps β . The eBPF programs are used to track the security contexts

and enforce network-related and (part of) IPC-related restrictions (more details in

Section 6.4.4). Maps instead associate each isolated compartment with a security

policy, and store the ambient rights granted to them. To determine which policy

is associated with a given isolated compartment we leverage its kernel task struct

identifier, which is used as the key in an eBPF map of type TASK STORAGE to lookup

the policy identifier. This information is used as an address within an eBPF map

86



6.4. DESIGN AND IMPLEMENTATION

of type ARRAY OF MAPS, and permits to retrieve an inner HASH map containing the

ambient rights. Loading eBPF maps and programs is a privileged operation that re-

quires the CAP BPF, CAP PERFMON, CAP NET ADMIN capabilities to be performed, thus

we grant the JS runtime executable the corresponding Linux file capabilities [72].

After the completion of these steps, the capabilities are no longer necessary, hence

they are dropped. This satisfies the requirement that root permissions at runtime

are not needed for the activation of security contexts.

The sandboxer is also responsible for the creation of the security contexts where

native code will be executed at runtime. Each context is an OS thread with permis-

sions restricted by Landlock, Seccomp, and eBPF. To avoid paying the performance

cost to instantiate each security context during the invocation of executables and

shared libraries, we modified the JS runtime to allocate a thread per security context

defined by the policy, restrict their permissions, and then, park them in a context

pool ( a , b , c ). With Landlock and Seccomp, restriction of privileges is performed

calling the corresponding syscalls from the specific context, while restriction of per-

missions based on eBPF is simply performed invoking the uprobe attach policy

reported in Table 6.1a. As a result, the task struct identifier of a given context

is annotated in the dedicated eBPF map along with the associated policy identi-

fier. This design choice allows to reuse security contexts, thus minimizing latency,

which, as highlighted in the objectives (Section 6.4.1), is a critical metric for web

applications.

Application runtime After the web application is started, two operations can

lead to the execution of native code: (i) the execution of a binary program in a

subprocess, and (ii) the invocation of a shared library. NatiSand intercepts all the

requests originating from the web application that require to execute native code 1 ,

and leverages the sandboxer to assign them to the proper pre-allocated isolated

context 2 . Based on the type of request, a dedicated task inheriting the selected

security context is launched and used to execute the native code 3 . Specifically,

when there is a request to run an executable, the JS runtime forks a process. On

the other hand, when a shared library should be loaded, a thread is spawned. The

consequence is that any request to access filesystem, IPC, and network resources will

be subject to the restrictions imposed by the LSMs ( 4a , 4b , 4c ). The approach

implemented by NatiSand ensures that native code is never loaded nor executed in

a task running unconstrained, thus strengthening the boundary between the web

application and the OS.

87



CHAPTER 6. NATIVE CODE SANDBOXING FOR JAVASCRIPT RUNTIMES

Context lifecycle

uprobe/attach policy

tp btf/sched process fork

tp btf/sched process exit

Access control

IP
C

fentry/fifo open

lsm/socket bind

lsm/socket connect

N
et
w
o
rk lsm/socket bind

lsm/socket create

lsm/socket connect

(a) (b)

Table 6.1: Hooks and tracepoints monitored by NatiSand

6.4.4 Isolation features

Native code executed in isolated contexts can vary from library functions to entire

programs. In the following we detail how NatiSand enforces isolation and summarize

the sandboxing features.

Policy inheritance While Landlock and Seccomp guarantee policy inheritance

after a clone syscall is performed, the eBPF map that tracks the restricted contexts

must be updated explicitly. To this end, NatiSand relies on the eBPF tracing

programs that are loaded into the kernel during the bootstrap phase and are attached

to the fork and exit tracepoints reported in Table 6.1a. Whenever a security

context allocates a new task with a fork operation, the tracing program registers a

new entry into the map of restricted contexts. The entry maps the task identifier of

the child to the policy identifier associated with the parent. When instead a context

terminates its duties and issues an exit, its task identifier is deleted from the map.

No intervention by the developer is required, as policy inheritance is transparently

handled by our solution.

Filesystem NatiSand restricts access to the filesystem using Landlock. The sand-

box enforces a straightforward read, write, exec (RWX) permission model, spec-

ified with three allow-list vectors (e.g., lines 5, 6, and 7 in Listing 6.1). After the

security context has been activated, the available permissions can only be further

restricted.

IPC To explain the isolation features NatiSand provides, we start with a descrip-

tion of how programs and libraries generally use IPC. Native programs often rely on

parallelism and concurrency to achieve high resource utilization. Parallel execution

typically requires to handle synchronization and communication between a parent

and a group of child tasks. In this setting, best practice suggests to provide the

88



6.4. DESIGN AND IMPLEMENTATION

children with the necessary communication channels through the inheritance prop-

erties of the clone syscall [136]. For instance, when two programs are piped in the

Bash shell, an IPC mechanism, in the form of a pipe, is created by the shell process

and is inherited by the two child programs, so that the latter can read the output

from the former. Similarly, a parent and a child task can leverage an unnamed

UNIX socket pair to share messages [137]. These use cases do not pose a significant

security risk, since (i) the communication happens between tasks associated with

the same security context, and (ii) the IPC channels used to communicate are not

visible to other services running on the host OS. Conversely, CVE-2020-16125 and

CVE-2021-3560 demonstrate that uncontrolled interaction with globally available

IPC channels used by other services can lead to concrete security problems.

To block the communication between components associated with incompatible

security contexts, NatiSand by default denies IPC over globally visible communica-

tion mechanisms. In this category there are fifo (i.e., named pipes), message queues,

named semaphores, non-private shared memory, signals, and UNIX named sockets.

Many of these mechanisms can be fully blocked by denying access to the related sys-

tem calls, but in some cases the evaluation of syscall configuration flags is necessary.

For instance, the creation of shared memory maps is permitted by the sandbox only

when the mmap syscall is invoked with MAP ANONYMOUS or MAP PRIVATE. Similarly, the

creation of named special files is allowed only when the mknod and mknodat syscalls

are not invoked with S IFIFO and S IFSOCK. Syscall filtering based on configuration

flags is performed efficiently by NatiSand using Seccomp. However, the information

available to Seccomp is not always sufficient to make the access decision. This is

the case for the bind, connect, open, and openat syscalls. Indeed, information

about the type of socket referenced for the bind and connect syscalls resides in user

memory, and unfortunately Seccomp cannot safely dereference it (due to TOCTOU

risks [95]). Likewise, the open and openat syscalls do not represent the type of file

to be opened through configuration flags, so Seccomp cannot handle the specific

case properly. To solve these problems NatiSand relies on the eBPF programs at-

tached to the hooks reported in Table 6.1b (which are not affected by TOCTOU

issues, since they operate on arguments that were previously deep copied by the

kernel). In particular, in the case of UNIX sockets the programs are attached to

the lsm/socket bind and lsm/socket connect hooks, while for fifo files the kernel

function fifo open is used. A summary of the IPC mechanisms controlled by Nati-

Sand, along with the LSMs leveraged to perform the security checks, is reported in

Table 6.2.

Network NatiSand permits to control how each isolated context connects to net-

work resources. In detail, it permits to completely revoke access to the network, to

89



CHAPTER 6. NATIVE CODE SANDBOXING FOR JAVASCRIPT RUNTIMES

connect only to a restricted list of hosts, and when needed, to use the network with-

out restrictions. The sandboxer relies on eBPF programs to enforce permissions.

The programs restrict the ability to create, connect, and bind sockets, and are

thereby attached to the LSM hooks reported in Table 6.1b.

The creation of a socket opens a communication channel and returns a file de-

scriptor as a result. By default, the sandboxer restricts the available communication

domains to Internet Protocol (IP), denying applications the use of protocol fami-

lies such as Bluetooth, Radio, VSOCK, and many more (this information is directly

available from the arguments input to the socket create interface). No restrictions

are instead applied to UNIX domain sockets and the type of socket to be opened

(e.g., stream, datagram). Opening a connection to a host is permitted only when

the developer grants the isolated context to do so. The eBPF program that checks

the opening of a connection first recovers the policy restricting the current secu-

rity context, then uses it as a key to lookup the map of ambient rights from the

ARRAY OF MAPS described in Section 6.4.3. The ambient rights map is an allow-list

that stores the reachable (i.e., policy allowed) hosts, hence the security check is

carried out with a lookup. Each network resource is uniquely identified by its IP

address and port. Internally, we use the value zero for the port to represent the

permission of opening a connection to a given host on every port.

Up to now, we have discussed the restrictions when the application connects as

a client to a service. However, web applications frequently need to serve incoming

requests. To do so, it is necessary to assign a “name” to a socket – i.e., configuring

its address. This operation is done with the bind syscall, and we decided to permit

it only when the policy gives the current security context access to the corresponding

address and port pair. Again, the value zero for the port is used as a placeholder

to allow binding on every port. On the other hand, no restrictions are applied to

the listen and accept syscalls. Listen only marks a socket as passive, meaning

that it will be used to accept incoming requests. However, no connection to a socket

can happen if an address was not previously assigned to it [135]. The same applies

to accept, which is used to extract the first connection request from the queue of

pending connections [133].

Limitations While NatiSand significantly restricts the set of permissions and sys-

tem resources associated with subprocesses and shared libraries, it provides strong

memory isolation guarantees only when executables are run, as each subprocess is ex-

ecuted within its own address space. On the other hand, shared libraries are loaded

within the hosting thread address space, hence a native library bug can impact the

web application memory. Several research works have studied this problem and have

proposed countermeasures [149, 127, 204, 53, 197, 67]. In general, these works are

90



6.5. POLICY

IPC Subclass Linux system call Seccomp eBPF

Message
queue

POSIX
mq open, mq getsetattr, mq notify,

✓
mq timedreceive, mq timedsend, mq unlink

System V msgctl, msgget, msgrcv, msgsnd ✓

Pipe Named mknod, mknodat, open, openat ✓* ✓

Semaphore
POSIX futex, mmap ✓*
System V semctl, semget, semop, semtimedop ✓

Shared
memory

POSIX mmap ✓*
System V shmat, shmctl, shmdt, shmget ✓

Signal
Standard kill, pidfd send signal, tgkill, tkill ✓

Real-time rt sigqueueinfo, rt tgsigqueueinfo ✓

UNIX socket Named bind, connect, mknod, mknodat ✓* ✓

Table 6.2: LSMs used by NatiSand to restrict Linux IPC. The checkmark
✓* indicates when Seccomp needs to evaluate the syscall configuration
flags to make the access decision

compatible with the design of our solution, therefore they could be used in conjuction

with NatiSand to improve isolation of shared libraries. Among them, BreakApp [197]

and BinWrap [67] propose approaches tailored for interpreted languages, but they

require either the introduction of wrappers or the execution of remote procedure

calls. RLBox [149] provides strong guarantees against memory corruption, but it

demands the developer to manually retrofit existing code, a process that can take

up to “few days” for each library according to the authors. Improved intra-process

isolation can also be achieved leveraging dedicated hardware features like Intel Pro-

tection Keys for Userspace (PKU), but as demonstrated by PKU Pitfalls [70] these

solutions can be bypassed using kernel functions that are agnostic of intra-process

isolation (i.e., the attacks use the kernel as a confused deputy). Since NatiSand is

completely aligned with the memory isolation assumptions made by the kernel, our

solution is not affected by this issue.

6.5 Policy

In this section we present the structure of the policy file, then we explain how to

generate the permission rules.

6.5.1 Policy structure

JS applications executed by NatiSand are associated with a policy file. The policy

must be provided by the developer before the application is run, and to this end, a

CLI flag (e.g., native-sandbox) needs to be added to the JS runtime. The policy

file is formatted in JSON, with the following structure: a policy defines an array

91



CHAPTER 6. NATIVE CODE SANDBOXING FOR JAVASCRIPT RUNTIMES

of objects and each object details the permissions available to a security context.

Within each object, a name is used to identify the context, a type indicates whether

the context applies to an executable, a library, or a function of a library; the sections

fs, ipc and net are used to configure the corresponding permissions. The structure

of the objects is flexible, and only a name is required to configure a valid context.

As the policy follows a default-deny model, a context that specifies only its name

has no permissions at runtime. An excerpt from a policy file is shown in Listing 6.1

(the complete example is reported in Appendix B), while a summary of the most

relevant policy features is described next.

Name, Type

The name and type elements are used by NatiSand to determine which policy context

must be enforced. The type element can be set to executable (the default value),

library or function. At runtime NatiSand extracts the absolute path of the native

program and function name, and based on the information available, it identifies

the most selective entry in the policy. This gives the developer the flexibility to

use different policies in case binaries and libraries have the same basename, or when

different functions from the same library are invoked. Moreover, since absolute paths

are used, this approach ensures symlinks cannot trick the lookup of the security

context. Listing 6.1 shows a policy that is enforced every time the application runs

the curl program.

Fs

The fs element is used to configure filesystem-related permissions. Fs stores three

optional arrays: read, write and exec. Filesystem paths are used as array values.

As an example, the context detailed in Listing 6.1 can read and execute the curl

binary, and write to response.json in the current working directory of the web

application. In case the developer wants to operate with a coarser granularity, the

value true can be used to replace any of the fs, read, write and exec arrays to grant

access to the whole filesystem.

Ipc

To restrict IPC access we decided to expose developers a simple interface where flags

can be turned on and off based on their needs. Six optional flags are available in

the policy: fifo, message, semaphore, shmem, signal, and socket. For example, in

Listing 6.1, curl is allowed to use abstract, named, and unnamed Unix sockets. It is

up to our sandboxer to abstract away the complexity of the underlying architecture

92



6.5. POLICY

Listing 6.1: Example of JSON policy file with single context

1 [{
2 "name": "/usr/bin/curl",

3 "type": "executable",

4 "fs": {
5 "read": ["/usr/bin/curl", ...],

6 "write": ["response.json"],

7 "exec": ["/usr/bin/curl", ...]

