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FOREWORD 
 

 
About three years ago, when the decision had been made to organize the 12th IFAC Symposium on Biological 
and Medical Systems in Villingen-Schwenningen, Germany, we were still uncertain about the long-term effects 
of the COVID-19 pandemic and feared that organizing scientific meetings on the traditional way will not be 
possible any more. Prof Knut Möller was optimistic and took the risk of organizing the main IFAC TC8.2-
sponsored Symposium in whatever way it would be possible. Life was generous, and he was honored for his 
bravery, so the 12th IFAC BMS symposium happened to be the largest Symposium in the history of the BMS 
conferences! 
 
Our Symposium, held every three years, has traditionally focused on applications of systems, modelling, 
informatics and control concepts, methodology and techniques in biology, physiology, medicine and 
healthcare. However, the submitted papers always reflect the actual societal and economic challenges faced 
all over the world to provide more productive medical treatment with the aid of engineering technologies, 
specifically using automation and control strategies and modelling techniques. Thus, following the previous 
editions in Berlin (2015), Sao Paulo (2018), and Ghent (2021), the 12th IFAC Symposium on Biological and 
Medical Systems stands under the sign of inter-disciplinarity. 
 
Control, as the invisible thread of technology and its best application, has proved to be essential in service of 
humanity. Whether societal, economic, or simply instrumentation, control was always there. IFAC – The 
International Federation of Automatic Control – even in medicine, feels like the core for thousands of 
researchers who wish to address the great challenges ahead.  
 
This landmark event has brought together contributions and scientific discussions from 155 academics, 20 
research institutions and 9 medical technology companies across the world. More precisely, 611 authors from 
32 countries, including 214 female contributors, reflecting our TC effort to strengthen the number of 
contributions from under-represented people and society. 
 
Our 3-day event featured 7 invited tracks with 7 leading plenary speakers, one for each invited track, 60 invited 
papers and, altogether, 102 oral and 35 poster presentations distributed over 19 sessions. To strengthen 
industry connections, the majority of plenary keynote speakers represented significant industrial partners of 
the medical technology industry. As a novel concept the invited keynotes addressed and introduced the 
subsequent invited sessions. For the first time two invited sessions targeted application areas “Women’s 
Health” and “Mental Health”. A dedicated symposium session dealt with the recent advances in artificial 
intelligence (AI) in medicine, proving the rapid growth of AI-driven medical applications with measurable 
benefits. Medical signal processing and medical device technologies, as traditionally strong sessions of the 
meeting, included several innovative solutions for future industrial applications. The digital-twin technology 
was the focus of sessions dealing with physiological system modeling, introduced by an exciting keynote 
motivating the future potential of the technology. The increasing practical impact of artificial pancreas results 
was represented by two dedicated conference sessions. Showing the importance of the field, diabetes 
technology will be the main focus of the new TC 8.2 sponsored workshop organized in 2025. From the image 
processing and medical imaging sessions, a significant number of papers focused on investigating the 
opportunities of Electrical Impedance Tomography as a quickly improving imaging modality, which already has 
manufacturing support and has the potential to become one of the common diagnostic methods in intensive 
care.  
 
A rigorous review by leading experts in the field guaranteed the high scientific quality of the conference. During 
the conference best paper, young author and best poster prices were awarded to outstanding contributions 
thanks to the financial support of industrial partners. The voluntary engagement of the members of the 
organizing committees, sponsors, associated editors, reviewers, and session chairs made this event possible. 
The participants enjoyed the hospitality of the Furtwangen University and the culture, art, and history of the 
city of Villingen-Schewnningen situated at the south-west ankle of Germany. We are convinced that IFAC 
BMS2024 was an inspiring experience for all the participants.  
 
 
 Balázs Benyó Knut Möller  Thomas Desaive Geoff Chase  
 Editor NOC Chair IPC Chair IPC Co-Chair  
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Abstract: This work presents a learning-based Model Predictive Control (MPC) algorithm for
the artificial pancreas able to autonomously manage basal insulin injections in type 1 diabetic
patients. The main goal is to keep the blood glucose levels within the euglycemic range (70-
180 mg/dL), trying to avoid hypoglycemia. To prevent this event, additional constraints are
added that consider the Insulin On Board (IOB). The data collection and the testing of the
proposal are performed on the virtual patients of the FDA-accepted UVA/Padova simulator.
The final results seem promising since the proposed controller reduces the time in hypoglycemia
with respect to the standard constant basal insulin therapy.

