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A B S T R A C T

In this paper we present a multi-stage stochastic optimization model to solve an inventory routing problem
for the collection of recyclable municipal waste. The objective is the maximization of the total expected profit
of the waste collection company. The decisions are related to the selection of the bins to be visited and
the corresponding routing plan in a predefined time horizon. Stochasticity in waste accumulation is modeled
through scenario trees generated via conditional density estimation and dynamic stochastic approximation
techniques. The proposed formulation is solved through a rolling horizon approach, providing a rigorous
worst-case analysis on its performance. Extensive computational experiments are carried out on small- and
large-sized instances based on real data provided by a large Portuguese waste collection company. The impact
of stochasticity on waste generation is examined through stochastic measures, showing the importance of
adopting a stochastic model over a deterministic formulation when addressing a waste collection problem.
The performance of the rolling horizon approach is evaluated, demonstrating that this heuristic provides
cost-effective solutions in short computational time. Managerial insights related to different geographical
configurations of the instances and varying levels of uncertainty are finally discussed.
1. Introduction

In recent years, the importance of sustainable waste management
processes has been recognized worldwide (see, for example, the new
Circular Economy Action Plan, European Commission, 2020). These
practices involve long-, medium-, and short-term planning decisions
(see Ghiani et al., 2014), and combine different aspects. Among them,
the efficiency of the waste collection system is a crucial problem that
needs to be addressed (see Bing et al., 2016; Gläser, 2022). Tradi-
tionally, the collection of recyclable household waste (paper, plastic,
metal, and glass) is based on static and predefined routes, executed
on a regular basis (see de Morais et al., 2022). Since this operation
does not take into account the actual bins’ filling level, high rates of
resources’ inefficiencies may occur, due to too early collection of not
filled bins, or to poor service level because of too late collections.
As an example, data from a Portuguese collection company over a
6-month period show that only 40% of household waste bins were
collected with a fill level exceeding 75% of the volume (see Ramos
et al., 2018). To address this issue, some companies have installed
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sensors inside the waste bins with the aim of tracking the filling rates
(see Gutierrez et al., 2015; Jorge et al., 2022; Kim et al., 2023; Markov
et al., 2020; Rahmanifar et al., 2023; Wang et al., 2024). Such a
procedure allows formulating a statistical model of the real amount
of waste for each location (see Lopes & Ramos, 2023). However, a
considerable investment is required by service providers to equip all
the waste bins of an area with this technology (see Hess et al., 2023).
Therefore, the design of novel Operational Research (OR) techniques
to more efficiently manage all resources involved in the field of waste
collection is still an important ongoing research topic.

Vehicle Routing Problem (VRP, see Toth & Vigo, 2002) is the
classical OR modeling approach to tackle waste collection problems
(see Hess et al., 2023). Among all the possible VRP variants, in this
paper we focus our attention on the Inventory Routing Problem (IRP,
see Coelho et al., 2014). According to Mes et al. (2014), IRPs are
particularly effective in handling waste collection problems since they
are able to deal with large numbers of waste containers, variability in
the accumulation rate and medium to long planning horizons.
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As reported in the systematic review conducted by Sar and Ghadimi
(2023), in the great majority of the literature on waste collection
models, uncertainty factors are ignored and all the parameters are as-
umed to be known when making decisions. Nevertheless, uncertainties

on transportation cost, traveling time and accumulation rate of waste
may corrupt the quality of the solutions provided by deterministic
models (see de Morais et al., 2022). In such a complex framework, the
development of novel Stochastic Optimization approaches (see Birge
& Louveaux, 2011) might support service operators in implementing
cost-effective decision plans.

In the literature, various stochastic IRP models for waste collection
have been proposed (see, for instance, Markov et al., 2020; Nolz
t al., 2014; Sadrabadi et al., 2024). All these models rely on a two-

stage stochastic programming formulation, accounting for uncertainty
n a single period. However, to more effectively capture the uncertain
ature of waste accumulation over medium- and long-term horizons,
t is essential to adopt a multi-stage stochastic approach. Through this
trategy a comprehensive representation of uncertainty across multiple
ime periods is achieved, enabling more informed decision-making.

A potential drawback of applying this type of models is their com-
utational complexity, combining stochasticity and discrete decisions
ver time. Exact solution methods are in general based on branch-
nd-bound type algorithms or branch-and-price methods (see Florio

et al., 2023). However, with real-world waste collection instances
xact solution methods may fail to find satisfactory solutions within
 reasonable time since the size of the problem grows exponentially
ith respect to the number of stages and of scenarios. To address this

imitation, heuristic techniques must be devised, tailored to efficiently
andle the complexity and scale of such problems while still delivering
igh-quality solutions (see Sar & Ghadimi, 2023).

In this paper, we formulate a multi-stage mixed-integer linear
stochastic optimization model to solve an Inventory Routing Problem
for recyclable waste collection. The waste operator company makes de-
cisions at tactical level in a mid-term time horizon. Inventory decisions
are integrated in the routing scheme and the planning is based on the
amount of waste inside the containers. The aim of the planning is to
maximize the profit, given by the difference between the revenues from
selling the collected waste and the transportation costs.

Among all the possible approximate solution techniques, in this
paper, we adopt the rolling horizon approach (see Chand et al., 2002),
since it showed good performance in similar multi-stage stochastic
problems (see Bertazzi & Maggioni, 2018; Cavagnini et al., 2022;
Maggioni et al., 2009; Shen et al., 2011). According to this heuristic,
he optimization model is decomposed into a sequence of subproblems
efined over a reduced time horizon. The model is solved starting from
he first time period and the values of the first-stage variables are
aptured. The procedure is then repeated starting from the second time
eriod until the end of the time horizon. To validate the performance
f the rolling horizon approach on the proposed stochastic formulation,
e carried out extensive computational experiments on set of instances
ased on real data.

Summarizing, the main contributions of this paper are as follows:

• to develop a multi-stage stochastic optimization model for the
waste collection inventory routing problem;

• to apply the rolling horizon approach to solve the model and
rigorously analyze its worst-case performance;

• to provide numerical experiments with the aim of:

(1) validating the model in terms of in-sample stability
(see Kaut & Wallace, 2007);

(2) measuring the impact of uncertainty and the quality of the
deterministic solution in a stochastic setting;

(3) evaluating the performance of the rolling horizon approach
in terms of optimal objective function value and reduction
of CPU time;
2 
(4) testing the effectiveness of the proposed methodology on a
real case study.

The remainder of the paper is organized as follows. Section 2
reviews the existing literature on the problem. In Section 3, the waste
ollection problem is described and a multi-stage stochastic program-

ming model is formulated. Section 4 describes the rolling horizon
pproach and provides a worst-case analysis on its performance. In
ection 5, the computational results are shown and the managerial

insights are discussed. Finally, Section 6 concludes the paper.

2. Literature review

Waste collection problems are mostly modeled in the literature as
Vehicle Routing Problems, where a predefined set of collection sites is
onsidered and vehicle routes are planned accordingly. The objective

is either to minimize transportation cost, total distance, time traveled
or to maximize profits, revenue, amount of waste collected (see Hess
t al., 2023). In recent years, such a kind of problems have been widely

studied and extended, in order to include different features. To name
a few, in Angelelli and Speranza (2002), a Periodic Vehicle Routing
Problem (PVRP) is designed such that the visiting schedules on a given
time horizon are associated with each collection site; Faccio et al.
(2011) proposes a Capacitated Vehicle Routing Problem (CVRP) where
garbage trucks have limited carrying capacity; in Hemmelmayr et al.
(2014), the problem of designing an integrated system combining PVRP
with bins allocation is considered; in Ramos et al. (2018), a CVRP with
Profits (CVRPP) is developed such that revenues come from selling
he collected waste to a recycling company. Recently, in Han et al.

(2024), Olmez et al. (2022) and Tran et al. (2024) novel Location-
Assignment-Routing Problems (LARPs) are proposed with the aim of
optimally locating waste storage, and determining the optimal set of
collection routes. The reader is referred to Hess et al. (2023) for an
updated survey on waste collection routing problems.

Inventory Routing Problem is a modeling extension of VRP because
t integrates inventory management and vehicle routing decisions over
 medium- or long-term planning period. In the classical IRP approach,
hree different types of decisions have to be made: when to restock the
ustomers’ inventories according to their demand, how much product
o deliver, and how to combine customers into vehicle routes. In the
pecial case of waste collection, the flows are reversed because the
im of visiting is collecting rather than delivering (see Mes et al.,

2014). A recent review on routing problems in Reverse Logistics (RL)
an be found in Sar and Ghadimi (2023). Typically, the inventory
ecisions modeled in IRPs are at customers’ locations. In waste col-
ection operations this choice implies that the amount of waste at

the collection sites is known and periodic schedules are thus planned
see Hess et al., 2023). According to Malladi and Sowlati (2018), IRP

models in RL are mostly motivated by real case studies, providing
olutions for the management of specific waste types: municipal solid
aste (see de Morais et al., 2019; Elbek & Wøhlk, 2016; Markov et al.,

2020), vegetable oil (see Aksen et al., 2012, 2014; Cárdenas-Barrón
et al., 2019; Cárdenas-Barrón & Melo, 2021), infectious medical waste
see Nolz et al., 2014), end-of-life vehicles (see Krikke et al., 2008).

In the traditional VRP approach, all the parameters of the model
are considered deterministic (see Gendreau et al., 1996). Nevertheless,
in the waste collection system a high degree of uncertainty may affect
the waste production, disrupting the reliability of the solution made by
service providers through deterministic procedures. As an attempt to
reduce uncertainty, in some areas traditional RL operations are coupled
with Internet of Things (IoT)-based technologies including the use of
smart waste bins. These technologies offer real-time information on
the volumetric filling level, enabling to dynamically plan the collection
(see Rahmanifar et al., 2023). In this regard, in de Morais et al.
(2024), Jorge et al. (2022) and Ramos et al. (2018), the Smart Waste
Collection Routing Problem (SWCRP) is explored, where IoT sensors’
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information is combined with optimization techniques. Following the
same line of research, Fadda et al. (2018) derives a scheduling for

eekly waste collection activities combining information provided by
ensors installed both on underground containers and inside garbage
rucks. In Kim et al. (2023), two operational management approaches

based on IoT technologies are introduced to define dynamic optimal
outes. Smart bins are clustered on the basis of the filling level and
 hybrid metaheuristic is proposed to solve the problem. A similar
olution strategy has been investigated in Rahmanifar et al. (2023) to
ddress a waste collection problem based on real-time data provided
y IoT devices. Recently, in Wang et al. (2024) a multidepot VRP with
ntelligent recycling bins and financial incentives has been proposed.
he model is cast into a general RL framework with the aim of reducing
ncertainties and adjusting recycling plans.

The integration of IoT technologies into waste management pro-
cesses allows the definition of dynamic routing systems, though it
presents various limitations. First of all, equipping all the collection
sites of an area with sensors requires high financial investments. Even
when a partial coverage is enough, additional issues arise in order to
find the best locations to place such technology (see Lopes & Ramos,
2023). Secondly, IoT sensors frequently suffer from errors and im-
recision, leading to consider their measurements on the filling level
s inaccurate (see Hess et al., 2023). Finally, a more cost-effective

monitoring approach, compared to a system relying solely on ultrasonic
ensors, is to combine visual observations made by waste collection
ruck drivers with predictive models (see Brouwer et al., 2023).

Whenever the supplier has access to some information about the
probability distribution of customer’s demand, the IRP falls within the
framework of Stochastic Inventory Routing Problem (SIRP, see Alarcon
Ortega & Doerner, 2023; Bertazzi et al., 2013; Coelho et al., 2014;
Moin & Salhi, 2007). Robust Optimization (RO, see Ben-Tal et al.,
2009; Solyalı et al., 2012) and Chance-Constrained Programming (CCP,
ee Nemirovski & Shapiro, 2006) are two alternative paradigms re-
ently explored in the literature to cope with uncertainty in IRP models.
xamples of CCP models specifically designed for RL operations under
emand uncertainty are discussed in Soysal et al. (2018) and Zhou
t al. (2021), whereas in Gholizadeh et al. (2022) a RO model for

plastic recycling with uncertain demand and transportation cost is
formulated. As a downside, including uncertainty in vehicle routing
models increases dramatically their computational tractability. To this
extent, approximate solution techniques (metaheuristic, heuristic or
hybrid algorithms) have been devised in the VRP literature, especially
when solving large instances. In the following, we limit our attention
to optimization techniques adapted to solve waste collection routing
problems under uncertainty.

Nuortio et al. (2006) considers a stochastic PVRP with time win-
dows for the collection of solid waste in Finland. The solution strategy
consists in finding the routing scheme through a combination of a
hybrid insertion heuristic and a Guided Variable Neighborhood Thresh-
olding (GVNT) metaheuristic. Waste bins are then sorted by urgency
according to their filling rate and scheduling operations are organized.
In Kuo et al. (2012), a CVRP with fuzzy demand is solved with an
ybrid metaheuristic combining Particle Swarm Optimization (PSO)
nd Genetic Algorithm (GA). In Mes et al. (2014), a stochastic and dy-

namic IRP is proposed, thanks to the implementation of sensors. Waste
bins are categorized into three classes, depending on their waste level
nd a problem-based heuristic is developed to decide which containers
o pick up and on which days. A two-stage stochastic optimization
odel is formulated in Nolz et al. (2014) to solve a collection problem

of infectious medical waste. Uncertainty lies in the bins’ filling rate
ocated at pharmacies and an Adaptive Large Neighborhood Search

(ALNS) is used to tackle the complexity of the problem. In Elbek and
øhlk (2016), a multi-product multi-period IRP is considered to collect

two different commodities (glass and paper). From historical data, high
fluctuations have been observed in waste accumulation rates, leading
to consider them as stochastic. A classification procedure is used to
3 
categorize containers and a short planning period is defined in a Rolling
Horizon (RH) framework. The collection plan is then improved through
a Variable Neighborhood Search (VNS) algorithm. Gruler et al. (2017)
considers a multi-depot VRP with stochastic waste levels. The problem
is solved through a combination of an oriented randomization of Iter-
ated Local Search (ILS) and Monte Carlo simulation. In Markov et al.
(2020), historical data and forecasting techniques are used to estimate
the expected containers’ filling rate over the planning horizon and
to derive the distribution of the overflow probability. Then, an ALNS
procedure with search guiding principle based on Simulated Annealing
(SA) is developed, in combination with a RH approach. Aliahmadi
et al. (2021) formulates a bi-objective vehicle routing model with hard
time windows for the collection of municipal waste. The amount of
generated waste is supposed to be uncertain and modeled through
a fuzzy approach. Small instances solutions are generated with the
AUGMented 𝜀-CONstraint (AUGMECON) method, while in larger size
cases the metaheuristic of Non-dominated Sorting Genetic Algorithm
II (NSGA-II) is used. In Zhou et al. (2021), a bi-objective VRP with
simultaneous pickup and delivery is considered. The aim is to minimize
he total cost and, at the same time, to maximize the recycling revenue.
ncertainty lies in the pick-up demand and is modeled through a

uzzy CCP approach, with the application of Genetic Algorithm (GA) as
olution technique. Gholizadeh et al. (2022) formulates a robust IRP to

model a sustainable RL supply-chain for polystyrene under demand and
costs uncertainty. The quality of the solution is then assessed by means
of three different heuristics (GA, SA, and Cross Entropy, CE). Recently,
in Sadrabadi et al. (2024) a two-stage stochastic optimization model
as been presented with the aim of designing a general waste collection
etwork composed by collection, recycling and refinery centers. In such
ormulation, uncertainty lies in the unit costs, in the amount of waste at

the centers and in the population risk caused by transferring hazardous
waste from different locations. The model is finally solved through the

SGA-II metaheuristic.
All the approaches discussed so far and related to waste collec-

tion routing problems under uncertainty are reported in Table 1. The
classification is inspired by Sar and Ghadimi (2023).

