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ABSTRACT

Numerous statistical machine learning methods suit-
able for application to highly correlated features, as 
those that exist for spectral data, could potentially 
improve prediction performance over the commonly 
used partial least squares approach. Milk samples from 
622 individual cows with known detailed protein com-
position and technological trait data accompanied by 
mid-infrared spectra were available to assess the pre-
dictive ability of different regression and classification 
algorithms. The regression-based approaches were par-
tial least squares regression (PLSR), ridge regression 
(RR), least absolute shrinkage and selection operator 
(LASSO), elastic net, principal component regression, 
projection pursuit regression, spike and slab regres-
sion, random forests, boosting decision trees, neural 
networks (NN), and a post-hoc approach of model 
averaging (MA). Several classification methods (i.e., 
partial least squares discriminant analysis (PLSDA), 
random forests, boosting decision trees, and support 
vector machines (SVM)) were also used after stratify-
ing the traits of interest into categories. In the regres-
sion analyses, MA was the best prediction method for 
6 of the 14 traits investigated [curd firmness at 60 min, 
αS1-casein (CN), αS2-CN, κ-CN, α-lactalbumin, and 
β-lactoglobulin B], whereas NN and RR were the best 
algorithms for 3 traits each (rennet coagulation time, 
curd-firming time, and heat stability, and curd firmness 
at 30 min, β-CN, and β-lactoglobulin A, respectively), 
PLSR was best for pH, and LASSO was best for CN 
micelle size. When traits were divided into 2 classes, 
SVM had the greatest accuracy for the majority of 
the traits investigated. Although the well-established 
PLSR-based method performed competitively, the ap-
plication of statistical machine learning methods for 
regression analyses reduced the root mean square error 

compared with PLSR from between 0.18% (κ-CN) to 
3.67% (heat stability). The use of modern statistical 
machine learning methods for trait prediction from 
mid-infrared spectroscopy may improve the prediction 
accuracy for some traits.
Key words: Fourier-transform mid-infrared 
spectroscopy, statistical machine learning, milk quality

INTRODUCTION

Fourier-transform mid-infrared spectroscopy (MIRS) 
is a methodology that exploits mid-infrared region light 
to indirectly predict the concentration of constituents 
in a sample. When a sample is analyzed using MIRS, 
light is passed through the sample at a sequence of 
wavelengths in the mid-infrared region (5,000 to 900 
cm−1), activating the chemical bonds of the sample 
matter with a consequential effect on the absorption of 
energy from the light (Skolik et al., 2018). The extent 
of the energy absorbed creates the spectrum for that 
sample, which should therefore be useful to predict the 
quantity of individual components within the sample. 
Infrared spectroscopy is used in different fields, from 
medicine (Petrich, 2001) to astronomy (Keller et al., 
2006), as well as in animal science (De Marchi et al., 
2014).

Mid-infrared spectroscopy is a low-cost, rapid and 
nondisruptive technique, routinely used in the analy-
sis of cow milk samples for the determination of fat, 
protein, lactose, and CN concentrations in both bulk 
and individual animal samples (De Marchi et al., 2014). 
For this reason, MIRS is a potentially useful vehicle 
for collecting vast quantities of data at a population 
level. The literature documents the ability of MIRS to 
predict novel milk-related traits such as the coagulation 
properties of milk (Cecchinato et al., 2009; Visentin et 
al., 2016; El Jabri et al., 2019) and individual milk fatty 
acids (Soyeurt et al., 2006; Bonfatti et al., 2017), as 
well as animal-related traits, such as energy efficiency 
(McParland et al., 2014), energy intake (McParland 
and Berry, 2016), and methane emissions (Dehareng et 
al., 2012).

Predicting cow milk quality traits from routinely available milk 
spectra using statistical machine learning methods
M. Frizzarin,1,2  I. C. Gormley,1*  D. P. Berry,2  T. B. Murphy,1  A. Casa,1  A. Lynch,1   
and S. McParland2*†  
1School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland
2Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 P302 Ireland

 

J. Dairy Sci. 104:7438–7447
https://doi.org/10.3168/jds.2020-19576
© 2021, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Received September 3, 2020.
Accepted March 9, 2021.
*These authors contributed equally to this work.
†Corresponding author: sinead.mcparland@ teagasc .ie

https://orcid.org/0000-0001-7608-5504
https://orcid.org/0000-0001-7713-681X
https://orcid.org/0000-0003-4349-1447
https://orcid.org/0000-0002-5668-7046
https://orcid.org/0000-0002-2929-3850
https://orcid.org/0000-0002-8280-2933
https://orcid.org/0000-0003-3320-2330
mailto:sinead.mcparland@teagasc.ie