Keywords: Artificial Pancreas, MPC, Learning-Based Control

1. INTRODUCTION

Type 1 Diabetes (T1D) is a chronic disease characterised
by an excess of glucose in the blood, known as hyper-
glycemia (glucose levels higher than 180 mg/dL), caused
by insufficient production of insulin (i.e. the hormone
that regulates glucose levels). The therapy aims to restore
and maintain the Blood Glucose (BG) level within the
euglycemic range between 70 and 180 mg/dL, avoiding
hypoglycemic events (i.e. BG below 70 mg/dL).
The standard therapy for T1D involves two types of ex-
ternal insulin administrations. The basal insulin infusion
helps to maintain the glucose level within a safe range
during fasting periods, while boluses of insulin are given
to manage any increase in BG levels due to carbohy-
drate ingestion or to correct unexpected hyperglycemic
events. The Artificial Pancreas is a device that improves
the diabetes management, by employing a control algo-
rithm to compute the insulin amounts to be delivered
by a pump in a transcutaneous way, based on measures
of glucose at the interstitial level provided by a sensor
(Continuous Glucose Monitoring, CGM) (Toffanin et al.,
2013). Model Predictive Control (MPC), one of the most
widely used control algorithms for AP, optimises the con-
trol signal, by predicting the system’s future evolution
through a model, minimising a cost function and including
constraints (Del Favero et al., 2019; Toffanin et al., 2013;
Hovorka et al., 2004; Kovatchev, 2018; Boiroux et al., 2018;
1 This work was funded by the National Plan for NRRP Comple-
mentary Investments (PNC, established with the decree-law 6 May
2021, n. 59, converted by law n. 101 of 2021) in the call for the funding
of research initiatives for technologies and innovative trajectories in
the health and care sectors (Directorial Decree n. 931 of 06-06-2022) -
project n. PNC0000003 - AdvaNced Technologies for Human-centrEd
Medicine (project acronym: ANTHEM).

Abuin et al., 2020; González et al., 2020; Shi et al., 2018;
Sun et al., 2022). However, since identifying a good model
for a specific patient’s glucose-insulin dynamics is difficult,
data-driven methods are starting to acquire relevance in
the field (Dutta et al., 2018; Paoletti et al., 2019).
In this work, the Componentwise Hölder Kinky Inference
(CHoKI) method is exploited, a nonparametric learning
technique that allows the building of robust MPCs that
are stable by design (Manzano et al., 2021; Sonzogni
et al., 2023). In this way, it is possible to exploit the
subjects’ data to make the BG prediction and use them
inside an MPC to create a personalized controller. In
addition, Insulin on Board (IOB) is also considered in
the MPC construction. With the aim of reducing the risk
of hypoglycemia, the amount of basal insulin is limited
by the estimated IOB. To obtain the necessary data and
to test the proposed control algorithm, the UVA/Padova
simulator’s virtual adult patients are used (The Epsilon
Group, 2016). This simulator has been approved by the
FDA as a substitute for preclinical trials (Man et al., 2014).
The layout of this note is as follows. In Section 2 the
problem is presented, the CHoKI method is explained
and applied to the T1D patient case. In Section 3 the
MPC design and IOB constraint are explained. Section 4
shows the results of the proposed MPC applied on the
UVA/Padova simulator, and Section 5 concludes the work.

Notation: A set of integers [a, b] is denoted I
b
a, R

n is the
set of real vectors of dimension n and R

n×m is the set
of real matrices of dimension n×m. Mi is the ith row of
a matrix M . Given v, w ∈ R

nv , (v, w) implies [vT , wT ]T

and v ≤ w implies that the inequality holds for every
component. ∥v∥ is the Euclidean norm of v and |v| = {w :
wi = |vi|, ∀i}. A ⊖ B denotes the Pontryagin difference
and A × B the Cartesian product of the two sets A,B.
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MPC design and IOB constraint are explained. Section 4
shows the results of the proposed MPC applied on the
UVA/Padova simulator, and Section 5 concludes the work.
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Group, 2016). This simulator has been approved by the
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(CHoKI) method is exploited, a nonparametric learning
technique that allows the building of robust MPCs that
are stable by design (Manzano et al., 2021; Sonzogni
et al., 2023). In this way, it is possible to exploit the
subjects’ data to make the BG prediction and use them
inside an MPC to create a personalized controller. In
addition, Insulin on Board (IOB) is also considered in
the MPC construction. With the aim of reducing the risk
of hypoglycemia, the amount of basal insulin is limited
by the estimated IOB. To obtain the necessary data and
to test the proposed control algorithm, the UVA/Padova
simulator’s virtual adult patients are used (The Epsilon
Group, 2016). This simulator has been approved by the
FDA as a substitute for preclinical trials (Man et al., 2014).
The layout of this note is as follows. In Section 2 the
problem is presented, the CHoKI method is explained
and applied to the T1D patient case. In Section 3 the
MPC design and IOB constraint are explained. Section 4
shows the results of the proposed MPC applied on the
UVA/Padova simulator, and Section 5 concludes the work.

Notation: A set of integers [a, b] is denoted I
b
a, R

n is the
set of real vectors of dimension n and R

n×m is the set
of real matrices of dimension n×m. Mi is the ith row of
a matrix M . Given v, w ∈ R

nv , (v, w) implies [vT , wT ]T

and v ≤ w implies that the inequality holds for every
component. ∥v∥ is the Euclidean norm of v and |v| = {w :
wi = |vi|, ∀i}. A ⊖ B denotes the Pontryagin difference
and A × B the Cartesian product of the two sets A,B.

Insulin on Board safety constraint effect in

a CHoKI-based MPC for Artificial

Pancreas

Beatrice Sonzogni ∗ José Maŕıa Manzano ∗∗ Fabio Previdi ∗

Antonio Ferramosca ∗

∗ Department of Management, Information and Production
Engineering, University of Bergamo, Bergamo, Italy

∗∗ Department of Engineering, Universidad Loyola Andalućıa, 41704
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(CHoKI) method is exploited, a nonparametric learning
technique that allows the building of robust MPCs that
are stable by design (Manzano et al., 2021; Sonzogni
et al., 2023). In this way, it is possible to exploit the
subjects’ data to make the BG prediction and use them
inside an MPC to create a personalized controller. In
addition, Insulin on Board (IOB) is also considered in
the MPC construction. With the aim of reducing the risk
of hypoglycemia, the amount of basal insulin is limited
by the estimated IOB. To obtain the necessary data and
to test the proposed control algorithm, the UVA/Padova
simulator’s virtual adult patients are used (The Epsilon
Group, 2016). This simulator has been approved by the
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B(v) = {y : 0 ≤ y ≤ v} ⊂ R
nv is the positive box of radius

v and B(v) = {y : |y| ≤ v} ⊆ R
nv is the ball of radius v.

