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Dynamic Bertrand-Edgeworth Competition
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September 30, 2021

Abstract

In this paper we investigate a two-period Bertrand-Edgeworth oligopoly model in which two
capacity-constrained firms (incumbents) compete facing future demand uncertainty as well as un-
certainty about entry. These firms must choose between pricing low and secure sales in the first
period or, alternatively, pricing high in the first period to sell later when their non-contestable de-
mand — i.e., the demand which their capacity constrained rival cannot contest — may be greater.
We find that, when each incumbent is able to meet all demand needs, firms randomize in the second
period and set deterministic prices in the first period. We then show that the expected market
price across both periods reacts relatively more to changes in the likelihood of entry than in the
probability of positive future demand. We conclude by exploring the implications of our model for
merger control and determine how demand- and supply-side uncertainty affects the compensating
marginal cost reductions required for prices not to rise after a merger.
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1 Introduction

The role of production capacity constraints has received considerable attention in the IO literature
since Edgeworth’s extension of the canonical Bertrand price competition model.1 Rivalry among firms
that compete in prices over time, produce at constant marginal cost up to a capacity constraint, and
supply a homogeneous product is typically referred to as Bertrand-Edgeworth (BE) competition. In
these models, firms face an intuitive intertemporal trade-off: they must choose between pricing low
and secure sales at the early stages of the game or, alternatively, pricing high in these stages to sell
later when their non-contestable demand — i.e., the demand which their capacity constrained rival
cannot contest — will be greater. For this reason, the equilibria of these games typically require firms
to play mixed-strategies and, in contrast to what a standard Bertrand logic would mandate, feature
price dispersion and positive profits: two phenomena widely observed in many real markets.2

Uncertainty about future market fundamentals is a key determinant of such trade-off: when setting
prices at early stages of the game, firms must carefully evaluate how the competitive arena will evolve
over time, and adjust their intertemporal strategies according to these expectations. Yet, existing
models (see the literature review below) mainly focus on uncertainty on the demand side, and neglect
the supply side, which is a major driver of firms behavior in sectors with modest barriers to entry.
Understanding how these two different sources of uncertainty affect firms’ equilibrium strategies in BE
games is, therefore, a fundamental step to gain a deeper understanding of the relationship between
capacity constraints, firms’ competitive conduct and welfare in environments that are more realistic
than the standard Bertrand competition model.

In this paper we consider a simple stylized two-period BE game in which firms selling under capacity
constraints are informed about first-period demand but face uncertainty in the second period. We
introduce two sources of uncertainty in our model. First, as in the earlier literature, we assume that
demand changes over time. Second, we also consider uncertainty related to the threat of future entry
by a non-pivotal rival, whose presence in the market drives the equilibrium to a traditional zero-profit
Bertrand outcome. Such a distinction, allows us to disentangle and compare the effects on equilibrium
prices of future demand uncertainty from those related to uncertainty in the supply side.

We characterize equilibrium prices and show that when no firm can meet all demand needs, they
randomize in the second period and set a deterministic price in the first period. As in Sun (2017),
firms in the first period must be indifferent between posting a low price, expecting to sell sooner, and
posting a higher price, selling later. We find that the expected average price (across the two periods)
is increasing in the so-called ‘residual supply index’ (hereafter RSI) of the industry for either of the
pivotal firms, which equals for each of them the ratio of the capacity in the hands of the other pivotal
firms and the demand to be served by the pivotal firms. As intuition suggests, given the RSI, the
expected market price is growing when the probability of future entry falls and the probability of
future demand grows. Interestingly, however, the expected market price is relatively more responsive
to changes in the likelihood of entry than to changes in the probability of positive future demand —
i.e., supply-side shocks have a greater impact than demand side-shocks on equilibrium prices.

From an applied angle, the simple structure of our model enables us to examine antitrust related
questions that are ignored by the previous literature. Specifically, we characterize the effects of
pivotality changes on (expected) equilibrium prices and determine the compensating marginal cost

1Edgeworth (1925)
2We refer to Varian (1980) for results on price dispersion in the presence of mixed strategies, and Padilla (1991) for

results on price competition over two periods.
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reductions — i.e., the reduction in marginal costs — that are required for these prices to remain
constant when firms’ pivotality becomes more relevant. We find that, as future entry becomes more
likely — e.g., because of lower barriers to entry — and low demand becomes more likely — e.g., because
of higher uncertainty in the market — lower compensating marginal cost reductions are required. We
also find that in the case of asymmetric capacities, the effect of pivotality on equilibrium prices is
non-monotone when the largest firm in the market gains more capacity — i.e., equilibrium expected
prices may increase rather than fall — and hence the effect on compensating marginal cost reductions
is non-monotone as well.

These results have important policy implications for the assessment of horizontal mergers in markets
where firms operate under binding capacity constraints. In fact, the European Commission has relied
on simplified versions of the BE model in several recent merger cases — e.g., Outokumpu/Inoxum,
Ineos/Solvay/JV and Novelis/Aleris.3 In the last case, the Commission concluded that Novelis was
pivotal pre-merger (RSI < 1) and would become even more so post-merger. Yet, De Coninck and
Fischer (2020) have criticised the Commission’s analysis in this case claiming that it rests on three
central assumptions which failed to hold in practice: certainty about demand, certainty about supply
and product homogeneity. Our analysis shows that De Coninck and Fischer are correct in stating
that uncertainty about demand and supply matters. However, the idea that pivotality is no longer
important when demand and supply are uncertain, is incorrect. Other things equal, pivotality and
expected prices are positively related except for extreme circumstances. Yet, the impact of an increase
in pivotality on prices will be smaller when entry is likely and future demand is highly uncertain.