7439

Journal of Dairy Science Vol. 104 No. 7, 2021

Partial least squares regression (PLSR) has tradi-
tionally been the method of choice in relating MIRS 
data of cow milk to novel milk and animal characteris-
tics, owing to its capability to consider collinear, high-
dimensional data sets. Nonetheless, the investigation 
of the application of other statistical machine learning 
(ML) methods in predicting an outcome variable has 
been demonstrated in animal science research. Both Li 
et al. (2018) and Xu et al. (2019) used novel ML meth-
ods to respectively predict phenotypic performance us-
ing SNP data (Li et al., 2018) or cow metabolic status 
from animal and herd-level features. Nevertheless, the 
application of statistical ML methods in MIRS analyses 
is still rare. The potential usefulness of statistical ML 
methods to predict milk traits from spectra is due to 
their ability to perform well in multidimensional cor-
related data but also importantly to identify nonlinear 
associations between the wavelengths and the observed 
value of the trait. Recently, the division of continuous 
traits into categories before MIRS prediction analyses 
has also been considered (Manuelian et al., 2017; Grelet 
et al., 2019; Duplessis et al., 2020).

The novelty of the present study is the evaluation of 
modern statistical ML methods in predicting a series 
of cow milk quality traits, including milk technologi-
cal traits (i.e., rennet coagulation time, curd-firming 
time, curd firmness at 30 and 60 min, CN micelle size, 
pH, and heat stability) and individual milk proteins 
(i.e., αS1-CN, αS2-CN, β-CN, κ-CN, α-LA, β-LG A, 
and β-LG B) from milk MIRS. These outcome traits 
were also divided into categories and the performance 
of modern classification methods assessed with the 
purpose of determining which performs best. The use 
of modern statistical ML methods for trait prediction 
from MIRS may improve the prediction accuracy for 
some traits.

MATERIALS AND METHODS

Data

The data set used in the present study is described 
in detail by both Visentin et al. (2015) and McDer-
mott et al. (2016). In brief, 730 milk samples from 622 
cows were collected between August 2013 and August 
2014 from 7 different Irish research herds. The samples 
originated from Holstein-Friesian, Jersey, and Norwe-
gian Red cows, as well as their crosses; all cows were 
fed a predominantly grass-based diet with occasional 
concentrate and grass silage supplementation. The 
samples were collected during morning and evening 
milking and represented different stages of lactation 
and different parities. All samples were analyzed by the 
same MilkoScan FT6000 (Foss Electronic A/S), and 

the resulting spectrum, comprising 1,060 transmittance 
data points in the mid-infrared light region, was stored. 
The traits investigated in the present study included 
the milk technological traits of rennet coagulation time 
(RCT), curd-firming time (k20), curd firmness at 30 
and 60 min (a30, a60), casein micelle size (CMS), 
pH, and heat stability, as well as detailed milk protein 
traits, including αS1-CN, αS2-CN, β-CN, κ-CN, α-LA, 
β-LG A, and β-LG B.

The milk coagulation properties were quantified us-
ing a Formagraph (Foss Electronic A/S). Milk pH of all 
samples was assessed with a SevenCompact pH meter 
S220 (Mettler Toledo AG). The CN micelle hydrody-
namic diameter was determined using a Zetasizer Nano 
system (Malvern Instruments Inc.). Heat stability was 
tested using the method outlined by Davies and White 
(1966). Milk proteins were determined using reverse-
phase HPLC using an adaptation of the method of 
Visser et al. (1991) and are expressed as grams per liter 
of milk.

To satisfy the assumption that all observations used 
were independent (a requirement of some methods 
tested in this study), only 1 observation for each cow 
was retained for analysis. Where multiple records ex-
isted for an animal, the Mahalanobis distances between 
the average principal component (PC) scores from the 
entire data set and the multiple observations from the 
animal were computed. The observation with the great-
est distance was retained, with the aim of maximizing 
the variability in the data set.

High-noise-level regions (Hewavitharana and van 
Brakel, 1997) were removed from each spectrum; the 
spectral regions between 1,710 and 1,600 cm−1, between 
3,690 and 2,990 cm−1, and >3,822 cm−1 were discarded. 
Consequently, a total of 531 wavelengths were used for 
the analyses. The transmittance values of the wave-
lengths were transformed to absorbance values by 
taking the log10 of the reciprocal of the transmittance 
value. Outliers for the traits of interest were defined 
as those >3 standard deviations (SD) from the mean 
of the respective trait and were subsequently removed 
from the analysis of that trait. The 16 noncoagulating 
milk samples were removed from the analyses of RCT, 
k20, a30, and a60. The numbers of samples as well as 
the mean, SD, median, minimum and maximum, coef-
ficient of variation, and skewness of all traits investi-
gated are provided in Table 1.

To assess the utility of classification-based statistical 
methods, the milk technological traits were divided into 
2 classes based on their respective median value; the 
median was chosen as a threshold to split these traits 
into high and low, representing a proxy for the suitabil-
ity of milk for cheese production. The content of each 
protein was divided into 4 classes based on quartiles, 
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with the aim of reducing the range in values within 
each class. In a separate series of analyses, noncoagulat-
ing samples (n = 16) were rejoined to the data set to 
test the ability of classification models to discriminate 
between coagulating and noncoagulating samples.