8 },
9 "ipc": {

10 "socket": true,

11 },
12 "net": [{
13 "name": "https://www.example.com",

14 "ports": [443]

15 }]
16 }]

and enforce the policy when IPC is performed between groups of threads associated

with separate contexts. No understanding of the standards available (e.g., System

V, POSIX) is required by developers to restrict the permissions associated with

their application. Similarly to the filesystem case, the developer can use a coarser

granularity by setting the ipc element to true, enabling all communication mech-

anisms. Notice that globally available IPC channels are often bound to filesystem

resources, so, while the granularity of the six flags described above may seem coarse,

finer-grained permissions can be specified leveraging the path associated with the

IPC resource. For example, the developer can restrict the use of a specific named

pipe (pinned to the filesystem) by using its fully qualified path.

Net

Web application developers are often interested in restricting the hosts an applica-

tion can connect to. The policy permits to specify an array of reachable hosts. Each

host is fully qualified by its URL/IP, and the sequence of permitted ports. As in

the case of the filesystem, the policy permits to grant access to the network without

limitations (setting net to true), enable all the ports for a specific host (setting ports

to true), or completely remove access to the network (leveraging the default-deny

behavior). In Listing 6.1, the process executing curl is only allowed to connect to

https://www.example.com on port 443.

93



CHAPTER 6. NATIVE CODE SANDBOXING FOR JAVASCRIPT RUNTIMES

6.5.2 Policy generation

While designing NatiSand we opted for a minimal and easy to understand policy

syntax to target a broad spectrum of users. However, writing a policy for large com-

ponents may be a tedious and tricky task, since we do not expect all the developers

to be aware of how binaries and external libraries used by their web application

work internally. To assist the developer, we follow an approach similar to Slim-

Toolkit [172], where a service is run against a test suite to generate the security

profile. Specifically, we developed a CLI utility written in Go that provides gen-

eration of policy templates the developer can understand, modify, and audit. The

utility persists policy-relevant information in a SQLite database, and exposes to the

user many functions that permit to configure multiple contexts, merge the results

collected from multiple tests, and refine policies interactively. In the following we

provide details on the work we performed for each of the protected subsystems.

Filesystem

The automatic retrieval of the dependencies of a binary is a well-known problem.

Our utility is capable to discover the dependencies of programs installed as ELF

files, and programs that are spawned by dedicated POSIX or shell wrappers. The

utility first uses ldd [131] to discover the direct and transient dependencies, then,

it relies on strace [132] to monitor the interaction between the kernel and a traced

binary, so to complement the information previously found with additional filesystem

permissions.

IPC

NatiSand adopts a policy language that abstracts away IPC complexity. Our utility

supports policy generation by analyzing the results of multiple test cases where the

Seccomp filter and eBPF programs of the sandboxer are set to auditing mode. These

programs return the flags to be enabled.

Network

Network rules are relatively easy to write. However, we do not assume developers to

be necessarily aware of every network connection needed by the native code. So, we

automate the generation of the policy by observing the execution of the binary with

eBPF programs. In fact, these provide a list of the domain names resolved, their IPs,

and those hardcoded IPs the utility connects to without performing name resolution.

To track domain name resolutions we attach a uprobe to the getaddrinfo function

of the libc library, for IPs we observe network socket connections using kprobes on

94



6.6. CASE STUDY: DENO RUNTIME

socket bind and socket connect LSM hooks. To handle IP address migrations

that may occur at runtime, we similarly propose to capture the list of IPs returned

by the getaddrinfo with a dedicated eBPF program, which also updates the eBPF

map of allowed hosts accordingly. By doing so we make sure that the security checks

reflect the policy. This approach can also be extended monitorng DNS traffic on

port 53, hence providing support for native components that do not rely on libc

functions.

Policy generation is subject to limitations: (i) policy generation for malicious code

produces overly permissive policy and obviously cannot be trusted, (ii) test suite

with limited coverage might provide overly strict policies not allowing the execution

of legitimate code. Overall, the correctness of the policy depends on the test suite

used to collect the permissions. The closer the tests align with the use of the native

utility in production, the more the developer can consider the policy generated

effective. Nonetheless, to have complete assurance that the policy generated is

correct, an auditing process may be required.

6.6 Case study: Deno runtime

There are three well-known alternatives for the execution of JS code on the backend,

namely Node.js, Deno, and Bun. As highlighted in Section 6.2.1, their architectures

have strong similarities, and NatiSand is designed to be compatible with all of them

(since no assumption is made on specific runtime components). Nevertheless the

integration is not trivial, and it requires significant engineering effort, therefore we

integrated NatiSand into only one of them to demonstrate the achievement of the set

objectives (Section 6.4.1). In this section we explain our decision, then we highlight

the main architectural changes.

6.6.1 Runtime selection

Considering (i) popularity among web developers, (ii) availability and support of

third-party modules, and (iii) security-oriented features provided by the runtime,

we selected Deno. Bun is the latest runtime released, and thus currently the least

used by developers. Node.js is nowadays the most widely used platform, and it of-

fers developers the largest collection of open source packages. However, Node.js by

default does not prevent JS applications to access system resources, and although

it recently introduced a module-based permission model, the feature is experimen-

tal [160]. Deno was instead designed with the protection of the host as one of

its main goals [166], thus no access to privileged system resources is given to JS

95



CHAPTER 6. NATIVE CODE SANDBOXING FOR JAVASCRIPT RUNTIMES

applications unless the developer explicitly grants it. Deno provides the Node Com-

patibility Mode [88], a feature enabling the reuse of code and libraries originally built

for Node.js. The availability of this function permits to import packages hosted by

Deno on deno.land/x, as well as modules published to npm. To conclude, Node.js

and Deno prevail over Bun on popularity and security-oriented features. Node.js

wins over Deno on popularity (but Deno is quickly growing), they are compara-

ble in terms of third-party modules, and Deno significantly outperforms Node.js on

security oriented-features, leading us to choose Deno.

6.6.2 Deno integration

Deno has a modular architecture organized into components. Three of them are

particularly important for NatiSand: (i) rusty v8, the package that bridges Deno

and the V8 engine implementing the set of bindings to the V8’s C++ API, (ii)

deno core, which leverages rusty v8 to expose the interfaces provided by Deno to

the JS application, and (iii) deno, which defines the runtime executable together

with the Command Line Interface.

Bootstrap Shortly after the Deno executable is run, the deno component is used

to read the permissions granted by the developer via CLI. We extended this stage

to read and parse the policy file specified with the new native-sandbox flag, then

we added the permissions associated with each security context to the global state

stored by the runtime. To complete the bootstrap phase, we also integrated the

steps to load the necessary eBPF programs and to initialize the pool of isolated

contexts, as explained in Section 6.4.3.

Application runtime After the JS application is started, the function calls that

cannot be directly handled by V8 are routed to the Deno runtime through the bind-

ings defined by rusty v8. Each of them is associated with the op code, a unique

code identifying the operation to be performed. The deno core component receives

such requests, it checks the permissions available from the global state, and serves

them accordingly. We identified requests that require to execute native code (e.g.,

command, dlopen, run), and modified deno core so that they are restricted by Nati-

Sand. The op code along with the arguments are used to select the proper security

context.

6.6.3 Support to fast JS calls

In October 2020 V8 announced the support to fast JS calls [194]. The function allows

V8 to directly invoke optimized native functions without leveraging the bindings that

96



6.7. EXPERIMENTS

Listing 6.2: Code sandboxing with nativeCall()

1 function query(db, stmt) {
2 const sqliteDB = new sqlite3.Database(db);

3 const query = sqliteDB.prepare(stmt);

4 const tuples = query.all();

5 sqlite_db.close ();

6 return tuples;

7 }
8

9 const db = "database.db";

10 const stmt = "SELECT * FROM table";

11 const ts = Deno.nativeCall(query, [db, stmt]);

12 console.log(ts); // print tuples

connect V8 and the embedder (e.g., JS runtime). This permits to obtain substantial

performance gains, since native function calls can be resolved in nanoseconds.

Deno has introduced unstable support to fast JS calls in July 2022 [85]. The

change affected the implementation of the dlopen API, which is now able to generate

an optimized and a fallback (i.e., standard) execution path for native functions. The

optimized path is triggered only when V8 is actually able to optimize a symbol, and

it entails the execution of code leveraging the fast call interface. While the optimized

path is associated with minimum overhead, from a security perspective it permits

the web application to execute native code without the mediation of the JS runtime,

invalidating the security reference monitor of Deno. In our prototype we address

this Deno security issue offering developers two alternatives: (i) turn off the fast

call support and safely rely on the execution of sandboxed native functions with

NatiSand without any code change, and (ii) enable insecure fast calls but allow to

select the JS functions that need to be isolated with minimal code changes. The

second option permits to take advantage of fast calls when performance is critical

and risks are limited (e.g., arithmetic operations), and at the same time benefit

from the security features NatiSand provides. To this end, we introduced a new

API named Deno.nativeCall(). The API receives, as first argument, the name of

the function to be sandboxed, along with the list of its arguments. Listing 6.2 shows

how to sandbox the functions from the native database driver sqlite3.

6.7 Experiments

NatiSand must satisfy two properties to be practical: (i) it must mitigate real-

world vulnerabilities by blocking the associated exploits, and (ii) it must introduce

a limited overhead compared to a scenario where no protection is applied. In the

97



CHAPTER 6. NATIVE CODE SANDBOXING FOR JAVASCRIPT RUNTIMES

experimental evaluation, we first show our solution is able to protect web appli-

cations relying on binary programs and shared libraries affected by high severity

vulnerabilities (Section 6.7.1), then we investigate the performance of our approach

(Section 6.7.2). Both tests use a server with Ubuntu 22.04 LTS, an AMD Ryzen

3900X CPU, 64 GB RAM, and 2 TB SSD.

6.7.1 Exploit mitigation

To conduct our analysis we built a representative sample of vulnerabilities target-

ing executables and libraries widely used in web applications. We identified the 32

CVEs reported in Table 6.3. The entries are separated into three classes: Arbitrary

Code Execution (ACE), Arbitrary File Overwrite (AFO), and Local File Inclusion

(LFI). The list of vulnerable utilities includes programs used to compress files (e.g.,

GNU Tar, RAR, Zip), to process multimedia (e.g., FFmpeg, GraphicsMagick, Im-

ageMagick), database drivers (e.g., SQLite), and also Machine Learning libraries

(e.g., Lightning, Sockeye, TensorFlow). We highlight that the vulnerabilities affect

popular open source modules with 2.6M downloads/week available from the npm

and deno.land/x archives. Concrete examples are sharp and fluent-ffmpeg from

npm, or flat and sqlite from deno.land/x.

First, we checked that public Proofs of Concept of the CVEs in Table 6.3 suc-

cessfully exploit the vulnerable version of the utilities. Then, we analyzed whether

the vulnerabilities were exploitable sending the malicious payload through the JS

module interface, and confirmed the feasibility of the attack. The Node compatibil-

ity mode was leveraged to execute in Deno the modules downloaded from npm. We

finally repeated the experiment activating the security functions provided by Nati-

Sand, and verified that the attack was no longer successful, while the application was

still able to serve benign requests (i.e., no functionality loss). The only change we

introduced in the experiment was the specification of a security policy through the

native-sandbox CLI argument. The policy was generated using the tool described

in Section 6.5.2. No modification to the web application, nor its dependencies, was

required to benefit from the new sandboxing capabilities.

From a security perspective it is worth mentioning that NatiSand can mitigate

attacks at multiple levels. For instance, in CVE-2022-2566 a heap out-of-bound

memory bug exists in FFmpeg. The goal of the attacker is to achieve Arbitrary Code

Execution sending to the web application a malicious MP4 payload. NatiSand denies

the compromised component attempts to access confidential files, open reverse shells,

interact with privileged services through IPC, and transfer data to unauthorized

network hosts. We point out that, while sandboxing limits the privileges an attacker

can gain from exploiting a vulnerable program, it cannot eliminate vulnerabilities,

98



6.7. EXPERIMENTS

Class CVE Id Utility Type Use case

ACE

CVE-2016–3714 ImageMagick bin Image processing
CVE-2019-5063 OpenCV lib Computer Vision
CVE-2019-5064 OpenCV lib Computer Vision
CVE-2020-6016 GNSockets lib P2P networking
CVE-2020-6017 GNSockets lib P2P networking
CVE-2020-6018 GNSockets lib P2P networking
CVE-2020-17541 libjpeg-turbo lib Compress image
CVE-2020-24020 FFmpeg lib Video processing
CVE-2020-24995 FFmpeg lib Video processing
CVE-2020-29599 ImageMagick bin Image processing
CVE-2021-3246 libsndfile lib Audio encoding
CVE-2021-3781 Ghostscript bin PDF processing
CVE-2021-4118 Lightning lib Machine learning
CVE-2021-20227 SQLite lib Query database
CVE-2021-21300 Git bin Clone repository
CVE-2021-22204 ExifTool bin Extract metadata
CVE-2021-37678 TensorFlow lib Machine learning
CVE-2021-43811 Sockeye lib Translation
CVE-2022-0529 Unzip bin Decompress archive
CVE-2022-0530 Unzip bin Decompress archive
CVE-2022-0845 Lightning lib Machine learning
CVE-2022-1292 OpenSSL bin Verify certificate
CVE-2022-2068 OpenSSL bin Verify certificate
CVE-2022-2274 OpenSSL lib Cryptography
CVE-2022-2566 FFmpeg bin Video processing

AFO

CVE-2016-6321 GNU Tar bin Decompress archive
CVE-2017-1000472 POCO lib Common libraries
CVE-2019-20916 Pip bin Dependency fetch
CVE-2022-30333 UnRAR bin Decompress archive

LFI
CVE-2016-1897 FFmpeg bin Video processing
CVE-2016-1898 FFmpeg bin Video processing
CVE-2019-12921 GraphicsMagick bin Image processing

Table 6.3: Sample of CVEs mitigated by NatiSand

nor it can make infeasible to use them in an exploit chain.