The distinction between these two sources of uncertainty enables us to derive novel comparative statics
results and study how regulators dealing with merger control policy should quantify the compensating
marginal cost reductions needed to ensure a merger is consumer welfare enhancing as well as the
divestments required for prices not to raise in the post-merger scenario when the market features
excess capacity.

Related literature. Our paper is related and contributes to an established bulk of literature dealing
with BE competition models. Seminal game-theoretic analyses of static models of BE competition
appeared in Beckman (1965) and Levitan and Shubik (1972). Allen and Hellwig (1986), Dasgupta and
Maskin (1986), and Vives (1986), among others, extended the static, game-theoretic analysis of BE
models in various ways — e.g., by showing existence and uniqueness of the mixed strategy equilibrium,
introducing product differentiation, considering non-downward sloping demands, or allowing for the
possibility of limit pricing.

Many other scholars, instead, have recognized the importance of repeated interactions and the result-
ing intertemporal trade-off between selling at the early stages of the game and storing capacity to
gain market power in the future — e.g., Brock and Scheinkman (1985), Benoit and Krishna (1987),
and Davidson and Deneckere (1990), among others. These models mainly focus on the role that
the number of sellers and their capacity constraints play in enforcing collusive pricing schemes and
were developed within deterministic environments, in which present and future market conditions are
common knowledge.

Our paper builds on and contributes to this literature by proposing a tractable, albeit simple, model
that allows us to disentangle the effects of demand and supply-side uncertainty on equilibrium prices in
markets where firms are subject to capacity constraints and act in-cooperatively even if they interact
over time.

3Case M.6471 Outokumpu/Inoxum, Case M.6905 Ineos/Solvay/JV and Case M.9076 Novelis/Aleris, respectively.
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The paper that is closer to ours is Sun (2017) which developes a BE model where demand is uncertain.
He finds that demand uncertainty induces price instability over time. Sun does not consider the
interaction between demand and supply uncertainty and does not consider the policy implications,
including on merger control, analysed here.

The rest of the paper is organised as follows. We present the model setup in Section 2 and characterise
its equilibria in Sections 3 and 4. We use the analytical expressions derived for equilibrium to calculate
the expected average prices predicted in the model in Section 5. We then exploit our model to perform
comparative statics. First, we analyse the impact of changes of pivotality on expected average prices
in Section 6, and then we establish the compensating marginal cost reductions that offset changes in
pivotality in Section 7. Section 8 concludes.

2 Model setup

Players. Consider a market for a homogeneous good in which there are three firms (indexed by
i = 1, 2, 3) interacting over two subsequent periods (each denoted by t = A,B). Firms 1 and 2
(the incumbents) are active in both periods and do not discount future profits. Firm 3 (the entrant)
is modeled as a smaller competitor whose entry is not strategic, but probabilistic and exogenously
determined with probability 1 − ρ. As standard in the literature, we assume that firm 3’s entry is
resolved before period B takes place — i.e., each incumbent knows whether in period B it faces one or
two rivals. Firms have the same marginal cost c ≥ 0. We normalise c = 0 in Sections 3 to 6 in order
to simplify exposition. Instead, in Section 7, we assume that c > 0 to calculate the compensating
marginal cost for a market structure change that increases the pivotality of the incumbents.

Demand. Let DA and DB represent the respective maximum quantities that could be demanded
for each period, and define total demand as D , DA + DB. In every period t = A,B, demand is
inelastic and is equal to the maximum Dt at any price equal or lower than R, and zero for larger prices.
Demand in period B is uncertain: it is equal to DB > 0 with probability λ, and zero otherwise. This
uncertainty is resolved after period A has taken place, but before period B begins — i.e., firms learn
demand before pricing.

Capacity constraints and pivotality. All firms face capacity constraints. For simplicity, in the
baseline model we posit that firms 1 and 2 have symmetric capacity (hereafter denoted by k) while firm
3 has capacity k3. Firms decide how to allocate capacity across periods through their intertemporal
pricing strategies. We also assume that firms 1 and 2 are larger than firm 3 — i.e.,

k ≥ k3,

so that the incumbents are pivotal relative to the entrant. We extend the model to allow for asymmetric
capacities and only one pivotal firm in period B in Appendix B. When firm 3 enters the market, overall
capacity is so large relative to DB that no firm is required to serve demand (i.e., k3 ≥ D− k). In that
scenario, market prices equal marginal costs.

We assume that the incumbents have enough capacity to serve the entire demand — i.e., 2k ≥ D.
Moreover, we assume that each incumbent has enough capacity to serve the entire demand of period
A — i.e., k ≥ DA — but neither can serve both periods if the demand for period B realises — i.e.,
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k < D. This means that neither firm 1 nor 2 can serve the entire maximum demand on their own,
and that, absent firm 3’s entry in period B, any allocation clearing would require both firms to serve
the market. In other terms, firms 1 and 2 are pivotal in the market when entry does not occur. It is
important to note that this implies that at least one of the two firms will reach period B being pivotal
at maximum demand.

Absent firm 3’s entry, firms 1 and 2 compete in each period by setting prices simultaneously. As it is
common in models of price competition in markets with homogeneous goods, this means that the firm
pricing lowest will capture all the demand it can serve given its capacity. In case of a tie, we assume
that either firm will win with probabilities s1 ∈ [0, 1] and s2 ∈ [0, 1], and the other firm(s) will get the
residual demand, if any.

Equilibrium concept. Since in period B players are fully informed about the entire history of the
game, the equilibrium concept will be Subgame Perfect Nash Equilibrium (SPNE). Therefore, we solve
the game by backward induction, considering each possible branch in which the game may fall.

