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Abstract: This work introduces a novel zone model predictive control (MPC) based on Gaussian
Process models (GPs) for the artificial pancreas (AP). The main novelty of the proposal is to
exploit a GP that is trained on previously collected metabolic data of type 1 diabetes mellitus
(T1DM) patients, to regulate the blood glucose levels by means of a personalized MPC strategy
that automatically adjusts the basal insulin and the insulin boluses to be injected to the patients.
The average closed-loop performance is improved in terms of classical indexes such as time in
range, avoidance of critic hypoglycaemia episodes and avoidance of long-term hyperglycaemia
events. The controller was evaluated in-silico by means of the FDA-accepted UVA/Padova
metabolic simulator on 11 adult T1DM patients, showing promising results.

Keywords: Artificial Pancreas, Model Predictive Control, Data-driven Control, Gaussian
Processes

1. INTRODUCTION

Type 1 Diabetes Mellitus (T1DM) is a disease characterized
by the progressive destruction of the beta cells in the islets
of Langerhans of the pancreas, which are responsible for
the production of insulin. The lack of insulin caused by
this phenomenon results in the increase of glucose in the
bloodstream.
In non-diabetic people, a low amount of insulin is con-
tinuously released to regulate the blood sugar overnight
and between meals (basal insulin), while larger amounts
of insulin (insulin boluses) are released after meals. The
objective of every diabetes therapy is to mimic this behavior.
A modern approach for treating T1DM is the usage of a
commercial device, called artificial pancreas (AP), that
regulates the glucose level by continuously measuring it
with a sensor and using a controller to compute the right
amount of insulin to be injected by means of an infusion
pump (Moon et al., 2021).
Several controllers have been tested on real and in-silico
patients, starting from more simple solutions such as PID
controllers, like those proposed in (Huyett et al., 2015) and
(Rosales et al., 2022), and then moving on to more complex
strategies such as Model Predictive Control (MPC), see
(Soru et al., 2012; Gondhalekar et al., 2016; González
et al., 2017, 2020; Del Favero et al., 2019; Kovatchev, 2018;
Hovorka et al., 2004; Boiroux et al., 2018; Hajizadeh et al.,
2019; Shi et al., 2018; Toffanin et al., 2013).
In order to use MPC inside an AP, a model of the endocrine-
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metabolic system is needed. Though first-principle models
have been developed for this purpose, their complexity is
leading control system researchers to replace them with
black-box models. Particular interest has been posed to
the development of MPCs based on neural network models,
like in (Bahremand et al., 2019) and (Dutta et al., 2018).
Among the black-box models that have been used inside
MPCs in other fields, we find also Gaussian Process models
(GPs). This is because Gaussian Process Regression (GPR)
provides prediction probability distributions whose variance
can be exploited to make sure that state and output
constraints are satisfied. However, in the case of APs, GPs
have only been used inside sliding mode controllers (Patra
and Rout, 2017) and reinforcement learning algorithms
(De Paula et al., 2015) or to detect changes in the insulin
sensitivity (IS) of a person (Ortmann et al., 2017).
In this article we propose a zone MPC for the control
of the glucose level in T1DM patients which uses a GP
identified on the individual patient as a personalized model
of the endocrine-metabolic system. In particular, the GP is
identified on historical data about the subject’s metabolism
and allows the MPC to automatically compute the right
amount of basal insulin to be continuously provided and
also the insulin boluses that have to be injected at meal-
times. The sampling time of the system is considered to be
10 minutes and the meals are assumed to be announced
exactly at mealtime. The proposed controller was tested on
the 11 virtual adult patients of the UVA/Padova simulator
(The Epsilon Group, 2016), providing satisfactory results.
The rest of the article is organized as follows: Section 2
formulates the control problem and provides some prelimi-
nary concepts about GPs, Section 3 describes the proposed
MPC and Section 4 presents the results obtained on in-
silico patients. Conclusions drawn are given in Section 5.
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pump (Moon et al., 2021).
Several controllers have been tested on real and in-silico
patients, starting from more simple solutions such as PID
controllers, like those proposed in (Huyett et al., 2015) and
(Rosales et al., 2022), and then moving on to more complex
strategies such as Model Predictive Control (MPC), see
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metabolic system is needed. Though first-principle models
have been developed for this purpose, their complexity is
leading control system researchers to replace them with
black-box models. Particular interest has been posed to
the development of MPCs based on neural network models,
like in (Bahremand et al., 2019) and (Dutta et al., 2018).
Among the black-box models that have been used inside
MPCs in other fields, we find also Gaussian Process models
(GPs). This is because Gaussian Process Regression (GPR)
provides prediction probability distributions whose variance
can be exploited to make sure that state and output
constraints are satisfied. However, in the case of APs, GPs
have only been used inside sliding mode controllers (Patra
and Rout, 2017) and reinforcement learning algorithms
(De Paula et al., 2015) or to detect changes in the insulin
sensitivity (IS) of a person (Ortmann et al., 2017).
In this article we propose a zone MPC for the control
of the glucose level in T1DM patients which uses a GP
identified on the individual patient as a personalized model
of the endocrine-metabolic system. In particular, the GP is
identified on historical data about the subject’s metabolism
and allows the MPC to automatically compute the right
amount of basal insulin to be continuously provided and
also the insulin boluses that have to be injected at meal-
times. The sampling time of the system is considered to be
10 minutes and the meals are assumed to be announced
exactly at mealtime. The proposed controller was tested on
the 11 virtual adult patients of the UVA/Padova simulator
(The Epsilon Group, 2016), providing satisfactory results.
The rest of the article is organized as follows: Section 2
formulates the control problem and provides some prelimi-
nary concepts about GPs, Section 3 describes the proposed
MPC and Section 4 presents the results obtained on in-
silico patients. Conclusions drawn are given in Section 5.
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amount of insulin to be injected by means of an infusion
pump (Moon et al., 2021).
Several controllers have been tested on real and in-silico
patients, starting from more simple solutions such as PID
controllers, like those proposed in (Huyett et al., 2015) and
(Rosales et al., 2022), and then moving on to more complex
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metabolic system is needed. Though first-principle models
have been developed for this purpose, their complexity is
leading control system researchers to replace them with
black-box models. Particular interest has been posed to
the development of MPCs based on neural network models,
like in (Bahremand et al., 2019) and (Dutta et al., 2018).
Among the black-box models that have been used inside
MPCs in other fields, we find also Gaussian Process models
(GPs). This is because Gaussian Process Regression (GPR)
provides prediction probability distributions whose variance
can be exploited to make sure that state and output
constraints are satisfied. However, in the case of APs, GPs
have only been used inside sliding mode controllers (Patra
and Rout, 2017) and reinforcement learning algorithms
(De Paula et al., 2015) or to detect changes in the insulin
sensitivity (IS) of a person (Ortmann et al., 2017).
In this article we propose a zone MPC for the control
of the glucose level in T1DM patients which uses a GP
identified on the individual patient as a personalized model
of the endocrine-metabolic system. In particular, the GP is
identified on historical data about the subject’s metabolism
and allows the MPC to automatically compute the right
amount of basal insulin to be continuously provided and
also the insulin boluses that have to be injected at meal-
times. The sampling time of the system is considered to be
10 minutes and the meals are assumed to be announced
exactly at mealtime. The proposed controller was tested on
the 11 virtual adult patients of the UVA/Padova simulator
(The Epsilon Group, 2016), providing satisfactory results.
The rest of the article is organized as follows: Section 2
formulates the control problem and provides some prelimi-
nary concepts about GPs, Section 3 describes the proposed
MPC and Section 4 presents the results obtained on in-
silico patients. Conclusions drawn are given in Section 5.