An n,m-dimensional matrix of ones is denoted 1n×m.

2. PROBLEM STATEMENT

According to what is proposed in Sonzogni et al. (2023),
the insulin-glucose system of the patient can be explained
as a continuous-time system, sampled every 5 min. The
output y(k) ∈ R

ny is the glucose level in mg/dL (ny =
1) and there are two inputs (nu = 2): u1, the g of
carbohydrates of the meals (not controllable) and the basal
insulin in pmol (controllable). The boluses are assumed
to be delivered as a function of the meals, thus they are
not included in this model. A NARX model describes the
connection between the output and the previous inputs
and outputs, with the following state-space representation:

y(k + 1) = f
(

x(k), u1(k), u2(k)
)

+ e(k), (1)

where the state x ∈ R
nx is x(k) =

(

y(k), . . . , y(k −

na), u1(k−1), . . . , u1(k−nb), u2(k−1), . . . , u2(k−nc)
)

, for
some memory horizons na, nb, nc ∈ N0 (for the glucose, the
meals and the basal insulin, respectively) and e(k) ∈ R

ny

is process noise. The arguments of f are aggregated into
a vector w = (x, u1, u2) ∈ R

nw . Using this construction,
a data set D = {(wk, yk+1)} of ND observations can be
created, where k = 1, . . . , ND − 1.

2.1 CHoKI learning method

The Componentwise Hölder Kinky Inference (CHoKI) was
introduced in Manzano et al. (2021). It is a learning
method from the kinky inference class of learning ap-
proaches, that uses the Lipschitz interpolation, which is
a technique based on the Hölder continuity of the function
to be learned. Specifically, the CHoKI method is based on
the componentwise Hölder continuity (see Definition 1).

Definition 1. Given the matrices L and P ∈ R
ny×nw ,

a function f : W → Y is componentwise L-P-Hölder
continuous if ∀w1, w2 ∈ W and ∀i ∈ I

ny

1

|f(w1)− f(w2)| ≤ d
P

L (|w1 − w2|), (2)

where d
P
L
(w) := (a : ai =

∑nw

j=1 Li,jw
Pi,j

j , ∀i ∈ I
ny

1 ).

This is done to determine the impact of each component of
the regressor on each output. In this way, it is possible to
consider that a function may have sudden changes along
one input dimension while exhibiting smooth changes
along another dimension. The value of the CHoKI pre-

dictor f̂(q; Θ,D) for a query q ∈ R
nw is computed as:

f̂(q; Θ,D) =
1

2
min

i=1,...,ND

(ỹi + d
P

L (|q − wi|))

+
1

2
max

i=1,...,ND

(ỹi − d
P

L (|q − wi|)), (3)

where Θ = {L,P}, assuming that f is Hölder continuous
and given a data set D of ND observations. If the matri-
ces Θ are unknown, they can be estimated by solving the
following optimization problem offline:

Θ = argmin
Θ

g(Θ,Dtrain,Dtest) (4a)

s.t. |ỹi − ỹj | ≤ d
P

L (|wi − wj |), (4b)

∀wi, wj ∈ WD, wi ̸= wj

0 < Pij ≤ 1, Lij > 0, i ∈ I
ny

1 , j ∈ I
nw

1 , (4c)

Table 1. MPC settings

Adult
uref

[pmol]
ND [La;Lb;Lc]

µ
[mg/dL]

Nc

#1 122.38 4769 [0.74; 5.46; 0.29] 14.83 2
#2 134.89 4946 [4.89; 3.96; 0.09] 10.19 2
#3 149.97 4985 [0.71; 5.45; 0.09] 9.29 3
#4 95.07 4768 [0.87; 9.94; 0.13] 8.19 3
#5 91.83 4149 [0.84; 5.52; 0.44] 13.91 2
#6 190.22 5334 [4.72; 3.52; 0.09] 11.27 1
#7 124.92 4804 [9.80; 0.9; 1.39] 11.89 1
#8 105.83 4698 [1.08; 5.84; 0.1] 7.8 3
#9 94.59 3976 [1.13; 4.09; 0.09] 11.63 2
#10 124.86 4961 [3; 2; 0.09] 10.1 1

where WD represents the input data points in D, Dtrain

and Dtest are two disjoint data sets obtained splitting D.
The cost function to be minimized, being ỹi the measured
values of Dtest (Manzano et al., 2021), is:

g(Θ,Dtrain,Dtest)=
1

NDtest

∑NDtest

i=1 ∥f̂(wi; Θ,Dtrain)−ỹi∥
2.

Then, the prediction model can be formulated in state-
space as:

x̂(k + 1) = F̂
(

x(k), u1(k), u2(k)
)

ŷ(k) = Mx̂(k)
(5)

where F̂
(

x(k), u1(k), u2(k)
)

=
(

f̂(x(k), u1(k), u2(k)), y(k),
. . . , y(k−na+1), u1(k), . . . , u1(k−nb+1), u2(k), . . . , u2(k−
nc + 1)

)

and M = [Iny
, 0, . . . , 0].

