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Evaporation of an oscillating drop
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Introduction
The study of droplet dynamics has a long history due to its wide application in different fields,
such as spray coating, fire suppression, aero-engine, pharmacology, etc.[1]. Much work has
been done in drop evaporation[7, 3] and oscillation[8, 4], respectively. However, in most scenar-
ios, these both proceed simultaneously and have an effect on the other one. Until now, only few
papers[5, 6] referred to the evaporation of an oscillating droplet. In the present work, we con-
sider the evaporation of an oscillating droplet, releasing the assumption of quasi-steady heat
and mass diffusion into the gas phase. The conservation equations were solved by numerical
methods using an in-house code (FS3D). The distribution of vapour flux of a spheroidal droplet
at the droplet surface under oscillating conditions is discussed and compared with the results
of a droplet under quasi-steady conditions.

Numerical approach
We ran the simulations using an in-house code (FS3D), which was developed for DNS of incom-
pressible multiphase flows with sharp interfaces between immiscible phases. FS3D solves the
incompressible Navier-Stokes equations as well as the energy equation for the phase transition.
The interface reconstruction is realized by VOF and PLIC methods. Without any turbulence
model, FS3D is able to resolve the smallest temporal and spatial scales by DNS. However,
it requires large computational efforts, which could be met by employing OpenMP as well as
MPI[2].

Formulation of the problem
We consider a droplet oscillating in a gaseous environment. The computational domain is
shown in Figure 1, a spheroidal water droplet of initial semi-axis ar = 0.5mm, az = 0.6mm os-
cillates and evaporates in the air, in the middle of the domain, which has the dimensions
2.8mm× 2.8mm× 2.8mm (grid resolution 128× 128× 128). All boundaries have continuous con-
ditions. The surface tension coefficient, liquid dynamic viscosity, and vapour-air diffusivity co-
efficient are set to 76.40mN/m, 0.003Pa · s, and 28.45× 10−6m2/s, respectively. The ambient
pressure is set at 0.965×105Pa. The initial air temperature is 351K, while the drop temperature
is 350.8K. The small temperature difference is chosen to decrease the influence of the initial
temperature difference on the vapour concentration distribution and the computational cost.

The ratio of evaporation time scale tev ∝
R2

d
D

and oscillation time scale tosc ∝

√
ρR3

d
σ

is defined

as the parameter φ =
tev

tosc
. For drop oscillations without evaporation, the parameter φ goes

to infinite. For the evaporation of spheroidal droplets under a quasi-steady assumption, the
parameter φ nears to be zero. In the present work of an evaporating and oscillating drop, the
parameter φ is about 7. Thus the release of the quasi-steady assumption is expected to yield
different results.
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Figure 1. Computational domain of setup

Figure 2. Aspect ratio with respect to time

Table 1. Time spent by droplet in the prolate and oblate shape.

time in
prolate shape (ms)

time in
oblate shape (ms)

percentage of
time in prolate shape (%)

period 1 T pro
1 : 1.641 T ob

1 : 1.531 51.73
period 2 T pro

2 : 1.605 T ob
2 : 1.572 50.52

period 3 T pro
3 : 1.588 T ob

3 : 1.561 50.43
period 4 T pro

4 : 1.576 T ob
4 : 1.544 50.51

Results and Discussion
In this section, the numerical results are presented and discussed. The decay of aspect ratio

ε =
az

ar
is depicted in Figure 2, τ is defined as τ =

∆t
t

with ∆t = 0.154ms. ε > 1 corresponds to a

prolate shape, ε < 1 represents an oblate shape. Table 1 records the time spent by the droplet
in the prolate or oblate shape in different periods. The time spent in prolate shape decreases
with the period, the leap of time in oblate shape in the second period may be due to the initial
instability. Figure 3 shows the velocity and temperature field in the XY and YZ plane at time
τ = 44 when the droplet has a prolate shape and ε is decreasing. No vortex flow inside the
droplet is observed due to the small scale of the droplet. The temperature gradient across the
interface is high due to the vaporization.
The spatial distribution of vapour flux of an oscillating droplet at the droplet surface shows
different characteristics from that of a droplet under quasi-steady conditions. η is the cosine
of the polar angle of an arbitrary position at the droplet surface, η = 0 represents the equator
and η = 1 or −1 is the upper or lower pole. As shown in Figure 4 (a), the dimensionless vapour

flux ξ̂ =
ξ

ṁev
4πR2

0

in unsteady conditions reaches a higher value both at the equator and poles,

regardless of the droplet shape. However, according to[9], the vapour flux ξ of a spheroidal

droplet under quasi-steady conditions is expressed as ξ = (R2
0KG)

1/4 ṁev

4πR2
0
. The dimensionless

vapour flux ξ̂ is proportional to the dimensionless Gauss curvature to the quarter power. Figure
4 (b) shows the distribution of the dimensionless vapour flux of a spheroidal droplet under quasi-
steady conditions. It reaches a higher value at the equator for the oblate shape, while at the
poles for the prolate shape.
By the way, the effect of diffusivity and viscosity is shown in Figure 5. Diffusivity in test 1, test 2,
and test 3 are 28.45, 28.45, and 50×10−6m2/s, respectively. Viscosity in test 1, test 2, and test
3 are 0.003, 0.005, and 0.005 Pa · s, respectively. The difference between test 2 and test 3 is
negligible. The higher viscosity suppresses the oscillating amplitude, and the higher diffusivity
has almost no effect.
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(a) Velocity field in XY plane (b) Velocity field in YZ plane

(c) Temperature field in XY plane (d) Temperature field in YZ plane

Figure 3. Velocity and temperature field in the XY and YZ plane.

(a) Spatial distribution of vapour flux under unsteay con-
ditions in one period, from simulation results(φ =

tev

tosc
≃ 7)

(b) Spatial distribution of vapour flux under quasi-steady
conditions in one period, from theoretical results accord-
ing to [9] (φ =

tev

tosc
nears to be zero)

Figure 4. Comparison of spatial distribution of vapour flux under unsteady and quasi-steady conditions.
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Figure 5. Effect of diffusivity and viscosity

Conclusion
An oscillating droplet under evaporating conditions is numerically investigated. The vapour flux
of a droplet under unsteady conditions shows different characteristics from that of a droplet
under quasi-steady conditions. It reaches a higher value at the equator and the poles at any
moment, regardless of the droplet shape. The temperature has a high gradient across the
interface due to the vaporization. The higher viscosity suppresses the oscillation amplitude,
and the higher diffusivity has no effect. These findings urge a deeper analysis on the effect
of taking into account the non-quasi steadiness on the modelling of evaporation of oscillating
droplets.
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