With respect to the extant literature, in this work, we introduce
a multi-stage stochastic optimization model to deal with uncertain
waste filling level over multiple periods. The problem is cast into the
framework of SIRP since it integrates inventory management decisions
at each collection node with operational decisions on the visit schedules
and routing sequences under uncertainty. To cope with the computa-
tional complexity of the model, we apply the rolling horizon approach
as decomposition technique of the planning period. This choice allows
us to increase the size of the test instances, obtaining good results
within a reduced time limit. To the best of our knowledge, this work is
the first contribution to the literature where a multi-stage stochastic
programming model has been proposed to solve a waste collection
inventory routing problem under uncertainty. We believe this paper sig-
nificantly enhances the existing literature on waste collection problems
by addressing cost-effective routing while accounting for uncertainty.

3. Problem description and formulation

A company is responsible for the collection of a recyclable type of
aste in a set of 𝑁 locations (bins or containers) over a time horizon
= {1,… , 𝑇 }. The collection network is represented as a complete

irected graph, defined on a set of vertices  = {0, 1,… , 𝑁} where 0
enotes the depot. Distances 𝑑𝑖𝑗 are associated with each arc (𝑖, 𝑗) ∈
×  in the graph. The company needs to determine at stage 𝑡 = 1
hich waste bins have to be visited and the visiting sequence for all

tages 𝑡 ∈  ′′ = {2,… , 𝑇 }. The choice has to be performed with the aim
of maximizing the profit over the whole planning horizon  , defined
as the difference between the revenues from the selling of the collected
waste and the transportation costs. The collected waste is sold at unit
price 𝑅 and the traveling cost per distance unit is fixed to 𝐶.
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Table 1
A selected literature review on the waste collection routing problem under uncertainty.

Reference Variant Objective Model type Source Solution Waste type
of VRP of uncertainty technique

Nuortio et al. (2006) Stochastic Periodic VRP Minimize distance MILP Bins’ filling rate Heuristic Solid wastewith Time Windows Travel times (GVNT)

Kuo et al. (2012) Capacitated VRP Minimize distance ILP Bins’ filling rate Heuristic Solid wastewith Fuzzy Demand (PSO+GA)

Mes et al. (2014) Stochastic Dynamic IRP Minimize cost MILP Bins’ filling rate Heuristic Solid wasteTravel time (Problem-based)

Nolz et al. (2014) Stochastic IRP Minimize cost MILP Bins’ filling rate Heuristic Medical products(ALNS)

Elbek and Wøhlk (2016) Multi-Product Minimize cost MILP Bins’ filling rate Heuristic Solid wasteMulti-Period IRP (VNS+RH)

Gruler et al. (2017) Multi-Depot VRP Minimize cost MILP Bins’ filling rate Heuristic Not specifiedwith Stochastic Demand (ILS+MCS)

Soysal et al. (2018) Chance-Constrained IRP Minimize cost MILP Customer demand Exact solver Food waste

Markov et al. (2020) Stochastic IRP Minimize cost MINLP Bins’ filling rate Heuristic Solid waste(ALNS+SA+RH)

Aliahmadi et al. (2021) Capacitated VRP Minimize cost and MILP Bins’ filling rate Heuristic Solid wastewith Hard Time Windows minimize time (AUGMECON+NSGA-II)

Zhou et al. (2021)
Chance-Constrained VRP Minimize cost and

MILP Pick-up levels
Heuristic

Textilewith Simultaneous maximize profit (GA)
Pickup and Delivery

Gholizadeh et al. (2022) Robust IRP Minimize cost MINLP Demand Heuristic PolystyreneCosts (GA-SA-CE)

Sadrabadi et al. (2024) Stochastic IRP
Minimize cost and

MINLP
Costs Heuristic Recyclable

minimize population Amount of waste (NSGA-II) Hazardous waste
risk Population risk

Abbreviations: ALNS: Adaptive Large Neighborhood Search; AUGMECON: AUGMented 𝜀-CONstraint; CE: Cross Entropy; GA: Genetic Algorithm; GVNT: Guided Variable Neighborhood
Thresholding; ILS: Iterated Local Search; MCS: Monte Carlo Simulation; NSGA-II: Non-dominated Sorting Genetic Algorithm II; RH: Rolling Horizon; SA: Simulated Annealing; VNS:
Variable Neighborhood Search.
t

s

Each bin 𝑖 ∈ ′ = {1,… , 𝑁} has a fixed capacity 𝐸𝑖 and in the first
tage (𝑡 = 1) it is supposed to be filled at 𝑆𝑖𝑛𝑖𝑡

𝑖 percent of its volume. If
e assume that the accumulation rate of waste {𝑎(𝑡)𝑖 }𝑇𝑡=1 of bin 𝑖 ∈ ′ is a

andom parameter evolving as a discrete-time stochastic process with
upport [0, 1], then the information structure can be described in the

form of a scenario tree. At each stage 𝑡 ∈  , there is an ordered set  𝑡 =
{1,… , 𝑛,… , 𝑛𝑡} of nodes where a specific realization of the uncertain
accumulation rate takes place. At the first stage it is associated a unique
node  1 = {1}, i.e. the root, whereas the final 𝑛𝑇 nodes are the leaves
of the scenario tree. At stage 𝑡 ∈  ′′, each node 𝑛 ∈  𝑡 is connected to
a unique node at stage 𝑡 − 1, which is called parent (or ancestor) node
𝑝𝑎(𝑛). A path through nodes from the root to a leaf is called scenario.
At every stage 𝑡 ∈  , each node 𝑛 ∈  𝑡 has a probability 𝜋𝑛 to occur,
and ∑

𝑛∈ 𝑡 𝜋𝑛 = 1. We denote the accumulation rate for bin 𝑖 at node
𝑛 ∈  𝑡, 𝑡 ∈  ′′ by 𝑎𝑛𝑖 . For the sake of illustration, we report in Fig. 1
an example of a three-stage scenario tree.

At each stage 𝑡 ∈  ′ = {1,… , 𝑇 − 1}, we define binary decision
variables 𝑥𝑡𝑖𝑗 and 𝑦𝑡𝑖. The former is related to the activation of the arc
(𝑖, 𝑗) in period 𝑡 + 1. Indeed, at each stage the model plans for the next
stage, by reflecting what happens in practice for the scheduling of the
resources in a waste collection company. If 𝑥𝑡𝑖𝑗 is equal to one, then
the arc (𝑖, 𝑗) will be traversed by a vehicle, with finite capacity 𝑄. All
the variables 𝑥𝑡𝑖𝑗 are defined on the whole graph. Indeed, we assume
that, in the collection period, the vehicle starts at the depot, visits the
selected bins and returns to the depot to discharge the waste. As far as
it concerns the decision variables 𝑦𝑡𝑖, if bin 𝑖 ∈ ′ needs to be visited
in period 𝑡 + 1, then variable 𝑦𝑡𝑖 is equal to one at stage 𝑡. After the
realization of the accumulation rate, the amount of waste collected at
bin 𝑖 is denoted by 𝑤𝑛

𝑖 , for 𝑛 ∈  𝑡, 𝑡 ∈  ′. In Fig. 2 we provide an
xample of a planning for an horizon of six days.

At stage 𝑡 ∈  ′ and for nodes 𝑛 ∈  𝑡, additional decision variables
are 𝑓 𝑛

𝑖𝑗 representing the waste flow shipped through arc (𝑖, 𝑗). We
assume that the waste flow outgoing depot is null. Finally, for all the
4 
time periods, we denote by 𝑢𝑛𝑖 the accumulated amount of waste at bin
𝑖. By avoiding partial collection, when bin 𝑖 is visited, 𝑢𝑛𝑖 is null.

The waste collection problem under study is modeled as an Inven-
ory Routing Problem (IRP) since it combines inventory decisions at

each bin with the scheduling and routing of visits. With respect to
traditional IRPs, given the uncertain nature of the waste accumulation
rate in the bins over multiple time periods, we formulate it as a
multi-stage Stochastic IRP.

Moreover, we define the following notation.
Sets:
 = {𝑖 ∶ 𝑖 = 0, 1,… , 𝑁}: set of 𝑁 waste bins and the depot, denoted by
0;
′ = {𝑖 ∶ 𝑖 = 1,… , 𝑁}: set of 𝑁 waste bins (depot excluded);
 = {𝑡 ∶ 𝑡 = 1,… , 𝑇 }: set of stages;
 ′ = {𝑡 ∶ 𝑡 = 1,… , 𝑇 − 1}: set of stages (last stage excluded);
 ′′ = {𝑡 ∶ 𝑡 = 2,… , 𝑇 }: set of stages (first stage excluded);
 1 = {𝑛 ∶ 𝑛 = 1}: root node at stage 1;
 𝑡 = {𝑛 ∶ 𝑛 = 1,… , 𝑛𝑡}: set of ordered nodes of the tree at stage 𝑡 ∈  .
Deterministic parameters:
𝐶: traveling cost per distance unit;
𝑅: selling price of a recyclable material;
𝑄: vehicle capacity;
𝐵: waste density;
𝑀 : Big-M number, i.e. a suitable large constant value;
𝑑𝑖𝑗 : distance between 𝑖 ∈  and 𝑗 ∈ ;
𝑆 𝑖𝑛𝑖𝑡
𝑖 : percentage of waste on the total volume of bin 𝑖 ∈ ′ at the first
tage;
𝐸𝑖: capacity of bin 𝑖 ∈ ′;
𝑝𝑎(𝑛): parent of node 𝑛 ∈  𝑡, 𝑡 ∈  ′′.
Stochastic parameters:
𝑎𝑛𝑖 : uncertain accumulation rate of bin 𝑖 ∈ ′ at node 𝑛 ∈  𝑡, 𝑡 ∈  ′′

(percentage on the total volume of the bin);
𝜋𝑛: probability of node 𝑛 ∈  𝑡, 𝑡 ∈  .
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Fig. 1. Example of a three-stage scenario tree. On the left: the structure of the scenario tree. The numbers on the branches denote the transition probabilities of the random
rocess from each parent node 𝑝𝑎(𝑛) to node 𝑛. On the right: table with nodes at each stage and the corresponding probabilities.
Fig. 2. Example of a collection plan with 5 bins. On the left: collection routes for day 2 (bins 1, 2) and day 5 (bins 5, 4, 3). On the right: table with active binary decision
ariables 𝑥𝑡𝑖𝑗 and 𝑦𝑡𝑖 and corresponding visiting sequence.
d
t
c

t

Decision variables:
𝑥𝑡𝑖𝑗 ∈ {0, 1}: binary variable indicating if arc (𝑖, 𝑗) is visited at time 𝑡+ 1,

ith 𝑡 ∈  ′ and for 𝑖, 𝑗 ∈ , 𝑖 ≠ 𝑗;
𝑦𝑡𝑖 ∈ {0, 1}: binary variable indicating if waste bin 𝑖 ∈ ′ is visited at
time 𝑡 + 1, with 𝑡 ∈  ′;
𝑓 𝑛
𝑖𝑗 ∈ R+: non-negative variable representing the waste flow between

𝑖 ∈ ′ and 𝑗 ∈ , 𝑖 ≠ 𝑗, for 𝑛 ∈  𝑡, 𝑡 ∈  ′′;
𝑤𝑛

𝑖 ∈ R+: non-negative variable representing the amount of waste
collected at bin 𝑖 ∈ ′, for 𝑛 ∈  𝑡, 𝑡 ∈  ′′;
𝑢𝑛𝑖 ∈ R+: non-negative variable representing the amount of waste at bin
𝑖 ∈ ′, for 𝑛 ∈  𝑡, 𝑡 ∈  .

We propose the following stochastic multi-stage mixed-integer lin-
ar programming model :

max 𝑅
∑

𝑡∈ ′′

∑

𝑛∈ 𝑡

𝜋𝑛
∑

𝑖∈′
𝑤𝑛

𝑖 − 𝐶
∑

𝑡∈ ′

∑

𝑖,𝑗∈
𝑖≠𝑗

𝑑𝑖𝑗𝑥
𝑡
𝑖𝑗 (1)

s.t.
∑

𝑗∈
𝑗≠𝑖

𝑓 𝑛
𝑖𝑗 −

∑

𝑗∈′
𝑗≠𝑖

𝑓 𝑛
𝑗 𝑖 = 𝑤𝑛

𝑖 𝑖 ∈ ′, 𝑛 ∈  𝑡, 𝑡 ∈  ′′ (2)

𝑓 𝑛
𝑖𝑗 ≤ (𝑄 − 𝐸𝑗𝐵 𝑎𝑛𝑗 )𝑥𝑡−1𝑖𝑗 𝑖, 𝑗 ∈ ′, 𝑖 ≠ 𝑗 , 𝑛 ∈  𝑡, 𝑡 ∈  ′′ (3)

𝑓 𝑛
𝑖0 ≤ 𝑄𝑥𝑡−1𝑖0 𝑖 ∈ ′, 𝑛 ∈  𝑡, 𝑡 ∈  ′′ (4)

𝑓 𝑛
𝑖𝑗 ≤ 𝑄 −𝑤𝑛

𝑗 𝑖, 𝑗 ∈ ′, 𝑖 ≠ 𝑗 , 𝑛 ∈  𝑡, 𝑡 ∈  ′′ (5)

𝑓 𝑛
𝑖𝑗 ≥ 𝑤𝑛

𝑖 −𝑀(1 − 𝑥𝑡−1𝑖𝑗 ) 𝑖 ∈ ′, 𝑗 ∈ , 𝑖 ≠ 𝑗 , 𝑛 ∈  𝑡, 𝑡 ∈  ′′ (6)
∑

𝑗∈
𝑗≠𝑖

𝑥𝑡𝑖𝑗 = 𝑦𝑡𝑖 𝑖 ∈ ′, 𝑡 ∈  ′ (7)

∑

𝑖∈
𝑖≠𝑗

𝑥𝑡𝑖𝑗 = 𝑦𝑡𝑗 𝑗 ∈ ′, 𝑡 ∈  ′ (8)

∑

𝑖∈′
𝑥𝑡𝑖0 =

∑

𝑗∈′
𝑥𝑡0𝑗 𝑡 ∈  ′ (9)

𝑤𝑛
𝑖 ≤ 𝐸𝑖𝐵 𝑦𝑡−1𝑖 𝑖 ∈ ′, 𝑛 ∈  𝑡, 𝑡 ∈  ′′ (10)
𝑛 𝑡−1 ′ 𝑡 ′′
𝑢𝑖 ≤ 𝑀(1 − 𝑦𝑖 ) 𝑖 ∈  , 𝑛 ∈  , 𝑡 ∈  (11)

5 
𝑢𝑛𝑖 = 𝐸𝑖𝐵 𝑆𝑖𝑛𝑖𝑡
𝑖 𝑖 ∈ ′, 𝑛 ∈  1 (12)

𝑢𝑛𝑖 = 𝑢𝑝𝑎(𝑛)𝑖 + 𝐸𝑖𝐵 𝑎𝑛𝑖 −𝑤𝑛
𝑖 𝑖 ∈ ′, 𝑛 ∈  𝑡, 𝑡 ∈  ′′ (13)

𝑢𝑝𝑎(𝑛)𝑖 ≤
(

1 − 𝑎𝑛𝑖
)

𝐸𝑖𝐵 𝑖 ∈ ′, 𝑛 ∈  𝑡, 𝑡 ∈  ′′ (14)

𝑥𝑡𝑖𝑗 ∈ {0, 1} 𝑖, 𝑗 ∈ , 𝑖 ≠ 𝑗 , 𝑡 ∈  ′ (15)

𝑦𝑡𝑖 ∈ {0, 1} 𝑖 ∈ ′, 𝑡 ∈  ′ (16)

𝑓 𝑛
𝑖𝑗 ≥ 0 𝑖 ∈ ′, 𝑗 ∈ , 𝑖 ≠ 𝑗 , 𝑛 ∈  𝑡, 𝑡 ∈  ′′ (17)

𝑤𝑛
𝑖 ≥ 0 𝑖 ∈ ′, 𝑛 ∈  𝑡, 𝑡 ∈  ′′ (18)

𝑢𝑛𝑖 ≥ 0 𝑖 ∈ ′, 𝑛 ∈  𝑡, 𝑡 ∈  (19)