3 Solution of the subgames in period B

We start by solving the subgames contained in period B. The specific subgame that materalises in
this period will depend on period A ’s outcome, the realised uncertainty about demand and whether
entry of firm 3 occurs. Let us focus on the most interesting case where high demand realises and no
entry occurs, so that at least one of the firms remains pivotal in the market.4

Let qAi ≥ 0 be firm i’s production in period A, with i = 1, 2. Assume that qA1 + qA2 = DA and, without
loss of generality, that qA1 ≤ qA2 so to capture any potential asymmetry that could arise in this period
as a result of period A’s equilibrium play.5 We can define the amount of demand that each firm can
absorb in period B to be

κj , min{DB, k − qj},

and, as a consequence, κ1 ≥ κ2. Since 2k ≥ D, it is the case that κ1 + κ2 ≥ DB and thus that
overcapacity characterises the market for this period as well.6

Under these conditions, firm 1 is pivotal. Whether firm 2 is pivotal too depends on the amount of
demand that firm 1 can absorb in period B — i.e., κ1. If κ1 < DB, then any market allocation clearing
demand has to make use of firm 2’s capacity, who is thus pivotal. On the contrary, if κ1 = DB, firm
1 can cover the entire demand of period B alone and firm 2 is not pivotal.

In the remainder of the section and in Appendix A, we characterise the equilibrium for this subgame
in both cases. We refer to firm 1 as the pivotal firm for convenience and consider the different cases

4All the other subgames yield expected payoffs equal to zero. When firm 3 enters the market, the model reaches a
subgame in which firms 1 and 2 are not pivotal. The same occurs when DB = 0.

5In the asymmetric context of Appendix B, the assumption would entail a loss of generality. However, the results
from this section are valid for the asymmetric case provided the indexes for the firms are interpreted contextually, so
that firm 1 is understood to represent the firm with the most capacity remaining after period A (and the firm with the
largest amount of capacity in the overall game).

6In the asymmetric case we define κj = min{DB , kj − qj}, and overcapacity still characterizes market for the period
given that k1 + k2 ≥ D.
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for firm 2 separately whenever necessary.

3.1 No pure-strategy equilibria

The generic subgame described above has no pure-strategy equilibria. First, any asymmetric strategy
profile where prices from both firms differ cannot be an equilibrium. Provided that both prices are
below R, the firm setting the lowest price has an incentive to adjust it upwards, set it right below its
competitor’s price, and continue to produce at capacity. If the strategy of the firm pricing lowest is
to set a price at or above R, the market is deserted. Therefore, both firms have incentives to choose a
price of R and capture all or as many sales as they can serve with their available capacity. Moreover,
it is apparent that any price pB > R will be strictly dominated by playing pB = R and selling only to
the captive portion of demand for any pivotal firm. This means that prices in excess of the reservation
value for any pivotal firm can be excluded from any equilibrium. The same is true for pB = 0.

Second, consider a symmetric candidate equilibrium in which both incumbents price at pB1 = pB2 =
pB ≤ R. For any pB > 0, each firm will profitably undercut the rival’s price and capture all the
demand that its remaining capacity allows. The only price at which this is not the case is pB = 0.
However, expected profits are indeed zero at this point, but then the pivotal firm would be better off
deviating to R, where it can serve the portion of residual demand for which it is pivotal at the highest
possible margin.

3.2 A mixed-strategy equilibrium

A mixed-strategy Nash equilibrium necessarily exists in the subgames considered above.7 In this
equilibrium, each pivotal firm sets (positive) prices according to a distribution function in such a way
that no competitor can profitably change the distribution of probability according to which its price
is determined.

We characterise the unique mixed-strategy equilibrium of these subgames in the following subsections.
First, we lay out the expected profit function that pivotal firms face when deciding their pricing
strategies. Second, we characterise the common extremes of the strategy supports of the firms’ dis-
tribution functions in equilibrium, and derive an analytical expression for the unique mixed strategy
equilibrium of the subgame. All intermediate results that we use as a foundation for the equilibrium
characterization are derived in Appendix A.

3.2.1 The expected profit function

In the following, whenever a mathematical expression applies to both pivotal firms, we denote the
pivotal firm with j = 1, 2 and its rival with l (j 6= l). The expected profits for firm j of setting a price
pBj ≤ R conditional on firm l’s price strategy is given by

E
[
πB
j (pBj , p

B
l )
∣∣ pBj ] , [Pr(pBl > pBj ) + Pr(pBl = pBj )sj

]
pBj κj

+
[
Pr(pBl < pBj ) + Pr(pBl = pBj )(1− sj)

]
pBj (DB − κl),

7Nash (1950) showed the general existence equilibria in games with continuous payoffs while Dasgupta and Maskin
(1986) extended their existence to the context that is relevant here, in the presence of discontinuous payoff functions.

6



where the elements in the sum represent the profits of winning, drawing or losing in the tender,
multiplied by the probability of each of these events happening. Recall that the parameter sj ∈ [0, 1]
is the fraction of demand served by the pivotal firm in case of tie. The expression above can also be
written in terms of the distribution function that l is expected to employ to assign probabilities to
prices in its support

E
[
πBj (pBj , p

B
l )
∣∣ pBj ] , pBj

[
(1− Fl(pBj ))κj + Fl(p

B
j )
(
DB − κl

)]
= pBj

[
κj − Fl(pBj )OB

]
, ∀pj ≤ R.