6.7.2 Performance evaluation

To assess the performance of NatiSand we considered a broad set of programs, in-

cluding several GNU Core Utilities, executables to process multimedia, database

drivers, and Object Character Recognition engines. The goal is twofold: (i) eval-

uate the slowdown compared to a scenario where no protection is available (i.e.,

99



CHAPTER 6. NATIVE CODE SANDBOXING FOR JAVASCRIPT RUNTIMES

regular Deno), and (ii) compare NatiSand with well known sandboxing and isola-

tion frameworks. In the following we first investigate the impact on executables,

then we analyze libraries.

Executables

In the first batch of experiments we analyze the overhead associated with executa-

bles. Compared to the default scenario where no protection is available, NatiSand

spawns each program in a dedicated subprocess with its own set of constrained am-

bient rights. A handful of general purpose sandboxers can be adopted to achieve a

comparable degree of protection by wrapping the execution of each subprocess with

the chosen sandboxing utility. In our evaluation, we considered Minijail [111] and

Sandbox2 [112]. Minijail is a tool used in ChromeOS and Android to launch and

sandbox other programs based on the set of arguments specified, while Sandbox2

is a C++ library written by Google that can be used to sandbox entire programs

or portions of them. Both Minijail and Sandbox2 support multiple containment

techniques, such as the introduction of dedicated user ids, restriction of the Linux

capabilities, introduction of policy-based Seccomp filters, and isolation based on

Linux namespaces.

Benchmark I In the first benchmark we implemented a JS application to test

the execution of 17 common Linux utilities with four configurations: Deno, Nati-

Sand, Minijail, and Sandbox2. The application uses Deno.run() to spawn each

utility in a subprocess, and it leverages Deno.bench() to determine the duration of

each request. The function ensures that each measure is statistically robust, as it

automatically performs a dynamic number of rounds based on the duration of the

test (i.e., the shorter the test duration, the higher the number of repetitions). The

results are shown in Table 6.4 (tests are ordered by increasing execution time). As

expected, the cost of activating the sandbox is amortized with the increase in the

test duration. The tests also show that NatiSand suffers from a smaller performance

degradation compared to Minijail and Sandbox2. This aspect is particularly evident

for short-lived utilities. The reason is that our approach is integrated by design and,

contrary to the other solutions, leverages lightweight technologies that introduce a

smaller performance footprint.

Benchmark II While the experiments part of Benchmark I focus on the server

side scenario, with Benchmark II we wanted to show the overhead experienced by

a remote client. To this end, we used three microservices, each representing a real

use case scenario of high performance native programs. Two microservices rely on

100



6.7. EXPERIMENTS

Utility Deno [ms] Minijail Sandbox2 NatiSand

b2sum 2.37 7.19x 9.37x 2.88x
cut 2.52 7.11x 8.97x 2.86x
sum 2.61 7.00x 8.25x 2.87x
tac 2.76 6.51x 8.21x 2.34x
wc 2.97 6.25x 7.69x 2.44x
dd 3.60 5.29x 6.26x 2.23x
seq 3.80 5.02x 5.96x 2.13x
shuf 4.29 4.68x 5.55x 2.17x
ls 4.75 3.72x 4.68x 1.76x
factor 5.03 4.06x 5.03x 1.86x
join 5.20 4.08x 5.18x 2.05x
head 6.73 3.16x 3.85x 1.56x
ping 12.20 2.27x 2.79x 1.47x
sort 14.37 1.44x 1.77x 1.43x
dig 22.14 1.71x 2.15x 1.17x
wget 53.24 1.18x 1.42x 1.13x
curl 81.27 1.23x 1.24x 1.16x

Table 6.4: Average execution time for common Linux utilities

GM IM Tesseract0

100

200

300

La
te

nc
y 

[m
s]

Deno
NatiSand

Minijail
Sandbox2

GM IM Tesseract0

5

10

15

20

25

Th
ro

ug
hp

ut
 [r

eq
/s

]

Deno
NatiSand

Minijail
Sandbox2

Figure 6.4: Average latency and throughput for microservices that exe-
cute subprocesses

GraphicsMagick and ImageMagick, to perform a sharpen operation on images input

by the client, while the third microservice relies on Tesseract to perform Optical

Character Recognition on a second sequence of images input by the client. Similarly

to the previous case, the test was repeated for each of the four configurations: Deno,

NatiSand, Minijail, and Sandbox2. This time the HTTP benchmarking tool wrk

was used to measure the performance of each microservice. Network bandwidth

and latency are 1 Gbps and 10 ms, respectively, while 100 warmup requests were

carried out. Figure 6.4 shows the average latency and the throughput observed

101



CHAPTER 6. NATIVE CODE SANDBOXING FOR JAVASCRIPT RUNTIMES

over a period of 30 seconds. The results once again confirm the previous analysis,

as longer durations make the cost to setup the native sandbox less relevant. It is

worth to mention that NatiSand exhibits lower overhead compared to Minijail and

Sandbox2, with approximately 5 to 10 ms less latency for each microservice.

Usability Although general purpose sandboxers can be used to restrict the permis-

sions associated with executables, to provide a protection comparable to NatiSand:

(i) they force the developer to introduce changes in the web application, and (ii)

they require to understand in depth the techniques used by the kernel to restrict

ambient rights (e.g., capabilities, namespaces, Seccomp filters). Another problem

is that to restrict IPC and network with Minijail and Sandbox2 it is necessary to

leverage namespaces, which are characterized by coarser granularity than NatiSand

policies.

Libraries

In the second batch of experiments we analyze the overhead associated with libraries.

Contrary to the default JS runtime behavior, NatiSand transparently executes na-

tive library functions in dedicated contexts with limited ambient rights. A modern,

valuable alternative approach to isolate libraries is to compile them to WebAssembly

(Wasm), a standardized, portable binary instruction format executed in a memory

safe, sandboxed environment. This approach has gained considerable attention re-

cently, as browsers such as Firefox have used it to retrofit some of their components

to safely interface with native libraries [149].

Benchmark III Similarly to Benchmark I, we implemented a JS application to

highlight the overhead experienced on the server when native libraries are executed.

In this case three configurations are evaluated: Deno, NatiSand, and Wasm. The

application tests the operations provided by four popular libraries: (i) libxml2, to

open and query XML data, (ii) libpng, to read metadata information and verify

the signature of a png image, (iii) opus to encode and create an audio trace, and

(iv) sqlite3, to open and query the Northwind database. Test durations were again

measured with Deno.bench(), and the results are reported in Table 6.5. Deno

exhibits a consistent performance advantage for operations that require up to 30

microseconds. However, NatiSand proves to be more efficient than Wasm, which in

turn is affected by a substantial overhead in almost every test. This difference is

due to the nature of Wasm; while there have been improvements, the just-in-time

compiled language [196] remains slower than its native counterpart. Remarkable are

the cases of opus and sqlite3, which used nativeCall and demonstrate its efficiency.

102



6.7. EXPERIMENTS

Test Deno [µs] Wasm NatiSand

libxml2 (open) 9.33 8.96x 2.51x
libxml2 (query) 11.53 4.35x 1.63x
libpng (verify) 11.58 13.34x 9.61x
libpng (info) 28.33 12.63x 9.39x
opus (encode) 58.67 2.03x 1.55x
opus (create) 203.72 1.70x 1.64x
sqlite3 (open) 63.62 5.68x 1.54x
sqlite3* (query) 143.98 2.43x 1.51x

Table 6.5: Average execution time for common native libraries (* marks
the use of nativeCall)

libpng opus* sqlite*0

200

400

600

800

La
te

nc
y 

[m
s]

Deno NatiSand Wasm

libpng opus* sqlite*0

10

20

30
Th

ro
ug

hp
ut

 [r
eq

/s
]

Deno NatiSand Wasm

Figure 6.5: Average latency and throughput for microservices that exe-
cute native functions (* marks the use of nativeCall)

Benchmark IV To understand the slowdown perceived by a remote client, we

exposed the functions of the libpng, opus, and sqlite3 libraries with microservices.

For each of them, we configured the client to send the input to the server, and

measured the latency and throughput using wrk (as explained in Benchmark II

setup). The results are visualized in Figure 6.5. Once again the client observes

a small degradation of latency and throughput when using NatiSand instead of

Deno, but the overhead is far less noticeable compared to the results discussed in

Benchmark III. Conversely, Wasm is affected by a significant degradation of latency.

This is due to the just-in-time compilation of Wasm, and the additional memory

management required to exchange data between the JS application and Wasm.

Usability While Wasm offers strong isolation guarantees, it also comes with draw-

backs compared to NatiSand. First of all it requires the developer to use a Wasm-

compatible version of the library. In our evaluation we used a precompiled version

of sqlite3, but we had to manually compile opus and libpng using the Emscripten

103



CHAPTER 6. NATIVE CODE SANDBOXING FOR JAVASCRIPT RUNTIMES

toolchain [96] and the WASI Sdk [201], respectively. Moreover, current implementa-

tions of the WebAssembly System Interface (WASI) can only restrict ambient rights

programmatically, and filesystem privileges work at directory granularity. Lastly,

Wasm requires the developer to explicitly allocate, write, and read bytes from the

Wasm module linear memory.

6.8 Related work

Isolation of software has been widely investigated by both the academic and in-

dustrial communities [55, 126, 83, 111, 112, 150, 71, 167, 4]. MBOX [126] features

an unprivileged sandboxing mechanism that prevents a process from modifying the

host filesystem by layering the sandbox filesystem on top of it. The solution is

implemented by interposing syscalls using Seccomp and ptrace. The use of ptrace

required the authors careful attention to avoid the risk of TOCTOU attacks, more-

over it suffers from non-negligible performance degradation. DeMarinis et al. [83]

propose Sysfilter, a static analysis framework to reduce the attack surface of the

kernel, by restricting with Seccomp the system call set available to processes. This

approach proves to be effective in limiting the kernel APIs that can be abused by

attackers, but whenever a system call is necessary for the benign behavior of a pro-

gram, there is no way to control with Seccomp the specific instance of the resource

used. BPFBox [104], BPFContain [103], and Snappy [54] are security frameworks

that provide confinement of processes and containers with the use of eBPF. These

solutions highlight the benefit of eBPF by providing simple, efficient, and flexible

confinement of system resources, however these solutions either require a privileged

daemon or require to load kernel modules to introduce a set of dynamic helpers.

Often, industrial sandboxing solutions take advantage of multiple protection tech-

niques to support process containment. This is the case for Minijail [111], and

Sandbox2 [112]. Some of the security mechanisms used are: introduction of new

user ids, capabilities restriction, namespace isolation and policy-based Seccomp fil-

tering. These tools expose a powerful interface meant to be used by security experts.

Similar considerations are shared with other less mature tools such as Firejail [150]

and Bubblewrap [71].

Multiple research efforts have studied the use of third-party components in soft-

ware products [149, 127, 204, 53]. PKRU-Safe [127] proposes an automated method

for preventing the memory corruption of memory-safe languages due to the interac-

tion with unsafe code. It leverages the compiler infrastructure to provide hardware-

backed memory protection requiring changes to build files, dependencies, and code

(in the form of code annotations). Codejail [204] provides partial isolation of li-

104



6.8. RELATED WORK

braries by spawning a new process and configuring the necessary communication

channels to support tight memory interactions with the main program. To support

the change in the interactions without modifications to the library code it is nec-

essary to write a wrapper library. Cali [53] is a compiler-assisted library isolation

system that compartmentalizes libraries into their own process, and automates the

configuration of the necessary communication channels by tracking data flow be-

tween the program and the library at link time. RLBox [149] is a framework to

isolate libraries in lightweight sandboxes – i.e., process, Wasm. It facilitates the

retrofitting of applications employing static information flow enforcement and dy-

namic checks expressed in the C++ type system. These solutions were designed for

compiled languages, so while some of the concepts are portable to JS runtimes, the

solutions are not easily adapted to this domain.

A recent study by Staicu et al. [177] highlights how the possibility to invoke

native code from scripting languages undermines the security assumption of ap-

plications. They discuss a methodology to detect misuses of the native extension

API and show how the exploit of these vulnerabilities in npm packages can lead to

web applications compromise. Previous proposals [197, 205, 67] tackle this prob-

lem by providing solutions to isolate the execution of third-party modules. Wolf

at the Door [205] reduces the risk associated with the installation of npm packages

by mediating their install-time capabilities. It enforces complex user-defined poli-

cies by leveraging AppArmor, hence prohibiting unauthorized access to confidential

files and connections using an LSM that currently cannot coexist with SELinux and

SMACK. BreakApp [197] takes advantage of module boundaries to compartmental-

ize npm modules in accordance with a set of code annotations. Modules are isolated

with software, process, or container isolation, and it is possible to configure the visi-

bility of the application context available to external modules. Process and container

isolation enable the protection of native code, however the specification of their per-

missions are beyond the scope of the proposal. Cage4deno [5] protects filesystem

resources from subprocesses executed by JavaScript runtimes. BinWrap [67] sepa-

rates the execution of third-party components from the rest of the application using

distinct execution threads for different domains of trust. The main focus of the

proposal is prohibiting arbitrary accesses to sensitive data stored in the memory

of the JS runtime by leveraging Intel’s MPK/PKU. NatiSand is complementary to

the above solutions since our goal is to specify and enforce permissions on native

code dependencies of web applications, rather than providing memory isolation for

untrusted components.