The objective function (1) is composed by the following terms: (i)
the revenues from selling the expected collected waste and (ii) the
transportation costs, depending on the routing plan and on the total
traveled distance. Constraints (2) guarantee the flow balance at each
waste bin 𝑖, for every node 𝑛 ∈  𝑡 and for every period 𝑡 ∈  ′′.
Constraints (3) to (5) provide upper bounds on the flow variables 𝑓 𝑛

𝑖𝑗 ,
for each node 𝑛 ∈  𝑡 at stage 𝑡 ∈  ′′. Specifically, constraints (3)
guarantee that if bins 𝑖 and 𝑗 are not connected, then the waste flow
between them is null; otherwise, its sum with the uncertain accumula-
tion amount of waste at 𝑗 cannot exceed the vehicle capacity. Similarly
for constraints (4) as far as it concerns the flow between bin 𝑖 and the
depot, once the arc (𝑖, 0) is traversed: the vehicle cannot transport to the
epot more waste than its capacity. Finally, constraints (5) ensure that
he sum of the waste flow between bins 𝑖 and 𝑗 and the amount of waste
ollected at bin 𝑗 cannot exceed the vehicle capacity. Constraints (6)

provide lower bounds on the flow variable 𝑓 𝑛
𝑖𝑗 such that if the vehicle

ravels from bin 𝑖 to bin 𝑗 or from bin 𝑖 to the depot, with 𝑛 ∈  𝑡 and 𝑡 ∈
 ′′, all of the accumulated amount of waste at bin 𝑖 should be collected.
Constraints (7) and (8) link together the decision variables 𝑥𝑡𝑖𝑗 and 𝑦𝑡𝑖
for each stage 𝑡 ∈  ′ and ensure that, if bin 𝑖 is visited, then there exists
exactly one route reaching and one route leaving 𝑖; on the other hand,

no visits at bin 𝑖 imply no incoming edges to and no outgoing edges
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Fig. 3. Representation of the two-commodity flow formulation on the same network of Fig. 2 for route 0-5-4-3-0. A copy depot (Vertex 6) is introduced, and the truck capacity
𝑄 is equal to 7. The solid lines represent the actual visiting sequence, starting from the depot and ending in the copy depot, with corresponding waste flows 𝑓 𝑛

𝑖𝑗 . The dashed lines
re associated with the reverse flows 𝑓 𝑛

𝑗 𝑖, related to the empty space in the vehicle. Note that 𝑓 𝑛
𝑖𝑗 + 𝑓 𝑛

𝑗 𝑖 = 𝑄.
c
(

e

b
(
t
a

from 𝑖. Constraints (9) impose the depot’s balance by enforcing that the
umbers of incoming and outgoing edges are the same for every period
∈  ′. This means that, whether the vehicle performs a route starting
rom the depot, then it must return to the depot. Constraints (10) ensure
hat the collection amount 𝑤𝑛

𝑖 at bin 𝑖 in node 𝑛 ∈  𝑡, for 𝑡 ∈  ′′ must
e zero, unless the bin is visited. Constraints (11) guarantee that the
mount of waste 𝑢𝑛𝑖 at bin 𝑖 at node 𝑛 ∈  𝑡 and stage 𝑡 ∈  ′′ must
e zero if the bin is visited. Constraints (12) fix the initial amount of
aste 𝑢𝑛𝑖 at bin 𝑖 at the root of the scenario tree. Constraints (13) update

at every node 𝑛 ∈  𝑡 and for every period 𝑡 ∈  ′′ the amount of
waste 𝑢𝑛𝑖 at bin 𝑖 by incorporating the uncertain accumulated amount
f waste and, potentially, by subtracting the amount of collected waste
𝑛
𝑖 . Constraints (14) impose that no bins are allowed to overflow at
ach node 𝑛 ∈  𝑡, 𝑡 ∈  ′′. Finally, constraints from (15) to (19) define

the decision variables of the problem. We denote by 𝑧∗ the optimal
expected profit of model .

3.1. A two-commodity flow model

In model , the distances between two locations are considered
as asymmetric, i.e. in general 𝑑𝑖𝑗 ≠ 𝑑𝑗 𝑖, for 𝑖, 𝑗 ∈ . This assumption
impacts not only the objective function (1), but also both the con-
straints (2) and (4)–(6) related to the flow variables 𝑓 𝑛

𝑖𝑗 , and the degree
constraints (7)–(9) on variables 𝑥𝑡𝑖𝑗 and 𝑦𝑡𝑖. This leads to an increase
of the size of the model, due to a considerable number of inequality
constraints.

In practical cases, however, distances 𝑑𝑖𝑗 and 𝑑𝑗 𝑖 computed as
shortest paths between vertices 𝑖-𝑗 and 𝑗-𝑖, respectively, may not be
ignificantly different. For example, the average percentage difference
f the distances between the endpoints of a link we observed in our
nstances is relatively small, being smaller than 6%. Therefore, consid-
ring a symmetric distance matrix does not result in a considerable
orsening of the solution. For this reason, we design an alternative
ersion of model , denoted by 𝑠𝑦𝑚, based on the two-commodity
low formulation proposed in Baldacci et al. (2004) and applied to a
aste collection problem in Ramos et al. (2018). Hence, a copy depot

denoted by 𝑁 + 1 is introduced and each route is defined according to
two paths: one direct path from depot 0 to depot 𝑁 + 1, with variables
𝑓 𝑛
𝑖𝑗 representing the load of the vehicle, and one reverse path, from

depot 𝑁 + 1 to depot 0, with variables 𝑓 𝑛
𝑗 𝑖 denoting the empty space of

the vehicle (see Fig. 3 for an illustrative example).
Each edge is therefore counted twice and the objective function (1)

eeds to be updated as

max 𝑅
∑

𝑡∈ ′′

∑

𝑛∈ 𝑡

𝜋𝑛
∑

𝑖∈′
𝑤𝑛

𝑖 −
𝐶
2

∑

𝑡∈ ′

∑

𝑖,𝑗∈
𝑖≠𝑗

𝑑𝑖𝑗𝑥
𝑡
𝑖𝑗 .
6 
Constraints (2) are replaced by
∑

𝑗∈
𝑗≠𝑖

(𝑓 𝑛
𝑖𝑗 − 𝑓 𝑛

𝑗 𝑖) = 2𝑤𝑛
𝑖 𝑖 ∈ ′, 𝑛 ∈  𝑡, 𝑡 ∈  ′′,

since the two-commodity flow formulation considers two flows pass-
ing through each node 𝑖. In addition, constraints (4)–(6) are substituted
by
∑

𝑖∈′
𝑓 𝑛
𝑖𝑁+1 =

∑

𝑖∈′
𝑤𝑛

𝑖 𝑛 ∈  𝑡, 𝑡 ∈  ′′ (20)

and

𝑓 𝑛
𝑖𝑗 + 𝑓 𝑛

𝑗 𝑖 = 𝑄𝑥𝑡−1𝑖𝑗 𝑖, 𝑗 ∈ , 𝑖 ≠ 𝑗 , 𝑛 ∈  𝑡, 𝑡 ∈  ′′. (21)

Constraints (20) ensure that the total inflow of the copy depot
orresponds to the total amount of collected waste, whereas constraints
21) impose that, whenever an edge is traversed, the sum of the direct

and reverse flows is equal to the capacity of the vehicle. Finally, the
degree constraints (7)–(9) reduce to
∑

𝑖∈
𝑖≠𝑗

𝑥𝑡𝑖𝑗 = 2𝑦𝑡𝑗 𝑗 ∈ ′, 𝑡 ∈  ′.

All the other constraints not mentioned remain unchanged when
passing from model  to 𝑠𝑦𝑚. For the sake of completeness, the
ntire model formulation 𝑠𝑦𝑚 is reported in Appendix.

3.2. A polynomially solvable case

The proposed SIRP formulation is clearly NP-hard, since it can
e reduced to the well-known NP-hard Traveling Salesman Problem
see Garey & Johnson, 1979), whenever the time horizon is  = {1, 2},
he selling price 𝑅 is zero, the capacity 𝑄 of the vehicle is infinite, and
ll the waste bins need to be visited at day 2 in order to avoid overflow.

On the other hand, the waste collection problem admits a polynomi-
ally solvable case if routing decisions are excluded from the problem.
This will be addressed in the following proposition.

Proposition 1. If 𝐶 = 0, then the optimal profit of model  is

𝑧∗ = 𝑅𝐵
{

∑

𝑖∈′
𝐸𝑖

(

𝑆𝑖𝑛𝑖𝑡
𝑖 +

∑

𝑡∈ ′′
E
[

𝑎(𝑡)𝑖
]

)}

, (22)

where E
[

𝑎(𝑡)𝑖
]

is the expected accumulation rate of waste at time 𝑡 ∈  ′′ for
bin 𝑖 ∈ ′.

Proof. We prove the proposition by induction on the time horizon 𝑇 .
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• (Base case) We consider the case of a two-stage problem (𝑇 = 2).
Since 𝐶 = 0 and  ′′ = {2}, profit (1) reduces to
𝑧 = 𝑅

∑

𝑛∈ 2

𝜋𝑛
∑

𝑖∈′
𝑤𝑛

𝑖 .

From constraints (12)–(13), it holds that

𝑤𝑛
𝑖 = 𝐸𝑖𝐵 𝑆𝑖𝑛𝑖𝑡

𝑖 + 𝐸𝑖𝐵 𝑎𝑛𝑖 − 𝑢𝑛𝑖 𝑖 ∈ ′, 𝑛 ∈  2,

which, substituting in the objective function and considering that
∑

𝑛∈ 2 𝜋𝑛 = 1 and ∑

𝑛∈ 2 𝜋𝑛𝑎𝑛𝑖 = E
[

𝑎(2)𝑖
]

, gives
𝑧 = 𝑅

∑

𝑛∈ 2

𝜋𝑛
∑

𝑖∈′
𝐸𝑖𝐵 𝑆 𝑖𝑛𝑖𝑡

𝑖 + 𝑅
∑

𝑛∈ 2

𝜋𝑛
∑

𝑖∈′
𝐸𝑖𝐵 𝑎𝑛𝑖 − 𝑅

∑

𝑛∈ 2

𝜋𝑛
∑

𝑖∈′
𝑢𝑛𝑖

= 𝑅𝐵
∑

𝑖∈′
𝐸𝑖(𝑆𝑖𝑛𝑖𝑡

𝑖 + E
[

𝑎(2)𝑖
]

) − 𝑅
∑

𝑛∈ 2

𝜋𝑛
∑

𝑖∈′
𝑢𝑛𝑖 .

Moreover, we note that the objective function 𝑧 is the difference
of two non-negative quantities, where the first one is constant.
Thus,

max 𝑧 = 𝑅𝐵
∑

𝑖∈′
𝐸𝑖(𝑆𝑖𝑛𝑖𝑡

𝑖 + E
[

𝑎(2)𝑖
]

) − min𝑅
∑

𝑛∈ 2

𝜋𝑛
∑

𝑖∈′
𝑢𝑛𝑖 ,

where the minimum of the second term is reached at 𝑢𝑛𝑖 = 0, for
all 𝑛 ∈  2, 𝑖 ∈ ′: the thesis is verified.

• (Inductive step) We assume that the thesis holds for a model with
time horizon 𝑇 − 1, being 𝑇 > 2. We need to prove that the thesis
is also verified for a model with time horizon 𝑇 . In this case, the
objective function can be decomposed as

𝑅
𝑇
∑

𝑡=2

∑

𝑛∈ 𝑡

𝜋𝑛
∑

𝑖∈′
𝑤𝑛

𝑖 = 𝑅
𝑇−1
∑

𝑡=2

∑

𝑛∈ 𝑡

𝜋𝑛
∑

𝑖∈′
𝑤𝑛

𝑖 + 𝑅
∑

𝑛∈ 𝑇

𝜋𝑛
∑

𝑖∈′
𝑤𝑛

𝑖 .

Given the induction hypothesis, the optimal profit of the first
addendum corresponds to 𝑅𝐵

{

∑

𝑖∈′ 𝐸𝑖

(

𝑆𝑖𝑛𝑖𝑡
𝑖 +

∑𝑇−1
𝑡=2 E

[

𝑎(𝑡)𝑖
]

)}

.

At stage 𝑇 , from constraints (13), it holds that 𝑤𝑛
𝑖 = 𝐸𝑖𝐵 𝑎𝑛𝑖 , for all

𝑖 ∈ ′, 𝑛 ∈  𝑇 , since 𝑢𝑝𝑎(𝑛)𝑖 = 0 for the induction hypothesis and
𝑢𝑛𝑖 = 0 for the same reasoning of the base case. Consequently, we
get

𝑧∗ = 𝑅𝐵
{

∑

𝑖∈′
𝐸𝑖

(

𝑆 𝑖𝑛𝑖𝑡
𝑖 +

𝑇−1
∑

𝑡=2
E
[

𝑎(𝑡)𝑖
]

)}

+ 𝑅𝐵
∑

𝑖∈′
𝐸𝑖E

[

𝑎(𝑇 )𝑖
]

,

which verifies the thesis. □

We conclude that parameters 𝑅 and 𝐶 have different roles: when
𝑅 = 0 model  is NP-hard, whereas if 𝐶 = 0 an optimal policy can
be computed in 𝑂(𝑇 ) time. For this reason, given the computational
complexity of the problem in the general case, heuristic methods are
required. To cope with this issue, in the next section we apply the
rolling horizon approach to the considered problem.

4. The rolling horizon approach and its worst-case analysis

One of the most classical heuristic algorithms for multi-stage
stochastic programming models is the rolling horizon approach
(see Chand et al., 2002). According to this methodology, the multi-stage
tochastic problem is decomposed into a sequence of subproblems with
 fewer number 𝑊 of consecutive periods (see Cavagnini et al., 2022).

This leads to a reduced computational effort because at each iteration
of the algorithm the number of nodes considered in the scenario tree
is lower than the one in the original multi-stage program. However,
the quality of the solution may deteriorate since the time horizon is
reduced and the solution may be suboptimal (see Bertazzi & Maggioni,
2018). In the following, we present the details of the approach.

First of all, we fix the reduced number 𝑊 of consecutive periods,
with 1 ≤ 𝑊 < 𝑇 − 1. In the first iteration of the algorithm, the (𝑊 + 1)-
stage Stochastic Programming (SP) model defined on 𝑡 = 1,… , 𝑊 + 1
is solved, and the values of the first-stage decision variables 𝑥1𝑖𝑗 and
𝑦1 and the second-stage variables 𝑤𝑛 and 𝑢𝑛, for 𝑛 ∈  2, are stored. In
𝑖 𝑖 𝑖
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the second iteration, the value of the inventory levels 𝑢𝑛𝑖 for 𝑛 ∈  2 are
fixed as the ones deduced from the first iteration. This is needed to keep
track of the evolution of the process and to link the two consecutive
time periods. Then, the (𝑊 + 1)-stage stochastic programming model
defined on 𝑡 = 2,… , 𝑊 + 2 is solved and, as before, the values of the
second-stage decision variables 𝑥2𝑖𝑗 and 𝑦2𝑖 and the third-stage variables
𝑤𝑛

𝑖 and 𝑢𝑛𝑖 , for 𝑛 ∈  3, are stored. This process is repeated until the
last iteration defined on stages 𝑡 = 𝑇 −𝑊 ,… , 𝑇 is performed. Then, a
𝑊 -stage stochastic programming model defined on 𝑡 = 𝑇 −𝑊 + 1,… , 𝑇
is solved and the same approach described above is applied. Next, a
(𝑊 − 1)-stage stochastic programming model defined on 𝑡 = 𝑇 − 𝑊 +
,… , 𝑇 is solved and the process is repeated until the last two-stage

stochastic programming model defined on 𝑡 = 𝑇 − 1, 𝑇 .
Once the 𝑇 − 1 stochastic programming models have been solved,

the variables 𝑥𝑡𝑖𝑗 , 𝑦
𝑡
𝑖 for all 𝑡 ∈  ′ and 𝑤𝑛

𝑖 for all 𝑛 ∈  𝑡 and 𝑡 ∈  ′′

are obtained. The corresponding value of the objective function (1) is
then computed, leading to 𝑧𝑅𝐻 ,𝑊 . Schematically, the algorithm can be
epresented as in Pseudocode 1.
Pseudocode 1 The rolling horizon approach for model 
Input: 𝑇 , 1 ≤ 𝑊 < 𝑇 − 1
1: 𝑘 ← 1, 𝑙 ← 𝑊 + 1
2: 𝑢+𝑛∗𝑖 ← 𝑢1𝑖 , 𝑛 ∈  𝑡, 𝑡 = 𝑘
3: while 𝑘 ≤ 𝑇 −𝑊 do
4: Solve (𝑊 + 1)-stage SP model on 𝑡 = 𝑘,… , 𝑙 with 𝑢+𝑛𝑖 ← 𝑢+𝑛∗𝑖 ,

𝑛 ∈  𝑡, 𝑡 = 𝑘
5: Store 𝑥𝑡∗𝑖𝑗 , 𝑦𝑡∗𝑖 , 𝑡 = 𝑘 and 𝑢𝑛∗𝑖 , 𝑤𝑛∗

𝑖 , 𝑛 ∈  𝑡, 𝑡 = 𝑘 + 1
6: 𝑘 ← 𝑘 + 1, 𝑙 ← 𝑙 + 1
7: end while
8: 𝑗 ← 1
9: while 𝑘 ≤ 𝑇 − 1 do
0: Solve (𝑊 + 1 − 𝑗)-stage SP model on 𝑡 = 𝑘,… , 𝑇 with 𝑢+𝑛𝑖 ← 𝑢+𝑛∗𝑖 ,

𝑛 ∈  𝑡, 𝑡 = 𝑘
1: Store 𝑥𝑡∗𝑖𝑗 , 𝑦𝑡∗𝑖 , 𝑡 = 𝑘 and 𝑢𝑛∗𝑖 , 𝑤𝑛∗

𝑖 , 𝑛 ∈  𝑡, 𝑡 = 𝑘 + 1
2: 𝑘 ← 𝑘 + 1, 𝑗 ← 𝑗 + 1
3: end while
4: Return the corresponding value of the objective function (1).