Statistical Analyses

To compare the performance of the different sta-
tistical ML approaches, the data were divided into 4 
subdata sets with approximately the same numbers of 
observations in each, and 4-fold cross-validation was 
performed. The data division and cross-validation were 
performed separately for each trait, using the fold func-
tion in the groupdata2 package (Olsen, 2020) in R (R 
Core Team, 2020) to balance data across folds. All the 
analyses were conducted using the statistical software 
R 3.6.1.

Regression-Based Approaches

Eleven different regression-based statistical ML 
methods were explored; James et al. (2017) provide an 
excellent review of such methods. For some of the ap-
proaches, the tuning parameters were user defined or 
selected via cross-validation, and for others the default 
settings were used.

Partial least squares regression is a supervised dimen-
sion reduction method (Geladi and Kowalski, 1986). 
Partial least squares regression seeks out a small num-
ber of new variables (i.e., factors) that are linear com-
binations of the wavelengths, exploiting information on 
the response variable in doing so. Thus, PLSR uses 
both the trait data and the spectra to detect directions 
in the data space that best explain both. Partial least 

squares regression then fits a linear regression model 
via least squares to the trait data and the generated 
factors. Because a large portion of the information in 
the original data is captured by the generated factors, 
and because they are fewer in number, overfitting is 
mitigated. The number of PLSR factors to generate is 
data-dependent and user defined, typically by exam-
ining the change in root mean square error (RMSE) 
with each additional factor. In the present study, leave-
one-out cross-validation was used to choose the number 
of factors to use in the model. A different number of 
factors were used in each of the 4 folds. The R package 
pls (Mevik et al., 2019) was used here to implement 
PLSR.

Principal component regression is similar in nature 
to PLSR but instead uses a linear regression model 
(estimated via least squares) of the trait on a small 
number of PC derived from the spectra alone. Similar 
to PLSR, a small number (compared with the number 
of wavelengths) of PC generally suffice to explain most 
of the variability in the data. The number of PC to 
retain is user defined, here by examining the change 
in RMSE with each additional PC. The R package pls 
(Mevik et al., 2019) was again used to implement PC 
regression.

Projection pursuit regression (PPR; Friedman and 
Stuetzle, 1981) is similar to both PLSR and PC re-
gression in that it extracts linear combinations of the 
wavelengths as new derived features. Projection pursuit 
regression then models the trait as a nonlinear function 
of the newly derived features, where the prediction pro-
cess uses flexible smoothing methods. The R package 
stats (R Core Team, 2020) was used to apply PPR.

Ridge regression (RR; Hoerl and Kennard, 1970) fits 
a linear regression model that includes all wavelengths 
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Table 1. Number of samples (No.), mean, SD, median, minimum (Min) and maximum (Max), CV, and skewness for the technological traits 
and protein traits considered

Trait No. Mean SD Median Min Max CV Skewness

Technological1         
 RCT, min 482 20.81 9.02 19.50 1.75 47.50 0.43 0.53
 k20, min 439 5.82 3.42 5.00 1.25 15.75 0.59 0.98
 a30, mm 401 32.24 15.62 31.48 2.02 74.90 0.48 0.18
 a60, mm 478 31.28 11.73 29.32 1.76 66.34 0.38 0.69
 CN micelle size, mm 553 172.92 26.02 168.70 109.10 250.30 0.15 0.65
 pH 601 6.69 0.10 6.68 6.41 6.97 0.02 0.23
 Heat stability, min 431 9.43 7.22 6.80 0.58 31.00 0.77 1.39
Protein, g/L
 αS1-CN 447 14.09 2.39 13.98 7.21 20.86 0.17 0.23
 αS2-CN 460 3.67 0.94 3.60 0.88 6.36 0.26 0.14
 β-CN 449 12.80 2.16 12.64 6.39 19.09 0.17 0.20
 κ-CN 453 5.77 1.43 5.71 1.55 9.54 0.25 −0.03
 α-LA 457 1.12 0.30 1.09 0.23 2.00 0.27 0.42
 β-LG A 462 2.49 1.17 2.31 0.36 5.90 0.47 0.53
 β-LG B 464 2.45 1.68 2.47 0.00 7.44 0.69 0.41
1RCT = rennet coagulation time; k20 = curd-firming time; a30, a60 = curd firmness at 30 and 60 min, respectively.
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but shrinks each regression coefficient estimated sepa-
rately toward zero during model fitting. This approach, 
known as regularization, reduces the variance of pre-
dictions, at the expense of an increase in their bias. 
Although RR is not a dimension reduction method and 
includes all wavelengths, it is computationally efficient 
as it fits only a single model. User specification of a 
tuning parameter is required, which here was selected 
by cross-validation. The package glmnet (Friedman et 
al., 2010) was used for the RR analysis in this study.