2.2 T1D patient case

To implement the CHoKI learning method, a data set has
been created using the UVA/Padova simulator. Several
simulations were performed on the virtual adult patients,
modifying initial BG values, basal insulin amounts, and
carbohydrate intakes (postprandial insulin boluses were
also included), to get a proper space distribution of points
in the input-output representation. This is crucial since
the quality of the data set will impact the performance of
both CHoKI predictions and the controller.

Once the data set is obtained, also the memory hori-
zons na, nb, nc have to be identified. To do that, the
combination that returned the lowest mean squared error
between the predictions and the real values was selected
using a cross-validation procedure, but the model complex-
ity was also taken into consideration to avoid overfitting.
The chosen orders were na = 5, nb = 9 and nc = 3.

To obtain the predictions employing (3), the hyperparam-
eters Θ = {L,P} must be estimated solving the opti-
mization problem (4). In this case, we have imposed P =
1ny×nw

, therefore the optimization problem is designed to
obtain only the values of the matrix L. We have also de-
cided to estimate only three values: La for the glucose part,
Lb for the meals, and Lc for the basal insulin. These are
then repeated, to build L = [La1na

;Lb1nb
;Lc1nc

] ∈ R
nw .

To solve the optimization problem (4) the fmincon MAT-
LAB function was used. The obtained results, reported in
Table 1, are different for each virtual patient.

3. CHOKI-BASED ROBUST MPC

In this section, the CHoKI learning method is used to
obtain open-loop glucose predictions, that are then used
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(ỹi + d
P

L (|q − wi|))

+
1

2
max

i=1,...,ND
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space as:

x̂(k + 1) = F̂
(

x(k), u1(k), u2(k)
)

ŷ(k) = Mx̂(k)
(5)

where F̂
(

x(k), u1(k), u2(k)
)

=
(

f̂(x(k), u1(k), u2(k)), y(k),
. . . , y(k−na+1), u1(k), . . . , u1(k−nb+1), u2(k), . . . , u2(k−
nc + 1)

)

and M = [Iny
, 0, . . . , 0].

2.2 T1D patient case

To implement the CHoKI learning method, a data set has
been created using the UVA/Padova simulator. Several
simulations were performed on the virtual adult patients,
modifying initial BG values, basal insulin amounts, and
carbohydrate intakes (postprandial insulin boluses were
also included), to get a proper space distribution of points
in the input-output representation. This is crucial since
the quality of the data set will impact the performance of
both CHoKI predictions and the controller.

Once the data set is obtained, also the memory hori-
zons na, nb, nc have to be identified. To do that, the
combination that returned the lowest mean squared error
between the predictions and the real values was selected
using a cross-validation procedure, but the model complex-
ity was also taken into consideration to avoid overfitting.
The chosen orders were na = 5, nb = 9 and nc = 3.

To obtain the predictions employing (3), the hyperparam-
eters Θ = {L,P} must be estimated solving the opti-
mization problem (4). In this case, we have imposed P =
1ny×nw

, therefore the optimization problem is designed to
obtain only the values of the matrix L. We have also de-
cided to estimate only three values: La for the glucose part,
Lb for the meals, and Lc for the basal insulin. These are
then repeated, to build L = [La1na

;Lb1nb
;Lc1nc

] ∈ R
nw .

To solve the optimization problem (4) the fmincon MAT-
LAB function was used. The obtained results, reported in
Table 1, are different for each virtual patient.

3. CHOKI-BASED ROBUST MPC

In this section, the CHoKI learning method is used to
obtain open-loop glucose predictions, that are then used

inside the MPC. In this case, the control problem aims
to maintain the BG level within the euglycemic zone,
computing the right basal insulin amount (i.e. acting
on the control action), and fulfilling input and output
constraints. Specifically, the glucose should be maintained
in the set Y = {y : 55 ≤ y ≤ 300mg/dL} and the basal
insulin in the set U = {u2 : 0 ≤ u2 ≤ 500 pmol}.

The output constraints are tightened according to the
error propagation, to ensure MPC robustness to differences
between CHoKI predictions and real values. This way, the
system in closed loop with the proposed controllers has
been proven to be input-to-state stable (Manzano et al.,
2021).

The set of tightened output constraints along the predic-
tion horizon is given by

Yj = Yj−1 ⊖Rj , j ∈ I
N
1 (6)

where Y0 = Y and the reachability sets Rj account for
the possible errors in the nominal predictions. This is
computed as in (Manzano et al., 2021, Section III-A): the
sets Mj and Gj can be calculated using the recursion cj =
d
P
L
(dj−1) and dj = (cj , . . . , cσ(j), 0, . . . , 0), with c1 = µ,

where Mj = B(cj) and Gj = B(dj). Then, Rj = B(cj).
µ ∈ R

ny , is the maximum absolute error obtained during
the validation, such that |y(k + 1) − ŷ(1|k)| ≤ µ. The
computation is done just once and offline.