We now perform a worst-case analysis of this approach. The follow-
ing results hold true.

Theorem 4.1. If 𝐶 = 0, then
𝑧𝑅𝐻 ,𝑊
𝑧∗

= 1,
for every choice of 𝑊 = 1,… , 𝑇 − 2.

Proof. Consider the case of 𝑊 = 1, where 𝑇 − 1 two-stage stochastic
optimization models have to be solved. Since all the subproblems do
not share any overlapping period, if we denote by 𝑧𝑅𝐻 ,1

𝑡,𝑡+1 the objective

unction value on time period {𝑡, 𝑡 + 1}, the total profit is
𝑧𝑅𝐻 ,1 = 𝑧𝑅𝐻 ,1

1,2 + 𝑧𝑅𝐻 ,1
2,3 +⋯ + 𝑧𝑅𝐻 ,1

𝑇−1,𝑇

= 𝑅𝐵
{

∑

𝑖∈′
𝐸𝑖

(

𝑆𝑖𝑛𝑖𝑡
𝑖 + E

[

𝑎(2)𝑖
]

+ E
[

𝑎(3)𝑖
]

+⋯ + E
[

𝑎(𝑇 )𝑖
]

)}

.

The previous expression coincides with (22), and so the thesis is
verified.

When considering a value 𝑊 > 1, only the collecting variables
𝑤𝑛

𝑖 at the second stage of each subproblem are stored, meaning that
xclusively the accumulation rates at that stage are considered in the
ptimal solution. This implies the thesis in a similar fashion as 𝑊 =

1. □
On the other hand, when 𝑅 = 0, the following result on the

performance of the rolling horizon approach with 𝑊 = 1 holds.

Theorem 4.2. There exists a class of instances such that 𝑧𝑅𝐻 ,1 = −∞,
even if model  is feasible.
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Fig. 4. Graph of the accumulation rate (23).
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Proof. Consider the following class of instances: initial amount of
aste 𝑆 𝑖𝑛𝑖𝑡

𝑖 = 0 for all 𝑖 ∈ ′; vehicle capacity 𝑄 > ∑

𝑖∈′ 𝐸𝑖; selling
price 𝑅 = 0.

For all 𝑖 ∈ ′, let 𝛼𝑖 ∈ (0, 1), 𝜀𝑖 ∈ (0, 𝛼𝑖𝐸𝑖], and the accumulation rate
𝑛
𝑖 be such that

𝑎𝑛𝑖 =

⎧

⎪

⎨

⎪

⎩

0 if 𝑛 ∈  𝑡, 𝑡 ∈  ′ ∪ {𝑇 − 2}
𝛼𝑖𝐸𝑖 if 𝑛 ∈  𝑇−1

(1 − 𝛼𝑖)𝐸𝑖 + 𝜀𝑖 if 𝑛 ∈  𝑇 .

(23)

The graph of 𝑎𝑛𝑖 is depicted in Fig. 4.
We apply the rolling horizon approach with 𝑊 = 1. This means

hat 𝑇 − 1 two-stage stochastic programming models have to be solved.
n the first 𝑇 − 3 programs, all the decision variables are zero, since
here is no waste to collect. Similarly for the model defined on stages
= 𝑇 − 2, 𝑇 − 1, with the exception of 𝑢𝑇−1𝑖 which is equal to 𝛼𝑖𝐸𝑖,

or all 𝑖 ∈ ′. However, the last optimization model defined on stages
= 𝑇 − 1, 𝑇 is infeasible because each waste bin 𝑖 ∈ ′ incurs into
verflowing, due to the violation of constraints (14). This implies that
𝑅𝐻 ,1 = −∞.

On the other hand, the optimal profit 𝑧∗ of the multi-stage stochas-
ic optimization model is equal to −𝐶

∑

𝑖,𝑗∈
𝑖≠𝑗

𝑑𝑖𝑗𝑥𝑇−1𝑖𝑗 , deriving from a
ollection on day 𝑇 . □

Making the appropriate changes, a similar performance of the
rolling horizon approach with 𝑊 = 1 also holds within model 𝑠𝑦𝑚.

5. Computational results

In this section, we first describe the instances on which we perform
the numerical simulations (see Section 5.1). Section 5.2 compares
the solutions of models  and 𝑠𝑦𝑚. In Section 5.3, the validation
f model  with standard stochastic measures is provided, and the
uality of the expected value solution is discussed. In Section 5.4, the

performance of the rolling horizon approach is assessed. Then, the
results on a large case study are presented in Section 5.5. Finally,

anagerial insights are provided in Section 5.6.
All computational experiments are obtained using GAMS 38.3.0 and

olver Gurobi 9.5 on an Intel(R) Core(TM) i5-8500 64-bit machine,
ith 8 GB RAM and 3.00 GHz processor. Unless otherwise specified,
 runtime limit of 24 h is imposed.

5.1. Data analysis

The data considered in this study are inspired by a real case problem
provided by the industrial partner ERSUC - Resíduos Sólidos do Cen-
tro, S.A., one of the main waste management companies in Portugal.
The company operates in the Central Region of Portugal and owns
 homogeneous fleet of vehicles based at two different depots, one
ear the city of Aveiro and the other close to Coimbra. The recyclables
8 
collection is performed independently for each type of waste (glass,
aper/cardboard and plastic/metal).

The case study described in the following focuses on the collection
of plastic/metal waste, related to packaging materials and around the
uburban municipality of Condeixa-a-Nova in the district of Coimbra.

Real data have been provided by ERSUC on the filling rate of 121
waste bins between April and July 2019 (15 weeks). The data are
gathered by the garbage collector only on the collection days (20 days
in total). The working days of the company include all the days of a
week, except Sunday. Therefore, we set the time horizon in the model
as  = {1,… , 6}.

We perform simulations on both small and large instances. As far as
it concerns the small cases, we generate a set of thirty instances with a
reduced number of bins, randomly drawn from the entire dataset of 121
bins. For simplicity, we denote each small instance on the basis of the
coding scheme ‘‘inst_𝑑 𝑟𝑎𝑤_𝑛𝑢𝑚𝑏𝑖𝑛𝑠’’, where 𝑑 𝑟𝑎𝑤 is an integer between
1 and 10 associated with the random draw, and 𝑛𝑢𝑚𝑏𝑖𝑛𝑠 is the number
of selected bins (9, 10 or 11). In addition, we consider a large instance
composed by 50 bins to simulate a real case study of waste collection,
ince fifty is the average number of bins in a collection route of the
ndustrial partner.

The deterministic parameters of the model are shown in Table 2.
As in Ramos et al. (2018), transportation cost 𝐶 includes fuel con-

sumption, maintenance of the vehicle and drivers’ wages. The revenue
parameter 𝑅 is derived as follows: for each ton of packaging collected
and sorted, the Sociedade Ponto Verde (the packaging waste regulator
in Portugal) pays 545 €/ton to the waste collection company; since
only the collection activity is being considered in this work, which
corresponds to approximately the 55% of the total cost, the selling price
𝑅 is adjusted to 0.30 €/kg.

We discuss now how we construct the random process {𝑎(𝑡)𝑖 }𝑇𝑡=1 of
he daily accumulation rate, based on observations provided by the
ndustrial partner. For each bin 𝑖 ∈ ′, we denote by {𝑝(𝑡)𝑖 }20𝑡=1 the
istorical data of the filling rate on collection days. For all 𝑖 ∈ ′, we
et 𝑆 𝑖𝑛𝑖𝑡

𝑖 equal to 𝑝(1)𝑖 . We assume that, if 𝑡1 and 𝑡2 are two consecutive
ollection days, the increase (or decrease) of the filling rate of waste
etween 𝑡1 and 𝑡2 is constant. Once the waste collector visits bin 𝑖

at time 𝑡1, then she/he empties it, i.e. 𝑝(𝑡1)𝑖 = 0. Thus, the daily
accumulation rate of waste in bin 𝑖 can be calculated as

𝑎(𝑡)𝑖 =
𝑝(𝑡2)𝑖 − 𝑝(𝑡1)𝑖
𝑡2 − 𝑡1

=
𝑝(𝑡2)𝑖
𝑡2 − 𝑡1

, 𝑡 = 𝑡1 + 1,… , 𝑡2.

By following this procedure, for each bin 𝑖 ∈ ′, a complete
rajectory of the stochastic process {𝑎(𝑡)𝑖 }𝑇𝑡=1 is obtained on a daily basis.

In the Appendix we report the scenario tree generation procedure
we adopt, along with an in-sample stability analysis on the number of
scenarios to be considered in the scenario tree. In the remainder of the
paper, we show the results obtained on a tree with 32 scenarios and 63
nodes.
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Table 2
Parameters values and sources.
Parameter Value Source

𝐶 1 e/km ERSUC
𝑅 0.30 e/kg Sociedade Ponto Verde
𝑄 2000 kg ERSUC
𝐵 30 kg/m3 ERSUC
𝑀 105 –
𝑑𝑖𝑗 , 𝑖, 𝑗 ∈  Actual road distance between 𝑖 and 𝑗 ERSUC and OpenRouteService
𝑆 𝑖𝑛𝑖𝑡
𝑖 , 𝑖 ∈ ′ Initial percentage of waste on the total volume of bin 𝑖 ERSUC

𝐸𝑖, 𝑖 ∈ ′ 2.5 m3 ERSUC
Table 3
Average results from solving models  and 𝑠𝑦𝑚 on small instances. Standard deviations are reported in brackets.

Number of bins 9 () 9 (𝑠𝑦𝑚) 10 () 10 (𝑠𝑦𝑚) 11 () 11 (𝑠𝑦𝑚)

Binary variables 495 595 600 710 715 835
Continuous variables 6705 7263 8070 8690 9559 10 241
Equality constraints 1220 8052 1355 9546 1490 11 164
Inequality constraints 16 182 6138 19 840 7440 23 870 8866

Profit (e) 18.16 (13.27) 18.45 (13.40) 34.37 (13.40) 34.67 (13.62) 41.25 (14.88) 41.50 (14.81)
Weight of collected waste (kg) 478.15 (102.51) 478.15 (102.51) 513.83 (76.13) 513.83 (76.13) 612.48 (44.04) 612.48 (44.04)
Traveled distance (km) 125.28 (22.08) 124.99 (21.96) 119.78 (19.50) 119.46 (19.33) 142.50 (8.66) 142.25 (8.66)
Ratio weight/distance (kg/km) 3.80 (0.32) 3.80 (0.32) 4.32 (0.45) 4.33 (0.46) 4.31 (0.38) 4.32 (0.38)
CPU time (s) 1434.00 (3033.56) 15.60 (6.08) 1382.00 (1200.85) 32.80 (20.15) 3259.40 (4395.80) 37.50 (21.95)
Optimality gap 0% 0% 0% 0% 0% 0%
Table 4
Average results from solving models  and 𝑠𝑦𝑚 on the large instance. OOM stands for ‘‘Out-Of-Memory’’.

Number of bins 50 () 50 (𝑠𝑦𝑚) 121 () 121 (𝑠𝑦𝑚)

Binary variables 13 000 13 510 74 415 75 635
Continuous variables 164 350 167 450 930 369 937 871
Equality constraints 6755 170 986 16 340 946 164
Inequality constraints 471 200 161 200 2 738 230 922 746

Profit (e) 501.29 581.59 – –
Weight of collected waste (kg) 2306.69 2585.16 – –
Traveled distance (km) 190.72 193.96 – –
Ratio weight/distance (kg/km) 12.09 13.33 – –
CPU time (s) 86 400 86 400 OOM OOM
Optimality gap 20.82% 2.77% – −
𝑅
s

a
d
S
𝑡
𝑅

5.2. A comparison of models  and 𝑠𝑦𝑚 solutions

Solving either model  or model 𝑠𝑦𝑚 to optimality on the whole
dataset of 121 bins is not possible on our machine, given the high
number of variables and constraints (see Table 4). When considering
educed instances composed by 9, 10 or 11 bins, models  and 𝑠𝑦𝑚
rovide the same policy in terms of bin selection, visiting schedule, and
onsequent weight of collected waste (see row 7 in Table 3). However,

due to the assumption of symmetric distances, the traveled distance and
he profit are different. On the other hand, on the large instance with
0 bins model 𝑠𝑦𝑚 outperforms model , since the optimality gap is
uch smaller (see row 11 in Table 4). For this reason, in the following

we show results obtained with model  on small instances, whereas
the large instance outcomes rely on model 𝑠𝑦𝑚.

5.3. The impact of uncertainty and the quality of the deterministic solution

The purpose of this section is twofold. Firstly, we discuss the im-
portance of including stochasticity in the waste collection problem
under investigation by comparing the optimal value of the stochastic
formulation, i.e. the Recourse Problem (𝑅𝑃 ) with the perfect information
case (the so-called Wait and See approach, 𝑊 𝑆, see Birge & Louveaux,
2011). Secondly, we show the benefits of considering stochasticity in

odel  with respect to its deterministic counterpart (the so-called
xpected Value problem, 𝐸 𝑉 , see Birge & Louveaux, 2011). All the
9 
results reported below are obtained with small instances, as they are
solved at optimality.

In the perfect information case, the realization of the waste accu-
mulation rate is already known at the very first stage. Therefore, it is
possible to compute the 𝑊 𝑆 as the average of the optimal values over
single-scenario problems. The comparison between the 𝑊 𝑆 and the
𝑃 is provided by the %Expected Value of Perfect Information (%𝐸 𝑉 𝑃 𝐼 ,

ee Birge & Louveaux, 2011), computed as

%𝐸 𝑉 𝑃 𝐼 ∶= (𝑊 𝑆 − 𝑅𝑃 )∕𝑅𝑃 .

The results reported in the second column of Table 5 show that,
on average, the 𝐸 𝑉 𝑃 𝐼 is 81% of the 𝑅𝑃 . This means that, for reaching
perfect information on the accumulation rate, the decision maker would
be ready to pay at most 81% of the total profit. Detailed results for each
instance are shown in Appendix.