Although RR shrinks the regression coefficients 
toward zero, it does not shrink any to exactly zero 
(except when the tuning parameter is infinite) and 
so all variables are always included in the prediction 
model. This can result in good prediction accuracy but 
poor model interpretability. Least absolute shrinkage 
and selection operator (LASSO; Tibshirani, 1996) is 
similar in nature to RR but allows coefficient estimates 
to be exactly zero and, hence, is also a variable selec-
tion method that results in more interpretable models. 
The tuning parameter was selected based on the lowest 
mean cross-validated error. The R package glmnet was 
again used for the LASSO analysis.

Elastic net (EN; Zou and Hastie, 2005) offers a 
compromise between RR and the LASSO, in that it 
selects wavelengths similar to the LASSO but shrinks 
the coefficients of correlated wavelengths together like 
RR. Thus, EN can be considered a dimension reduction 
method, although it will select more wavelengths than 
the LASSO. The R package used for the EN analyses 
was glmnet.

Model averaging (MA) is a novel approach that con-
sists of averaging the predictions from several of the 
previously considered approaches, which, in the present 
study, were PLSR, RR, LASSO, and EN. These models 
were selected due to their similarity in approach.

Spike and slab regression (SSR; Mitchell and Beau-
champ, 1988) takes a Bayesian approach by assuming a 
bimodal prior distribution for the regression coefficients, 
with one mode at zero and one nonzero mode, followed 
by the use of a generalized EN to fit the model. The R 
package used for the analyses was spikeslab (Ishwaran 
et al., 2010).

Random forests (RF) produce multiple decision trees 
(DT), the predictions from which are combined to give 
a consensus prediction. Decision tree–based methods 
(Breiman et al., 1984) are so called because they can 
be summarized visually by a tree-like structure. Deci-
sion trees work by segmenting the predictor space into 
several simple regions. Prediction for a test spectrum is 
simply the mean of the training observations in the re-
gion to which the test spectrum belongs. The predictor 
space is segmented recursively, beginning with a root 

node and subsequently creating branches determined 
by splitting rules based on the predictor values. The 
terminal nodes or leaves of the resulting tree define the 
simple regions used for prediction. However, DT suffer 
from high variance in its response, which RF overcomes 
by averaging predictions from many DT, but where at 
each split only a random sample of wavelengths are 
considered. The number of DT and the number of 
wavelengths randomly sampled as candidates at each 
split is user defined. Here 500 DT were used, and the 
number of wavelengths considered at each split was the 
number of wavelengths divided by 3. The R package 
used for the analyses was randomForest (Liaw and 
Wiener, 2002).

Boosting is a general concept that can be used with 
many statistical ML methods to improve predictions. 
Unlike the RF setting, each DT is fitted to a modified 
version of the original data set. The trees are grown 
sequentially, where, at each stage, a tree is fitted to the 
residuals from the previous model fit, thus improving 
model fit in areas of the predictor space where per-
formance in a single DT was poor. Boosting requires 
the specification of several settings: here the number of 
trees considered was 500, and the shrinkage parameter 
was set to 0.01. The approach was implemented using 
the gbm R package (Greenwell et al., 2019).

Neural networks (NN) are nonlinear generalizations 
of a linear model. In a regression setting, NN first con-
struct derived features that are linear combinations of 
the wavelengths. The outcome variable is then mod-
eled as a function of linear combinations of the derived 
features. An NN is typically represented in a network 
diagram with several hidden layers, each represent-
ing different functions of the derived features. Here, 
a 2-layer NN was fitted, with Bayesian regularization 
employed to improve generalizability, using the R pack-
age brnn (Perez Rodriguez and Gianola, 2020).

Classification Approaches

The outcome traits were divided into classes and the 
performance of 4 classification approaches assessed.

Partial least square discriminant analysis (PLSDA) 
is a dimension reduction model used for classification 
purposes. Partial least square discriminant analysis 
works similarly to PLSR, but for the former the re-
sponse variable is dichotomized. The model proceeds 
similarly to PLSR, with prediction to the classes deter-
mined by whether or not the output is greater than a 
specified threshold. The R package used for the analysis 
was caret (Kuhn, 2020).

Random forests applied for classification purposes 
follows the procedure previously described for RF for 
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regression purposes. The implementation of RF for clas-
sification purposes used the same number of trees as in 
the regression setting, but the number of wavelengths 
considered at each split was set to the square root of 
the number of wavelengths.

Boosting DT were also used for classification pur-
poses, with the number of trees considered remaining 
at 500, as in the regression setting.

Support vector machine (SVM) is a classification 
method that allows for nonlinear decision boundaries 
between classes by enlarging the feature space using 
kernels. In the enlarged space, the boundary is linear, 
but in the wavelength space, the boundary is nonlinear 
and more flexible. The R package used for the SVM 
analyses was e1071 (Meyer et al., 2019), in which a 
linear kernel was employed.