Protecting JS code from being compromised is out of the scope of NatiSand,

nonetheless, since proposals in this domain and ours both target the web devel-

opment audience, our proposal shares some ideas with previous works in this do-

105



CHAPTER 6. NATIVE CODE SANDBOXING FOR JAVASCRIPT RUNTIMES

main [198, 9, 180, 157]. For instance, Ferreira et al. [102] propose a lightweight per-

mission system providing per-package on/off switches that limit access to Node.js

core modules (e.g., child process, fs, http). By doing so, it can prohibit access to

subprocess, filesystem, and network resources for the JS code. Similarly, NatiSand

takes care of protecting filesystem, IPC, and network resources, targeting native

code. Mir [198] is a system preventing the compromise of the application by third-

party modules with the enforcement of fine-grained RWX permissions on every field

of every variable in the JS context. NatiSand adopts an equivalent permission model

to contain native code when accessing filesystem resources. Another research work

enforcing security boundaries stated in a policy is SandTrap [9]. The approach

enforces fine-grained access control policies on cross-domain interactions between

application code and the third-party modules. The creation of policy files described

by the authors consists in running test suites to create a policy with acceptable

static cross-domain interaction coverage. We adopt a similar approach in the policy

generation of NatiSand. Note that, differently from our proposal, solutions protect-

ing JS code can run in user space, thus they do not limit the portability of the JS

runtime to Linux systems.

6.9 Conclusions

The increase in scale and complexity of modern web applications has led to the in-

troduction of new security mechanisms in JS runtimes. Unfortunately, native code

execution still represents a clear risk, since no isolation is provided by all the ma-

jor platforms. NatiSand solves this problem, introducing new measures to confine

the execution of binaries and shared libraries. The proposal is not dependent on

a particular JS runtime, and was designed to be integrated into different architec-

tures. Considerable attention was dedicated to usability; little effort is required by

developers to sandbox their applications. Indeed, no specific security expertise is

necessary to benefit from the protection, nor are changes to the application.

We believe that the approach proposed in this chapter can contribute to improve

the state of the art in this domain and support the evolution toward more secure

software platforms.

Availability

The source code and the artifacts produced to support the proposal are available

open source at https://github.com/unibg-seclab/natisand

106

https://github.com/unibg-seclab/natisand


7. Conclusions and future work

In this thesis, we presented novel fine-grained access control techniques to protect

resources in mobile and cloud applications.

We opened our dissertation by describing SEApp, a technique for mitigating se-

curity threats in the Android mobile operating system. SEApp empowers developers

with the capability of isolating the internal components of Android apps and regu-

late their permissions on a per-component basis. This crucial step not only limits

the impact a vulnerability has on the app resources, but it also allows to provide

strong user privacy guarantees and meet data privacy regulations despite the use of

third-party code.

The dissertation proceeded considering the importance to also secure cloud ap-

plications. Specifically, we presented an approach to support the introduction of

security policies to restrict the file system resources available to an application.

Compared to virtualization technologies such as VMs and containers, which are

associated with coarse granularity, we demonstrate that our proposal enables the

introduction of fine-grained, per-resource access rules. Then, we further explore the

topic in the context of WebAssembly runtimes. Here, not only the approach per-

mits to introduce fine-grained policies to restrict file system access, it also replaces

error-prone userspace implementations of the security checks (and the security issues

stemming from them) with a unified eBPF implementation. Finally, we consider the

specific use of JavaScript runtimes for the creation of cloud applications, and how

developers commonly rely on native code to speed up development and execution

of the application. Since JS runtimes do not provide solutions for the isolation of

native code, we propose NatiSand, a runtime-agnostic component to control the

filesystem, Inter-Process Communication (IPC), and network resources available to

binary programs and shared libraries.

During our research work, considerable attention was dedicated to the perfor-

mance and usability of our proposals. The work presented in this thesis represent the

final result of multiple improving iterations to ensure small performance footprint

and high usability by developers. Indeed, these are very important aspects since

the lower the performance side-effects and the effort on behalf of the developer to

integrate our solutions with existing applications, the broader will be the adoption

of our security mechanisms. With this regard, to facilitate the integration of our so-

lutions with existing real systems and foster the reproducibility of our experimental

evaluations, our prototype implementations are all available open source.

107



CHAPTER 7. CONCLUSIONS AND FUTURE WORK

We believe the approaches proposed in this thesis contribute to improving the

state of the art in this domain and support the evolution toward more secure mobile

and cloud software platforms.

7.1 Future work

This section concludes the thesis with a discussion on the future work that can be

done in the area of fine-grained access control technologies to protect resources in

mobile and cloud applications.

Mobile applications – Chapter 3 describes SEApp, a novel proposal that provides

developers with a mechanism to isolate the internal components of Android apps

and regulate their permissions on a per-component basis. This is achieved by first

executing components in dedicated processes, and then restricting access to the app

and system resources with ad hoc SELinux policies. While effective, the decision to

use SELinux to constraint the access of application components impose significant

limitations. Resource-wise, SELinux implies the use of process isolation to isolate

different components of the application; this increases CPU and memory utiliza-

tion which negatively affect responsiveness and battery life of the mobile device.

Usability-wise, despite our efforts, SELinux policies are hard to audit, author and

maintain. Therefore, we consider the possibility of replacing SELinux and process

isolation with novel Linux Security Modules and memory protection techniques an

interesting and promising evolution of our work with the potential to solve both

these limitations and, thus, further promote adoption.

Cloud applications – Chapter 4, 5, and 6 highlight limitations of the cloud tech-

nologies available at the time of writing with regard to fine-grained access control

of system resources. Each chapter provides its own take on a specific aspect of the

problem. Chapter 4 relies on instrumentation to collect and audit the activity traces

generated by microservices, and then uses this information to create fine-grained ac-

cess control policies and strengthen the security boundary of the cloud application.

Chapter 5 focuses on the security implications of enabling access to system resources

through the WebAssembly System Interface (WASI), and proposes improvements in

the controlling access to file system resources. Chapter 6 considers the use of JS

runtimes for the implementation of cloud applications, and proposes NatiSand, a

component to control the filesystem, Inter-Process Communication (IPC), and net-

work resources available to binary programs and shared libraries. Interesting future

work could extend the observability and protection to a wider set of system re-

sources. For example, the use of memory protection techniques could restrict the

area affected by an attack to the sole exploited thread without leading to potential

108



7.1. FUTURE WORK

compromise of the entire JS runtime. Finally, given the flexibility and versatility

of our designs another interesting future work would be the adoption of these tech-

niques to secure other Wasm and JS runtimes, or even other interpreted languages

(e.g., PHP, Python, and Ruby).

109





Acknowledgments

The research described in the contents of this thesis was supervised by Prof. Ste-

fano Paraboschi (Università degli Studi di Bergamo), and has received funding from:

2015 Google Faculty Research Award Program, Horizon 2020 research and innova-

tion programme under grant agreement No. 825333 (MOSAICrOWN), Horizon

Europe research and innovation programme under grant agreement No. 101070141

(GLACIATION), and NextGenerationEU programme under grant agreement No.

PE00000018 (GRINS).

I would like to thank Prof. Stefano Paraboschi for the guidance during this

journey. My gratitute also goes to my former and present colleagues of the Security

Lab of Università degli Studi di Bergamo: Marco Abbadini, Enrico Bacis, Michele

Beretta, Dario Facchinetti, Gianluca Oldani, and Marco Rosa, with whom I had

the opportunity to grow by sharing this experience. A final thank is due to all the

people that supported me during my research, since it is thank to them that the

most difficult parts of my journey have been overcome.





A. Practical showcase of SEApp

capabilities

Figure A.1: Showcase

app main view

This chapter gives a technical demonstration of the se-

curity measures introduced by SEApp. The description

is based on the showcase app presented in Section 3.3.

We show that: (1) the showcase app can operate with-

out a policy module; in this mode, its vulnerabilities can

be exploited; (2) the showcase app can also operate with

the policy module listed in Appendix A.4 and use the

services offered by SEApp; in this mode, the internal

vulnerabilities are no longer exploitable.

The showcase app has a minimal structure. Its en-

try point is the MainActivity (Figure A.1), which is as-

sociated with the core logic process. From the Main-

Activity it is possible to send a startActivity intent to

one among UseCase1Activity, UseCase2Activity and Use-

Case3Activity; the entry points of use cases 1, 2 and 3,

respectively. For each entry point Zygote starts a ded-

icated process and, according to the content of the

seapp contexts (in Listing A.1), assigns its specific do-

main (user logic d to UC#1, ads d to UC#2, media d

to UC#3). A dedicated description of each use case fol-

lows.

A.1 UC#1: fine-granularity in access to files

In this use case we demonstrate how an app could benefit from the fine-granularity

access to files. In particular, we show how the UseCase1Activity, suffering of a

path traversal vulnerability, cannot be exploited when the app is associated with a

properly configured policy module. According to the Google Play Protect report on

common application vulnerabilities [113], unsanitized path names that lead to path

traversal are a primary source of problems in applications.

UseCase1Activity is quite simple: it displays the content of a file given its relative

path through an intent (Figure A.2a). While this may be fine when the intent comes

113



APPENDIX A. PRACTICAL SHOWCASE OF SEAPP CAPABILITIES

from trusted components, the activity supports also implicit intents coming from

untrusted sources. This makes the vulnerability easily exploitable by an attacker

targeting the confidential files written by the core logic components. In our setup

phase, we leverageMainActivity to create an internal directory structure by using the

android.os.File abstraction, which sets file and directory context upon its creation

(see Section 3.6.2). Two directories are created: user/ and confidential/; inside

both folders a file data is saved. To test this use case, we first start UseCase1Activity,

then we send an intent to “confuse” UseCase1Activity into showing us the content

of confidential/data. This can be done via ADB with the command:

adb shell am start \

-n com.example.showcaseapp /. UseCase1Activity \

-a "com.example.showcaseapp.intent.action.SHOW" \

--es "com.example.showcaseapp.intent.extra.PATH" \

"../ confidential/data"

When the policy module is not available, all app internal files are flagged with

app data file and every app component executes within the untrusted app do-

main, which holds read access to app data file. As a consequence the vulner-

ability is successfully exploited and UseCase1Activity shows the content of the

confidential/data file (Figure A.2b).

Instead, when the policy module is available, the file confidential/data is

flagged with confidential t, as indicated in line 2 in file contexts (see List-

ing A.2). Since no permission is granted on confidential t in the sepolicy.cil

to user logic d, any access to the file confidential/data by UseCase1Activity is

blocked by SELinux (Figure A.2c). The following denial is written to the system

log: denied search to user logic d domain on confidential t type (Figure A.3).

The confidential directory cannot then be accessed despite the exploitation of the

path traversal vulnerability.

114



A.2. UC#2: FINE-GRANULARITY IN ACCESS TO SERVICES

Figure A.2: UC#1 view (initiation, exploitation, and mitigation)

Figure A.3: UC#1 SELinux denial message in the system log

A.2 UC#2: fine-granularity in access to services

In this use case we show how to confine an Ad library into an ad-hoc process, with

guarantees that it cannot abuse the access privileges granted to the whole application

sandbox by the user. To do that, we deliberately inject, in the same process the

library is executed, a malicious component (which is directly invoked by the library)

that tries to capture the location when the permission ACCESS FINE LOCATION

is granted to the app. The Ad library used is Unity Ads [193], which according

to [179] in 2020 was used by 11% of apps that show ads.

In this case the library is invoked by UseCase2Activity (Figure A.4a), and accord-

ing to line 3 of the seapp contexts, both the activity and the components created

by the library are executed by Zygote in a process labeled with ads d. To interact

with the Ad library, UseCase2Activity instances a UnityAdsListener. After the

Ad initialization (including the registration of the listener) and displaying the Ad to

the user (Figures A.4b-c), the Ad framework invokes the listener callback method

onUnityAdsFinish, which executes the malicious routine captureLocation. The

routine probes the app permissions; if ACCESS FINE LOCATION is granted to

the app, the malicious component retrieves through the servicemanager a handle to

the LocationManager, and registers to it an asynchronous listener to capture GPS

115



APPENDIX A. PRACTICAL SHOWCASE OF SEAPP CAPABILITIES

Figure A.4: UC#2 views

location (Figure A.5).

We show that when the policy module is enforced by SEApp, the malicious

component cannot access the GPS coordinates. This is because the component is

executed in the same process of the library, which is labeled with ads d. If we look

at the sepolicy.cil (lines 48-54), ads d is not granted access to the SELinux type

location service, so the malicious routine cannot retrieve and therefore connect

to the location service. The following denial is written to the system log: denied

find on location service to the ads d domain (Figure A.6). As a result, the

malicious component is terminated by the ActivityTaskManager (Figure A.7).

The Ad library was included in the app as an .aar archive. To confine it, no mod-

ification was necessary, only the use of AndroidManifest.xml and sepolicy.cil

was required.

116



A.3. UC#3: ISOLATION OF VULNERABILITY-PRONE COMPONENTS

Figure A.5: UC#2 malicious gadjet retrieves location data

Figure A.6: UC#2 SELinux denial message in the system log

Figure A.7: UC#2 activity termination due to SELinux denial

A.3 UC#3: isolation of vulnerability-prone

components

In this use case we show how to confine a set of components, which rely on a high

performance native library written in C to perform some task. Our goal is to demon-

strate that the context running the native library code is prevented to access the

network, even when the permissions INTERNET and ACCESS NETWORK STATE

are granted to the app sandbox.

The native library is invoked by UseCase3Activity (Figure A.8a), which, accord-

ing to line 4 in the seapp contexts, is executed in a process labeled with media d

by Zygote. The call to the library is performed via JNI. Its job is to connect to the

camera service and take a picture. Since the app is granted the CAMERA permis-

117



APPENDIX A. PRACTICAL SHOWCASE OF SEAPP CAPABILITIES

Figure A.8: UC#3 views (initiation, exploitation, and mitigation)

sion, the native library code (legitimately, line 60 in the sepolicy.cil) connects to

the CameraManager.