As a simpler approach, the decision maker may replace the waste
ccumulation rate by its expected value at each stage, and solve the
eterministic 𝐸 𝑉 program. In a multi-stage context, the %Value of
tochastic Solution at stage t (%𝑉 𝑆 𝑆𝑡, see Maggioni et al., 2014), with
∈  ′, measures the expected gain from solving the stochastic model
𝑃 rather than its deterministic counterpart up to stage 𝑡 as

%𝑉 𝑆 𝑆𝑡 ∶= (𝑅𝑃 − 𝐸 𝐸 𝑉 𝑡)∕𝑅𝑃 , 𝑡 = 1,… , 𝑇 − 1.
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Table 5
Summary results of stochastic measures %𝐸 𝑉 𝑃 𝐼 , %𝑉 𝑆 𝑆 𝑡, %𝑀 𝐿𝑈 𝑆 𝑆 𝑡, %𝑀 𝐿𝑈 𝐷 𝑆 𝑡, for 1 ≤ 𝑡 ≤ 5, expressed in percentage gap to the corresponding 𝑅𝑃 problem.

Size %𝐸 𝑉 𝑃 𝐼 %𝑉 𝑆 𝑆 𝑡, 1 ≤ 𝑡 ≤ 5 %𝑀 𝐿𝑈 𝑆 𝑆 𝑡, 1 ≤ 𝑡 ≤ 5 %𝑀 𝐿𝑈 𝐷 𝑆1 %𝑀 𝐿𝑈 𝐷 𝑆 𝑡, 2 ≤ 𝑡 ≤ 4 %𝑀 𝐿𝑈 𝐷 𝑆5

9 bins 188% ∞ ∞ 8% 674% 681%
10 bins 36% ∞ ∞ 0% 175% 175%
11 bins 20% ∞ ∞ 0% 158% 158%

Average 81% ∞ ∞ 3% 336% 338%
l
h

r

t
t
𝑊
i

𝐸 𝐸 𝑉 𝑡 is the Expected result of using the EV solution until stage t and
enotes the objective function value of the 𝑅𝑃 model, having fixed the

decision variables 𝑥𝑡𝑖𝑗 and 𝑦𝑡𝑖 on the routing until stage 𝑡 at the optimal
alues obtained by solving the 𝐸 𝑉 problem. In the great majority of the
nstances, the 𝐸 𝐸 𝑉 𝑡 problems are infeasible and thus the corresponding
𝑉 𝑆 𝑆𝑡 is infinite already at the first stage (see column 3 of Table 5).

Indeed, by taking the average of the accumulation rate, the solution
olicy of the 𝐸 𝑉 problem may not impose any visiting schedules. On
he other hand, the 𝑅𝑃 model may require such a collection, being the
ccumulation rate high for certain bins: this is clearly a contradiction,
eading to the infeasibility of the corresponding 𝐸 𝐸 𝑉 𝑡 problem.

In the following, we further investigate if the deterministic solution
still carries useful information for the stochastic case. To achieve this
purpose, firstly we compute the Multi-stage Expected Skeleton Solution
Value at stage t (𝑀 𝐸 𝑆 𝑆 𝑉 𝑡, see Maggioni et al., 2014), as the optimal
objective function value of the 𝑅𝑃 model having fixed at zero all the
routing variables 𝑥𝑡𝑖𝑗 and 𝑦𝑡𝑖 that are zero in the 𝐸 𝑉 problem until
stage 𝑡. This allows to test whether the deterministic model provides
the correct non-zero variables. Once the 𝑀 𝐸 𝑆 𝑆 𝑉 𝑡 is computed, it
is compared with the 𝑅𝑃 by introducing the %Multi-stage Loss Using
Skeleton Solution until stage t (%𝑀 𝐿𝑈 𝑆 𝑆𝑡), expressed as

%𝑀 𝐿𝑈 𝑆 𝑆𝑡 ∶= (𝑅𝑃 −𝑀 𝐸 𝑆 𝑆 𝑉 𝑡)∕𝑅𝑃 , 𝑡 = 1,… , 𝑇 − 1.

The results in Table 5 and in the Appendix show that %𝑉 𝑆 𝑆𝑡 coin-
cides with %𝑀 𝐿𝑈 𝑆 𝑆𝑡 for all 𝑡 = 1,… , 5, both in the case of infiniteness
and finiteness of %𝑉 𝑆 𝑆𝑡. On the one hand, %𝑀 𝐿𝑈 𝑆 𝑆𝑡 = %𝑉 𝑆 𝑆𝑡 = ∞
if the average data on the waste accumulation rate do not support a
collection in the 𝐸 𝑉 solution: 𝐸 𝐸 𝑉 𝑡 and 𝑀 𝐸 𝑆 𝑆 𝑉 𝑡 problems are both
infeasible. On the other hand, if %𝑉 𝑆 𝑆𝑡 is finite, the deterministic
model correctly selects the bins to be visited and their combination into
routing plans. Therefore, for all the non-visited bins, the values of the
decision variables 𝑥𝑡𝑖𝑗 and 𝑦𝑡𝑖 are fixed to zero in the 𝑀 𝐸 𝑆 𝑆 𝑉 𝑡 problem.
This implies straightforwardly that there is only one possible path for
the vehicle to visit the selected bins.

Finally, we carry out an analysis regarding the upgradeability of the
expected value solution to become good, or optimal, in the stochastic
etting. Specifically, we consider the 𝐸 𝑉 solution �̄�𝑡𝑖𝑗 , �̄�

𝑡
𝑖 until stage 𝑡

s a starting point in the 𝑅𝑃 model, by adding the constraints 𝑥𝑡𝑖𝑗 ≥
�̄�𝑡𝑖𝑗 , for all 𝑖, 𝑗 ∈ , and 𝑦𝑡𝑖 ≥ �̄�𝑡𝑖, for all 𝑖 ∈ ′ up to stage 𝑡. The
orresponding optimal value is denoted as Multi-stage Expected Input
alue until stage t (𝑀 𝐸 𝐼 𝑉 𝑡, see Maggioni et al., 2014). From this
easure, the %Multi-stage Loss of Upgrading the Deterministic Solution

until stage t (%𝑀 𝐿𝑈 𝐷 𝑆𝑡) is defined as follows

%𝑀 𝐿𝑈 𝐷 𝑆𝑡 ∶= (𝑅𝑃 −𝑀 𝐸 𝐼 𝑉 𝑡)∕𝑅𝑃 , 𝑡 = 1,… , 𝑇 − 1.

As it is reported in Table 5, %𝑀 𝐿𝑈 𝐷 𝑆1 is close to zero on average.
Indeed, only in inst_4_9 (see the Appendix) %𝑀 𝐿𝑈 𝐷 𝑆1 is strictly
positive. This situation derives from a collection after stage 2 in the
𝐸 𝑉 solution, where the conditions 𝑥1𝑖𝑗 ≥ 0, for all 𝑖, 𝑗 ∈ , and 𝑦1𝑖 ≥ 0,
for all 𝑖 ∈ ′, are automatically satisfied by constraints (15)–(16) in
the 𝑀 𝐸 𝐼 𝑉 1 problem. In all the other instances, at stage 2 the 𝐸 𝑉
problem imposes a collection on a subset of bins with respect to the
𝑅𝑃 problem and, thus, constraints (16) are themselves satisfied in the
𝑀 𝐸 𝐼 𝑉 1 problem.

The large values of %𝑀 𝐿𝑈 𝐷 𝑆𝑡, with 𝑡 = 2,… , 5, depend on the
act that the corresponding 𝑀 𝐸 𝐼 𝑉 𝑡 problems perform collections at
 a

10 
Fig. 5. Performance of the rolling horizon approach for the small-sized instances.
The vertical bars represent the profit percentage reduction when applying the rolling
horizon approach (left-hand scale). The results show the average over the thirty
instances. When 𝑊 = 1, due to infeasibility, the reduction may be infinite. The solid
ine refers to the CPU time percentage reduction to solve at optimality with the rolling
orizon approach, compared to the original six-stage program (right-hand scale).

the consecutive stages 1 and 2, due to the additional constraints on
the 𝐸 𝑉 solution at stage 2. Being the amount of waste in the bins low
since already emptied at stage 1, the transportation costs are greater
than the revenues: 𝑀 𝐸 𝐼 𝑉 𝑡 turns to be negative and hence %𝑀 𝐿𝑈 𝐷 𝑆𝑡

eaches high values (on average, 338%).
The results discussed so far justify the adoption of a stochastic model

over a deterministic formulation when addressing a waste collection
problem. From the analysis, we conclude that it is possible to take the
deterministic solution as input in the stochastic model only in the first
stage, whereas in the next stages the 𝐸 𝑉 solution is no longer to be
upgradeable.

5.4. Performance of the rolling horizon approach

Since model  is NP-hard and with large instances obtaining the
optimal solution is challenging (see Table 4), in this section we evaluate
the performance of the rolling horizon approach both in terms of
average profit reduction and CPU time savings. Instead of solving a 𝑇 -
stage stochastic program, such heuristic considers a sequence of 𝑇 − 1
subproblems defined over a reduced number of stages. In our case
study, 𝑇 = 6 and, thus, the reduced number of periods 𝑊 is an integer
between 1 and 4. Detailed results for each small instance are presented
in Appendix.

In Fig. 5 (left-hand scale) we depict with vertical bars the average
percentage gap between the optimal 𝑅𝑃 objective function value and
the heuristic solution. As highlighted in Section 4, when 𝑊 = 1 the
rolling horizon approach may be infinitely suboptimal. Indeed, over
he thirty small instances, five of them exhibit infeasibility in the first
wo-stage problem. Furthermore, the results obtained with 𝑊 = 2 and

= 3 (29.76% in both cases) are close to the one obtained for 𝑊 = 1
n the twenty-five feasible instances (29.53%). However, with 𝑊 = 2
nd 𝑊 = 3 no infeasibility issues occur in any instance. Finally, the
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Fig. 6. Performance of the rolling horizon approach for the instance with 50 bins in
erms of profit reduction.

performance of the heuristic improves when 𝑊 = 4, as the average
rofit gap is of 14.92%.

Regarding the computational time, we report in Fig. 5 (right-hand
cale) the results in terms of average percentage reduction with re-

spect to the six-stage model. We notice that the CPU time reduction
decreases, as 𝑊 goes from 1 to 4, due to the increasing size of the
subproblems. Specifically, when 𝑊 = 1 and 𝑊 = 2 the average savings
are of 97.94% and 90.13%, respectively. The CPU time reduction is of
57.00% with 𝑊 = 3, even if the performance in terms of profit is the
same as 𝑊 = 2. Lastly, the similarity of the optimal profit between
the 𝑅𝑃 model and the rolling horizon approach with 𝑊 = 4 requires a
significant computational effort, as the average CPU time saving is of
27.56%.

From the previous analysis, we conclude that the rolling horizon
pproach is effective for the proposed multi-stage stochastic model. As
xpected, the performance of such heuristic strongly depends on the
ize 𝑊 of the reduced time horizon. If the decision maker requires a
ood accuracy in a short time, 𝑊 = 2 is the best candidate. On the
ther hand, if she/he is willing to wait, 𝑊 = 4 attains better results
ut in a longer computational time.

5.5. A real case study

In this section, we present the results of the simulations in a real
case study. We consider a large instance composed by 50 bins randomly
chosen from the original set of 121 waste containers.

Given the high number of variables and of constraints (see Table 4),
Gurobi is not able to solve at optimality model  within the time limit
of 86 400 s (one day), providing a relative optimality gap of 20.82%.
However, when considering model 𝑠𝑦𝑚 with distance the average
between 𝑑𝑖𝑗 and 𝑑𝑗 𝑖 the results are considerably better: the optimality
gap is reduced to 2.77% (see Table 4).

For this reason, we deal with model 𝑠𝑦𝑚 for the study of the large
ase instance. Specifically, we investigate the performance of the rolling
orizon approach under a reduced runtime limit, as one day may be
xcessively high from a managerial perspective. Thus, we set a time
imit 𝑇 𝐿 of 2, 4, 6, 12, 24 h on the whole algorithm and, accordingly, a
ime limit 𝑇 𝐿𝑠𝑢𝑏 for each of the corresponding subproblems, as 𝑇 𝐿𝑠𝑢𝑏 =

𝑇 𝐿 . Following the approach of Cavagnini et al. (2022), after
# 𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙 𝑒𝑚𝑠

11 
Fig. 7. Performance of the rolling horizon approach for the instance with 50 bins in
erms of CPU time reduction.

solving a subproblem, if some time is left, we add the remaining time
to the following subproblem to be solved.

Fig. 6 displays the percentage profit reduction, when applying the
rolling horizon approach over a reduced time period 𝑊 and with dif-
ferent runtime limits 𝑇 𝐿. The reduction is with respect to the objective
function value obtained when solving the six-stage model 𝑠𝑦𝑚 in
one day. On the one hand, the rolling horizon approach with 𝑊 =
1, 2, 3 does not improve its performance when increasing the time limit.
Specifically, when 𝑊 = 1 the profit reduction is 25.77%, while for

= 2 and 𝑊 = 3 it is of 8.68% and 9.24%, respectively, regardless of
the runtime limit. On the other hand, when the time limit is enlarged,
the heuristic with 𝑊 = 4 shows an enhancement of the results: from a
reduction of 58.02%, when 𝑇 𝐿 is 2 and 4 h, to 8.07% with 𝑇 𝐿 equal to
12 and 24 h. The bad performance with low runtime limits (2 and 4 h)
is due to the large size of the first two subproblems, defined respectively
on stages 1–5 and 2–6, which are challenging to solve in a short time
(𝑇 𝐿𝑠𝑢𝑏 is equal to 24 and 48 min, respectively).

Similarly to the analysis carried out on the small instances, in Fig. 7
we depict the percentage CPU time saving. When 𝑊 = 1, the reduction
is equal to 98.34%, independently of the runtime limit. Indeed, all the
five subproblems are solved within the time limit 𝑇 𝐿𝑠𝑢𝑏. If 𝑊 = 2,
the CPU time saving is high with 𝑇 𝐿 equal to 2 h (93.78%), while it
reaches a minimum of 73.91% with 𝑇 𝐿 = 24 h. Finally, the situations
with 𝑊 = 3 and 𝑊 = 4 show a similar linear trend. Indeed, in these
cases, the runtime limit is always reached, because of the large size of
the subproblems.

By combining all the previous observations, we conclude that it is
worth applying the rolling horizon approach when solving large in-
stances of the proposed multi-stage stochastic waste collection problem.
The performance depends not only on the reduced time horizon of
such heuristic but also on the runtime limit set by the user. Confirming
the results obtained with small instances, we conclude that the rolling
horizon approach with 𝑊 = 2 and runtime limit of 2 h is a good trade-
off between accuracy and time savings. For the sake of illustration, in
Fig. 8 we depict the route obtained with these choices of the parameters
for the large case instance.
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Fig. 8. Route for the large case instance with 50 bins, obtained by applying the rolling horizon approach with 𝑊 = 2 and runtime limit of 2 h. The route is performed on days
2 and 6 of the planning period. In the picture on the right, a zoom on the area of Condeixa-a-Nova is depicted.
5.6. Managerial insights

We conclude our analysis by providing some managerial insights on
the discussed problem.

In Table 6 we report key performance indicators obtained from the
proposed formulation when considering a runtime limit of two hours
for the rolling horizon approach. We notice that the highest value of
both the profit (see the second row) and the ratio between the total
weight of collected waste and the total traveled distance (see the fifth
row) is reached in the case of 𝑊 = 2. This implies that choosing
such reduced time period leads to a more efficient and cost-effective
planning when compared to the other cases. A similar conclusion can
be drawn when considering the ratio between the profit reduction and
the CPU time reduction with respect to the original 𝑅𝑃 problem (see
the sixth row).