Measures of Prediction Performance

The performance of each regression method was 
evaluated by examining the RMSE from the calibra-
tion data (3 folds of the data), the root mean square 
error from the cross-validation data (the remaining 
fold; RMSEV), and the coefficient of determination 
(R2, from both the calibration and the cross-validation 
data). Furthermore, the slope coefficient of a simple 
linear regression of the observed on the predicted value 
of each trait, as well as the bias corresponding to the 
mean of the observed minus the mean of the predicted 
values of the trait were obtained from the cross-vali-
dation data. The ratio of performance to interquartile 
distance (RPIQ) was used to assess the model consis-
tency (Bellon-Maurel et al., 2010). The RPIQ is calcu-
lated as the ratio between the interquartile range of the 
observed trait values and the RMSE. The RPIQ was 
used in the present study instead of ratio performance 
deviation because it is better suited to non-normally 
distributed traits. Given a lack of evidence to support 
the use of threshold values for interpretation (Bellon-
Maurel et al., 2010), the RPIQ was used in this study 
to compare performance of alternative models rather 
than to quantify prediction accuracy of specific traits 
per se.

The performance of each classification method for 
the milk technological traits was evaluated by examin-
ing the area under the receiver operating characteristic 
curve, the sensitivity (i.e., proportion of the high class 
correctly classified), the specificity (i.e., proportion of 
the low class correctly classified), and the accuracy 
(i.e., the ratio of the number of correctly classified ob-
servations to the total number of observations). For the 
milk proteins, which were divided into 4 classes, the 
classification methods’ performance was assessed by 
the accuracy (i.e., the ratio of the number of correctly 

classified observations to the total number of observa-
tions).

In the regression analyses, the RMSE, R2, RMSEV, 
bias, and RPIQ were calculated as the average of the 4 
folds of calibration or cross-validation data. The stan-
dard deviation (SD) of RMSE, R2, RMSEV, bias, and 
RPIQ across folds were also calculated, thus reflecting 
the variability or robustness across folds. The slope 
and its standard error in the regression analyses were 
estimated once across the entire data set of predicted 
values (i.e., across all 4 folds). The prediction perfor-
mance for classification was calculated as the average 
of the 4 folds of calibration or cross-validation data; the 
SD reflects the variability across folds. In the present 
study, when a continuous trait was investigated, the 
RMSEV was used to identify the “best” model. When 
a trait in question was a categorical trait, the accuracy 
was used to identify the “best” model.

RESULTS

Supplemental Tables S1 to S18 and Supplemental 
Figures S1 to S3 are available on the Teagasc Open Ac-
cess Repository, T-Stór (https: / / hdl .handle .net/ 11019/ 
2390; Frizzarin et al., 2021).

Prediction of Continuous Traits

Table 2 details the regression model with the low-
est RMSEV for each trait, the RMSEV obtained, and 
the coefficient of determination in the cross-validation 
data set. The difference between the RMSEV of the 
“best” prediction model and the corresponding RMSEV 
obtained from PLSR on the same trait is also detailed. 
The MA approach most frequently performed “best” 
across all traits, having the lowest RMSEV for 6 of the 
14 traits investigated (i.e., a60, αS1-CN, αS2-CN, κ-CN, 
α-LA, and β-LG B). The LASSO and NN methods per-
formed similarly to MA for κ-CN prediction. The NN 
had the lowest RMSEV for all of RCT, k20, and heat 
stability prediction, whereas LASSO had the lowest 
RMSEV for CMS prediction. Ridge regression had the 
lowest RMSEV for a30, β-CN, and β-LG A, but PLSR 
had the lowest RMSEV for pH. The average difference 
in RMSEV between PLSR and the “best” model var-
ied from 0.18% (κ-CN) to 3.67% (heat stability). The 
prediction performance for each of the milk technologi-
cal traits is presented in Supplemental Tables S1 to S7 
(https: / / hdl .handle .net/ 11019/ 2390). Supplemental 
Tables S8 to S14 (https: / / hdl .handle .net/ 11019/ 2390) 
summarize the prediction performance of the different 
models for all the milk proteins.

The number of factors selected by PLSR across folds 
was consistent for some traits (±2 factors), although 
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for others the number of factors selected varied across 
folds (±8 factors). Notably, the number of wavelengths 
selected for use in the model varied according to trait 
and model; SSR selected on average between 0.25 (κ-
CN) and 93.5 (RCT) fewer wavelengths than LASSO, 
whereas EN always selected more wavelengths than 
either LASSO or SSR. The numbers of wavelengths 
selected by LASSO, EN, and SSR for each trait are pre-
sented in Supplemental Table S15 (https: / / hdl .handle 
.net/ 11019/ 2390), and the subsets of wavelengths 
selected are presented graphically in Supplemental 
Figures S1 to S3 (https: / / hdl .handle .net/ 11019/ 2390). 
The different models tended to select similar subsets 
of wavelengths. Also, PLSR, RR, and RF attributed 
greatest coefficients to these regions. In particular, the 
regions between 1,100 and 1,000 cm−1, between 1,530 
and 1,462 cm−1, between 1,790 and 1,735 cm−1, and 
between 3,730 and 3,710 cm−1 were important for sev-
eral traits. The region between 1,100 and 1,000 cm−1 
was recurrently present for all the investigated traits, 
with the exception of β-CN. The region between 1,530 
and 1,430 cm−1 was present for all the protein traits, 
as well as for RCT, a60, CMS, and pH. The region 
between 1,790 and 1,735 cm−1 was present for all the 
milk technological traits with the exception of a30 and 
was present for α-LA and β-LG A. The region between 
3,730 and 3,710 cm−1 was present for a30, a60, pH, αS1-
CN, β-CN, κ-CN, and β-LG B. In this specific region, 
for a60, pH, αS2-CN, and β-LG B, the wavelength 3,726 
cm−1 was always selected; for αS1-CN, β-CN, and κ-CN, 
the wavelength 3,714 cm−1 was always selected.