Notation: Concatenations of column vectors are represented
as (a, b) := [a⊤ b⊤]⊤. For time-independent quantities,
integer subscripts are used to distinguish between different
measures, e.g. w1. In the case of time-dependent quantities,
realized quantities are time-indexed using parentheses, e.g.
y(k), while predicted quantities use subscripts, e.g. yk+i|k
is an i-step-ahead prediction computed at time step k.

2. PRELIMINARIES

In this section, the problem to be solved is formulated and
basic concepts about the usage of GPs and GPR for the
identification of dynamical systems are given.

2.1 Problem formulation

The endocrine-metabolic system of T1DM patients, treated
with an AP providing basal insulin and insulin boluses, can
be seen as a nonlinear discrete-time multiple-input-single-
output system. The output of this system is the blood
glucose level measured by a continuous glucose monitor
(CGM) and is considered to behave as a NARX model of
the form

y(k) = f(y(k − 1), . . . , y(k − na),

umeal(k − 1), . . . , umeal(k − nb),

ubolus(k − 1), . . . , ubolus(k − nc),

ubasal(k − 1), . . . , ubasal(k − nd)) + ϵ(k),

(1)

where k denotes the discrete-time index, y(k) ∈ R is
corrupted by i.i.d. white Gaussian noise ϵ(k) ∼ N (0, σ2