From a managerial perspective, one of the key feature of the pro-
posed model is the selection of the bins to be visited. In Fig. 8 the same
route is performed on days 2 and 6 of the planning period. Almost all
the bins are visited twice (50 and 49 bins, respectively, on day 2 and
6), due to the very high distance between the depot and the considered
municipality. In Fig. 9 we depict the results of a simulation with the
same bins as in the instance described in Section 5.5, but with a closer
depot. We notice that the collection is now performed on three days,
with an accurate selection of bins, respectively 28, 9 and 47 bins for
each collection day. The profit is increased by 15.26% (see the fourth
column of Table 7), due to the strong decrease of the total traveled
distance (151.62 km vs. 236.35 km). The total weight of collected waste
12 
Table 6
Key performance indicators for the real case instance of 50 bins, when applying the
rolling horizon approach with a runtime limit of 2 h.
𝑊 1 2 3 4

Profit (e) 431.70 531.13 527.82 244.17
Total weight of collected waste (kg) 2573.31 2558.26 2564.08 1201.77
Total traveled distance (km) 340.29 236.35 241.41 116.36
Weight/distance (kg/km) 7.56 10.82 10.62 10.33
Profit reduction/CPU time reduction 0.26 0.09 0.10 0.64

remains almost unchanged (2545.94 kg vs. 2558.26 kg), implying an
increase of the ratio weight over distance by 55.18%. The waste manager
benefits from these results since they suggest that the opening of a new
depot, closer to the bins, increases significantly the profit, with more
selective and accurate routes.

Inspired by the work of Elbek and Wøhlk (2016), we performed a
sensitivity analysis with respect to the bins’ filling level. Specifically,
we considered situations where the accumulation rate is increased or
decreased by 10%. This corresponds to a variation of the uncertainty
in the construction of the scenario trees. The results of the simulations
are reported in the last columns of Table 7. With respect to the original
setting, the increase of the amount of waste in the bins implies a 7.10%
higher profit for the waste company. On the other hand, when the
amount of waste is reduced, the total profit decreases by 8.55%. Similar
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Fig. 9. Routes performed on days 2, 5, 6 of the planning period, with a closer depot to the fifty bins. The results are obtained by applying the rolling horizon approach with
𝑊 = 2 and runtime limit of 2 h.
Table 7
Key performance indicators with different configurations of the 50 bins instance. All the results are obtained applying the rolling horizon approach with 𝑊 = 2 and a runtime
limit of 2 h. The percentage variation 𝛥% is computed with respect to the original setting in the second column.

Original setting Closer depot Varying bins’ filling level

𝛥% +10% 𝛥% −10% 𝛥%

Profit (e) 531.13 612.17 +15.26% 568.85 +7.10% 485.70 −8.55%
Total weight of collected waste (kg) 2558.26 2545.94 −4.82% 2696.10 +5.39% 2406.82 −5.92%
Total traveled distance (km) 236.35 151.62 −35.85% 239.98 +1.54% 236.35 0%
Weight/distance (kg/km) 10.82 16.79 +55.18% 11.23 +3.79% 10.18 −5.91%
considerations can be formulated for all the other key performance
indicators.

6. Conclusions

In this paper, we have studied a Stochastic Inventory Routing Prob-
lem for waste collection of recyclable materials with uncertain bins’
filling level. We have formulated such a kind of problem through a
multi-stage mixed-integer stochastic programming linear model, with
the aim of maximizing the total expected profit. Scenario trees on
waste accumulation rate have been generated by means of conditional
density estimation and dynamic stochastic approximation techniques.
13 
A validation in terms of in-sample stability has been assessed too. The
impact of stochasticity in the proposed waste collection problem has
been investigated through standard stochastic measures. Our findings
indicate that to reach perfect information on the accumulation rate,
the waste manager would be willing to pay up to 81% of the total
profit, showing the importance of considering the bins’ filling level
as a stochastic parameter. Additionally, in most instances, the value
of stochastic solution indicates that neglecting uncertainty results in
inappropriate policies in a stochastic setting. To face with the com-
putational complexity of the problem, we have proposed the rolling
horizon as heuristic methodology and rigorously derived a worst-case
analysis of its performance. Given the availability of real data, we
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have carried out extensive computational experiments on small- and
large-sized instances. We have tested the performance of the rolling
horizon approach, founding out that, if the reduced time horizon is
roperly chosen, such heuristic provides good quality solutions with
imited computational efforts. Finally, we have drawn managerial in-
ights considering different configurations in a real case instance and
roviding key performance indicators. Our results show that although
luctuations in bins’ filling level can affect the total profit, the routing
cheme generally remains stable in the stochastic setting, allowing for
ffective collection operations even under uncertain conditions.

Regarding future developments, several streams of research can
originate from this work. First of all, given the recent availability
f data on a near-continuous basis, a stochastic programming model
ith real-time information provided by sensors could be formulated.
econdly, the size of the test instances could be enlarged to include
ore realistic waste collection systems. As a downside, this would
ake the proposed formulation very challenging from a computational
erspective. To this extent, the implementation of different solution
echniques, such as Benders’ decomposition, Lagrangian relaxation and
ynamic programming, or heuristic approaches including genetic algo-
ithm and tabu search could merit additional investigation in future
orks.
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Appendix

(A) Multi-stage stochastic model 𝑠𝑦𝑚 with a two-commodity
low formulation
Sets:
 = {𝑖 ∶ 𝑖 = 0, 1,… , 𝑁 , 𝑁 + 1}: set of 𝑁 waste bins, the real depot 0
and the copy depot 𝑁 + 1;
′ = {𝑖 ∶ 𝑖 = 1,… , 𝑁}: set of 𝑁 waste bins (depots excluded);
 = {𝑡 ∶ 𝑡 = 1,… , 𝑇 }: set of stages;
 ′ = {𝑡 ∶ 𝑡 = 1,… , 𝑇 − 1}: set of stages (last stage excluded);
 ′′ = {𝑡 ∶ 𝑡 = 2,… , 𝑇 }: set of stages (first stage excluded);
 1 = {𝑛 ∶ 𝑛 = 1}: root node at stage 1;
 𝑡 = {𝑛 ∶ 𝑛 = 1,… , 𝑛𝑡}: set of ordered nodes of the tree at stage 𝑡 ∈  .
Deterministic parameters:
𝐶: traveling cost per distance unit;
𝑅: selling price of a recyclable material;
𝑄: vehicle capacity;
𝐵: waste density;
𝑀 : Big-M number;
𝑑𝑖𝑗 : distance between 𝑖 ∈  and 𝑗 ∈ ;
𝑆 𝑖𝑛𝑖𝑡
𝑖 : percentage of waste on the total volume of bin 𝑖 ∈ ′ at the first
tage;
𝐸𝑖: capacity of bin 𝑖 ∈ ′;
𝑝𝑎(𝑛): parent of node 𝑛 ∈  𝑡, 𝑡 ∈  ′′.
Stochastic parameters:
𝑎𝑛𝑖 : uncertain accumulation rate of bin 𝑖 ∈ ′ at node 𝑛 ∈  𝑡, 𝑡 ∈  ′′;
𝜋𝑛: probability of node 𝑛 ∈  𝑡, 𝑡 ∈  .
Decision variables:
𝑥𝑡𝑖𝑗 ∈ {0, 1}: binary variable indicating if arc (𝑖, 𝑗) is visited at time 𝑡+ 1,
with 𝑡 ∈  ′ and for 𝑖, 𝑗 ∈ , 𝑖 ≠ 𝑗;
𝑦𝑡𝑖 ∈ {0, 1}: binary variable indicating if waste bin 𝑖 ∈ ′ is visited at
time 𝑡 + 1, with 𝑡 ∈  ′;
𝑓 𝑛
𝑖𝑗 ∈ R+: non-negative variable representing the waste flow between

𝑖 ∈ ′ and 𝑗 ∈ , 𝑖 ≠ 𝑗, for 𝑛 ∈  𝑡, 𝑡 ∈  ′′;
𝑤𝑛

𝑖 ∈ R+: non-negative variable representing the amount of waste
ollected at waste bin 𝑖 ∈ ′, for 𝑛 ∈  𝑡, 𝑡 ∈  ′′;
𝑢𝑛𝑖 ∈ R+: non-negative variable representing the amount of waste at
waste bin 𝑖 ∈ ′, for 𝑛 ∈  𝑡, 𝑡 ∈  .
Model 𝑠𝑦𝑚:

max 𝑅
∑

𝑡∈ ′′

∑

𝑛∈ 𝑡

𝜋𝑛
∑

𝑖∈′
𝑤𝑛

𝑖 −
𝐶
2

∑

𝑡∈ ′

∑

𝑖,𝑗∈
𝑖≠𝑗

𝑑𝑖𝑗𝑥
𝑡
𝑖𝑗

s.t.
∑

𝑗∈
𝑗≠𝑖

(𝑓 𝑛
𝑖𝑗 − 𝑓 𝑛

𝑗 𝑖) = 2𝑤𝑛
𝑖 𝑖 ∈ ′, 𝑛 ∈  𝑡, 𝑡 ∈  ′′

∑

𝑖∈′
𝑓 𝑛
𝑖𝑁+1 =

∑

𝑖∈′
𝑤𝑛

𝑖 𝑛 ∈  𝑡, 𝑡 ∈  ′′

𝑓 𝑛
𝑖𝑗 + 𝑓 𝑛

𝑗 𝑖 = 𝑄𝑥𝑡−1𝑖𝑗 𝑖, 𝑗 ∈ , 𝑖 ≠ 𝑗 , 𝑛 ∈  𝑡, 𝑡 ∈  ′′

𝑓 𝑛
𝑖𝑗 ≤ (𝑄 − 𝐸𝑗𝐵 𝑎𝑛𝑗 )𝑥𝑡−1𝑖𝑗 𝑖, 𝑗 ∈ ′, 𝑖 ≠ 𝑗 , 𝑛 ∈  𝑡, 𝑡 ∈  ′′

∑

𝑖∈
𝑖≠𝑗

𝑥𝑡𝑖𝑗 = 2𝑦𝑡𝑗 𝑗 ∈ ′, 𝑡 ∈  ′

𝑤𝑛
𝑖 ≤ 𝐸𝑖𝐵 𝑦𝑡−1𝑖 𝑖 ∈ ′, 𝑛 ∈  𝑡, 𝑡 ∈  ′′

𝑢𝑛𝑖 ≤ 𝑀(1 − 𝑦𝑡−1𝑖 ) 𝑖 ∈ ′, 𝑛 ∈  𝑡, 𝑡 ∈  ′′

𝑢𝑛𝑖 = 𝐸𝑖𝐵 𝑆𝑖𝑛𝑖𝑡
𝑖 𝑖 ∈ ′, 𝑛 ∈  1

𝑢𝑛𝑖 = 𝑢𝑝𝑎(𝑛)𝑖 + 𝐸𝑖𝐵 𝑎𝑛𝑖 −𝑤𝑛
𝑖 𝑖 ∈ ′, 𝑛 ∈  𝑡, 𝑡 ∈  ′′

𝑢𝑝𝑎(𝑛)𝑖 ≤
(

1 − 𝑎𝑛𝑖
)

𝐸𝑖𝐵 𝑖 ∈ ′, 𝑛 ∈  𝑡, 𝑡 ∈  ′′

𝑡 ′
𝑥𝑖𝑗 ∈ {0, 1} 𝑖, 𝑗 ∈ , 𝑖 ≠ 𝑗 , 𝑡 ∈ 

https://ultraoptymal.unibg.it
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Fig. 10. For each of the six considered bins, one hundred trajectories on the accumulation rate of waste generated from historical data through the conditional density estimation
rocess are depicted. The stages are represented on the horizontal axis.
(

c
n

𝑦𝑡𝑖 ∈ {0, 1} 𝑖 ∈ ′, 𝑡 ∈  ′

𝑓 𝑛
𝑖𝑗 ≥ 0 𝑖 ∈ ′, 𝑗 ∈ , 𝑖 ≠ 𝑗 , 𝑛 ∈  𝑡, 𝑡 ∈  ′′

𝑤𝑛
𝑖 ≥ 0 𝑖 ∈ ′, 𝑛 ∈  𝑡, 𝑡 ∈  ′′

𝑢𝑛𝑖 ≥ 0 𝑖 ∈ ′, 𝑛 ∈  𝑡, 𝑡 ∈ 

(B) Scenario tree generation
In this section, we discuss how to generate scenario trees to describe

he problem uncertainty. We adopt the methodologies proposed in Kirui
15 
et al. (2020), which are based on the works of Pflug and Pichler
see Pflug & Pichler, 2016 for further details).

Since only a limited number of trajectories of the accumulation
rate is available from historical data, new and additional samples
are needed to be generated, even if the true distribution of the ac-
umulation rate is not known. However, it can be estimated by a
on-parametric kernel density technique discussed in the following.

Let
(

𝑎(1)𝑖,𝑜 ,… , 𝑎(𝑡)𝑖,𝑜,… , 𝑎(𝑇 )𝑖,𝑜
)

be the vector denoting the accumulation
rate of bin 𝑖 for week of observation 𝑜, with 𝑜 = 1,… , 𝑁𝑜. Let 𝑘(⋅) be
a kernel function and

(

𝑝 ,… , 𝑝 ,… , 𝑝 )

be a 𝑁 -dimensional vector
1 𝑜 𝑁𝑜 𝑜
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Fig. 11. Box-plots of objective function value (below, left-hand scale) and of weight of
ollected waste (above, right-hand scale) over 5 runs of scenario trees with increasing
ardinality.

of positive weights such that ∑𝑁𝑜
𝑜=1 𝑝𝑜 = 1. Let 𝛼 be a random number

drawn from the uniform distribution 
(

0, 1
)

. At stage 𝑡 = 1,… , 𝑇 , a
new sample 𝑎(𝑡)𝑖 of the accumulation rate of bin 𝑖 is given by

𝑎(𝑡)𝑖 = 𝑎(𝑡)𝑖,𝑜∗ + ℎ(𝑡) ⋅𝐾 (𝑡),

where:

• 𝑜∗ is an index between 1 and 𝑁𝑜 such that ∑𝑜∗−1
𝑜=1 𝑝𝑜 < 𝛼 ≤

∑𝑜∗
𝑜=1 𝑝𝑜;

• ℎ(𝑡) is the bandwidth, computed according to the Silverman’s rule

of thumb (see Silverman, 1998), namely ℎ(𝑡) = 𝜎(𝑡) ⋅𝑁
− 1

𝑚(𝑡)+4
𝑜 , being

𝜎(𝑡) the standard deviation of data at stage 𝑡 and 𝑚(𝑡) the dimension
of the process at stage 𝑡;

• 𝐾 (𝑡) is a random value sampled from the kernel distribution 𝑘(⋅)
at stage 𝑡.

Before computing a new sample at stage 𝑡+ 1, each weight 𝑝𝑜 is updated

according to the formula 𝑝𝑜⋅(ℎ(𝑡))−𝑚
(𝑡+1)

⋅𝑘
( 𝑎(𝑡)𝑖 −𝑎(𝑡)𝑖,𝑜

ℎ(𝑡)
)

, and then normalized.
Further, a random number 𝛼 is drawn anew.

Using this procedure, the conditional density 𝑔(𝑡+1)𝑖 of the accumu-
lation rate of bin 𝑖 at stage 𝑡 + 1, given 𝑎(1)𝑖 ,… , ̂𝑎(𝑡)𝑖 , can be estimated
by

𝑔(𝑡+1)𝑖
(

𝑎(𝑡+1)𝑖
|

|

|

𝑎(1)𝑖 ,… , ̂𝑎(𝑡)𝑖
)

=
𝑁𝑜
∑

𝑜=1
𝑝𝑜 ⋅ (ℎ(𝑁𝑜))−𝑚

(𝑡+1)
⋅ 𝑘

(𝑎(𝑡+1)𝑖 − 𝑎(𝑡+1)𝑖,𝑜

ℎ𝑁𝑜

)

.

Within this approach, every new trajectory starts at 𝑎(1)𝑖 , and new
amples 𝑎(𝑡+1)𝑖 are generated according to the density 𝑔(𝑡+1)𝑖 , for 𝑡 =
1,… , 𝑇 − 1. At the end of the procedure at stage 𝑇 , a new trajectory
(𝑎(1)𝑖 ,… , ̂𝑎(𝑇 )𝑖 ) has been generated from the initial data.