As in Sonzogni et al. (2023), it was noted that the extreme
values of the possible deviation of the nominal prediction
are highly improbable. Therefore, instead of using the
maximum error, the value that represents the 90th per-
centile of the error distribution is used as µ (see Table 1).
As some realizations may fall outside the 90th percentile
range, some slack optimization variables δ = {δmin, δmax}
are introduced in the problem to prevent infeasibilities.
Thus, starting from the ymin and ymax values from Yj

in (6), the new constraint is ŷ(j|k) ∈ Yj,δ, ∀j ∈ I
N
1 , where

Yj,δ={y :ymin(j)−δmin(j) ≤ y ≤ ymax(j)+δmax(j)}. (7)

This computation also determines the control horizon Nc,
finding the maximum value that allows for a reasonable
and non-empty set of tightened constraints. The CHoKI
method may lead to short horizons, so a prediction horizon
Np longer than the control horizon is implemented, to
improve the controller’s predictive ability and domain of
attraction. Thus, a local control is defined for the inputs
from Nc to Np, namely: u = K(x − x) + u. Where
K ∈ R

nu×nx is the Linear Quadratic Regulator (LQR)
gain, and (x, u) is the equilibrium point around which the

system F̂ (x, u) is linearized (i.e. x(k+1) = Ax(k)+Bu(k),
u = (u1, u2)). Specifically, x contains y = 120mg/dL and
u = (0, uref). The matrices A ∈ R

nx×nx and B ∈ R
nx×nu

are numerically computed with the input-output data, as
in Sonzogni et al. (2023).

3.1 Insulin On Board estimation

The IOB represents the insulin currently active in the
body, which is influenced by the patient’s metabolism and
the Insulin Action Duration (DIA). This dynamic value
can be considered as an upper constraint in the MPC
optimization problem, to limit the maximum value of basal
insulin, and thus to reduce the risk of hypoglycemic events.
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Fig. 1. Each line represents the real IOB of a specific
patient, coming from the simulator. The orange line
is for the estimated IOB.

At each sampling time k the IOB can be estimated by
analysing the residuals of the past bolus insulin adminis-
tration, which means having:

IOB(k) =
∑nIOB

i=1 α(k − i)ub(k − i), (8)

in which the vector of weights, denoted by α, represents
the insulin action curve, while ub contains the previous
insulin boluses injections. nIOB is the DIA, considered
with a sampling time of 5 min, and in this case, looking
at the data coming from the simulator, it is chosen to
be nIOB = 72, which means 6 h (León-Vargas et al., 2013).

The value of the upper limit for the calculation of the basal
dose is umax

2 and it is derived from

umax
2 (k + j)=

{

ulim
2 −IOB(k + j) if ulim

2 > IOB(k + j)
uref otherwise

where k is the sampling time and j ∈ I
Np−1
0 (Ellingsen

et al., 2009). The maximum amount of basal insulin that
can be delivered is ulim

2 = 500 pmol. uref is the basal
insulin reference value, which is the constant basal insulin
dose continuously delivered for each virtual patient by
the UVA/Padova simulator for the standard therapy. The
IOB varies at each step along the prediction horizon
(i.e. with j), and thus the estimations have to decrease
according to the insulin action curve, without considering
possible new boluses, since the meals are unpredictable.
Thus, the new set for the basal insulin amount u2 is

U2 = {u2 : 0 ≤ u2 ≤ umax
2 }. (9)

In Sonzogni et al. (2024), a linear weight decreasing from
1 to 0 is tested, which leads to a very conservative result,
due to the overestimation of the IOB values. Therefore,
in this work, the weights of the insulin action curve
α are computed by exploiting the data coming from
the simulator. Specifically, to get the IOB decreasing
behavior, the following sum of two exponential functions is
considered: γm = amebmβ+cmedmβ , where the parameters
am, bm, cm and dm have to be estimated from the data
(β, γ), where β is the time and γ is the IOB value. The
estimated parameters were obtained considering the IOB
curves of the analysed patient. The results are: am = 8.2 ·
105, bm = −0.08, cm = −1.3 · 106 and dm = −0.11, visible
in Figure 1. After that, to get the weights α ∈ R

nIOB that
have to be multiplied to ub, the values γm are normalized
between 0 and 1, to follow the real IOB behavior.

Figure 2 displays an example of the IOB estimation for
virtual Adult 10. This shows that (8) approximates quite
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Fig. 2. The orange line represents the estimated IOB, the
blue one the IOB computed by the simulator and
the injected boluses are the purple crosses. This is
an example of the virtual patient Adult 10.

well the real values and the choice of DIA equal to
6 h is appropriate. After a bolus, the initial IOB value
might differ between the two curves. This is because the
estimated IOB value is based on the calculated value of
the bolus for the meal. While the real IOB value is based
on the value actually injected, which may vary from the
calculated value due to pump noise.

To prevent infeasibilities during MPC resolution, Np slack
variables δu were included in the optimization problem.
These were added to the upper bound umax

2 in equation (9),

obtaining ∀j ∈ I
Np−1
0 :

U ′

2 = {u2(j) : 0 ≤ u2(j) ≤ umax
2 (j) + δu(j)}. (10)

3.2 Optimization problem

In this section the optimization problem is presented,
including also the IOB in the constraints (see (11f)),
following the idea proposed in Sonzogni et al. (2024).
The Nc resulting from the tightened constraints for each
virtual patient are in Table 1. To obtain at least 60 minutes
of predictions, the prediction horizon is set to Np = 12.