Where OB , κj +κl−DB represents the overcapacity in the market up to 2DB while Fl(p
B) denotes

the cumulative distribution function — hereafter CDF — characterising the randomized strategy that
rival firm l is expected to follow in equilibrium (the same notation applies, mutatis mutandis, to j).
The expression above ignores the event of ties occurring, which could exist if both firms assigned a
positive mass of probability to the same price. In Appendix A we show that the probability of drawing
is zero.

A mixed strategy equilibrium requires that Fj(p
B) best-responds to Fl(p

B) and vice-versa. A known
property of mixed-strategy equilibria, on which we rely extensively for our results, is that firm j (resp.
l) obtains the same expected profits for each of the prices pBj (resp. l) in the support of Fj(p

B) (resp.

Fl(p
B)). Indeed, if this was not the case, the strategy of firm j (resp. l) would not be a best response

because it would be better off removing any probability assigned to prices with relatively low expected
profits and assigning it to prices that yield higher expected profits.

3.2.2 Equilibrium derivations

We derive an analytical functional form for the equilibrium CDFs of the firms, F1 (·) and F2 (·),
that describes the mixed-strategy Nash equilibrium of this generic subgame in two steps. First, we
characterise the support of prices that both firms employ in equilibrium. Then, we use the method of
indeterminate coefficients to obtain an expression for the CDFs.

Support. The price support for both firms in equilibrium is summarised in Proposition 1 below.
We refer the reader to Appendix A for any auxiliary intermediate result and derivation leading to this
result.

Proposition 1. In equilibrium, both firms have a support with lower-bound at

pB , R
DB − κ2

κ1
> 0,

an upper-bound at pB , R. If κ1 > κ2, the strategy of firm 1 has a probability mass at R.

As intuition suggests, the equilibrium mixed strategy features a lower-bound pB that is increasing in

the reservation price R (the same obviously holds for the upper-bound pB) and in the second period
demand DB. By contrast, the lower-bound is decreasing in κ1 and κ2, which reflect a measure of the
incumbents’ effective capacity in period B.
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Functional form for Fj(p). To derive the equilibrium CDFs we exploit the equilibrium condition
that requires expected profits at each price in the support to be constant. Analyzing this condition
reveals that the shape of the strategy is of the form

F2(p
B) = α− β

pB
,

with α and β constants. Following Proposition 1, these constants can be determined computing the
expected profits of firm 1 at pB or R and equating them to the expected profits at any other point
within the support. This is,

E
[
πB1 (pB1 , p

B
2 )
∣∣ pB1 = R

]
= E

[
πB1 (pB1 , p

B
2 )
∣∣ pB1 = pB

]
⇔ R(DB − κ2) = pB

(
κ1 − F2(·)OB

)
,

yielding the expression

F2(p
B) ,

κ1
OB︸︷︷︸
α

− R(DB − κ2)
OB︸ ︷︷ ︸
β

1

pB
. (1)

The probability distribution for firm 1 is similar, although it contains an atom of probability and,
hence, a discontinuity point at pB = R. In this case, one can equate the expected profits at the
infimum of the support to any other price within the support for pB < R and get a similar expression
of the form

F1(p
B) =

κ2
κ1

(
α− β

pB

)
,

with α and β being constants to identify. This is,

E
[
πB2 (pB1 , p

B
2 )
∣∣ pB2 = pB

]
= E

[
πB2 (pB1 , p

B
2 )
∣∣ pB2 = pB

]
⇔ R

κ2
κ1

(DB − κ2) = pB
(
κ2 − F1(·)OB

)
.

Hence,

F1(p
B) ,


κ2
κ1

κ1
OB︸ ︷︷ ︸

,κ2
κ1
α

− κ2
κ1

R(DB − κ2)
OB︸ ︷︷ ︸

,κ2
κ1
β

1
pB

if pB < R,

1 if pB = R,

(2)

which is similar to the one for the CDF of pivotal firm 2 except for the factor κ2/κ1 ≤ 1 and the
discontinuity at pB = R.

The expression above also indicates that pivotal firm 1 prices below R with probability κ2/κ1 ≤ 1,
and that it distributes probability within this segment using a scaled version of the density function
of firm 2. Pivotal firm 1 assigns a mass of probability 1 − κ2/κ1 to a price equal to R where it
exploits the maximum possible margin from its captive demand. Thus, firm 1 sets prices according to
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a distribution function that first-order stochastically dominates the equilibrium distribution function
of firm 2 or, in simpler terms, firm 1 will charge, on average, higher prices in equilibrium when κ1 > κ2.

The difference in pricing strategies between firm 1 and firm 2 is proportional to the asymmetry in
their available capacities at the beginning of period B. The larger the difference between the two
capacities is, the larger the captive demand for pivotal firm 1 becomes, and therefore the probability
mass set at pB = R becomes larger. Conversely, if the available capacities at period B for both firms
are the same, then both firms play completely symmetric strategies.

It is apparent that this equilibrium is the unique one in these subgames. We prove this using the results
in Appendix A, which are derived for any mixed-strategy equilibrium. Since the characterization of the
equilibrium provided by these expressions is complete, this establishes the uniqueness of equilibrium.

4 Solution of the subgame in period A

Once having resolved the generic subgame in period B, we can proceed backward to solve for the
equilibrium prices in the first period and thus complete the equilibrium characterisation for the entire
game.