Since the native library performs image processing, we do not want it

to access the network. However, the permissions INTERNET and AC-

CESS NETWORK STATE are granted to the app, as they are required by the Ads

framework. Thus, when the policy module is not available, the native library can

connect to the ConnectivityManager and successfully bind the current process to

the network (Figure A.8b). Instead, when the policy module is enforced by SEApp,

since media d was granted only the basic app permissions (line 11 in sepolicy.cil),

the connection to the network is forbidden (Figure A.8c). This happens because

binding a process to the network is associated with opening a network socket, an

operation not permitted by SELinux without the required permissions. The follow-

ing denial is written to the system log: denied create on udp socket to media d

domain (Figure A.9).

Figure A.9: UC#3 SELinux denial message in the system log

This use case, besides showing how SEApp confines a native library, also

demonstrates the power and simplicity of the macro, as adding the line (call

md netdomain (media d)) to the policy module grants to media d the needed per-

missions to access the network. The application developer is thus not required to

118



A.4. POLICY MODULE

know or understand the internal SELinux policy in order to leverage this function-

ality.

The isolation properties introduced by SEApp applies also to other common

security problems presented in [113]. Just to mention one, SEApp can mitigate the

impact of incorrect sandboxing of a scripting language.

A.4 Showcase app policy module

Here are reported the showcase app policy module files.

Listing A.1: Showcase app seapp contexts

1 user=_app seinfo=showcase_app domain=

com_example_showcaseapp.core_logic_d name=com.example.

showcaseapp:core_logic levelFrom=all

2 user=_app seinfo=showcase_app domain=

com_example_showcaseapp.user_logic_d name=com.example.

showcaseapp:user_logic levelFrom=all

3 user=_app seinfo=showcase_app domain=

com_example_showcaseapp.ads_d name=com.example.

showcaseapp levelFrom=all

4 user=_app seinfo=showcase_app domain=

com_example_showcaseapp.media_d name=com.example.

showcaseapp:media levelFrom=all

Listing A.2: Showcase app file contexts

1 .* u:object_r:app_data_file:s0

2 files/confidential u:object_r:com_example_showcaseapp.

confidential_t:s0

3 files/ads_cache u:object_r:com_example_showcaseapp.

ads_t:s0

Listing A.3: Showcase app mac permissions.xml

1 <?xml version ="1.0" encoding ="iso -8859 -1"? >

2 <policy >

3 <signer signature =" SIGNATURE">

4 <package name="com.example.showcaseapp">

5 <seinfo value=" showcase_app "/>

6 </package >

7 </signer >

8 </policy >

119



APPENDIX A. PRACTICAL SHOWCASE OF SEAPP CAPABILITIES

Listing A.4: Showcase app sepolicy.cil

1 (block com_example_showcaseapp

2 ; creation of domain types

3 (type core_logic_d)

4 (call md_untrusteddomain (core_logic_d))

5 (type user_logic_d)

6 (call md_appdomain (user_logic_d))

7 (type ads_d)

8 (call md_appdomain (ads_d))

9 (call md_netdomain (ads_d))

10 (type media_d)

11 (call md_appdomain (media_d))

12 (typeattribute domains)

13 (typeattributeset domains (core_logic_d user_logic_d ads_d

media_d))

14

15 ; creation of file types

16 (type confidential_t)

17 (call mt_appdatafile (confidential_t))

18 (type ads_t)

19 (call mt_appdatafile (ads_t))

20

21 ; bounding the domains and types

22 (typebounds untrusted_app core_logic_d)

23 (typebounds untrusted_app user_logic_d)

24 (typebounds untrusted_app ads_d)

25 (typebounds untrusted_app media_d)

26 (typebounds app_data_file confidential_t)

27 (typebounds app_data_file ads_t)

28

29 ; grant core_logic_d access to confidential files

30 (allow core_logic_d confidential_t (dir (search write add_name)

))

31 (allow core_logic_d confidential_t (file (create getattr open

read write)))

32 ; grant ads_d access to ads_cache files

33 (allow ads_d ads_t(dir(search write add_name)))

34 (allow ads_d ads_t(file(create getattr open read write)))

35

36 ; minimum app_api_service subset

37 (allow domains activity_service (service_manager (find)))

38 (allow domains activity_task_service (service_manager (find)))

39 (allow domains ashmem_device_service (service_manager (find)))

40 (allow domains audio_service (service_manager (find)))

41 (allow domains surfaceflinger_service (service_manager (find)))

42 (allow domains gpu_service (service_manager (find)))

120



A.4. POLICY MODULE

43

44 ; grant core_logic_d access to the necessary services

45 (allow core_logic_d restorecon_service (service_manager (find))

)

46 (allow core_logic_d location_service (service_manager (find)))

47

48 ; grant ads_d access to unity3ads needed services

49 (allow ads_d radio_service (service_manager (find)))

50 (allow ads_d webviewupdate_service (service_manager (find)))

51 (allow ads_d autofill_service (service_manager (find)))

52 (allow ads_d clipboard_service (service_manager (find)))

53 (allow ads_d batterystats_service(service_manager (find)))

54 (allow ads_d batteryproperties_service (service_manager (find))

)

55 (allow ads_d audioserver_service (service_manager (find)))

56 (allow ads_d mediaserver_service (service_manager (find)))

57

58 ; grant media_d access to the necessary services

59 (allow media_d autofill_service (service_manager (find)))

60 (allow media_d cameraserver_service (service_manager (find)))

61 )

121





B. Policy generated for the curl

command

Listing B.1 reports the policy associated with the execution of the curl

https://www.example.com command. The policy has been automatically gener-

ated using the utility described in Section 6.5.2.

Listing B.1: Example of policy associated with curl

1 [{
2 "name": "/usr/bin/curl",

3 "fs": {
4 "read": [

5 "/etc/gai.conf",

6 "/etc/host.conf",

7 "/etc/hosts",

8 "/etc/ld.so.cache",

9 "/etc/localtime",

10 "/etc/nsswitch.conf",

11 "/etc/passwd",

12 "/etc/resolv.conf",

13 "/etc/ssl/certs/ca -certificates.crt",

14 "/lib/x86_64 -linux -gnu",

15 "/ lib64/ld -linux -x86 -64.so.2",

16 "/usr/bin/curl",

17 "/usr/lib/locale/locale -archive",

18 "/usr/lib/ssl/openssl.cnf"

19 ],

20 "exec": [

21 "/lib/x86_64 -linux -gnu",

22 "/ lib64/ld -linux -x86 -64.so.2",

23 "/usr/bin/curl"

24 ]

25 },
26 "net": [{
27 "name": "https://www.example.com",

28 "ports": [443]

29 }]
30 }]

123





References

[1] A. Starovoitov. CAP BPF. https://lwn.net/Articles/820560/, 2020.

[2] M. Abbadini, M. Beretta, S. D. C. di Vimercati, D. Facchinetti, S. Foresti,

G. Oldani, S. Paraboschi, M. Rossi, and P. Samarati. Supporting data owner

control in IPFS networks. In Proceeding of the IEEE International Conference

on Communications (IEEE ICC 2024), 2024.

[3] M. Abbadini, M. Beretta, D. Facchinetti, G. Oldani, M. Rossi, and S. Para-

boschi. Lightweight cloud application sandboxing. In Proceeding of the 14th

IEEE International Conference on Cloud Computing Technology and Science

(IEEE CLOUDCOM 2023), 2023.

[4] M. Abbadini, M. Beretta, D. Facchinetti, G. Oldani, M. Rossi, and S. Para-

boschi. Poster: Leveraging eBPF to enhance sandboxing of WebAssembly

runtimes. In Proceedings of the ACM Asia Conference on Computer and Com-

munications Security (ASIACCS), 2023.

[5] M. Abbadini, D. Facchinetti, G. Oldani, M. Rossi, and S. Paraboschi.

Cage4Deno: A fine-grained sandbox for Deno subprocesses. In Proceedings of

the ACM Asia Conference on Computer and Communications Security (ASI-

ACCS), 2023.

[6] M. Abbadini, D. Facchinetti, G. Oldani, M. Rossi, and S. Paraboschi. Nati-

Sand: Native code sandboxing for JavaScript runtimes. In Proceedings of the

Symposium on Research in Attacks, Intrusions and Defenses (RAID), 2023.

[7] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel, and M. Smith. SoK:

Lessons learned from Android security research for appified software platforms.

In Proceedings of the IEEE Symposium on Security and Privacy (IEEE S&P),

2016.

[8] Adobe Inc. Sandbox protections. https://www.adobe.com/devnet-docs/

acrobatetk/tools/AppSec/sandboxprotections.html, 2023.

[9] M. M. Ahmadpanah, D. Hedin, M. Balliu, L. E. Olsson, and A. Sabelfeld.

SandTrap: Securing JavaScript-driven trigger-action platforms. In Proceedings

of the USENIX Security Symposium (USENIX Security), 2021.

125

https://lwn.net/Articles/820560/
https://www.adobe.com/devnet-docs/acrobatetk/tools/AppSec/sandboxprotections.html
https://www.adobe.com/devnet-docs/acrobatetk/tools/AppSec/sandboxprotections.html


REFERENCES

[10] M. Albanese, A. De Benedictis, D. D. de Macedo, and F. Messina. Security and

trust in cloud application life-cycle management. Future Generation Computer

Systems (FGCS), 111, October 2020.

[11] A. AlHamdan and C. Staicu. SandDriller: A fully-automated approach for

testing language-based JavaScript sandboxes. In Proceedings of the USENIX

Security Symposium (USENIX Security), 2023.

[12] B. Alliance. Cli options for wasmtime. https://docs.wasmtime.dev/cli-

options.html, 2023.

[13] N. Andrii. BPF portability and CO-RE. https://

facebookmicrosites.github.io/bpf/blog/2020/02/19/bpf-portability-

and-co-re.html, 2020.

[14] Android. Google Play Protect. https://www.android.com/play-protect/,

2021.

[15] Android Developers. adb install. https://developer.android.com/studio/

command-line/adb#move, 2021.

[16] Android Developers. Android App Bundles. https://

developer.android.com/platform/technology/app-bundle, 2021.

[17] Android Developers. Android Interface Definition Language. https://

developer.android.com/guide/components/aidl, 2021.

[18] Android Developers. android:isolatedProcess. https:

//developer.android.com/guide/topics/manifest/service-

element#isolated, 2021.

[19] Android Developers. Bound services overview. https://

developer.android.com/guide/components/bound-services#Creating,

2021.

[20] Android Developers. isolated app.te. https://android.googlesource.com/

platform/system/sepolicy/+/refs/heads/master/private/

isolated app.te, 2021.

[21] Android Developers. Privacy Sandbox su Android. https://

developer.android.com/design-for-safety/privacy-sandbox, 2023.

[22] Android Open Source Project. Enable per-user isolation for normal

apps. https://android.googlesource.com/platform/external/sepolicy/

+/a833763ba04147e840fd054b613f759395bada35, 2014.

126

https://docs.wasmtime.dev/cli-options.html
https://docs.wasmtime.dev/cli-options.html
https://facebookmicrosites.github.io/bpf/blog/2020/02/19/bpf-portability-and-co-re.html
https://facebookmicrosites.github.io/bpf/blog/2020/02/19/bpf-portability-and-co-re.html
https://facebookmicrosites.github.io/bpf/blog/2020/02/19/bpf-portability-and-co-re.html
https://www.android.com/play-protect/
https://developer.android.com/studio/command-line/adb#move
https://developer.android.com/studio/command-line/adb#move
https://developer.android.com/platform/technology/app-bundle
https://developer.android.com/platform/technology/app-bundle
https://developer.android.com/guide/components/aidl
https://developer.android.com/guide/components/aidl
https://developer.android.com/guide/topics/manifest/service-element#isolated
https://developer.android.com/guide/topics/manifest/service-element#isolated
https://developer.android.com/guide/topics/manifest/service-element#isolated
https://developer.android.com/guide/components/bound-services#Creating
https://developer.android.com/guide/components/bound-services#Creating
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/isolated_app.te
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/isolated_app.te
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/isolated_app.te
https://developer.android.com/design-for-safety/privacy-sandbox
https://developer.android.com/design-for-safety/privacy-sandbox
https://android.googlesource.com/platform/external/sepolicy/+/a833763ba04147e840fd054b613f759395bada35
https://android.googlesource.com/platform/external/sepolicy/+/a833763ba04147e840fd054b613f759395bada35


REFERENCES

[23] Android Open Source Project. SELinux for Android 8.0. https:

//source.android.com/security/selinux/images/SELinux Treble.pdf,

2017.

[24] Android Open Source Project. Android 9 release notes.

https://source.android.com/setup/start/p-release-notes#per-

app selinux sandbox, 2018.

[25] Android Open Source Project. ActivityManagerService. https:

//android.googlesource.com/platform/frameworks/base/+/refs/

heads/master/services/core/java/com/android/server/am/

ActivityManagerService.java, 2021.

[26] Android Open Source Project. Android Debug Bridge (adb). https://

developer.android.com/studio/command-line/adb, 2021.

[27] Android Open Source Project. Android Permissions. https://

developer.android.com/guide/topics/permissions/overview, 2021.

[28] Android Open Source Project. Android Runtime. https:

//developer.android.com/guide/platform#art, 2021.

[29] Android Open Source Project. App manifest overview. https://

developer.android.com/guide/topics/manifest/manifest-intro, 2021.

[30] Android Open Source Project. Binder. https://developer.android.com/

reference/android/os/Binder, 2021.

[31] Android Open Source Project. Implementing SELinux. https://

source.android.com/security/selinux/implement, 2021.

[32] Android Open Source Project. init. https://android.googlesource.com/

platform/system/core/+/refs/heads/master/init/main.cpp, 2021.

[33] Android Open Source Project. installd. https://

android.googlesource.com/platform/frameworks/native/+/refs/heads/

master/cmds/installd/, 2021.