The MPC optimization problem is set as follows:

min
u2,ya,δhyper,δhypo,δ,δu

VN (x̂, u; Θ,D) (11a)

s.t. x̂(0|k) = x(k) (11b)

x̂(j+1|k)=F̂ (x̂(j|k), u1(j), u2(j)), j ∈ I
Nc−1
0 (11c)

x̂(j+1|k)=F̂ (x̂(j|k),K(x̄−x(j))+ū), j∈I
Np−1
Nc

(11d)

ŷ(j|k) = Mx̂(j|k), j ∈ I
Np−1
0 (11e)

u2(j) ∈ U ′

2, j ∈ I
Np−1
0 , (11f)

ŷ(j|k) ∈ Yj,δ, j ∈ I
Nc−1
0 (11g)

ŷ(j|k) ∈ YNc,δ, j ∈ I
Np−1
Nc

(11h)

u1(j) = 0, j ∈ I
Np−1
1 (11i)

70−δhypo≤ya≤140+δhyper; δhyper, δhypo ≥ 0 (11j)

δmin(j), δmax(j), δu(j) ≥ 0, j ∈ I
Np−1
0 (11k)

where Yj,δ and YNc,δ come from (7), (11i) is used because
meals are unpredictable, ya is the setpoint, which is
an auxiliary optimization variable, for implementing the
MPC in a zone control fashion, and u = (u1, u2).

The cost function is a summation of different components:

VN (x̂, u; Θ,D) = VNc
+ VNp

+ Vs + λVP + Vδ + Vu. (12)

The first ones are the stage costs, along Nc and Np:

VNc
=

∑Nc−1
j=0 ∥ŷ(j|k)− ya∥

2
Q + ∥u2(j)− uref∥

2
R, (13)

VNp
=

∑Np−1
j=Nc

∥ŷ(j|k)− ya∥
2
Q. (14)

The chosen weights are R = 10 and Q = 100 for Adult
number 8 and 9 and Q = 1 for the others.
The terminal cost, usually considered for MPC stability:

VP = ∥x̂(Np|k)− xref∥
2
P , (15)

where xref is the reference state (with ya, no meals and
uref). P is the Riccati equation solution, given the LQR
control gain K for the linearised system around the refer-
ence point. As no terminal constraint is taken into account,
VP is weighted by a factor λ = 10.
Other costs are added to penalise the slack variables used
in the constraints (i.e. δhypo, δhyper, δ, δu):

Vs = phyperδ
2
hyper + phypoδ

2
hypo, (16)

Vδ =
∑NP

j=1 ∥δmin(j)∥
2
pmin

+ ∥δmax(j)∥
2
pmax

, (17)

Vu =
∑Np

j=1 ∥δu(j)∥
2
pu
, (18)

where phypo is greater than phyper and pmin greater than
pmax to represent that hypoglycemia is more dangerous
than hyperglycemia (i.e. phypo = pmin = 1 · 107, phyper =
pmax = 1 · 106), and pu = 1 · 107 (Abuin et al., 2020).

4. RESULTS

The proposed control algorithm was implemented in the
UVA/Padova simulator. Simulations of three days were
conducted on virtual adult patients to test the algorithm,
considering three meals per day, each lasting 15min and
with boluses given by the simulator 20 minutes after each
meal. Specifically, 20 g at 06:00am, 90 g at 12:00pm, and
30 g at 07:00pm for the first day, 30 g at 07:00am, 80 g at
12:30pm, and 50 g at 08:00pm for the second day, and 40 g
at 06:30am, 100 g at 01:00pm, and 60 g at 07:30pm for the
last day. The simulation settings are the same as those
used for the data collection.
In Figure 3, the upper part shows the BG trends of the vir-
tual patients, resulting from the insulin injections reported
in the lower part. The BG values mainly fall within the
euglycemic range (i.e. between 70 and 180 mg/dL, green
zone); they rise after the meals (indicated by black trian-
gles). The controller was designed with the IOB constraint
to avoid hypoglycemic events, thus this result is achieved,
even if we obtain a conservative controller.
To better evaluate the quality of closed-loop glucose con-
trol, additional tools can be considered: Time In Range
(TIR), Control-Variability Grid Analysis (CVGA) and
Glycemia Risk Index (GRI). The TIR represents the pro-
portion of time that a patient’s BG level stays within
a specific range (Battelino et al., 2019). In Table 2, the
TIR results indicate that the proposed controller tends to
be conservative, allowing a bit of hyperglycemia to avoid
hypoglycemia: although the percentage of time spent in
hyperglycemic ranges is slightly higher than expected, the
patients never enter the hypoglycemic ranges. The CVGA
is a visualization technique used to represent a patient’s
extreme glucose excursions. It is done by plotting the min-
imum and maximum BG values of a patient on the x and
y-axis, respectively. Each patient is represented as a point
in a plane that is divided into nine regions corresponding
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Fig. 2. The orange line represents the estimated IOB, the
blue one the IOB computed by the simulator and
the injected boluses are the purple crosses. This is
an example of the virtual patient Adult 10.

well the real values and the choice of DIA equal to
6 h is appropriate. After a bolus, the initial IOB value
might differ between the two curves. This is because the
estimated IOB value is based on the calculated value of
the bolus for the meal. While the real IOB value is based
on the value actually injected, which may vary from the
calculated value due to pump noise.