The expected profit function for either of firm 1 and firm 2 in period A is the sum of two components;
the first (I) takes a similar form to the one for period B, while the second (II) corresponds to the
expected profits in the following period, πBj (·). Let φAj , Pr(pAl > pAj ) + Pr(pAl = pAj )sj , then the
expected profit function takes the form:

E
[
πj(p

A
j , p

A
l )
∣∣ pAj ] , φAj p

A
j D

A︸ ︷︷ ︸
I

+ φAj E
[
πBj
∣∣κj = k −DA

]
+ (1− φAj )E

[
πBj
∣∣κj = k

]︸ ︷︷ ︸
II

,

where the expectation operator in the continuation payoff is conditional on the capacity left after
winning or losing the tender in period A, but integrates over all other random aspects, including the
uncertainty about entry and demand in the second period, as well as the randomization produced by
the mixed strategies. The expression for this continuation payoff takes the form:

E
[
πBj
∣∣κj] , {ρλR (D − k) , if κj = k,

ρλRk−DA
k (D − k) , if κj = k −DA.

(3)

It is interesting to observe analytically that λ and ρ mark the switches in the subgames reached in
period B. With probability ρλ, the demand in period B materialises to DB without entry, at least
one of the firms becomes pivotal, and they compete in the Bertrand-Edgeworth game described in the
previous section. With probability (1 − ρ)λ, high demand realises, but firms 1 and 2 are no longer
pivotal because entry of firm 3 occurs and they compete à la Bertrand with profits being equal to
zero. Finally, with probability 1 − λ, the bad state of demand realises: in this case profits in period
B are always zero because there is no demand to be served.

Comparing E[πBj |κj ] when κj = k and when κj = k −DA, we have that expected profits in period B
are greater when κj = k, that is, when firm j lost the competition in period A.
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4.1 Pure strategy equilibrium in the first period

Since DA ≤ k, any of the two firms, firm 1 and firm 2, suffices to absorb the entire demand, and
the solution to this subgame resembles a standard Bertrand model of competition in prices with
homogeneous goods. Mechanically, the equilibrium price is computed finding the indifference point
between, on the one hand, winning in period A and selling DA, and, on the other hand, waiting to
compete with greater capacity in period B. This is, the price that ensures to capture the entire market
in period A, and a reduced amount of capacity in period B, produces the same profits as when making
no sales in period A, and moving to period B with all capacity in place. That is,

E
[
πj(p

A
j , p

A
l )
∣∣ pAj < pAl

]
, pAj D

A + ρλR
k −DA

k
(D − k) ,

E
[
πj(p

A
j , p

A
l )
∣∣ pAj > pAl

]
, ρλR(D − k).

Solving

E
[
πj(p

A
j , p

A
l )
∣∣ pAj > pAl

]
= E

[
πj(p

A
j , p

A
l )
∣∣ pAj < pAl

]
for pAj , we obtain the following closed-form expressions solving for the first-period equilibrium price:

pA∗ , ρλR
D − k
k

> 0. (4)

The impact on the equilibrium price of an increase in the likelihood of positive demand in period B
and a reduction in the probability of entry is identical: the greater λρ, the greater the equilibrium
price is. The equilibrium price in period A is greater than zero because both firms are willing to
sacrifise output and revenues in period A, when they are symmetric and competition is fierce given
limited demand, to secure a pivotal (or more pivotal) position in period B when demand, if positive,
would be large and individual capacity constraints binding.

To see why this is an equilibrium, in what follows we discard all potential deviations. First, if any firm
deviated to prices lower than pA∗, it would win for sure in period A, make less margin than if they
won in period A at pA∗, and secure the same expected profits in period B as if it won at pA∗. Because
pA∗ is defined so that profits are the same independently of whether the firm wins or waits when the
tie is being resolved, it means the deviation is not profitable. Second, consider a potential deviation to
price above pA∗. This deviation would ensure losing in period A, and produce the same profits than at
pA∗, by definition of pA∗. This shows there are (weakly) no incentives to deviate upwards from pA∗∗.

4.2 Uniqueness

The expected profit of firm j can be written as follows:

E
[
πj(p

A
j , p

A
l )
∣∣ pAj ] , φAj

(
pAj D

A + ρλR
k −DA

k
(D − k)

)
+
(
1− φAj

)
(ρλR (D − k)) ,

= ρλR (D − k) + φAj D
A

(
pAj − ρλR

D − k
k

)
.

10



Thus, in equilibrium, where pAj = pAl = pA∗, the expected profits of each firm in the market equals:

E
[
πj(p

A∗, pA∗)
]

= ρλR(D − k).

The expression above serves to explain why pA∗ is indeed the unique pure-strategy equilibrium price
in period A. Consider any pure strategies equilibrium where the equilibrium price set by the winning
firm pAj is below pA∗. In such an equilibrium, φAj = 1 and, hence, the winning firm would earn expected
profits that are below the one of the losing firm, ρλR(D − k), and would prefer to set a higher price
in period A.

If, instead, the price set by the winning firm pAj was above pA∗, the firm losing would have incentives

to undercut, since then φAl = 1 and, hence,

E
[
πl
(
pAl , p

A
j

)∣∣ pAj > pA∗
]
> ρλR(D − k).

In a nutshell, the equilibrium in period A has the form of the standard Bertrand equilibrium where
prices are equal to costs, including the opportunity cost of not retaining greater idle capacity in period
B.

5 Expected prices

In this section we derive analytical expressions for the equilibrium (expected) prices and profits. We
define the expected average market price to be the average unit price that is expected to be paid in
equilibrium.

5.1 Expected prices in period B

Let pB∗
(
pB1 , p

B
2

)
denote the average price that is charged across all sales in period B conditional on

the (actual) prices charged by firms 1 and 2, when DB materialises and in the absence of entry by
firm 3. Formally,

pB∗
(
pB1 , p

B
2

)
,

{
pB1

κ1
DB

+ pB2
DB−κ1
DB

, if pB1 ≤ pB2 ,
pB2

κ2
DB

+ pB1
DB−κ2
DB

, if pB1 > pB2 .