ϵ ),
and with na, nb, nc and nd being the memory horizons of
glucose, meals, insulin boluses and basal insulin that are
considered to build the NARX state.
While ubolus and ubasal are controlled inputs, umeal is an
uncontrolled input. Moreover, meals are considered to
be announced in a timely manner and without any time
advance. The controlled inputs are subject to constraints
that depend on the infusion pump’s capabilities and the
subject’s insulin sensitivity:

(ubolus(k), ubasal(k)) ∈ U, ∀k ≥ 0. (2)

The control objective is to keep the blood glucose level y
inside the euglycaemic range, namely:

70mg/dl ≤ y(k) ≤ 180mg/dl, ∀k ≥ 0. (3)

Historical data about the considered T1DM patient’s
blood glucose, meals, insulin boluses and basal insulin
are available. These data are exploited to determine the
hyperparameters of a GP that is used inside a zone MPC
that has the goal to keep the blood glucose level within
the boundaries defined in (3).

2.2 Gaussian Process models for dynamical systems

A GP is a collection of random variables, any finite number
of which have consistent joint Gaussian distributions, and
is completely determined by a mean function ϕ and a
covariance function c, see (Rasmussen, 2003). For every
finite number of input vectors [w1, w2, . . . , wn]

⊤, with
wi ∈ Rnw , the function values are assumed to behave
according to:

f =



f(w1)

...
f(wn)


 ∼ N (ϕf , C), ϕf =



ϕ(w1)

...
ϕ(wn)


 ,

C =



c(w1, w1) . . . c(wn, w1)

...
. . .

...
c(w1, wn) . . . c(wn, wn)




where ϕ : Rnw → R is a mean function and c : Rnw ×
Rnw → R is a covariance function. Such a GP is indicated
as f ∼ GP(ϕ, c). The choice of ϕ and c depends on the
characteristics of the function that has to be modelled.
Every covariance function depends on a set of hyperparam-
eters ζ, which have to be determined. Assuming to have
noisy observations of the function f and the corresponding
input vectors, namely yi = f(wi) + ϵi, i = 1, . . . , n, where
ϵi ∼ N (0, σ2

ϵ ), the hyperparameters η = (ζ, σ2
ϵ ) can be

determined in different ways. In this paper, our choice
is to determine them via maximization of the marginal
likelihood p(y|W, η), where y = (y1, . . . , yn).
GPR assumes that f ∼ GP(ϕ, c) and uses a Bayesian
approach to compute the predictive distribution of the
noisy output y∗ at a test input vector w∗ given a training
set composed of n pairs (wi, yi):

p(y∗|y, w∗) = N (µ(w∗), σ
2(w∗))

µ(w∗)=ϕ(w∗)+c⊤∗ (C+σ2
ϵ In)

−1(y−ϕf )=ϕ(w∗)+c⊤∗ χ
(4)

σ2(w∗) = c(w∗, w∗)− c⊤∗ (C + σ2
ϵ In)

−1c∗ + σ2
ϵ

= c(w∗, w∗)− c⊤∗ ψ + σ2
ϵ

(5)

where y = (y1, . . . , yn), c∗ = (c(w1, w∗), . . . , c(wn, w∗)),
C ∈ Rn×n is a covariance matrix such that [C]ij =
c(wj , wi) ∀i, j = 1, . . . , n, ϕf = (ϕ(w1), . . . , ϕ(wn)), χ =
(C + σ2

ϵ In)
−1(y − ϕf ) and ψ = (C + σ2

ϵ In)
−1c∗.

GPs can be easily adapted to identify dynamical systems
by building regressors that are made of past outputs and
inputs. In this way, GPR can be used to compute one-
step-ahead predictions of the system’s output. Within an
MPC, however, multi-step-ahead predictions are needed,
leading to the issue of uncertainty propagation. This comes
from the fact that standard GPR works on deterministic
regressors, while multi-step-ahead predictions require to
use GPR on stochastic regressors, as they also include past
predictions, which however are Gaussian.
Given that ignoring the stochasticity of such regressors
would lead to predictions with underestimated variances,
in this paper we assume that the posterior predictive
distribution computed over stochastic regressors is still
Gaussian and compute its mean and variance by means of
the law of iterated expectations and the law of conditional
variances explained in (Quinonero-Candela et al., 2003).

3. CONTROLLER DESIGN

In this section, the proposed MPC is described in detail
and the entire design process is presented.