We set 𝑎(1)𝑖,𝑜 = 0 = 𝑎(1)𝑖 for all 𝑖 = 1,… , 𝑁 , 𝑜 = 1,… , 𝑁𝑜 because no
increase of waste at the first stage of the time horizon is assumed, and
𝑚(𝑡) = 𝑁 for all 𝑡 = 1,… , 𝑇 since, at each node, the dimension of the
state corresponds to the total number of bins. Furthermore, as suggested
in Kirui et al. (2020), the kernel 𝑘(⋅) is set to be logistic. Fig. 10
shows one hundred trajectories of the accumulation rate in six different
16 
bins, generated according to the conditional density estimation process
described so far.

Secondly, we apply a dynamic stochastic approximation algorithm
to generate a candidate scenario tree (see Pflug & Pichler, 2016 for
details). Starting from an initial guess of a tree with a prescribed
branching structure, at every iteration of the procedure a new sam-
le path is generated according to the conditional density estimation
rocess discussed above. The algorithm finds one possible sequence
f nodes in the scenario tree whose distance between the states of

those nodes and the generated sample is minimal. Thus, the states
of those nodes are updated with the values of the generated sample
and the others remain unchanged. Then, the algorithm calculates the
conditional probabilities to reach each node of the tree starting from
its root, and it stops when all the iterations, whose number is decided
in advance, have been performed.

The scenario tree generation procedure described so far has been
mplemented in Julia, relying on the package ScenTrees.jl (see Kirui

et al., 2020). The number of iterations for the stochastic approximation
process has been set to 10 000.

(C) In-sample stability
In this section, we carry out an in-sample stability analysis (see Kaut

& Wallace, 2007).

In Table 8 we report average results obtained by solving model 
ver five runs on inst_9_1, with increasing size of the scenario tree. Box-
lots of objective function and of weight of collected waste are depicted
n Fig. 11.

Since various indicators (profit, weight of collected waste, total
traveled distance) do not vary significantly when increasing the size
of the tree, we conclude that the methodology we applied to generate
scenario trees is stable even with small trees. Besides, the multistage
distance (see the last column of Table 8), is throughout close to zero,
due to the minimization of the distance in the dynamic stochastic
approximation algorithm (see Pflug & Pichler, 2016). On the other
hand, the computational time increases considerably, when increasing
the size of the tree.

For all of these reasons, we decide to consider a scenario tree of size
𝑆 = 32, with 63 nodes. In Fig. 12 we depict six binary scenario trees
f six different bins with the corresponding probability distributions

generated from the dynamic stochastic approximation algorithm.

(D) Stochastic measures (detailed results for small instances)
See Tables 9–11.

(E) Performance of the rolling horizon approach (detailed re-
sults for small instances)

See Tables 12–14.

Data availability

The data used in this article are publicly available on a GitHub
repository (https://github.com/aspinellibg/StochwasteIRP).

https://github.com/aspinellibg/StochwasteIRP
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Fig. 12. Examples of six-stage scenario trees of the accumulation rate of waste in the same six bins as in Fig. 10. The corresponding probability distribution is depicted on the
ight of each plot.
17 



A. Spinelli et al.

c

c

European Journal of Operational Research xxx (xxxx) xxx 
Table 8
Average results on the in-sample stability analysis over five runs on scenario trees with increasing size. The results are drawn from model  on inst_9_1.

Scenarios Branching structure Profit (e) Weight of waste (kg) Distance (km) CPU time (s) Multistage distance

32 [1 2 2 2 2 2] 7.43 267.58 72.84 55.22 0.063
72 [1 3 3 2 2 2] 7.61 268.18 72.84 166.24 0.046
162 [1 3 3 3 3 2] 7.42 267.52 72.84 1165.00 0.034
324 [1 4 3 3 3 3] 7.63 268.22 72.84 7109.18 0.027
576 [1 4 4 4 3 3] 7.50 267.81 72.84 51 928.64 0.020
1024 [1 4 4 4 4 4] Not solved to optimality within 24 h 0.016
Table 9
Detailed results of 𝑅𝑃 , 𝐸 𝑉 , 𝑊 𝑆 and of stochastic measures %𝐸 𝑉 𝑃 𝐼 , %𝑉 𝑆 𝑆 𝑡, %𝑀 𝐿𝑈 𝑆 𝑆 𝑡, %𝑀 𝐿𝑈 𝐷 𝑆 𝑡, for 1 ≤ 𝑡 ≤ 5. The values in percentage denote the gap with respect to the
orresponding 𝑅𝑃 problem. The results refer to the instances with 9 bins.

inst_1_9 inst_2_9 inst_3_9 inst_4_9 inst_5_9 inst_6_9 inst_7_9 inst_8_9 inst_9_9 inst_10_9

𝑅𝑃 9.36 11.92 31.58 32.66 2.48 4.27 30.76 22.90 2.72 32.96
𝐸 𝑉 23.79 14.43 38.23 38.58 17.24 18.10 36.85 45.80 18.60 42.82
𝑊 𝑆 17.63 17.46 45.50 37.94 16.40 15.88 35.98 25.40 24.04 45.68

%𝐸 𝑉 𝑃 𝐼 88% 46% 44% 16% 562% 272% 17% 11% 783% 39%

%𝑉 𝑆 𝑆1 ∞ ∞ ∞ 77% ∞ ∞ ∞ ∞ ∞ ∞
%𝑉 𝑆 𝑆2 ∞ ∞ ∞ 77% ∞ ∞ ∞ ∞ ∞ ∞
%𝑉 𝑆 𝑆3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
%𝑉 𝑆 𝑆4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
%𝑉 𝑆 𝑆5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

%𝑀 𝐿𝑈 𝑆 𝑆1 ∞ ∞ ∞ 77% ∞ ∞ ∞ ∞ ∞ ∞
%𝑀 𝐿𝑈 𝑆 𝑆2 ∞ ∞ ∞ 77% ∞ ∞ ∞ ∞ ∞ ∞
%𝑀 𝐿𝑈 𝑆 𝑆3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
%𝑀 𝐿𝑈 𝑆 𝑆4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
%𝑀 𝐿𝑈 𝑆 𝑆5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

%𝑀 𝐿𝑈 𝐷 𝑆1 0% 0% 0% 77% 0% 0% 0% 0% 0% 0%
%𝑀 𝐿𝑈 𝐷 𝑆2 546% 500% 179% 77% 1992% 1131% 174% 235% 1760% 150%
%𝑀 𝐿𝑈 𝐷 𝑆3 546% 500% 179% 77% 1992% 1131% 174% 235% 1760% 150%
%𝑀 𝐿𝑈 𝐷 𝑆4 546% 500% 179% 77% 1992% 1131% 174% 235% 1760% 150%
%𝑀 𝐿𝑈 𝐷 𝑆5 546% 500% 179% 147% 1992% 1131% 174% 235% 1760% 150%
Table 10
Detailed results of 𝑅𝑃 , 𝐸 𝑉 , 𝑊 𝑆 and of stochastic measures %𝐸 𝑉 𝑃 𝐼 , %𝑉 𝑆 𝑆 𝑡, %𝑀 𝐿𝑈 𝑆 𝑆 𝑡, %𝑀 𝐿𝑈 𝐷 𝑆 𝑡, for 1 ≤ 𝑡 ≤ 5. The values in percentage denote the gap with respect to the
orresponding 𝑅𝑃 problem. The results refer to the instances with 10 bins.

inst_1_10 inst_2_10 inst_3_10 inst_4_10 inst_5_10 inst_6_10 inst_7_10 inst_8_10 inst_9_10 inst_10_10

𝑅𝑃 14.57 25.97 53.88 54.09 16.41 32.07 41.28 35.71 33.16 36.59
𝐸 𝑉 32.06 28.48 53.88 58.82 22.50 32.07 48.12 40.65 40.45 36.59
𝑊 𝑆 34.42 32.40 57.08 63.13 29.61 35.38 47.91 49.40 43.67 38.10

%𝐸 𝑉 𝑃 𝐼 136% 25% 6% 17% 80% 10% 16% 38% 32% 4%

%𝑉 𝑆 𝑆1 ∞ ∞ ∞ ∞ ∞ ∞ 0% ∞ ∞ ∞
%𝑉 𝑆 𝑆2 ∞ ∞ ∞ ∞ ∞ ∞ 55% ∞ ∞ ∞
%𝑉 𝑆 𝑆3 ∞ ∞ ∞ ∞ ∞ ∞ 55% ∞ ∞ ∞
%𝑉 𝑆 𝑆4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
%𝑉 𝑆 𝑆5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

%𝑀 𝐿𝑈 𝑆 𝑆1 ∞ ∞ ∞ ∞ ∞ ∞ 0% ∞ ∞ ∞
%𝑀 𝐿𝑈 𝑆 𝑆2 ∞ ∞ ∞ ∞ ∞ ∞ 55% ∞ ∞ ∞
%𝑀 𝐿𝑈 𝑆 𝑆3 ∞ ∞ ∞ ∞ ∞ ∞ 55% ∞ ∞ ∞
%𝑀 𝐿𝑈 𝑆 𝑆4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
%𝑀 𝐿𝑈 𝑆 𝑆5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

%𝑀 𝐿𝑈 𝐷 𝑆1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
%𝑀 𝐿𝑈 𝐷 𝑆2 316% 229% 95% 87% 348% 160% 55% 153% 157% 147%
%𝑀 𝐿𝑈 𝐷 𝑆3 316% 229% 95% 87% 348% 160% 55% 153% 157% 147%
%𝑀 𝐿𝑈 𝐷 𝑆4 316% 229% 95% 87% 348% 160% 55% 153% 157% 147%
%𝑀 𝐿𝑈 𝐷 𝑆5 316% 229% 95% 87% 348% 160% 55% 153% 157% 147%
18 
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Table 11
Detailed results of 𝑅𝑃 , 𝐸 𝑉 , 𝑊 𝑆 and of stochastic measures %𝐸 𝑉 𝑃 𝐼 , %𝑉 𝑆 𝑆 𝑡, %𝑀 𝐿𝑈 𝑆 𝑆 𝑡, %𝑀 𝐿𝑈 𝐷 𝑆 𝑡, for 1 ≤ 𝑡 ≤ 5. The values in percentage denote the gap with respect to the
orresponding 𝑅𝑃 problem. The results refer to the instances with 11 bins.

inst_1_11 inst_2_11 inst_3_11 inst_4_11 inst_5_11 inst_6_11 inst_7_11 inst_8_11 inst_9_11 inst_10_11

𝑅𝑃 30.83 38.46 64.24 33.12 46.72 50.21 60.99 29.87 15.73 42.31
𝐸 𝑉 32.38 41.03 66.18 33.12 49.84 53.15 61.94 34.10 26.57 52.39
𝑊 𝑆 40.32 41.96 65.57 46.96 51.60 52.02 62.36 36.42 25.93 48.32

%𝐸 𝑉 𝑃 𝐼 31% 9% 2% 42% 10% 4% 2% 22% 65% 14%

%𝑉 𝑆 𝑆1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
%𝑉 𝑆 𝑆2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
%𝑉 𝑆 𝑆3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
%𝑉 𝑆 𝑆4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
%𝑉 𝑆 𝑆5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

%𝑀 𝐿𝑈 𝑆 𝑆1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
%𝑀 𝐿𝑈 𝑆 𝑆2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
%𝑀 𝐿𝑈 𝑆 𝑆3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
%𝑀 𝐿𝑈 𝑆 𝑆4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
%𝑀 𝐿𝑈 𝑆 𝑆5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

%𝑀 𝐿𝑈 𝐷 𝑆1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
%𝑀 𝐿𝑈 𝐷 𝑆2 200% 155% 100% 156% 129% 124% 93% 166% 326% 131%
%𝑀 𝐿𝑈 𝐷 𝑆3 200% 155% 100% 156% 129% 124% 93% 166% 326% 131%
%𝑀 𝐿𝑈 𝐷 𝑆4 200% 155% 100% 156% 129% 124% 93% 166% 326% 131%
%𝑀 𝐿𝑈 𝐷 𝑆5 200% 155% 100% 156% 129% 124% 93% 166% 326% 131%
Table 12
Detailed results on the performance of the rolling horizon approach, in terms of reduction of the profit and of the CPU time when compared to the 𝑅𝑃 problem. The results refer
to the instances with 9 bins.

inst_1_9 inst_2_9 inst_3_9 inst_4_9 inst_5_9 inst_6_9 inst_7_9 inst_8_9 inst_9_9 inst_10_9

𝑊 Profit reduction (%)
1 11% ∞ 37% 8% 74% 0% 32% ∞ 0% 7%
2 11% 95% 37% 8% 74% 0% 32% 54% 0% 7%
3 11% 95% 37% 8% 74% 0% 32% 54% 0% 7%
4 11% 0% 37% 8% 74% 0% 32% 0% 0% 7%

𝑊 Computational time reduction (%)
1 94% 99% 99% 94% 99% 99% 100% 95% 100% 100%
2 85% 76% 96% 81% 98% 98% 99% 79% 100% 97%
3 67% 49% 90% 49% 83% 96% 96% 49% 99% 91%
4 40% −9% 75% 5% 85% 79% 94% −36% 98% 67%
Table 13
Detailed results on the performance of the rolling horizon approach, in terms of reduction of the profit and of the CPU time when compared to the 𝑅𝑃 problem. The results refer
to the instances with 10 bins.

inst_1_10 inst_2_10 inst_3_10 inst_4_10 inst_5_10 inst_6_10 inst_7_10 inst_8_10 inst_9_10 inst_10_10

𝑊 Profit reduction (%)
1 0% ∞ 59% 4% 68% 15% ∞ 26% 17% ∞
2 0% 50% 20% 4% 68% 15% 55% 26% 17% 36%
3 0% 50% 20% 4% 68% 15% 55% 26% 17% 36%
4 0% 0% 0% 4% 68% 36% 0% 26% 17% 0%

𝑊 Computational time reduction (%)
1 99% 87% 100% 99% 99% 100% 100% 100% 99% 100%
2 95% 56% 97% 91% 97% 99% 97% 95% 94% 99%
3 89% 0% 91% 79% 86% 94% 89% 86% 84% 97%
4 78% −82% 75% 41% 28% 37% 86% 42% −151% 82%
Table 14
Detailed results on the performance of the rolling horizon approach, in terms of reduction of the profit and of the CPU time when compared to the 𝑅𝑃 problem. The results refer
to the instances with 11 bins.

inst_1_11 inst_2_11 inst_3_11 inst_4_11 inst_5_11 inst_6_11 inst_7_11 inst_8_11 inst_9_11 inst_10_11

𝑊 Profit reduction (%)
1 49% 93% 28% 46% 11% 26% 54% 16% 48% 10%
2 49% 34% 28% 46% 11% 26% 15% 16% 48% 10%
3 49% 34% 28% 46% 11% 26% 15% 16% 48% 10%
4 0% 0% 0% 54% 0% 0% 0% 16% 48% 10%

𝑊 Computational time reduction (%)
1 100% 98% 98% 84% 100% 100% 100% 98% 99% 100%
2 99% 85% 84% 30% 96% 99% 96% 91% 97% 99%
3 95% −490% 61% −23% 91% 98% 69% 55% 93% 96%
4 82% −141% −36% −161% 80% 93% 66% 10% 10% 90%
19 



A. Spinelli et al. European Journal of Operational Research xxx (xxxx) xxx 
References

Aksen, D., Kaya, O., Salman, F. S., & Akça, Y. (2012). Selective and periodic
inventory routing problem for waste vegetable oil collection. Optimization Letters,
6, 1063–1080.

Aksen, D., Kaya, O., Salman, F. S., & Tüncel, Ö. (2014). An adaptive large neighborhood
search algorithm for a selective and periodic inventory routing problem. European
Journal of Operational Research, 239(2), 413–426.

Alarcon Ortega, E. J., & Doerner, K. F. (2023). A sampling-based matheuristic for
the continuous-time stochastic inventory routing problem with time-windows.
Computers & Operations Research, 152, 106129.

Aliahmadi, S. Z., Barzinpour, F., & Pishvaee, M. S. (2021). A novel bi-objective
credibility-based fuzzy model for municipal waste collection with hard time
windows. Journal of Cleaner Production, 296, 126364.