Computing the expected average price of pB∗ (·) over the strategic randomisation of both firms requires
distinguishing between two kinds of events: (i) events in which firm 1 prices below R; and (ii) others
where firm 1 prices at R.

Firm 1 prices below R. Let j and l be the winning and losing firms, respectively. The integral
over the price of the losing and winning firms conditional on the one for the winning firm being smaller
than that of the losing firm takes the form:∫ R

pB

∫ R

pBj

pB∗
(
pBj , p

B
l

)
dFl(p

B
l )dFj(p

B
j ) =

∫ R

pB

∫ R

pBj

(
pBj

κj
DB

+ pBl
DB − κj
DB

)
dFl(p

B
l )dFj(p

B
j ).
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Firm 1 prices at R. The integral that covers the events in which firm 1 sets a price equal to R is
similar to the one above, but in this case integration over the prices of the losing firm (firm 1) is not
required, and the expression takes the form:∫ R

pB
pB∗

(
pB2 , R

)
(1− F̄1)dF2(p

B
2 ) =

∫ R

pB

(
pB2

κ2
DB

+R
DB − κ2
DB

)(
1− F̄1

)
dF2(p

B
2 ).

where F̄1 , F1 (R− ε).

Expected price in period B with positive demand and no entry. The first integral above
can be computed when each of the firms wins yielding two terms, while the second integral can be
computed to yield a third term. We add the three terms to obtain a simplified expression for the
average prices in period B when there is high demand and firm 3 does not enter:

E
[
pB∗ (·)

]
= R

(
1− κ2

κ1

OB

DB

)
. (5)

This expression is decreasing in the amount of relevant overcapacity OB, converging to the monopolist
price (R) when there is none. Since 0 ≤ κ2/κ1 ≤ 1 with the ratio taking the value of 1 when there is
symmetry and taking the value of 0 when the asymmetry is maximal, the expression is also decreasing
in the relevant degree of symmetry (κ2/κ1) in period B, also converging to the monopolist price when
asymmetry becomes extreme (κ2/κ1 → 0). This expression can be interpreted as a fraction of R that
is reduced as: (i) the degree of capacity symmetry increases, and (ii) the amount of overcapacity
relative to demand increases.

The price in period B is equal to zero if firm 3 enters the market, since then the market will move from
a situation of excess demand to a scenario of excess capacity where none of the firms is pivotal. It
follows that a reduction in the likelihood of entry — an increase in ρ — will result in higher expected
prices in period B when λ > 0. Likewise, an increase in the probability of DB > 0 will increase prices
when ρ < 1.

5.2 Expected average market price across periods

The expected average market price equals the weighted average of the prices expected in both periods,
with weights given by the amount of sales in each period. They integrate across the various uncertainty
scenarios. Formally, we have the expression,

E[p∗ (·)] = λρ

(
E
[
pB∗ (·)

] DB

D
+ pA∗

DA

D

)
︸ ︷︷ ︸

Positive demand, but

no entry in period B

+λ(1− ρ)

(
pA∗

DA

D

)
︸ ︷︷ ︸

Positive demand and

entry in period B

+ (1− λ)pA∗︸ ︷︷ ︸
No demand

in period B

,

which can be rewritten as

E[p∗ (·)] = λρR

(
1− O

D
+ (1− λ)

D − k
D

DB

k

)
, (6)
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where O = 2k −D. This expression converges to

E[p∗ (·)] = R

(
1− O

D

)
,

when the context is least competitive — i.e., when it is certain demand will materialise in period B
(λ = 1) and that firm 3 will not enter (ρ = 1).

5.3 Equilibrium price and the RSI

The expression above for the expected average prices can be rewritten in terms of the residual supply
index (RSI, henceforth) of the industry for either one of the pivotal firms, which equals k/D in this
setup. A firm’s RSI is a measure of its market power. The coefficient 1−RSI equals the percentage
of market demand that is captive to the firm under consideration and cannot be served by any of its
rivals. The greater that percentage, the higher the price (and margin) the pivotal firm will be able to
charge in equilibrium for a given level of demand and capacity uncertainty.

Rearranging terms, the expected average price takes the following form

E[p∗ (·)] = λρR(1−RSI)

(
2 + (1− λ)

DB

k

)
. (7)

This expression is monotonically increasing in the presence of overcapacity and converges to 2R(1 −
RSI) < R when the context is least competitive — i.e., when it is certain that demand will materialise
in period B (λ = 1) and that firm 3 will not enter (ρ = 1) — and is equal to zero when RSI = 1 (i.e.,
when firms 1 and 2 are not pivotal).8

Moreover, the following can also be established for expected average prices in the market:

∂ logE [p∗ (·)]
∂ log ρ

= 1 >
2k − λDB

2k + (1− λ)DB
=
∂ logE [p∗ (·)]

∂ log λ
.

That is, the expected market price reacts relatively more to changes in the probability of entry, ρ,
than to an increase in expected demand, λ. Both an increase in ρ and an increase in λ increase period
A and (expected) period B prices in the same way. However, for given period A and B prices, an
increase in ρ shifts probability from states of nature with lower average market prices across periods
towards the state of nature with higher average market prices, whereas an increase in λ only does so
when ρ is high enough.