3.1 A Gaussian Process model of the endocrine-metabolic
system

As stated in the previous section, historical data about the
considered T1DM patient are assumed to be available. In
particular, the available dataset takes the form:

D := {(y(i), umeal(i), ubolus(i), ubasal(i), i = 1, . . . , nD)}.
These data have to be used to determine the hyperparam-
eters of the GP that will model the endocrine-metabolic
system inside the MPC.
However, before determining such hyperparameters, it is
necessary to choose the mean function ϕ and the covariance
function c that characterize the GP and the memory
horizons na, nb, nc and nd. Moreover, since GPR requires
inverting the matrix C + σ2

ϵ In ∈ Rn×n, it can become
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with an AP providing basal insulin and insulin boluses, can
be seen as a nonlinear discrete-time multiple-input-single-
output system. The output of this system is the blood
glucose level measured by a continuous glucose monitor
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advance. The controlled inputs are subject to constraints
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where ϕ : Rnw → R is a mean function and c : Rnw ×
Rnw → R is a covariance function. Such a GP is indicated
as f ∼ GP(ϕ, c). The choice of ϕ and c depends on the
characteristics of the function that has to be modelled.
Every covariance function depends on a set of hyperparam-
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leading to the issue of uncertainty propagation. This comes
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regressors, while multi-step-ahead predictions require to
use GPR on stochastic regressors, as they also include past
predictions, which however are Gaussian.
Given that ignoring the stochasticity of such regressors
would lead to predictions with underestimated variances,
in this paper we assume that the posterior predictive
distribution computed over stochastic regressors is still
Gaussian and compute its mean and variance by means of
the law of iterated expectations and the law of conditional
variances explained in (Quinonero-Candela et al., 2003).
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In this section, the proposed MPC is described in detail
and the entire design process is presented.
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As stated in the previous section, historical data about the
considered T1DM patient are assumed to be available. In
particular, the available dataset takes the form:

D := {(y(i), umeal(i), ubolus(i), ubasal(i), i = 1, . . . , nD)}.
These data have to be used to determine the hyperparam-
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system inside the MPC.
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computationally demanding if n is large. For this reason,
it is also convenient to train the GP on a subset of the
initially available dataset, in order to have n ≪ nD.
In this work, we choose to set ϕ(w) = 0 and to use the
squared exponential covariance function with automatic
relevance determination (ARD), namely:

c(w1, w2|ζ) = e−
1
2 (w1−w2)

⊤Λ−1(w1−w2), (6)

where Λ = diag(λ2
1, . . . , λ

2
nd
) and ζ = (λ1, . . . , λnd

) are the
covariance hyperparameters Rasmussen (2003). The choice
of this covariance function is motivated by the fact that
the ARD function induces a RKHS space such that the
estimated functions are BIBO stable nonlinear dynamical
systems (Pillonetto, 2018).
The choice of the memory horizons na, nb, nc and nd and
of the number n of observations to keep requires further
attention. Since the dynamics of the endocrine-metabolic
system can differ significantly from patient to patient, these
parameters have to be chosen for each person.
While a straightforward way of finding the optimal value
of these parameters might be to train different models on a
training set and choose as the final model the one providing
the maximum marginal likelihood over a validation set,
this method might bring unsatisfactory results. This is
due to the fact that a GP can fit the data well even if it
misunderstands the effect that each regressor’s component
has on the output function. In particular, since insulin
boluses are often provided at mealtimes, many models
providing good marginal likelihood values actually interpret
boluses as inputs that cause an increase in blood glucose
and meals as inputs causing a decrease.
For this reason, provided that the parameters to be found
belong to the set of natural numbers and can take only a
finite number of values, a better sequence of actions that
can be accomplished for model selection is the following:

(1) For each combination of na, nb, nc, nd and n:
(a) The original dataset is transformed into:

Dtemp := {(y(i), w(i)),
i = max{na, nb, nc, nd}+ 1, . . . , nD},

where
w(i) := (y(i− 1), . . . , y(i− na),

umeal(i− 1), . . . , umeal(i− nb),

ubolus(i− 1), . . . , ubolus(i− nc),

ubasal(i− 1), . . . , ubasal(i− nd)).

(7)

(b) A subset of Dtemp is built by selecting the n
most informative observations. In this work this
selection is done by running a k-means clustering
algorithm with k set to n and then keeping
the observations that are closest to the clusters’
centroids.

(c) The hyperparameters of the GP are found by
maximization of the log marginal likelihood.

(2) The 10 models providing the best marginal likelihood
values over a validation set are manually evaluated in
order to choose the most consistent with the known
effects of the system’s inputs. In particular, a good
model is expected to predict a decrease in the blood
glucose level when the value of the provided basal
insulin is large and to predict an increase after meals,
which should be smaller when also an insulin bolus is
provided at mealtime.