[34] Android Open Source Project. Intent and intent filters. https://

developer.android.com/guide/components/intents-filters, 2021.

[35] Android Open Source Project. Mounting partitions early. https:

//source.android.com/devices/architecture/kernel/mounting-

partitions-early, 2021.

127

https://source.android.com/security/selinux/images/SELinux_Treble.pdf
https://source.android.com/security/selinux/images/SELinux_Treble.pdf
https://source.android.com/setup/start/p-release-notes#per-app_selinux_sandbox
https://source.android.com/setup/start/p-release-notes#per-app_selinux_sandbox
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/am/ActivityManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/am/ActivityManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/am/ActivityManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/am/ActivityManagerService.java
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/platform#art
https://developer.android.com/guide/platform#art
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/reference/android/os/Binder
https://developer.android.com/reference/android/os/Binder
https://source.android.com/security/selinux/implement
https://source.android.com/security/selinux/implement
https://android.googlesource.com/platform/system/core/+/refs/heads/master/init/main.cpp
https://android.googlesource.com/platform/system/core/+/refs/heads/master/init/main.cpp
https://android.googlesource.com/platform/frameworks/native/+/refs/heads/master/cmds/installd/
https://android.googlesource.com/platform/frameworks/native/+/refs/heads/master/cmds/installd/
https://android.googlesource.com/platform/frameworks/native/+/refs/heads/master/cmds/installd/
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://source.android.com/devices/architecture/kernel/mounting-partitions-early
https://source.android.com/devices/architecture/kernel/mounting-partitions-early
https://source.android.com/devices/architecture/kernel/mounting-partitions-early


REFERENCES

[36] Android Open Source Project. PackageManagerService. https:

//android.googlesource.com/platform/frameworks/base/+/refs/

heads/master/services/core/java/com/android/server/pm/

PackageManagerService.java, 2021.

[37] Android Open Source Project. PackageParser. https://

android.googlesource.com/platform/frameworks/base/+/master/core/

java/android/content/pm/PackageParser.java, 2021.

[38] Android Open Source Project. Policy compatibility. https://

source.android.com/security/selinux/compatibility, 2021.

[39] Android Open Source Project. restorecond service. https:

//android.googlesource.com/platform/external/selinux/+/refs/

heads/master/restorecond/restorecond.service, 2021.

[40] Android Open Source Project. secilc. https://android.googlesource.com/

platform/external/selinux/+/refs/heads/master/secilc/, 2021.

[41] Android Open Source Project. SELinuxMMAC. https://

android.googlesource.com/platform/frameworks/base/+/refs/heads/

master/services/core/java/com/android/server/pm/SELinuxMMAC.java,

2021.

[42] Android Open Source Project. untrusted app all.te. https:

//android.googlesource.com/platform/system/sepolicy/+/refs/heads/

master/private/untrusted app all.te, 2021.

[43] Android Open Source Project. Zygote. https://android.googlesource.com/

platform/frameworks/base.git/+/master/core/java/com/android/

internal/os/Zygote.java, 2021.

[44] Apple. JavaScriptCore. https://developer.apple.com/documentation/

javascriptcore, 2023.

[45] Ars Technica. The Android 11 interview. https://arstechnica.com/

gadgets/2020/09/the-android-11-interview-googlers-answer-our-

burning-questions/, 2020.

[46] E. Bacis, D. Facchinetti, M. Guarnieri, M. Rosa, M. Rossi, and S. Paraboschi.

I told you tomorrow: Practical time-locked secrets using smart contracts. In

Proceedings of the International Conference on Availability, Reliability and

Security (ARES), 2021.

128

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/content/pm/PackageParser.java
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/content/pm/PackageParser.java
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/content/pm/PackageParser.java
https://source.android.com/security/selinux/compatibility
https://source.android.com/security/selinux/compatibility
https://android.googlesource.com/platform/external/selinux/+/refs/heads/master/restorecond/restorecond.service
https://android.googlesource.com/platform/external/selinux/+/refs/heads/master/restorecond/restorecond.service
https://android.googlesource.com/platform/external/selinux/+/refs/heads/master/restorecond/restorecond.service
https://android.googlesource.com/platform/external/selinux/+/refs/heads/master/secilc/
https://android.googlesource.com/platform/external/selinux/+/refs/heads/master/secilc/
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/SELinuxMMAC.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/SELinuxMMAC.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/SELinuxMMAC.java
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/untrusted_app_all.te
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/untrusted_app_all.te
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/private/untrusted_app_all.te
https://android.googlesource.com/platform/frameworks/base.git/+/master/core/java/com/android/internal/os/Zygote.java
https://android.googlesource.com/platform/frameworks/base.git/+/master/core/java/com/android/internal/os/Zygote.java
https://android.googlesource.com/platform/frameworks/base.git/+/master/core/java/com/android/internal/os/Zygote.java
https://developer.apple.com/documentation/javascriptcore
https://developer.apple.com/documentation/javascriptcore
https://arstechnica.com/gadgets/2020/09/the-android-11-interview-googlers-answer-our-burning-questions/
https://arstechnica.com/gadgets/2020/09/the-android-11-interview-googlers-answer-our-burning-questions/
https://arstechnica.com/gadgets/2020/09/the-android-11-interview-googlers-answer-our-burning-questions/


REFERENCES

[47] E. Bacis, S. Mutti, and S. Paraboschi. AppPolicyModules: Mandatory access

control for third-party apps. In Proceedings of the ACM Asia Conference on

Computer and Communications Security (ASIACCS), 2015.

[48] E. Bacis, S. Mutti, and S. Paraboschi. Policy specialization to support domain

isolation. In Proceedings of the Workshop on Automated Decision Making for

Active Cyber Defense (SafeConfig), 2015.

[49] M. Backes, S. Bugiel, and E. Derr. Reliable third-party library detection in

Android and its security applications. In Proceedings of the ACM SIGSAC

Conference on Computer and Communications Security (CCS), 2016.

[50] M. Backes, S. Bugiel, S. Gerling, and P. von Styp-Rekowsky. Android security

framework: Extensible multi-layered access control on Android. In Proceedings

of the Annual Computer Security Applications Conference (ACSAC), 2014.

[51] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. V. Styp-Rekowsky.

Boxify: Full-fledged app sandboxing for stock Android. In Proceedings of the

USENIX Security Symposium (USENIX Security), 2015.

[52] D. Bakker. wasi-sockets. https://github.com/WebAssembly/wasi-sockets,

2023.

[53] M. Bauer and C. Rossow. Cali: Compiler-assisted library isolation. In Proceed-

ings of the ACM Asia Conference on Computer and Communications Security

(ASIACCS), 2021.

[54] M. Bélair, S. Laniepce, and J. Menaud. SNAPPY: Programmable kernel-level

policies for containers. In Proceedings of the ACM Symposium on Applied

Computing (SAC), 2021.

[55] A. Berman, V. Bourassa, and E. Selberg. TRON: Process-specific file protec-

tion for the UNIX operating system. In Proceedings of the USENIX Annual

Technical Conference (USENIX ATC), 1995.

[56] J. Bosamiya, W. S. Lim, and B. Parno. Provably-Safe Multilingual Software

Sandboxing using WebAssembly. In Proceedings of the USENIX Security Sym-

posium (USENIX Security), 2022.

[57] F. Brown, S. Narayan, R. S. Wahby, D. Engler, R. Jhala, and D. Stefan.

Finding and preventing bugs in JavaScript bindings. In Proceedings of the

IEEE Symposium on Security and Privacy (IEEE S&P), 2017.

129

https://github.com/WebAssembly/wasi-sockets


REFERENCES

[58] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A. Sadeghi, and B. Shastry.

Towards taming privilege-escalation attacks on Android. In Proceedings of the

Network and Distributed System Security Symposium (NDSS), 2012.

[59] S. Bugiel, S. Heuser, and A. Sadeghi. Flexible and fine-grained mandatory ac-

cess control on Android for diverse security and privacy policies. In Proceedings

of the USENIX Security Symposium (USENIX Security), 2013.

[60] T. Bui, S. P. Rao, M. Antikainen, V. M. Bojan, and T. Aura. Man-in-the-

Machine: Exploiting ill-secured communication inside the computer. In Pro-

ceedings of the USENIX Security Symposium (USENIX Security), 2018.

[61] A. Bulekov, R. Jahanshahi, and M. Egele. Saphire: Sandboxing PHP appli-

cations with tailored system call allowlists. In Proceedings of the USENIX

Security Symposium (USENIX Security), 2021.

[62] Bun. Bun is a fast all-in-one JavaScript runtime. https://bun.sh/, 2023.

[63] C. Canella, M. Werner, D. Gruss, and M. Schwarz. Automating seccomp

filter generation for Linux applications. In Proceedings of the ACM Cloud

Computing Security Workshop (CCSW), 2021.

[64] V. Casola, A. De Benedictis, M. Rak, and U. Villano. Monitoring data security

in the cloud: A security sla-based approach. In Security and Resilience in

Intelligent Data-Centric Systems and Communication Networks, Intelligent

Data-Centric Systems. 2018.

[65] V. Casola, A. De Benedictis, M. Rak, and U. Villano. Security-by-design in

multi-cloud applications: An optimization approach. Information Sciences,

454-455, July 2018.

[66] H. Chen, N. Li, W. Enck, Y. Aafer, and X. Zhang. Analysis of SEAndroid

policies: Combining MAC and DAC in Android. In Proceedings of the Annual

Computer Security Applications Conference (ACSAC), 2017.

[67] G. Christou, G. Ntousakis, E. Lahtinen, S. Ioannidis, V. P. Kemerlis, and

N. Vasilakis. BinWrap: Hybrid protection against native Node.js add-ons. In

Proceedings of the ACM Asia Conference on Computer and Communications

Security (ASIACCS), 2023.

[68] Chromium. Sandbox. https://chromium.googlesource.com/chromium/src/

+/refs/heads/main/docs/design/sandbox.md, 2023.

130

https://bun.sh/
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/design/sandbox.md
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/design/sandbox.md


REFERENCES

[69] B. Coenen. feat(wasi): add rename for a directory + fix remove dir. https://

github.com/wasmerio/wasmer/commit/e0e12f9d9ff41a512e44bd497324e,

2021.

[70] R. J. Connor, T. McDaniel, J. M. Smith, and M. Schuchard. PKU pitfalls: At-

tacks on PKU-based memory isolation systems. In Proceedings of the USENIX

Security Symposium (USENIX Security), 2020.

[71] containers. Bubblewrap. https://github.com/containers/bubblewrap,

2022.

[72] J. Corbet. File-based capabilities. https://lwn.net/Articles/211883/,

2006.

[73] J. Corbet. BPF: the universal in-kernel virtual machine. https://lwn.net/

Articles/599755/, 2014.

[74] CVE Mitre. Gitlab Exiftool vulnerability. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2021-22205, 2021.

[75] P. David. hyperfine. https://github.com/sharkdp/hyperfine, 3 2023.

[76] A. Dawoud and S. Bugiel. DroidCap: OS support for capability-based per-

missions in Android. In Proceedings of the Network and Distributed System

Security Symposium (NDSS), 2019.

[77] S. De Capitani di Vimercati, D. Facchinetti, S. Foresti, G. Livraga, G. Oldani,

S. Paraboschi, M. Rossi, and P. Samarati. Scalable distributed data

anonymization for large datasets. IEEE Transactions on Big Data, 9(3), 2022.

[78] S. De Capitani di Vimercati, D. Facchinetti, S. Foresti, G. Oldani, S. Para-

boschi, M. Rossi, and P. Samarati. Multi-dimensional flat indexing for en-

crypted data. Under submission.

[79] S. De Capitani di Vimercati, D. Facchinetti, S. Foresti, G. Oldani, S. Para-

boschi, M. Rossi, and P. Samarati. Artifact: Scalable distributed data

anonymization. In Proceedings of the IEEE International Conference on Per-

vasive Computing and Communications (PerCom), 2021.

[80] S. De Capitani di Vimercati, D. Facchinetti, S. Foresti, G. Oldani, S. Para-

boschi, M. Rossi, and P. Samarati. Multi-dimensional indexes for point and

range queries on outsourced encrypted data. In Proceedings of the IEEE Global

Communications Conference (GLOBECOM), 2021.

131

https://github.com/wasmerio/wasmer/commit/e0e12f9d9ff41a512e44bd497324e
https://github.com/wasmerio/wasmer/commit/e0e12f9d9ff41a512e44bd497324e
https://github.com/containers/bubblewrap
https://lwn.net/Articles/211883/
https://lwn.net/Articles/599755/
https://lwn.net/Articles/599755/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22205
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22205
https://github.com/sharkdp/hyperfine


REFERENCES

[81] S. De Capitani di Vimercati, D. Facchinetti, S. Foresti, G. Oldani, S. Para-

boschi, M. Rossi, and P. Samarati. Scalable distributed data anonymization.

In Proceedings of the IEEE International Conference on Pervasive Computing

and Communications (PerCom), 2021.

[82] Debian. Service sandboxing. https://wiki.debian.org/ServiceSandboxing,

2023.

[83] N. DeMarinis, K. Williams-King, D. Jin, R. Fonseca, and V. P. Kemerlis. sys-

filter: Automated system call filtering for commodity software. In Proceedings

of the Symposium on Research in Attacks, Intrusions and Defenses (RAID),

2020.

[84] S. Demetriou, W. Merrill, W. Yang, A. Zhang, and C. Gunter. Free for all! As-

sessing user data exposure to advertising libraries on Android. In Proceedings

of the Network and Distributed System Security Symposium (NDSS), 2016.

[85] Deno Land. Deno 1.24 release notes – improved ffi call performance. https:

//deno.com/blog/v1.24#improved-ffi-call-performance, 2022.

[86] Deno Land. Deno 1.25 release notes – FFI API improvements. https://

deno.com/blog/v1.25#ffi-api-improvements, 2022.