6 Changes in pivotality

In this section, we study the relationship between changes in the industry overall capacity and equi-
librium prices. Consider an increase in the RSI. Such increase could happen, for instance, if a
competitive fringe, including one or more price-taking firms, had available capacity to absorb some

8RSI ≤ 1 in our model since k ≤ D. In practice, k may be greater than D and so the RSI may be greater than one,
in which case market prices will converge to marginal costs.
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demand in period A. The partial derivative of (7) over this change in the RSI is

∂E[p∗ (·)]
∂RSI

= −λρR
(

2 + (1− λ)
DB

k

)
< 0.

That is, an increase in the RSI — or, equivalently, a reduction in the amount of captive demand for
the pivotal firms — reduces the expected level of prices.9

We use the derivative above to perform comparative statics of the effect that changes in market
structure have on expected average prices. Let ψ be the aggregate capacity of the competitive fringe
in period A, then the RSI for firms 1 and 2 equals RSI(ψ) , k

D−ψ , where the function RSI(ψ) is
increasing in ψ. A change in ψ will have an impact on expected prices:

∂E[p∗ (·)]
∂ψ

=
∂E[p∗ (·)]
∂RSI︸ ︷︷ ︸
<0

∂RSI (ψ)

∂ψ︸ ︷︷ ︸
>0

= −λρR
(

2 + (1− λ)
DB

k

)
k

(D − ψ)2
< 0. (8)

That is, a reduction in the aggregate capacity of the competitive fringe will result in an increase of
the expected level of prices. Or, equivalently, if firms 1 and 2 acquired a fraction of the capacity held
by the competitive fringe, that would result in an increase in the average price across periods.

The price impact of a reduction in ψ, or a merger, will be smaller when λ and ρ are small — i.e.,
demand is uncertain and entry is relatively more likely. The more uncertain demand is and/or the
more likely entry in period B, the smaller the impact on prices of reductions in the aggregate capacity
of the competitive fringe in period A. An implication of this last result is that no capacity divestment
may be needed when demand is uncertain and entry likely despite the existence of capacity constraints
and high market shares.

7 Compensating marginal cost reductions

We can use a slightly modified version of equation (7) to assess whether a reduction in the marginal
costs of firms 1 and 2 can offset the increase in prices resulting from a reduction in ψ or, in other
words, an increase in the incumbents’ pivotality.

We first develop a normalisation of the model that allows us to modify equation (7) to include a
positive marginal cost, c > 0. Then, we determine the reduction in marginal costs that offsets the
price impact of a reduction in ψ. This is the so-called compensating marginal cost reduction (CMCR,
henceforth) as in Werden and Froeb (1994).

9We focus on the prices charged by the strategic firms, abstracting from the price the competitive fringe may charge
for the sales it makes.
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7.1 Normalisation

In this subsection, we show that the conclusions of the model are robust to any arbitrary constant
marginal cost c > 0, and use this result to rewrite (7) for the CMCRs.

For every t = A,B, let us redefine ptj to be the margin of firm j; and ptj,abs, the actual price charged

by firm j, so that ptj = ptj,abs− c. Solving the two-period game set out in Section 2, where firms 1 and

2 compete in periods A and B setting prices ptj with a reservation price of r is equivalent to solving
the same game where they compete setting margins ptj and the reservation price is R = r− c. This is
because there is a one-to-one mapping between the demands that firm j faces when choosing margins
and absolute prices, respectively, as we demonstrate in Appendix B.

Therefore, equation (7) can be rewritten accounting for a non-zero marginal cost as

E[p∗abs (·)] = c+ λρ(r − c)(1−RSI)

(
2 + (1− λ)

DB

k

)
, (9)

where E[p∗abs (·)] is the actual expected average market price across periods.

7.2 The CMCRs

It follows from (9) that

∂E[p∗abs (·)]
∂ψ

= −λρ(r − c)
(

2 + (1− λ)
DB

k

)
k

(D − ψ)2
< 0

≤ 1− λρ(1−RSI)

(
2 + (1− λ)

DB

k

)
=
∂E[p∗abs (·)]

∂c
.

where the second inequality is strict in the presence of overcapacity (2k > D) — i.e., when RSI < 1.
Then, the CMCR is calculated as the change in the marginal cost c, dc, such that dE[p∗abs (·)] = 0
when dψ 6= 0. That is,

dc = − ∂c
∂ψ

dψ, (10)

where

∂c

∂ψ
=

λρθ(λ)

1− λρ(1−RSI)θ(λ)

(
k

(D − ψ)2

)
> 0,

and

θ(λ) = 2 + (1− λ)
DB

k
.

It follows that a reduction in ψ, dψ < 0, requires a drop in marginal costs given by equation (10) so
that the increase in pivotality leaves market prices unchanged for the competing firms.
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Note that dc is increasing in both ρ, i.e., a lower probability of entry, and in λ, i.e., a higher probability
of future demand. In the extreme, dc = 0 when λ and ρ are zero — i.e., when the likelihood of positive
demand in period B is zero and/or the probability of entry is large. in other words, a reduction in
the capacity of the fringe due, for example, to a merger will require some cost efficiency to be pro-
competitive, but the magnitude of such efficiency needed to that end is decreasing when future demand
is more uncertain and future entry more likely.

8 Concluding remarks

We have shown that capacity constrained oligopolists’ ability to price above costs is limited by un-
certainty in demand and supply. Of course, other things equal, equilibrium prices are greater when
firms’ pivotality is increased. Yet, unlike in the previous literature, the relationship is mediated by the
probability of high future demand and, especially, the likelihood of future entry. These findings have
implications for the design of merger control policy in cases involving markets with excess capacity
and, in particular, the balancing of efficiencies, the weight given to the structural presumption, and
the scope of any divestiture remedies.
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A Proof of Proposition 1

A.1 Auxiliary results on Fj (·) in equilibrium

In this appendix, we derive a set of auxiliary results that are useful to characterise the equilibrium
and establish its uniqueness. We present these results in a series of lemmata. The main insights that
can be drawn from these results are that: (i) the strategy support of both pivotal firms is convex and
their extrema coincide, and (ii) the CDF for pivotal firms is continuous in the interior of the support.