3.2 The optimization problem

The goal of the here presented controller is to keep the blood
glucose level of T1DM patients within the euglycaemic
range (3), while trying to minimize the amount of injected
insulin. At each sampling instant k, the controller has to
compute the best ubasal(k) and ubolus(k) based on y(k), a
collection of past input and output values w(k), where w(k)
has the same structure introduced in (7), and umeal(k).
The predictions of the blood glucose levels along the
prediction horizon are carried out via GPR. At each
prediction step j, a regressor is built such that

wk+j|k := (yk+j−1|k, . . . , yk+j−na|k,

umeal,k+j−1|k, . . . , umeal,k+j−nb|k,

ubolus,k+j−1|k, . . . , ubolus,k+j−nc|k,

ubasal,k+j−1|k, . . . , ubasal,k+j−nd|k),

where:

• yk+j−i|k = y(k + j − i) for j ≤ i;

• yk+j−i|k ∼ N (yk+j−i|k, σ
2
k+j−i|k) for j > i, as they

are the result of previous predictions.

The regressor wk+j|k is then used to get the prediction
yk+j|k, whose mean and variance are computed as explained
in (Quinonero-Candela et al., 2003).
Given that hyperglycaemia and hypoglycaemia events,
although undesirable, are possible and that the latter
are more critical than the former, the cost function and
the constraints involved in our MPC are inspired by
(Abuin et al., 2020). In particular, soft constraints are
provided to keep the predicted blood glucose levels within
the euglycaemic range if possible, and the related slack
variables are weighted inside the cost function in such
a way that makes hypoglycaemia events less likely than
hyperglycaemia ones, because they are more dangerous.
The soft constraints on the predicted blood glucose levels
are made even safer by considering also the standard
deviation of each prediction. This comes from the fact
that both predictions with expected values that lie outside
the euglycaemic range and predictions with large variances
are to be considered unsafe.
Moreover, our MPC belongs to the family of zone MPCs,
as it brings the system’s output to a specified range, or
zone, instead of bringing it to a reference. This is done
by introducing a new optimization variable ya, which is
imposed to stay within a desired range, and by weighting
the distance between the predicted blood glucose levels and
this variable in the cost function.
Along the chosen prediction horizon N , basal insulin is free
to change at every prediction step. The same doesn’t apply
to insulin boluses; a bolus can be provided only at the first
prediction step and only when umeal > 0.
The last concepts and assumptions formally translate into
the following optimization problem, which has to be solved
at each sampling instant k:

min
u

N∑
j=0

[
Q(yk+j|k−ya)

2+ρhypoδ
2
hypo,k+j+ρhyperδ

2
hyper,k+j

]

+
N−1∑
j=0

[
Rbasalu

2
basal,k+j

]
+Rbolusu

2
bolus,k

(8a)

s.t. yk|k = y(k) (8b)

yk+j|k ∼ N (yk+i|k, σ
2
k+i|k) ∀j ∈ [1, N ] (8c)

0 ≤ ubasal,k+j ≤ ubasal ∀j ∈ [0, N − 1] (8d)

0 ≤ ubolus,k ≤ ubolus(umeal(k)) (8e)

y ≤ ya ≤ (y + y)/2 (8f)

δhypo,k+j ≥ 0, δhyper,k+j ≥ 0 ∀j ∈ [0, N ] (8g)

yk+j|k−nσσk+j|k ≥ y−δhypo,k+j ∀j∈ [0, N ] (8h)

yk+j|k+nσσk+j|k ≤ y+δhyper,k+j ∀j∈ [0, N ] (8i)

where:

• yk+j|k are Gaussian distributions obtained by means
of multi-step ahead prediction.

• ubasal is a design parameter and depends on the insulin
sensitivity of the subject.

• The insulin boluses upper bound is computed as

ubolus(umeal(k)) =

{
0, umeal(k)) = 0

ubolus, umeal(k)) > 0

where ubolus is a design parameter.
• δhypo,k+j and δhyper,k+j are the slack variables related
to hypoglycaemia and hyperglycaemia events.

• y = 70mg/dl and y = 180mg/dl are the lower and
upper bounds of the euglycaemic range. Note that
in this work, ya is imposed to stay within the lower
half of the euglycaemic range [70, 125]mg/dl instead of
the entire euglycaemic range [70, 180]mg/dl to recover
more quickly from possible hyperglycaemia events.

• nσ is a design parameter. The higher nσ, the more
our MPC avoids uncertain predictions.