[87] Deno Land. Deno: JavaScript runtime. https://deno.land/, 2022.

[88] Deno Land. Node compatibility mode. https://deno.land/manual/node/

compatibility mode, 2022.

[89] Deno Land. Deno API. https://doc.deno.land/deno/stable/, 2023.

[90] Deno Land. Deno Permission Model. https://deno.land/manual/

getting started/permissions, 2023.

[91] Deno Land. Rusty V8 bindings. https://github.com/denoland/rusty v8,

2023.

[92] Deno Land. sqlite3 bindings for Deno. https://deno.land/x/sqlite3, 2023.

[93] M. Diamantaris, E. Papadopoulos, E. Markatos, S. Ioannidis, and J. Polakis.

REAPER: Real-time app analysis for augmenting the Android permission sys-

tem. In Proceedings of the ACM Conference on Data and Application Security

and Privacy (CODASPY), 2019.

132

https://wiki.debian.org/ServiceSandboxing
https://deno.com/blog/v1.24#improved-ffi-call-performance
https://deno.com/blog/v1.24#improved-ffi-call-performance
https://deno.com/blog/v1.25#ffi-api-improvements
https://deno.com/blog/v1.25#ffi-api-improvements
https://deno.land/
https://deno.land/manual/node/compatibility_mode
https://deno.land/manual/node/compatibility_mode
https://doc.deno.land/deno/stable/
https://deno.land/manual/getting_started/permissions
https://deno.land/manual/getting_started/permissions
https://github.com/denoland/rusty_v8
https://deno.land/x/sqlite3


REFERENCES

[94] S. T. Dinh, H. Cho, K. Martin, A. Oest, K. Zeng, A. Kapravelos, G.-J. Ahn,

T. Bao, R. Wang, A. Doupé, and Y. Shoshitaishvili. Favocado: Fuzzing

the binding code of JavaScript engines using semantically correct test cases.

In Proceedings of the Network and Distributed System Security Symposium

(NDSS), 2021.

[95] J. Edge. Seccomp and deep argument inspection. https://lwn.net/

Articles/822256/, 2020.

[96] Emscripten Contributors. Emscripten toolchain. https://emscripten.org/,

2023.

[97] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of An-

droid application security. In Proceedings of the USENIX Security Symposium

(USENIX Security), 2011.

[98] W. Enck, M. Ongtang, and P. McDaniel. Understanding Android security.

IEEE Security & Privacy Magazine (IEEE S&P Magazine), 7(1), February

2009.

[99] A. Ene, M. Kolny, and A. Brown. wasi-threads. https://github.com/

WebAssembly/wasi-threads, 2023.

[100] A. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android Permissions

demystified. In Proceedings of the ACM SIGSAC Conference on Computer

and Communications Security (CCS), 2011.

[101] A. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner. Android

Permissions: User attention, comprehension, and behavior. In Proceedings of

the Symposium on Usable Privacy and Security (SOUPS), 2012.

[102] G. Ferreira, L. Jia, J. Sunshine, and C. Kästner. Containing malicious package

updates in npm with a lightweight permission system. In Proceedings of the

International Conference on Software Engineering (ICSE), 2021.

[103] W. Findlay, D. Barrera, and A. Somayaji. BPFContain: Fixing the soft un-

derbelly of container security. arXiv, 2021.

[104] W. Findlay, A. Somayaji, and D. Barrera. bpfbox: Simple precise process

confinement with eBPF. In Proceedings of the ACM Cloud Computing Security

Workshop (CCSW), 2020.

[105] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and

S. Fahl. Stack Overflow considered harmful? The impact of copy paste on

133

https://lwn.net/Articles/822256/
https://lwn.net/Articles/822256/
https://emscripten.org/
https://github.com/WebAssembly/wasi-threads
https://github.com/WebAssembly/wasi-threads


REFERENCES

Android application security. In Proceedings of the IEEE Symposium on Se-

curity and Privacy (IEEE S&P), 2017.

[106] Y. Fratantonio, A. Bianchi, W. Robertson, M. Egele, C. Kruegel, E. Kirda, and

G. Vigna. On the security and engineering implications of finer-grained access

controls for Android developers and users. In Proceedings of the Detection of

Intrusions and Malware, and Vulnerability Assessment (DIMVA), 2015.

[107] Free Software Foundation. GNU M4. https://www.gnu.org/savannah-

checkouts/gnu/m4/manual/m4-1.4.18/index.html, 2016.

[108] P. K. Gadepalli, S. McBride, G. Peach, L. Cherkasova, and G. Parmer. Sledge:

A serverless-first, light-weight Wasm runtime for the edge. In Proceedings of

the International Middleware Conference (MIDDLEWARE), 2020.

[109] V. Ganapathy, T. Jaeger, and S. Jha. Retrofitting legacy code for authoriza-

tion policy enforcement. In Proceedings of the IEEE Symposium on Security

and Privacy (IEEE S&P), 2006.

[110] Google. Capsicum object-capabilities on Linux. https://github.com/

google/capsicum-linux, 2017.

[111] Google. Minijail. https://google.github.io/minijail/, 2022.

[112] Google. sandbox2. https://developers.google.com/code-sandboxing/

sandbox2, 2023.

[113] Google Play Protect. Android app vulnerability classes: A whirlwind

overview of common security and privacy problems in Android apps. https:

//static.googleusercontent.com/media/www.google.com/en//about/

appsecurity/play-rewards/Android app vulnerability classes.pdf,

2021.

[114] Google Play Store. Android top apps. https://play.google.com/store/

apps/top, 2021.

[115] B. Gregg. BPF internals. 2021. USENIX Large Installation System Adminis-

tration Conference (USENIX LISA).

[116] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman,

L. Wagner, A. Zakai, and J. Bastien. Bringing the web up to speed with Web-

Assembly. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), 2017.

134

https://www.gnu.org/savannah-checkouts/gnu/m4/manual/m4-1.4.18/index.html
https://www.gnu.org/savannah-checkouts/gnu/m4/manual/m4-1.4.18/index.html
https://github.com/google/capsicum-linux
https://github.com/google/capsicum-linux
https://google.github.io/minijail/
https://developers.google.com/code-sandboxing/sandbox2
https://developers.google.com/code-sandboxing/sandbox2
https://static.googleusercontent.com/media/www.google.com/en//about/appsecurity/play-rewards/Android_app_vulnerability_classes.pdf
https://static.googleusercontent.com/media/www.google.com/en//about/appsecurity/play-rewards/Android_app_vulnerability_classes.pdf
https://static.googleusercontent.com/media/www.google.com/en//about/appsecurity/play-rewards/Android_app_vulnerability_classes.pdf
https://play.google.com/store/apps/top
https://play.google.com/store/apps/top


REFERENCES

[117] HackerOne. External SSRF and Local File Read via video upload due

to vulnerable FFmpeg HLS processing. https://hackerone.com/reports/

1062888, 2021.

[118] S. Heuser, A. Nadkarni, W. Enck, and A. Sadeghi. ASM: A programmable in-

terface for extending Android security. In Proceedings of the USENIX Security

Symposium (USENIX Security), 2014.

[119] R. Hicks, S. Rueda, D. King, T. Moyer, J. Schiffman, Y. Sreenivasan, P. Mc-

Daniel, and T. Jaeger. An architecture for enforcing end-to-end access control

over web applications. In Proceedings of the ACM Symposium on Access Con-

trol Models and Technologies (SACMAT), 2010.

[120] J. Huang, O. Schranz, S. Bugiel, and M. Backes. The ART of app compart-

mentalization: Compiler-based library privilege separation on stock Android.

In Proceedings of the ACM SIGSAC Conference on Computer and Communi-

cations Security (CCS), 2017.

[121] J. Edge. A seccomp overview. https://lwn.net/Articles/656307/, 2015.

[122] J. Vander Stoep. ioctl command whitelisting in SELinux. http://

kernsec.org/files/lss2015/vanderstoep.pdf, 2015.

[123] J. Jia, Y. Zhu, D. Williams, A. Arcangeli, C. Canella, H. Franke, T. Feldman-

Fitzthum, D. Skarlatos, D. Gruss, and T. Xu. Programmable system call

security with ebpf, 2023.

[124] E. Johnson, E. Laufer, Z. Zhao, D. Gohman, S. Narayan, S. Savage, D. Stefan,

and F. Brown. WaVe: A verifiably secure WebAssembly sandboxing runtime.

In Proceedings of the IEEE Symposium on Security and Privacy (IEEE S&P),

2022.

[125] M. Kehoe. eBPF: The next power tool of SREs. 2022. USENIX SREcon.

[126] T. Kim and N. Zeldovich. Practical and effective sandboxing for non-root

users. In Proceedings of the USENIX Annual Technical Conference (USENIX

ATC), 2013.

[127] P. Kirth, M. Dickerson, S. Crane, P. Larsen, A. Dabrowski, D. Gens, Y. Na,

S. Volckaert, and M. Franz. PKRU-safe: automatically locking down the heap

between safe and unsafe languages. In Proceedings of the European Conference

on Computer Systems (EuroSys), 2022.

135

https://hackerone.com/reports/1062888
https://hackerone.com/reports/1062888
https://lwn.net/Articles/656307/
http://kernsec.org/files/lss2015/vanderstoep.pdf
http://kernsec.org/files/lss2015/vanderstoep.pdf


REFERENCES

[128] D. Lehmann, J. Kinder, and M. Pradel. Everything old is new again: Binary

security of WebAssembly. In Proceedings of the USENIX Security Symposium

(USENIX Security), 2020.

[129] libbpf. libbpf. https://libbpf.readthedocs.io/en/latest/index.html,

2023.

[130] Linux manual. bpf(2). https://man7.org/linux/man-pages/man2/

bpf.2.html, 2022.

[131] Linux manual. ldd(1). https://man7.org/linux/man-pages/man1/

ldd.1.html, 2022.

[132] Linux manual. strace(1). https://man7.org/linux/man-pages/man1/

strace.1.html, 2022.

[133] Linux manual. accept. https://man7.org/linux/man-pages/man2/

accept.2.html, 2023.

[134] Linux manual. hier. https://man7.org/linux/man-pages/man7/

hier.7.html, 2023.

[135] Linux manual. listen. https://man7.org/linux/man-pages/man2/

listen.2.html, 2023.

[136] Linux manual. pipe. https://man7.org/linux/man-pages/man2/

pipe.2.html, 2023.

[137] Linux manual. socketpair. https://man7.org/linux/man-pages/man2/

socketpair.2.html, 2023.

[138] M. Salaün. Landlock: unprivileged access control. https://docs.kernel.org/

userspace-api/landlock.html, 2022.

[139] K. MacMillan, C. Case, J. Brindle, and C. Sellers. SELinux Com-

mon Intermediate Language motivation and design. https://github.com/

SELinuxProject/cil/wiki, 2020.

[140] R. Mayrhofer, J. V. Stoep, C. Brubaker, and N. Kralevich. The Android

platform security model. ACM Transactions on Privacy and Security (TOPS),

24(3), April 2021.

[141] S. McCanne and V. Jacobson. The BSD packet filter: A new architecture for

user-level packet capture. In Proceedings of the USENIX Winter Conference

(USENIX), 1993.

136

https://libbpf.readthedocs.io/en/latest/index.html
https://man7.org/linux/man-pages/man2/bpf.2.html
https://man7.org/linux/man-pages/man2/bpf.2.html
https://man7.org/linux/man-pages/man1/ldd.1.html
https://man7.org/linux/man-pages/man1/ldd.1.html
https://man7.org/linux/man-pages/man1/strace.1.html
https://man7.org/linux/man-pages/man1/strace.1.html
https://man7.org/linux/man-pages/man2/accept.2.html
https://man7.org/linux/man-pages/man2/accept.2.html
https://man7.org/linux/man-pages/man7/hier.7.html
https://man7.org/linux/man-pages/man7/hier.7.html
https://man7.org/linux/man-pages/man2/listen.2.html
https://man7.org/linux/man-pages/man2/listen.2.html
https://man7.org/linux/man-pages/man2/pipe.2.html
https://man7.org/linux/man-pages/man2/pipe.2.html
https://man7.org/linux/man-pages/man2/socketpair.2.html
https://man7.org/linux/man-pages/man2/socketpair.2.html
https://docs.kernel.org/userspace-api/landlock.html
https://docs.kernel.org/userspace-api/landlock.html
https://github.com/SELinuxProject/cil/wiki
https://github.com/SELinuxProject/cil/wiki


REFERENCES

[142] M. McCaskey. Prevent parent directory from being opened without being

preopened wasi. https://github.com/wasmerio/wasmer/pull/463, 2019.

[143] Microsoft. ebpf for windows. https://microsoft.github.io/ebpf-for-

windows/, 2023.

[144] J. Mogul, R. Rashid, and M. Accetta. The packer filter: An efficient mecha-

nism for user-level network code. In Proceedings of the ACM Symposium on

Operating Systems Principles (SOSP), 1987.

[145] MozillaWiki. Sandbox Architecture. https://wiki.mozilla.org/Security/

Sandbox/Process model, 2023.

[146] MUSEC. libpreopen. https://github.com/musec/libpreopen, 2023.

[147] D. Muthukumaran, T. Jaeger, and V. Ganapathy. Leveraging “choice” to

automate authorization hook placement. In Proceedings of the ACM SIGSAC

Conference on Computer and Communications Security (CCS), 2012.

[148] A. Nakryiko. BPF CO-RE. https://nakryiko.com/posts/bpf-core-

reference-guide/, 2021.

[149] S. Narayan, C. Disselkoen, T. Garfinkel, N. Froyd, E. Rahm, S. Lerner,

H. Shacham, and D. Stefan. Retrofitting fine grain isolation in the Firefox

renderer. In Proceedings of the USENIX Security Symposium (USENIX Secu-

rity), 2020.

[150] netblue30. Firejail. https://firejail.wordpress.com/, 2022.