Prediction of Categorical Traits

Table 3 summarizes the “best” prediction model and 
its prediction accuracy across all traits. Support vector 
machine was the method with the greatest accuracy for 
6 of the 7 binary technological traits investigated (i.e., 
RCT, k20, a30, CMS, pH, and heat stability); PLSDA 
had the same accuracy as SVM for RCT, pH, and heat 
stability prediction. Partial least squares discriminant 
analysis was the model with the greatest accuracy also 
for a60 prediction. For the binary technological traits, 
the greatest average accuracy was for pH prediction 
(0.80, SD = 0.03, 0.02), and the lowest average ac-
curacy was for CMS (0.62, SD = 0.03). Sensitivity of 
discrimination of coagulating samples ranged from 0.98 
(SD = 0.02; boosting DT) to 1.00 (SD = 0.00; PLSDA), 
but specificity was poor and ranged from 0.44 (PLSDA, 
RF, SVM) to 0.50 (boosting DT).

When the protein traits were split into quartiles for 
prediction, PLSDA had the greatest accuracy for 3 of 
the 6 traits (i.e., αS2-CN, β-LG A, and β-LG B). Sup-
port vector machine produced the greatest accuracy 
for 2 traits (i.e., β-CN, and α-LA), and RF had the 
greatest accuracy for the remaining 2 traits (i.e., αS1-
CN and κ-CN). When the protein traits were divided 
into quartiles, accuracy ranged from 0.40 (SD = 0.04; 
αS2-CN) to 0.48 (SD = 0.02; αS1-CN). The prediction 
performance for the milk technological traits when clas-
sified are shown in Supplemental Table S16 (https: / / 
hdl .handle .net/ 11019/ 2390). Supplemental Tables S17 
and S18 (https: / / hdl .handle .net/ 11019/ 2390) summa-
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Table 2. Summary of the regression method with the lowest root mean square error in cross-validation (RMSEV) and the percentage difference 
in RMSEV between the “best” algorithm and PLSR for each trait investigated with the respective prediction performance and SD across folds

Trait  
Best regression 
method1 RMSEV (SD) R2 (SD)

Comparison 
to PLSR 

(% difference)

Technological trait2     
 RCT, min NN 6.397 (0.692) 0.50 (0.03) 2.36
 k20, min NN 2.770 (0.280) 0.36 (0.06) 1.61
 a30, mm RR 12.495 (0.084) 0.37 (0.05) 1.80
 a60, mm Average 10.245 (0.972) 0.25 (0.10) 0.59
 CN micelle size, mm LASSO 25.286 (1.294) 0.08 (0.03) 1.42
 pH PLSR 0.061 (0.002) 0.65 (0.04) —
 Heat stability, min NN 5.464 (0.390) 0.45 (0.05) 3.67
Protein, g/L     
 αS1-CN Average 1.745 (0.136) 0.47 (0.05) 2.55
 αS2-CN Average 0.734 (0.113) 0.38 (0.04) 0.54
 β-CN RR 1.759 (0.128) 0.35 (0.05) 2.30
 κ-CN LASSO, Average, NN 1.095 (0.027, 0.027, 0.027) 0.42 (0.09, 0.09, 0.09) 0.18
 α-LA Average 0.255 (0.020) 0.27 (0.02) 0.39
 β-LG A RR 1.050 (0.113) 0.19 (0.04) 0.66
 β-LG B Average 1.443 (0.117) 0.27 (0.08) 1.24
1PLSR = partial least square regression; RR = ridge regression; EN = elastic net; Average = model averaging approach; NN = neural network; 
LASSO = least absolute shrinkage and selection operator.
2RCT = rennet coagulation time; k20 = curd-firming time; a30, a60 = curd firmness at 30 and 60 min, respectively.

https://hdl.handle.net/11019/2390
https://hdl.handle.net/11019/2390
https://hdl.handle.net/11019/2390
https://hdl.handle.net/11019/2390
https://hdl.handle.net/11019/2390
https://hdl.handle.net/11019/2390
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rize the prediction performances for classified CN and 
whey proteins, respectively.

DISCUSSION

Although traditional statistical methods have served 
the prediction of phenotypes from milk spectral data 
well for several cattle (McParland and Berry, 2016) and 
milk traits (De Marchi et al., 2014), the objective of 
the present study was to evaluate alternative statistical 
approaches with a focus on ML techniques.