4. IN-SILICO EVALUATION

The designed zone MPC was tested on 11 in-silico adult
patients by means of the UVA/Padova T1DM simulator
implemented in the software DMMS.R. The simulations
were run on a machine equipped with an Intel® Xeon®

E3-1225 CPU and 8GB of RAM. The controller was
implemented in MATLAB® and the optimization problem
that is inherent in each MPC step was solved by means of
the fmincon function.
Both the data collection phase and the final simulations
were carried out considering a sampling time Ts = 10min.
This choice is motivated by the need to guarantee that
the execution time of a single MPC step is shorter
than the sampling time. In order to create GPs that
really understand the dynamics of the endocrine-metabolic
system, it is necessary to create regressors that take
into account output and input values of the past 1-2
hours; for this reason choosing a shorter sampling time
would lead to the need of building regressors with larger
memory horizons na, nb, nc and nd, thus making the
optimization problem involved in the here proposed MPC
computationally demanding.
In both the data collection phase and the final simulations,
the daily nutrition plan was the same for all the patients
and is described in table 1.

Table 1. Daily carbohydrate consumption for
the in-silico patients

Time 7a.m. 10a.m. 12a.m. 3p.m. 6p.m. 10p.m.
Intake [g] 30 10 45 10 60 10

Table 2. Selected model for each patient

Subject
Avg #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

na 4 4 4 6 6 4 4 4 4 4 4

nb 8 6 10 10 10 6 10 10 10 10 10

nc 10 9 12 6 10 6 8 12 10 10 10

nd 6 9 10 12 8 9 8 6 12 12 12

n 150 250 250 350 250 250 350 250 250 250 250

Table 3. MPC settings

Subject N Q Rbasal Rbolus ρhypo ρhyper nσ

#1, #3-10 12 100 0.5 0.1 105 104 2

#2, Avg 12 100 0.1 0.1 105 104 2

4.1 Data collection and model identification

In order to identify high-quality GPs for each patient,
it was necessary to collect large amounts of data about
all the conditions a diabetic subject can run into. For
this reason, data about each patient were collected over
a 35 days simulation with the goal to lead the patient
to hyperglycaemia, euglycaemia and hypoglycaemia by
randomly changing the basal insulin provided over the
simulation time and giving random boluses at mealtime.
Giving random values of basal insulin and boluses requires
knowing an upper bound for the two, namely the param-
eters ubasal and ubolus introduced in (8). In order to find
these values it was necessary to run multiple simulations
on each patient and to fix the upper bounds in order to
avoid too dangerous hypoglycaemia and hyperglycaemia
events.
Once the dataset D was built, the process explained in
Section 3.1 was followed to determine na, nb, nc, nd and
n and find the best GP for each patient. In particular, in
order to limit the number of parameter combinations to be
evaluated, the following assumptions were made:

na ∈ {4, 6}, (9a)

nb, nc, nd ∈ [6, 12], (9b)

n ∈ {150, 200, 250, 300, 350, 400}. (9c)

The parameters of the chosen models are shown in table 2.

4.2 Controller setting

The personalization of the here proposed controller to meet
the needs of the single T1DM patient is not only guaranteed
by the GP model that is fitted to the single subject’s data,
but also by the possibility to choose different settings for
the zone MPC. In particular, the parameters that can be
changed to optimize the performance of the controller on
the single subject are N , Q, Rbasal, Rbolus, ρhypo, ρhyper
and nσ.
The settings that were chosen for the in-silico patients after
several trials were similar. In particular, only Rbasal took
different values depending on the patient. The parameters
for all the patients are presented in table 3.

4.3 Results

The results of the simulations are promising; in particular,
no patients ran into severe hypoglycaemia events and, apart
from Adult 7, all the other subjects experienced a limited
number of hyperglycaemia events.
To evaluate the performance of our controller on each
patient, we used the Control-Variability Grid Analysis
(CVGA) introduced in (Magni et al., 2008). The CVGA
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yk+j|k ∼ N (yk+i|k, σ
2
k+i|k) ∀j ∈ [1, N ] (8c)

0 ≤ ubasal,k+j ≤ ubasal ∀j ∈ [0, N − 1] (8d)

0 ≤ ubolus,k ≤ ubolus(umeal(k)) (8e)

y ≤ ya ≤ (y + y)/2 (8f)

δhypo,k+j ≥ 0, δhyper,k+j ≥ 0 ∀j ∈ [0, N ] (8g)

yk+j|k−nσσk+j|k ≥ y−δhypo,k+j ∀j∈ [0, N ] (8h)

yk+j|k+nσσk+j|k ≤ y+δhyper,k+j ∀j∈ [0, N ] (8i)
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{
0, umeal(k)) = 0

ubolus, umeal(k)) > 0

where ubolus is a design parameter.
• δhypo,k+j and δhyper,k+j are the slack variables related
to hypoglycaemia and hyperglycaemia events.