[151] NIST. Application Container Security Guide. https://csrc.nist.gov/

publications/detail/sp/800-190/final, 2023.

[152] npm. Npm packages. https://blog.npmjs.org/post/615388323067854848/

so-long-and-thanks-for-all-the-packages.html, 2020.

[153] npm. fluent-ffmpeg. https://www.npmjs.com/package/fluent-ffmpeg, 2022.

[154] npm. gm. https://www.npmjs.com/package/gm, 2022.

[155] npm. bcrypt. https://www.npmjs.com/package/bcrypt, 2023.

[156] npm. sharp. https://www.npmjs.com/package/sharp, 2023.

[157] G. Ntousakis, S. Ioannidis, and N. Vasilakis. Detecting third-party library

problems with combined program analysis. In Proceedings of the ACM

SIGSAC Conference on Computer and Communications Security (CCS), 2021.

137

https://github.com/wasmerio/wasmer/pull/463
https://microsoft.github.io/ebpf-for-windows/
https://microsoft.github.io/ebpf-for-windows/
https://wiki.mozilla.org/Security/Sandbox/Process_model
https://wiki.mozilla.org/Security/Sandbox/Process_model
https://github.com/musec/libpreopen
https://nakryiko.com/posts/bpf-core-reference-guide/
https://nakryiko.com/posts/bpf-core-reference-guide/
https://firejail.wordpress.com/
https://csrc.nist.gov/publications/detail/sp/800-190/final
https://csrc.nist.gov/publications/detail/sp/800-190/final
https://blog.npmjs.org/post/615388323067854848/so-long-and-thanks-for-all-the-packages.html
https://blog.npmjs.org/post/615388323067854848/so-long-and-thanks-for-all-the-packages.html
https://www.npmjs.com/package/fluent-ffmpeg
https://www.npmjs.com/package/gm
https://www.npmjs.com/package/bcrypt
https://www.npmjs.com/package/sharp


REFERENCES

[158] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Semantically rich

application-centric security in Android. In Proceedings of the Annual Com-

puter Security Applications Conference (ACSAC), 2009.

[159] OpenJS Foundation. Node js API. https://nodejs.org/docs/latest/api/,

2023.

[160] OpenJS Foundation. Node Permissions. https://nodejs.org/api/

permissions.html, 2023.

[161] OpenJS Foundation. Node.js V8 APIs. https://nodejs.org/api/v8.html,

2023.

[162] OpenJS Foundation and Joyent. Node.js. https://nodejs.org, 2022.

[163] oven sh. Webcore bindings. https://github.com/oven-sh/bun/tree/main/

src/bun.js/bindings/webcore, 2023.

[164] G. Peach, R. Pan, Z. Wu, G. Parmer, C. Haster, and L. Cherkasova. eWASM:

Practical software fault isolation for reliable embedded devices. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),

39(11), October 2020.

[165] P. Pearce, A. Felt, G. Nunez, and D. Wagner. AdDroid: Privilege separation

for applications and advertisers in Android. In Proceedings of the ACM Asia

Conference on Computer and Communications Security (ASIACCS), 2012.

[166] R. Dahl. 10 things i regret about Node.js. 2018. JSConf EU.

[167] M. Rossi, D. Facchinetti, E. Bacis, M. Rosa, and S. Paraboschi. SEApp:

Bringing mandatory access control to Android apps. In Proceedings of the

USENIX Security Symposium (USENIX Security), 2021.

[168] R. Sandhu and P. Samarati. Authentication, access control, and audit. ACM

Computing Surveys (CSUR), 28(1), March 1996.

[169] F. Schwarz and C. Rossow. SENG, the SGX-Enforcing network gateway: Au-

thorizing communication from shielded clients. In Proceedings of the USENIX

Security Symposium (USENIX Security), 2020.

[170] U. Shankar, T. Jaeger, and R. Sailer. Toward automated information-flow

integrity verification for security-critical applications. In Proceedings of the

Network and Distributed System Security Symposium (NDSS), 2006.

138

https://nodejs.org/docs/latest/api/
https://nodejs.org/api/permissions.html
https://nodejs.org/api/permissions.html
https://nodejs.org/api/v8.html
https://nodejs.org
https://github.com/oven-sh/bun/tree/main/src/bun.js/bindings/webcore
https://github.com/oven-sh/bun/tree/main/src/bun.js/bindings/webcore


REFERENCES

[171] Y. Shao, J. Ott, Y. J. Jia, Z. Qian, and Z. M. Mao. The misuse of Android

Unix domain sockets and security implications. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security (CCS),

2016.

[172] Slim.AI. SlimToolKit. https://github.com/slimtoolkit/slim, 2023.

[173] S. Smalley and R. Craig. Security Enhanced (SE) Android: Bringing flexi-

ble MAC to Android. In Proceedings of the Network and Distributed System

Security Symposium (NDSS), 2013.

[174] S. Smalley, C. Vance, and W. Salamon. Implementing SELinux as a Linux

Security Module. NAI Labs Report, 2001.

[175] Snyk. State of Open Source Security 2022. https://snyk.io/reports/open-

source-security/, 2022.

[176] C. Staicu, M. Pradel, and B. Livshits. Synode: Understanding and automat-

ically preventing injection attacks on Node.js. In Proceedings of the Network

and Distributed System Security Symposium (NDSS), 2018.

[177] C.-A. Staicu, S. Rahaman, Á. Kiss, and M. Backes. Bilingual problems: Study-

ing the security risks incurred by native extensions in scripting languages. In

Proceedings of the USENIX Security Symposium (USENIX Security), 2023.

[178] StatCounter Global Stats. Mobile Operating System Market Share Worldwide.

https://gs.statcounter.com/os-market-share/mobile/worldwide, 2024.

[179] Statista. Most popular installed ad network software development

kits (SDKs) across Android apps worldwide as of September 2020.

https://www.statista.com/statistics/1035623/leading-mobile-app-

ad-network-sdks-android/, 2020.

[180] J. Terrace, S. R. Beard, and N. P. K. Katta. JavaScript in JavaScript(js.js):

Sandboxing third-party scripts. In Proceedings of the USENIX Conference on

Web Application Development (USENIX WebApps), 2012.

[181] tesseract-ocr. Tesseract. https://github.com/tesseract-ocr/tesseract,

2023.

[182] The Cilium Authors. Cilium. https://cilium.io, 2023.

[183] The Cilium Authors. Cilium GitHub repository. https://cilium.io, 2023.

139

https://github.com/slimtoolkit/slim
https://snyk.io/reports/open-source-security/
https://snyk.io/reports/open-source-security/
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.statista.com/statistics/1035623/leading-mobile-app-ad-network-sdks-android/
https://www.statista.com/statistics/1035623/leading-mobile-app-ad-network-sdks-android/
https://github.com/tesseract-ocr/tesseract
https://cilium.io
https://cilium.io


REFERENCES

[184] The coreutils Authors. uutils coreutils. https://github.com/uutils/

coreutils, 2023.

[185] The Falco Authors. Falco. https://falco.org, 2023.

[186] The Falco Authors. What is the performance overhead or resource utilization

of Falco? https://falco.org/about/faq/#what-is-the-performance-

overhead-or-resource-utilization-of-falco, 2023.

[187] The kernel development community. LSM eBPF Programs. https://

docs.kernel.org/bpf/prog lsm.html, 2023.

[188] The Kubernetes Authors. Restrict a Container’s Syscalls with seccomp.

https://kubernetes.io/docs/tutorials/security/seccomp/, 2023.

[189] The SELinux Project. Type Enforcement. https://selinuxproject.org/

page/NB TE, 2015.

[190] The SELinux Project. libselinux. https://github.com/SELinuxProject/

selinux/tree/master/libselinux, 2021.

[191] The Tetragon authors. Tetragon. https://tetragon.cilium.io/, 2023.

[192] TryGhost. Asynchronous, non-blocking SQLite3 bindings for Node.js. https:

//www.npmjs.com/package/sqlite3, 2023.

[193] Unity. Unity Ads. https://unity.com/solutions/unity-ads, 2021.

[194] V8 project. Unsafe fast JS calls. https://v8.dev/blog/v8-release-

87#unsafe-fast-js-calls, 2020.

[195] V8 project. What is v8? https://v8.dev/, 2022.

[196] V8 project. Webassembly compilation pipeline. https://v8.dev/docs/wasm-

compilation-pipeline, 2023.

[197] N. Vasilakis, B. Karel, N. Roessler, N. Dautenhahn, A. DeHon, and J. M.

Smith. BreakApp: Automated, flexible application compartmentalization.

In Proceedings of the Network and Distributed System Security Symposium

(NDSS), 2018.

[198] N. Vasilakis, C. Staicu, G. Ntousakis, K. Kallas, B. Karel, A. DeHon, and

M. Pradel. Preventing dynamic library compromise on Node.js via RWX-

based privilege reduction. In Proceedings of the ACM SIGSAC Conference on

Computer and Communications Security (CCS), 2021.

140

https://github.com/uutils/coreutils
https://github.com/uutils/coreutils
https://falco.org
https://falco.org/about/faq/#what-is-the-performance-overhead-or-resource-utilization-of-falco
https://falco.org/about/faq/#what-is-the-performance-overhead-or-resource-utilization-of-falco
https://docs.kernel.org/bpf/prog_lsm.html
https://docs.kernel.org/bpf/prog_lsm.html
https://kubernetes.io/docs/tutorials/security/seccomp/
https://selinuxproject.org/page/NB_TE
https://selinuxproject.org/page/NB_TE
https://github.com/SELinuxProject/selinux/tree/master/libselinux
https://github.com/SELinuxProject/selinux/tree/master/libselinux
https://tetragon.cilium.io/
https://www.npmjs.com/package/sqlite3
https://www.npmjs.com/package/sqlite3
https://unity.com/solutions/unity-ads
https://v8.dev/blog/v8-release-87#unsafe-fast-js-calls
https://v8.dev/blog/v8-release-87#unsafe-fast-js-calls
https://v8.dev/
https://v8.dev/docs/wasm-compilation-pipeline
https://v8.dev/docs/wasm-compilation-pipeline


REFERENCES

[199] WasmEdge. wasmedgec AOT compiler. https://wasmedge.org/book/en/

cli/wasmedgec.html, 2023.

[200] WebAssembly. WASI Libc. https://github.com/WebAssembly/wasi-libc,

2023.

[201] WebAssembly. WASI SDK. https://github.com/WebAssembly/wasi-sdk,

2023.

[202] WebAssembly. The webassembly system interface. https://wasi.dev, 2023.

[203] C. Wright, C. Cowan, J. Morris, James, S. Smalley, and G. Kroah-Hartman.

Linux Security Module framework. In Ottawa Linux Symposium, 2002.

[204] Y. Wu, S. Sathyanarayan, R. H. C. Yap, and Z. Liang. Codejail: Application-

transparent isolation of libraries with tight program interactions. In Pro-

ceedings of the European Symposium on Research in Computer Security (ES-

ORICS), 2012.

[205] E. Wyss, A. Wittman, D. Davidson, and L. De Carli. Wolf at the door: Pre-

venting install-time attacks in npm with latch. In Proceedings of the ACM Asia

Conference on Computer and Communications Security (ASIACCS), 2022.

[206] Z. Xiao, A. Amit, and D. Wenliang. AFrame: Isolating advertisements from

mobile applications in Android. In Proceedings of the Annual Computer Se-

curity Applications Conference (ACSAC), 2013.

[207] Zerodium. Zerodium - The leading exploit acquisition platform. https://

zerodium.com, 2021.

[208] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel. Smallworld with

high risks: A study of security threats in the npm ecosystem. In Proceedings

of the USENIX Security Symposium (USENIX Security), 2019.

141

https://wasmedge.org/book/en/cli/wasmedgec.html
https://wasmedge.org/book/en/cli/wasmedgec.html
https://github.com/WebAssembly/wasi-libc
https://github.com/WebAssembly/wasi-sdk
https://wasi.dev
https://zerodium.com
https://zerodium.com

	Abstract
	Introduction
	Document structure
	Publications

	Methodology
	Fine-grained Access Control in Android Applications
	Introduction
	Android security for apps
	Motivation
	Use cases
	Modular app compartmentalization
	Compatibility with Android design
	Compatibility with other proposals

	Policy language
	Choice of policy language
	Definition of types and type-attributes
	Policy constraints

	Policy configuration
	SEAndroid policy structure
	SEApp policy structure

	Implementation
	Policy compilation
	Runtime support

	Experimental results
	App installation
	Runtime performance

	Related work
	Conclusions

	Lightweight Cloud Application Sandboxing
	Introduction
	Motivation
	Threat model
	Dependency identification
	Mitigation of bugs
	Performance and usability

	Approach overview
	Cloud application instrumentation
	Ptrace-based instrumentation
	eBPF-based intrumentation

	Policy
	Application sandboxing
	Experiments
	Mitigation of vulnerabilities
	Overhead

	Related work
	Conclusions

	Enhancing the Sandbox of WebAssembly Runtimes
	Introduction
	Threat model
	Architecture
	Experiments 
	Related work
	Conclusions

	Native Code Sandboxing for JavaScript Runtimes
	Introduction
	Background
	JS runtimes
	Components for resource protection

	Security motivation
	Threat model

	Design and implementation
	Objectives
	High level architecture
	Integration with JS runtimes
	Isolation features

	Policy
	Policy structure
	Policy generation

	Case study: Deno runtime
	Runtime selection
	Deno integration
	Support to fast JS calls

	Experiments
	Exploit mitigation
	Performance evaluation

	Related work
	Conclusions

	Conclusions and future work
	Future work

	Acknowledgments
	Practical showcase of SEApp capabilities
	UC#1: fine-granularity in access to files
	UC#2: fine-granularity in access to services
	UC#3: isolation of vulnerability-prone components
	Policy module

	Policy generated for the curl command
	References