To prevent infeasibilities during MPC resolution, Np slack
variables δu were included in the optimization problem.
These were added to the upper bound umax

2 in equation (9),

obtaining ∀j ∈ I
Np−1
0 :

U ′

2 = {u2(j) : 0 ≤ u2(j) ≤ umax
2 (j) + δu(j)}. (10)

3.2 Optimization problem

In this section the optimization problem is presented,
including also the IOB in the constraints (see (11f)),
following the idea proposed in Sonzogni et al. (2024).
The Nc resulting from the tightened constraints for each
virtual patient are in Table 1. To obtain at least 60 minutes
of predictions, the prediction horizon is set to Np = 12.

The MPC optimization problem is set as follows:

min
u2,ya,δhyper,δhypo,δ,δu

VN (x̂, u; Θ,D) (11a)

s.t. x̂(0|k) = x(k) (11b)

x̂(j+1|k)=F̂ (x̂(j|k), u1(j), u2(j)), j ∈ I
Nc−1
0 (11c)

x̂(j+1|k)=F̂ (x̂(j|k),K(x̄−x(j))+ū), j∈I
Np−1
Nc

(11d)

ŷ(j|k) = Mx̂(j|k), j ∈ I
Np−1
0 (11e)

u2(j) ∈ U ′

2, j ∈ I
Np−1
0 , (11f)

ŷ(j|k) ∈ Yj,δ, j ∈ I
Nc−1
0 (11g)

ŷ(j|k) ∈ YNc,δ, j ∈ I
Np−1
Nc

(11h)

u1(j) = 0, j ∈ I
Np−1
1 (11i)

70−δhypo≤ya≤140+δhyper; δhyper, δhypo ≥ 0 (11j)

δmin(j), δmax(j), δu(j) ≥ 0, j ∈ I
Np−1
0 (11k)

where Yj,δ and YNc,δ come from (7), (11i) is used because
meals are unpredictable, ya is the setpoint, which is
an auxiliary optimization variable, for implementing the
MPC in a zone control fashion, and u = (u1, u2).

The cost function is a summation of different components:

VN (x̂, u; Θ,D) = VNc
+ VNp

+ Vs + λVP + Vδ + Vu. (12)

The first ones are the stage costs, along Nc and Np:

VNc
=

∑Nc−1
j=0 ∥ŷ(j|k)− ya∥

2
Q + ∥u2(j)− uref∥

2
R, (13)

VNp
=

∑Np−1
j=Nc

∥ŷ(j|k)− ya∥
2
Q. (14)

The chosen weights are R = 10 and Q = 100 for Adult
number 8 and 9 and Q = 1 for the others.
The terminal cost, usually considered for MPC stability:

VP = ∥x̂(Np|k)− xref∥
2
P , (15)

where xref is the reference state (with ya, no meals and
uref). P is the Riccati equation solution, given the LQR
control gain K for the linearised system around the refer-
ence point. As no terminal constraint is taken into account,
VP is weighted by a factor λ = 10.
Other costs are added to penalise the slack variables used
in the constraints (i.e. δhypo, δhyper, δ, δu):

Vs = phyperδ
2
hyper + phypoδ

2
hypo, (16)

Vδ =
∑NP

j=1 ∥δmin(j)∥
2
pmin

+ ∥δmax(j)∥
2
pmax

, (17)

Vu =
∑Np

j=1 ∥δu(j)∥
2
pu
, (18)

where phypo is greater than phyper and pmin greater than
pmax to represent that hypoglycemia is more dangerous
than hyperglycemia (i.e. phypo = pmin = 1 · 107, phyper =
pmax = 1 · 106), and pu = 1 · 107 (Abuin et al., 2020).

4. RESULTS

The proposed control algorithm was implemented in the
UVA/Padova simulator. Simulations of three days were
conducted on virtual adult patients to test the algorithm,
considering three meals per day, each lasting 15min and
with boluses given by the simulator 20 minutes after each
meal. Specifically, 20 g at 06:00am, 90 g at 12:00pm, and
30 g at 07:00pm for the first day, 30 g at 07:00am, 80 g at
12:30pm, and 50 g at 08:00pm for the second day, and 40 g
at 06:30am, 100 g at 01:00pm, and 60 g at 07:30pm for the
last day. The simulation settings are the same as those
used for the data collection.
In Figure 3, the upper part shows the BG trends of the vir-
tual patients, resulting from the insulin injections reported
in the lower part. The BG values mainly fall within the
euglycemic range (i.e. between 70 and 180 mg/dL, green
zone); they rise after the meals (indicated by black trian-
gles). The controller was designed with the IOB constraint
to avoid hypoglycemic events, thus this result is achieved,
even if we obtain a conservative controller.
To better evaluate the quality of closed-loop glucose con-
trol, additional tools can be considered: Time In Range
(TIR), Control-Variability Grid Analysis (CVGA) and
Glycemia Risk Index (GRI). The TIR represents the pro-
portion of time that a patient’s BG level stays within
a specific range (Battelino et al., 2019). In Table 2, the
TIR results indicate that the proposed controller tends to
be conservative, allowing a bit of hyperglycemia to avoid
hypoglycemia: although the percentage of time spent in
hyperglycemic ranges is slightly higher than expected, the
patients never enter the hypoglycemic ranges. The CVGA
is a visualization technique used to represent a patient’s
extreme glucose excursions. It is done by plotting the min-
imum and maximum BG values of a patient on the x and
y-axis, respectively. Each patient is represented as a point
in a plane that is divided into nine regions corresponding