• y = 70mg/dl and y = 180mg/dl are the lower and
upper bounds of the euglycaemic range. Note that
in this work, ya is imposed to stay within the lower
half of the euglycaemic range [70, 125]mg/dl instead of
the entire euglycaemic range [70, 180]mg/dl to recover
more quickly from possible hyperglycaemia events.

• nσ is a design parameter. The higher nσ, the more
our MPC avoids uncertain predictions.

4. IN-SILICO EVALUATION

The designed zone MPC was tested on 11 in-silico adult
patients by means of the UVA/Padova T1DM simulator
implemented in the software DMMS.R. The simulations
were run on a machine equipped with an Intel® Xeon®

E3-1225 CPU and 8GB of RAM. The controller was
implemented in MATLAB® and the optimization problem
that is inherent in each MPC step was solved by means of
the fmincon function.
Both the data collection phase and the final simulations
were carried out considering a sampling time Ts = 10min.
This choice is motivated by the need to guarantee that
the execution time of a single MPC step is shorter
than the sampling time. In order to create GPs that
really understand the dynamics of the endocrine-metabolic
system, it is necessary to create regressors that take
into account output and input values of the past 1-2
hours; for this reason choosing a shorter sampling time
would lead to the need of building regressors with larger
memory horizons na, nb, nc and nd, thus making the
optimization problem involved in the here proposed MPC
computationally demanding.
In both the data collection phase and the final simulations,
the daily nutrition plan was the same for all the patients
and is described in table 1.

Table 1. Daily carbohydrate consumption for
the in-silico patients

Time 7a.m. 10a.m. 12a.m. 3p.m. 6p.m. 10p.m.
Intake [g] 30 10 45 10 60 10

Table 2. Selected model for each patient

Subject
Avg #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

na 4 4 4 6 6 4 4 4 4 4 4

nb 8 6 10 10 10 6 10 10 10 10 10

nc 10 9 12 6 10 6 8 12 10 10 10

nd 6 9 10 12 8 9 8 6 12 12 12

n 150 250 250 350 250 250 350 250 250 250 250

Table 3. MPC settings

Subject N Q Rbasal Rbolus ρhypo ρhyper nσ

#1, #3-10 12 100 0.5 0.1 105 104 2

#2, Avg 12 100 0.1 0.1 105 104 2

4.1 Data collection and model identification

In order to identify high-quality GPs for each patient,
it was necessary to collect large amounts of data about
all the conditions a diabetic subject can run into. For
this reason, data about each patient were collected over
a 35 days simulation with the goal to lead the patient
to hyperglycaemia, euglycaemia and hypoglycaemia by
randomly changing the basal insulin provided over the
simulation time and giving random boluses at mealtime.
Giving random values of basal insulin and boluses requires
knowing an upper bound for the two, namely the param-
eters ubasal and ubolus introduced in (8). In order to find
these values it was necessary to run multiple simulations
on each patient and to fix the upper bounds in order to
avoid too dangerous hypoglycaemia and hyperglycaemia
events.
Once the dataset D was built, the process explained in
Section 3.1 was followed to determine na, nb, nc, nd and
n and find the best GP for each patient. In particular, in
order to limit the number of parameter combinations to be
evaluated, the following assumptions were made:

na ∈ {4, 6}, (9a)

nb, nc, nd ∈ [6, 12], (9b)

n ∈ {150, 200, 250, 300, 350, 400}. (9c)

The parameters of the chosen models are shown in table 2.

4.2 Controller setting

The personalization of the here proposed controller to meet
the needs of the single T1DM patient is not only guaranteed
by the GP model that is fitted to the single subject’s data,
but also by the possibility to choose different settings for
the zone MPC. In particular, the parameters that can be
changed to optimize the performance of the controller on
the single subject are N , Q, Rbasal, Rbolus, ρhypo, ρhyper
and nσ.
The settings that were chosen for the in-silico patients after
several trials were similar. In particular, only Rbasal took
different values depending on the patient. The parameters
for all the patients are presented in table 3.

4.3 Results

The results of the simulations are promising; in particular,
no patients ran into severe hypoglycaemia events and, apart
from Adult 7, all the other subjects experienced a limited
number of hyperglycaemia events.
To evaluate the performance of our controller on each
patient, we used the Control-Variability Grid Analysis
(CVGA) introduced in (Magni et al., 2008). The CVGA
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is shown in figure 1 and proves the general quality of our
controller, given that:

• 2 patients never reached hypoglycaemia and hypergly-
caemia situations (A zone);

• 2 patients experienced some benign hyperglycaemia
events and approached the euglycaemic range lower
bound (B zone);

• 6 patients experienced some benign hyperglycaemia
events and never approached the euglycaemic range
lower bound (Upper B zone);

• One patient, in particular Adult 7, ran into some
severe hyperglycaemia events, but never approached
hypoglycaemic levels (Upper C zone).