Prediction of Continuous Traits

Partial least squares regression is considered the 
benchmark method, given its consistently strong pre-
diction performance in chemometric analyses (Wold 
et al., 2001). However, PLSR did not consistently per-
form the best for the traits considered in the present 
study. With the exception of pH, the average difference 
in RMSEV between PLSR and the best prediction 
method ranged from 0.18% (κ-CN) to 3.67% (heat 
stability). Nonetheless, although variable prediction 
accuracy was observed across cross-validation folds, the 
“best” overall method was generally consistently the 
best in each fold. For example, when heat stability was 
predicted, NN always outperformed PLSR, with the 
RMSEV ranging from 0.76% to 6.03% lower with the 
NN method. Other methods investigated here, such as 
PPR, performed poorly, possibly due to the difficulty in 

choosing the correct tuning parameters, which requires 
careful specification of many settings by the user. Thus, 
the examined methods demonstrated better or com-
parable performance to the traditionally used PLSR, 
in line with Wolpert and Macready’s (1997) assertion 
that for any algorithm, any superior performance in 
one class of problems is offset by its performance in 
another class. The “best” model varied depending on 
the data distribution and the range and variability 
present in the trait under investigation. Therefore, the 
same trait in a different data set could potentially be 
“best” predicted using a different method, and practi-
tioners should consider these methods when predicting 
milk traits from mid-infrared data. Other examples of 
methods compared in the literature for predictive per-
formance also gave inconsistent results across studies 
(e.g., Ferrand-Calmels et al., 2014; Bonfatti et al., 2017; 
El Jabri et al., 2019). The variability in performance 
is likely related to differences in the traits predicted 
and data sets used. Notwithstanding this, the MA ap-
proach draws strength from averaging across several 
methods, resulting in more accurate predictions than 
those achieved by any of the individual methods alone.

Shrinkage methods are used in genomic prediction 
(Li and Sillanpää, 2012; Ogutu et al., 2012; Azevedo 
et al., 2015) for dimension reduction. Indeed, shrinkage 
methods should identify the variables most strongly 
related to the trait being predicted. Hence, in chemo-
metric analyses, it is expected that shrinkage methods 
could also be used to identify the most informative 
wavelengths where wavelengths may be considered to 
be analogous to SNPs in genomic predictions. However, 
the literature presents contrasting results about the 
potential of shrinkage methods (e.g., Bonfatti et al., 
2017; El Jabri et al., 2019). Other methodologies not 
based on shrinkage models have been developed for 
wavelength selection in spectroscopy (Gottardo et al., 
2015; Vohland et al., 2014). In the present study, 3 vari-
able selection approaches were investigated, namely, 
LASSO, EN, and SSR. These 3 methods shrink to zero 
the coefficients of the wavelengths not deemed to be 
related to the trait under investigation. All remaining 
methods considered all the wavelengths available in the 
data set for the prediction, giving different weights (co-
efficients) to each wavelength but never attributing zero 
as a coefficient. In the present study, LASSO was the 
“best” model for 2 of the 14 traits investigated. Com-
bining information from (1) a cross-investigation of the 
wavelengths selected by wavelength selection models 
(LASSO, EN, and SSR), (2) the coefficients calculated 
by PLSR and RR, and (3) the variable importance in 
RF, can inform which wavelength regions are related 
to specific traits. In fact, LASSO, EN, and SSR partly 
selected the same wavelengths, and these wavelengths 
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Table 3. Summary of the classification method with the greatest 
accuracy for each trait investigated with the respective prediction 
performance and SD across folds

Trait  

Best classification

Method1 Accuracy2 (SD)

Technological3   
 RCT PLSDA, SVM 0.75 (0.03, 0.06)
 k20 SVM 0.73 (0.02)
 a30 SVM 0.73 (0.03)
 a60 PLSDA 0.69 (0.07)
 CN micelle size SVM 0.62 (0.03)
 pH PLSDA, SVM 0.80 (0.03, 0.02)
 Heat stability PLSDA, SVM 0.74 (0.04, 0.05)
Protein   
 αS1-CN RF 0.48 (0.02)
 αS2-CN PLSDA 0.40 (0.04)
 β-CN SVM 0.46 (0.04)
 κ-CN RF 0.45 (0.02)
 α-LA SVM 0.43 (0.03)
 β-LG A PLSDA 0.42 (0.03)
 β-LG B PLSDA 0.41 (0.04)
1PLSDA = partial least squares discriminant analysis; RF = random 
forest; SVM = support vector machine.
2Proportion of correctly classified observations.
3RCT = rennet coagulation time; k20 = curd-firming time; a30, a60 = 
curd firmness at 30 and 60 min, respectively.
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were also associated with the greatest coefficients in 
both PLSR and RR as well as the greatest importance 
in RF; thus, specific wavelengths were identified as 
important for trait prediction across models. Requiring 
only selected wavelengths in the prediction model of 
milk constituents could justify the development of an 
instrument focused solely on these specific wavelength 
regions to predict prespecified groups of traits, for ex-
ample, milk coagulation traits or milk proteins. Such an 
instrument should have reduced construction (and thus 
purchase) costs, making it more amenable for more 
widespread in-line use.