Simulation results: with IOB constraints

Fig. 3. The upper plot displays the BG trend of each subject. The green zone represents the euglycemic range, and the
black triangles indicate meal times. The lower plot shows the basal insulin computed by the proposed controller.

to different levels of glycemic control quality (Magni et al.,
2008). As shown in Figure 4a, most patients are in the safe
zones, except for virtual adults 7, 8 and 9 who are in the
Upper C zone due to their high BG maximum values. The
GRI is a score, ranging from 0 to 100, that reflects both the
risk of hyperglycemia and of hypoglycemia (Klonoff et al.,
2022). It is calculated by combining the two components:

GRI=
(

3.0(TBR2+0.8 TBR1)
)

+
(

1.6(TAR2+0.5 TAR1)
)

,

where TBR2 is the percentage of time in which the
subject’s BG is below 54 mg/dL, TBR1 for the BG
between 54 and 70 mg/dL, TAR1 for the BG between
180 and 250 mg/dL and TAR2 for BG above 250 mg/dL.
The first part is the hypoglycemic component (represented
on the x-axis) and the second is the hyperglycemic one
(represented on the y-axis). In Figure 4b all the dots lay
on the y-axis due to the controller design: the aim is to
avoid hypoglycemic events, thus the higher risk component
is the hyperglycemic one.
This controller results to be too conservative for adult 7,
who remains in a hyperglycemic state for too long. Thus,
additional analysis is required to enhance the control, also
due to the patient’s high variability and complex response
to insulin.
To be compared with the results reported in Sonzogni
et al. (2024), obtained using linear weights in the IOB
estimation, the proposed controllers are applied to the
same patients with the same simulation settings. Figure 5
compares the mean and standard deviation of the BG
values of the virtual subjects in both cases. The controller
proposed here shows less conservative results. Figure 6
shows that the IOB values computed with the linear
weights (green line) overestimate the real values (blue
line), while the exponential weights allow to obtain better
estimates of the IOB values (orange line).

5. CONCLUSION

The AP requires a control algorithm able to compute the
appropriate amount of basal insulin, to keep the BG of
T1D patients inside the safe range. In this work, an MPC

Table 2. TIR percentages

Adult
< 54
mg/dL

54-70
mg/dL

70-180
mg/dL

180-250
mg/dL

> 250
mg/dL

# 1 0% 0% 72% 21% 7%
# 2 0% 0% 71% 24% 5%
# 3 0% 0% 64% 32% 4%
# 4 0% 0% 74% 21% 5%
# 5 0% 0% 75% 20% 5%
# 6 0% 0% 75% 18% 7%
# 7 0% 0% 20% 45% 35%
# 8 0% 0% 47% 44% 9%
# 9 0% 0% 47% 39% 14%
# 10 0% 0% 80% 20% 0%

Fig. 4. a) Control-Variability Grid Analysis results. b)
Glycemia Risk Index results.

based on the CHoKI learning method is proposed as a
controller. It considers also the IOB, estimating its values
with exponential weights, that were obtained from data
coming from the UVA/Padova simulator. This is done to
limit the basal insulin amount, so as to avoid hypoglycemic
events, due to their dangerousness.
The controller is then tested on the virtual patients of
the simulator. The results seem promising, since the IOB
constraints prevent the subjects from entering the hy-
poglycemic range. The exponential weights in the IOB
estimation perform better than the linear one, however,
the controller might still be too conservative, allowing
some hyperglycemic events.
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Fig. 5. Comparison of the BG: the simulations with linear
IOB are in blue, and the exponential ones in yellow.
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for Robust Learning-Based MPC. IEEE Trans. On
Automatic control, 66(11), 5577–5583.

Paoletti, N., Liu, K.S., Chen, H., Smolka, S.A., and Lin,
S. (2019). Data-driven robust control for a closed-loop
artificial pancreas. IEEE/ACM trans. on computational
biology and bioinformatics, 17(6), 1981–1993.

Shi, D., Dassau, E., and Doyle, F.J. (2018). Adaptive zone
model predictive control of artificial pancreas based on
glucose-and velocity-dependent control penalties. IEEE
Trans. on Biomedical Engineering, 66(4), 1045–1054.

Sonzogni, B., Manzano, J.M., Polver, M., Previdi, F.,
and Ferramosca, A. (2023). CHoKI-based MPC for
blood glucose regulation in artificial Pancreas. IFAC-
PapersOnLine, 56(2), 9672–9677.

Sonzogni, B., Manzano, J.M., Polver, M., Previdi, F., and
Ferramosca, A. (2024). CHoKI-based MPC for blood
glucose regulation in Artificial Pancreas. arXiv preprint
arXiv:2401.17157.

Sun, X., Rashid, M., Hobbs, N., Brandt, R., Askari, M.R.,
and Cinar, A. (2022). Incorporating prior information
in adaptive model predictive control for multivariable
artificial pancreas systems. Journal of Diabetes Science
and Technology, 16(1), 19–28.

The Epsilon Group (2016). DMMS.R (Version 1.1) [Soft-
ware]. Retrieved from https://tegvirginia.com/.

Toffanin, C., Messori, M., Di Palma, F., De Nicolao, G.,
Cobelli, C., and Magni, L. (2013). Artificial pancreas:
model predictive control design from clinical experience.