Figure 2 displays the evolution of the blood glucose level
over the three-day simulation for three representative
patients. In detail, it is possible to see how the controller
was able to keep Adults 5 and 7 almost always within the
euglycaemic range, responding promptly to carbohydrate
intakes with well-computed boluses, while being too con-
servative in the case of Adult 7, who experienced several
long-lasting hyperglycaemia events due to an insufficient
infusion of basal insulin and small boluses. Other common
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Fig. 1. CVGA of the simulations run for the 11 adult
patients. Adult 7 was the only one reaching noticeable
hyperglycaemia values, while the other patients were
treated successfully with our MPC.

performance indices are shown in tables 4. Note how almost
all the patients spent between the 85% and the 100% of the
simulation time in euglycaemic range, the only exception
being Adult 7. Furthermore, none of the patients ran into
hypoglycaemia events.

In addition to achieving encouraging results, the proposed
MPC always had execution times that were consistent with
the chosen sampling time. Indeed, as shown in figure 3,
only the execution time of the controller built for adult 6
approached the sampling time, but never exceeded it.

5. CONCLUSION

We proposed a zone MPC based on GPs for the control of
the blood glucose level in T1DM patients and tested it on
a total of 11 in-silico adult patients on the FDA-approved
UVA/Padova simulator.
The main advantages of the introduced control method
reside in the possibility to customize it to the individual
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Fig. 2. Evolution of the blood glucose level in three represen-
tative patients: adult 7 ran into severe hyperglycaemia
events, adult 5 experienced rare hyperglycaemia events,
while adult 10 stayed within the euglycaemic range.
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Fig. 3. Box plots of the single MPC step execution times
related to each patient. The execution time of a single
MPC step was never greater than the sampling time.

T1DM patient and its ability to compute the amounts of
basal insulin and insulin boluses that have to be injected
automatically and without exploiting any first-principle
models of the endocrine-metabolic system. Moreover, mod-
elling the system as a GP allows us to exploit the prediction
uncertainties provided by GPR to avoid situations that are
likely to bring the treated patient to hypoglycaemia and
hyperglycaemia events.
The results obtained on the UVA/Padova simulator are
encouraging and show how most of the in-silico patients
benefited from the usage of our MPC. In particular, none
of them experienced hypoglycaemia events. The CVGA
shown in Figure 1 and the performance indices presented
in table 4 clearly show that our controller tends to avoid
hypoglycaemia more than it avoids hyperglycaemia, which
is consistent with the MPC settings that we chose, specifi-
cally ρhypo > ρhyper.
The most critical issue about our control method is the col-
lection of the data that are needed to fit a GP that models
well the behavior of a subject’s metabolism. Indeed, it is
necessary to bring the patient to multiple hypoglycaemia
and hyperglycaemia events in order for the identified GP
to make good predictions in all situations. However, we are
confident that the usage of constrained GPs, namely GPs
that are trained in a way that allows one to incorporate

Table 4. Performance metrics of the closed-loop system on the 11 in-silico patients

Subject Avg #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Mean glucose [mg/dl] 141.55 140.17 134.43 130.38 131.24 119.66 122.93 181.05 145.10 140.49 133.68

Glucose SD [mg/dl] 28.13 17.78 24.67 33.61 20.48 30.17 24.07 57.81 26.79 35.74 17.26

Time in [70,140]mg/dl [%] 57.76 55.45 71.49 71.42 66.30 76.28 80.84 33.28 56.79 59.52 63.13

Time in [70,180]mg/dl [%] 89.93 96.41 94.38 93.57 98.10 93.91 95.76 51.15 88.43 85.81 99.79

Time above 180mg/dl [%] 10.07 3.59 5.62 6.43 1.90 6.09 4.24 48.85 11.57 14.19 0.21

Time below 70mg/dl [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a priori information about the underlying function, could
lead to good results even by collecting fewer data and
avoiding hypoglycaemia and hyperglycaemia events.
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Table 4. Performance metrics of the closed-loop system on the 11 in-silico patients
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Glucose SD [mg/dl] 28.13 17.78 24.67 33.61 20.48 30.17 24.07 57.81 26.79 35.74 17.26
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