The data set used in the current study was a subset of 
that previously used to quantify the potential of MIRS 
as a predictor of individual milk proteins (McDermott 
et al., 2016) and technological traits (Visentin et al., 
2015) using PLSR. Different editing of the original data 
set was required in the current study to satisfy the as-
sumptions of some of the ML methods employed here. 
Further, the handling of the data was different in the 
current study, where the data set was divided into 4 
subdata sets or folds (25% in each fold) to perform 
4-fold cross-validation. Visentin et al. (2015) randomly 
divided the data set once into calibration and valida-
tion data sets, with 80% of the data included in the 
calibration data set. Thus, the PLSR results reported 
in the current study are not identical to those in previ-
ous studies.

Prediction of Categorized Traits

Some traits, including RCT, k20, a30, a60, and pH, 
can be used together to define milk suitability for 
cheese making. Manuelian et al. (2017) investigated the 
ability of PLSR applied to MIRS to predict milk coagu-
lation traits in Mediterranean buffalo; Manuelian et al. 
(2017) reported a coefficient of determination in cross-
validation varying from 0.27 for k20 prediction to 0.76 
for pH prediction. After this, Manuelian et al. (2017) 
categorized the samples into noncoagulating milk and 
coagulating milk with the purpose of discriminating 
the samples based on their milk coagulating ability; 
the model correctly classified 91.57% and 67.86% of 
noncoagulating milk samples in the calibration and 
validation sets, respectively. Results from the present 
study reveal a poor discrimination between coagulating 
and noncoagulating milk, likely due to the unbalanced 
data available; only 3.2% of samples were considered 
noncoagulating in the data set used here.

Although different studies reported the potential of 
predicting classes, either by clustering similar traits or 
by dividing a specific trait in classes (Manuelian et al., 
2017; Grelet et al., 2019; Duplessis et al., 2020), accu-
rate methods that permit the comparison of regression 

results and classification results are needed to enable 
appropriate conclusions about the optimal approach; 
unfortunately, no such statistical method currently ex-
ists. Which approach should be used depends on the 
context and on the type of variable to be predicted. 
These studies used canonical discriminant analysis 
(Manuelian et al., 2017) or PLSDA (Grelet et al., 2019; 
Duplessis et al., 2020) to perform class prediction, but 
the SVM has been shown in the present study to be 
a possible alternative due most likely to its ability to 
exploit nonlinear associations between the wavelengths 
and the trait.

Practical Utility

Milk coagulation properties such as greater curd-
firming capacity and shorter milk coagulation time are 
correlated with improved sensory properties of cheese 
as well as with greater cheese yield (Martin et al., 1997; 
Pretto et al., 2013). Heat stability, CMS, and pH are 
fundamental traits for cheese production and produc-
tion of other milk-related products such as milk powder 
(Singh, 2004). Similarly, αS1-CN, β-CN, κ-CN, and 
β-LG B in milk have positive effects on cheese yield 
(Wedholm et al., 2006). Although the ML methods in-
vestigated here only slightly improved predictions over 
PLSR, and only for some traits, and despite the predic-
tion accuracy remaining low, the modern ML methods 
investigated in the present study clearly demonstrate 
promise. Improved prediction of traits, however small, 
is useful for the milk processing industry to discrimi-
nate milk at the preprocessing stage, enabling milk to 
be used for the process for which it is most suited.

Although some of the improvements in accuracy 
may be small, they can be generated at no additional 
physical or computational expense; the run times for 
the methods considered are of a similar order of mag-
nitude to run times for PLS approaches. Further, all 
the methods considered can be easily implemented on 
a standard personal computer. As such, the modern 
statistical ML methods have similar practical utility to 
currently used methods.

CONCLUSIONS

In chemometric analyses, more interpretable method-
ologies (e.g., PLSR or LASSO) should be preferred to 
more complicated methods (e.g., NN) if the results do 
not differ, due to their interpretability and their reliance 
on fewer tuning parameters. In the current study, the 
“best” method varied depending on the data distribution 
and the range and variability present in the trait under 
investigation. Several methods demonstrated better or 
comparable performance to the traditionally used PLS-
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based methods, and practitioners should consider such 
alternative methods when predicting milk traits from 
mid-infrared data. The MA approach was the method 
that most often had the lowest RMSEV, and its use 
and implementation should be considered for regression 
analyses. The division of continuous traits into classes 
can be a useful solution for traits poorly predicted with 
regression methods. However, prediction of traits that 
were divided into more than 2 classes performed poorly 
here. Although accuracy of prediction of traits in this 
study was moderate, the application of novel statistical 
ML methods may improve the prediction of milk traits; 
however, the well-established PLSR-based method still 
performed competitively. (Code generated for use in 
this study is available at https: / / github .com/ maria 
-ire/ Code -used -for -milk -quality -traits -predicted -from 
-routinely -available -milk -spectra -Paper -analyses.)
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