Angelelli, E., & Speranza, M. G. (2002). The periodic vehicle routing problem with
intermediate facilities. European Journal of Operational Research, 137(2), 233–247.

Baldacci, R., Hadjiconstantinou, E., & Mingozzi, A. (2004). An exact algorithm for
the capacitated vehicle routing problem based on a two-commodity network flow
formulation. Operations Research, 52(5), 723–738.

Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization. Princeton
University Press.

Bertazzi, L., Bosco, A., Guerriero, F., & Laganà, D. (2013). A stochastic inventory routing
problem with stock-out. Transportation Research Part C (Emerging Technologies), 27,
89–107.

Bertazzi, L., & Maggioni, F. (2018). A stochastic multi-stage fixed charge transportation
problem: worst-case analysis of the rolling horizon approach. European Journal of
Operational Research, 267, 555–569.

Bing, X., Bloemhof, J. M., Ramos, T. R. P., Barbosa-Póvoa, A. P., Wong, C. Y., &
van der Vorst, J. G. (2016). Research challenges in municipal solid waste logistics
management. Waste Management, 48, 584–592.

Birge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming. Springer &
Science Business Media.

Brouwer, Y., Barbosa-Póvoa, A. P., Antunes, A. P., & Ramos, T. R. P. (2023).
Comparison of different waste bin monitoring approaches: An exploratory study.
Waste Management Research, 41(10), 1570–1583.

Cárdenas-Barrón, L. E., González-Velarde, J. L., Treviño-Garza, G., & Garza-Nuñez, D.
(2019). Heuristic algorithm based on reduce and optimize approach for a selec-
tive and periodic inventory routing problem in a waste vegetable oil collection
environment. International Journal of Production Economics, 211, 44–59.

Cárdenas-Barrón, L. E., & Melo, R. A. (2021). A fast and effective MIP-based heuristic
for a selective and periodic inventory routing problem in reverse logistics. Omega,
103, 102394.

Cavagnini, R., Bertazzi, L., & Maggioni, F. (2022). A rolling horizon approach for
a multi-stage stochastic fixed-charge transportation problem with transshipment.
European Journal of Operational Research, 301, 912–922.

Chand, S., Hsu, V. N., & Sethi, S. (2002). Forecast, solution, and rolling horizons in
operations management problems: A classified bibliography. Manufacturing & Service
Operations Management, 4, 25–43.

Coelho, L. C., Cordeau, J.-F., & Laporte, G. (2014). Thirty years of inventory routing.
Transportation Science, 48(1), 1–19.

de Morais, C. S., Jorge, D. R. R., Aguiar, A. R., Barbosa-Póvoa, A. P., Antunes, A. P.,
& Ramos, T. R. P. (2022). A solution methodology for a Smart Waste Collection
Routing Problem with workload concerns: computational and managerial insights
from a real case study. International Journal of Systems Science: Operations & Logistics,
1–31.

de Morais, C. S., Ramos, T. R. P., & Barbosa-Póvoa, A. P. (2019). Dynamic approaches to
solve the smart waste collection routing problem. In M. J. a. Alves, J. a. P. Almeida,
J. F. Oliveira, & A. A. Pinto (Eds.), Operational research (pp. 173–188).

de Morais, C. S., Ramos, T. R. P., Lopes, M. J. P., & Barbosa-Póvoa, A. P. (2024).
A data-driven optimization approach to plan smart waste collection operations.
International Transactions in Operational Research, 31, 2178–2208.

Elbek, M., & Wøhlk, S. (2016). A variable neighborhood search for the multi-period
collection of recyclable materials. European Journal of Operational Research, 249(2),
540–550.

European Commission (2020). A new Circular Economy Action Plan. Accessed 7
November 2022.

Faccio, M., Persona, A., & Zanin, G. (2011). Waste collection multi objective model
with real time traceability data. Waste Management, 31, 2391–2405.

Fadda, E., Gobbato, L., Perboli, G., Rosano, M., & Tadei, R. (2018). Waste collection
in urban areas: A case study. Interfaces, 48(4), 307–322.

Florio, A. M., Gendreau, M., Hartl, R. F., Minner, S., & Vidal, T. (2023). Recent advances
in vehicle routing with stochastic demands: Bayesian learning for correlated
demands and elementary branch-price-and-cut. European Journal of Operational
Research, 306(3), 1081–1093.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory
of NP-completeness. W. H. Freeman and Company.

Gendreau, M., Laporte, G., & Séguin, R. (1996). Stochastic vehicle routing. European
Journal of Operational Research, 88(1), 3–12.
20 
Ghiani, G., Laganà, D., Manni, E., Musmanno, R., & Vigo, D. (2014). Operations
research in solid waste management: A survey of strategic and tactical issues.
Computers & Operations Research, 44, 22–32.

Gholizadeh, H., Goh, M., Fazlollahtabar, H., & Mamashli, Z. (2022). Modelling uncer-
tainty in sustainable-green integrated reverse logistics network using metaheuristics
optimization. Computers & Industrial Engineering, 163, 107828.

Gläser, S. (2022). A waste collection problem with service type option. European Journal
of Operational Research, 303(3), 1216–1230.

Gruler, A., Fikar, C., Juan, A. A., Hirsch, P., & Bolton, C. C. (2017). Supporting multi-
depot and stochastic waste collection management in clustered urban areas via
simulation–optimization. Journal of Simulation, 11, 11–19.

Gutierrez, J. M., Jensen, M., Henius, M., & Riaz, T. (2015). Smart waste collection
system based on location intelligence. Procedia Computer Science, 61, 120–127.

Han, J., Zhang, J., Guo, H., & Zhang, N. (2024). Optimizing location-routing and de-
mand allocation in the household waste collection system using a branch-and-price
algorithm. European Journal of Operational Research, 316(3), 958–975.

Hemmelmayr, V. C., Doerner, K. F., Hartl, R. F., & Vigo, D. (2014). Models and
algorithms for the integrated planning of bin allocation and vehicle routing in
solid waste management. Transportation Science, 48(1), 103–120.

Hess, C., Dragomir, A. G., Doerner, K. F., & Vigo, D. (2023). Waste collection routing: a
survey on problems and methods. Central European Journal of Operations Research,
1–36.

Jorge, D., Pais Antunes, A., Rodrigues Pereira Ramos, T., & Barbosa-Póvoa, A. P.
(2022). A hybrid metaheuristic for smart waste collection problems with workload
concerns. Computers & Operations Research, 137, 105518.

Kaut, M., & Wallace, S. W. (2007). Evaluation of scenario-generation methods for
stochastic programming. Pacific Journal of Optimization, 3(2), 257–271.

Kim, J., Manna, A., Roy, A., & Moon, I. (2023). Clustered vehicle routing problem
for waste collection with smart operational management approaches. International
Transactions in Operational Research, 1–15.

Kirui, K., Pflug, G. C., & Pichler, A. (2020). New algorithms and fast implementations
to approximate stochastic processses. URL https://arxiv.org/abs/2012.01185.

Kirui, K., Pichler, A., & Pflug, G. C. (2020). ScenTrees.jl: A julia package for generating
scenario trees and scenario lattices for multistage stochastic programming. Journal
of Open Source Software, 5, 1912.

Krikke, H., le Blanc, I., van Krieken, M., & Fleuren, H. (2008). Low-frequency
collection of materials disassembled from end-of-life vehicles: On the value of on-
line monitoring in optimizing route planning. International Journal of Production
Economics, 111(2), 209–228.

Kuo, R., Zulvia, F. E., & Suryadi, K. (2012). Hybrid particle swarm optimization
with genetic algorithm for solving capacitated vehicle routing problem with fuzzy
demand – A case study on garbage collection system. Applied Mathematics and
Computation, 219(5), 2574–2588.

Lopes, M., & Ramos, T. R. (2023). Efficient sensor placement and online scheduling of
bin collection. Computers & Operations Research, 151, 106113.

Maggioni, F., Allevi, E., & Bertocchi, M. (2014). Bounds in multistage linear stochastic
programming. Journal of Optimization Theory and Applications, 163, 200–229.

Maggioni, F., Kaut, M., & Bertazzi, L. (2009). Stochastic optimization models for
a single-sink transportation problem. Computational Management Science, 6(2),
251–267.

Malladi, K. T., & Sowlati, T. (2018). Sustainability aspects in inventory routing problem:
A review of new trends in the literature. Journal of Cleaner Production, 197,
804–814.

Markov, I., Bierlaire, M., Cordeau, J.-F., Maknoon, Y., & Varone, S. (2020). Waste
collection inventory routing with non-stationary stochastic demands. Computers &
Operations Research, 113, 104798.

Mes, M., Schutten, M., & Rivera, A. P. (2014). Inventory routing for dynamic waste
collection. Waste Management, 34(9), 1564–1576.

Moin, N. H., & Salhi, S. (2007). Inventory routing problems: a logistical overview.
Journal of the Operational Research Society, 58(9), 1185–1194.

Nemirovski, A., & Shapiro, A. (2006). Convex approximations of chance constrained
programs. SIAM Journal on Optimization, 17(4), 969–996.

Nolz, P. C., Absi, N., & Feillet, D. (2014). A stochastic inventory routing problem for
infectious medical waste collection. Networks, 63(1), 82–95.

Nuortio, T., Kytöjoki, J., Niska, H., & Bräysy, O. (2006). Improved route planning and
scheduling of waste collection and transport. Expert Systems with Applications, 30,
223–232.

Olmez, O. B., Gultekin, C., Balcik, B., Ekici, A., & Özener, O. Ö. (2022). A variable
neighborhood search based matheuristic for a waste cooking oil collection network
design problem. European Journal of Operational Research, 302(1), 187–202.

Pflug, G. C., & Pichler, A. (2016). From empirical observations to tree models for
stochastic optimization: convergence properties. SIAM Journal on Optimization, 26,
1715–1740.

Rahmanifar, G., Mohammadi, M., Sherafat, A., Hajiaghaei-Keshteli, M., Fusco, G., &
Colombaroni, C. (2023). Heuristic approaches to address vehicle routing problem
in the Iot-based waste management system. Expert Systems with Applications, 220,
119708.

Ramos, T. R. P., de Morais, C. S., & Barbosa-Póvoa, A. P. (2018). The smart waste
collection routing problem: Alternative operational management approaches. Expert
Systems with Applications, 103, 146–158.

http://refhub.elsevier.com/S0377-2217(24)00932-9/sb1
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb1
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb1
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb1
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb1
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb2
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb2
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb2
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb2
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb2
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb3
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb3
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb3
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb3
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb3
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb4
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb4
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb4
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb4
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb4
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb5
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb5
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb5
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb6
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb6
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb6
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb6
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb6
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb7
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb7
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb7
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb8
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb8
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb8
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb8
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb8
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb9
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb9
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb9
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb9
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb9
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb10
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb10
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb10
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb10
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb10
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb11
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb11
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb11
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb12
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb12
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb12
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb12
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb12
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb13
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb13
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb13
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb13
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb13
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb13
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb13
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb14
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb14
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb14
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb14
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb14
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb15
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb15
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb15
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb15
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb15
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb16
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb16
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb16
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb16
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb16
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb17
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb17
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb17
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb18
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb18
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb18
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb18
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb18
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb18
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb18
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb18
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb18
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb19
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb19
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb19
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb19
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb19
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb20
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb20
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb20
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb20
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb20
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb21
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb21
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb21
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb21
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb21
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb22
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb22
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb22
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb23
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb23
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb23
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb24
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb24
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb24
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb25
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb25
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb25
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb25
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb25
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb25
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb25
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb26
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb26
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb26
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb27
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb27
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb27
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb28
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb28
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb28
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb28
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb28
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb29
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb29
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb29
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb29
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb29
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb30
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb30
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb30
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb31
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb31
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb31
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb31
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb31
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb32
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb32
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb32
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb33
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb33
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb33
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb33
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb33
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb34
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb34
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb34
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb34
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb34
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb35
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb35
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb35
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb35
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb35
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb36
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb36
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb36
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb36
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb36
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb37
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb37
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb37
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb38
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb38
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb38
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb38
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb38
https://arxiv.org/abs/2012.01185
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb40
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb40
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb40
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb40
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb40
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb41
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb41
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb41
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb41
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb41
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb41
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb41
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb42
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb42
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb42
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb42
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb42
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb42
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb42
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb43
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb43
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb43
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb44
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb44
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb44
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb45
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb45
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb45
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb45
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb45
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb46
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb46
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb46
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb46
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb46
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb47
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb47
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb47
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb47
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb47
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb48
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb48
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb48
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb49
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb49
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb49
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb50
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb50
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb50
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb51
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb51
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb51
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb52
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb52
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb52
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb52
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb52
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb53
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb53
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb53
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb53
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb53
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb54
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb54
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb54
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb54
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb54
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb55
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb55
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb55
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb55
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb55
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb55
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb55
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb56
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb56
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb56
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb56
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb56


A. Spinelli et al. European Journal of Operational Research xxx (xxxx) xxx 
Sadrabadi, M. H. D., Nili, M., Makui, A., Jafari-Nodoushan, A., & Dehghani, E. (2024). A
bi-objective optimization model for waste collection problem under risk considering
superior technology in waste refining and recycling: a case study. Clean Technologies
and Environmental Policy.

Sar, K., & Ghadimi, P. (2023). A systematic literature review of the vehicle routing
problem in reverse logistics operations. Computers & Industrial Engineering, 177,
109011.

Shen, Q., Chu, F., & Chen, H. (2011). A Lagrangian relaxation approach for a multi-
mode inventory routing problem with transshipment in crude oil transportation.
Computers & Chemical Engineering, 35(10), 2113–2123.

Silverman, B. W. (1998). Density estimation for statistics and data analysis. London/Boca
Raton: Chapman & Hall/CRC Press.

Solyalı, O., Cordeau, J.-F., & Laporte, G. (2012). Robust inventory routing under
demand uncertainty. Transportation Science, 46(3), 327–340.
21 
Soysal, M., Bloemhof-Ruwaard, J. M., Haijema, R., & van der Vorst, J. G. (2018).
Modeling a green inventory routing problem for perishable products with horizontal
collaboration. Computers & Operations Research, 89, 168–182.

Toth, P., & Vigo, D. (2002). The vehicle routing problem. Society for Industrial and
Applied Mathematics.

Tran, T. H., Nguyen, T. B. T., Le, H. S. T., & Phung, D. C. (2024). Formulation and
solution technique for agricultural waste collection and transport network design.
European Journal of Operational Research, 313(3), 1152–1169.

Wang, Y., Luo, S., Fan, J., & Zhen, L. (2024). The multidepot vehicle routing problem
with intelligent recycling prices and transportation resource sharing. Transportation
Research Part E: Logistics and Transportation Review, 185, 103503.

Zhou, J., Li, H., Gu, Y., Zhao, M., Xie, X., Zheng, H., & Fang, X. (2021). A novel two-
phase approach for the bi-objective simultaneous delivery and pickup problem with
fuzzy pickup demands. International Journal of Production Economics, 234, 108057.

http://refhub.elsevier.com/S0377-2217(24)00932-9/sb57
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb57
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb57
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb57
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb57
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb57
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb57
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb58
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb58
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb58
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb58
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb58
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb59
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb59
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb59
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb59
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb59
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb60
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb60
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb60
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb61
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb61
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb61
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb62
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb62
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb62
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb62
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb62
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb63
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb63
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb63
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb64
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb64
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb64
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb64
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb64
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb65
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb65
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb65
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb65
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb65
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb66
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb66
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb66
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb66
http://refhub.elsevier.com/S0377-2217(24)00932-9/sb66

	A rolling horizon heuristic approach for a multi-stage stochastic waste collection problem
	Introduction
	Literature review
	Problem description and formulation
	A two-commodity flow model
	A polynomially solvable case

	The rolling horizon approach and its worst-case analysis
	Computational results
	Data analysis
	A comparison of models M and Msym solutions
	The impact of uncertainty and the quality of the deterministic solution
	Performance of the rolling horizon approach
	A real case study
	Managerial insights

	Conclusions
	CRediT authorship contribution statement
	Acknowledgments
	
	Appendix
	Data availability
	Appendix . Data availability
	References