Lemma 1. In equilibrium, the supremum of the support of the equilibrium strategies of both firms is
at or below R.

Proof. Assume a firm assigned probability mass to prices above R. Then, its expected profits would
have to be zero because of the equilibrium condition that requires the expected profits to be the same
across all prices in the support. We show that this cannot be the case in equilibrium.

First, and by contradiction, if the firm were pivotal it would have incentives to deviate and price equal
to R, sell to its captive demand, and make positive profits.

Second, if the firm were not pivotal, the model assumptions imply that its competitor would be pivotal.
Let the non-pivotal firm be indexed by j, and the pivotal competitor firm be indexed by l, with the
supremum of the support of its equilibrium strategy denoted as pBl . From the first part of the proof
we know that pBl ≤ R. Then, firm j would have incentives to move some or all of the probability mass
in its equilibrium strategy to a price below pBl and obtain positive profits, provided that pBl > 0. It
then follows immediately that pBl > 0 because if it were zero, firm l would make zero profits, and it
could make positive profits by pricing purely at R and capturing its captive sales.

Lemma 2. The probability of a tie in equilibrium is zero.

Proof. For a tie to have positive probability in equilibrium, it needs to be the case that both firms
have a mass of probability at some common point in the support of their strategies. Lemma 1 rules out
prices above R immediately. In what follows, we show ties have no positive probability in equilibrium
for prices at or below R.

By contradiction, assume that both firms set strategies such that they include a mass of probability
at some price pB ≤ R. That is, they assign non-zero probabilities to this price and distribute the
remaining probability mass across the rest of prices in their support.

Then, there exists ε > 0 small enough such that assigning the mass of probability at pB to pB − ε
would be profitable to either j = 1, 2. Denote Fj(·) and F ′j(·) the distribution functions with the mass
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at pB and pB − ε and the rest of probability distributed identically over the support. Formally

lim
ε→0+

(
E
[
πBj
(
pBj , p

B
l

)∣∣Fj]− E
[
πBj
(
pBj , p

B
l

)∣∣F ′j])
= lim
ε→0+

Pr
(
pBj = pB

∣∣Fj) (Fl(pB)− Fl(pB − ε)
)

(pB − ε)κj

− Pr
(
pBl = pB

)
Pr
(
pBj = pB

∣∣Fj) pB [sjκj + (1− sj)(κj − (DB − κl))
]

= Pr
(
pBj = pB

∣∣Fj)Pr
(
pBl = pB

)
pBκj

− Pr
(
pBl = pB

)
Pr
(
pBj = pB

∣∣Fj) pB [sjκj + (1− sj)
(
κj − (DB − κl)

)]
= Pr

(
pBj = pB

∣∣Fj)Pr
(
pBl = pB

)
(1− sj)pBOB,

which is positive because of relevant overcapacity.

In intuitive terms, the result above reflects that the profits for all prices other than pB−ε are virtually
the same, while the profits at pB − ε increase. The probability of winning the tender and producing
at capacity increases while the profits for each unit decrease by a negligible amount ε.

This result is similar in nature to the one showing that firms have incentives to undercut symmetric
pure strategy profiles. However, in this case, the undercut involves moving a probability mass to lower
prices instead of pricing purely at them.

Lemma 3. In equilibrium, the support of the distribution function characterising the equilibrium
strategies for the pivotal firms has no gaps, i.e., it is convex.

Proof. Lemma 1 rules out gaps with a supremum above R, since such kind of gap would imply some
probability mass would be located above the supremum of the gap. Below, we show there are no gaps
in the support of the strategies of either firm when the supremum of the gap is at or below R.

First, notice that a gap in the support of one of the firms would imply that its rival firm would
also have the same gap in its support. If it didn’t, the strategy of the rival firm would be strictly
dominated by a similar one where the probability mass allocated along the gap would be relocated
to its supremum. This reallocation would increase margins under some events without reducing the
probability of winning in any of the events. Hence, it would be profitable.

Second, in order for an equilibrium to exist in which both firms have a gap in their support, it would
need to be the case that, for both firms, the expected profits at the infimum of the segment were equal
to those at its supremum. This is implied by the fact that any mixed strategy in equilibrium should
have equal expected profits at each price of the support. Let g < g ≤ R within the support denote
extrema of the gap. Then,

E
[
πBj
(
pBj , p

B
l

)∣∣ pBj = g
]

= g
[
κj − Fl

(
g
)
OB
]

= g
[
κj − Fl (g)OB

]
= E

[
πBj
(
pBj , p

B
l

)∣∣ pBj = g
]
.

However, this condition would imply:

Fl (g)− Fl
(
g
)

=
g − g
g

1

OB
[
κj − Fl (g)OB

]
> 0.
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Since the presence of a gap would imply Fj(·) and Fl(·) are constant in the interior of the gap (i.e., in
the segment (g, g)), the above condition could only hold if there was a discontinuity in both Fj(·) and
Fl(·) at g. This discontinuity means both firms would have to place a mass of probability at g, which
is not possible in equilibrium, as shown in Lemma 2.

Lemma 4. In equilibrium, the CDFs of the strategies of both firms are continuous in the interior of
their support.

Proof. Lemma 1 rules out discontinuities in the CDFs at or above R. If there was one, given it would
have to be in the interior of the support by assumption, it would imply some mass of probability would
have to be located above R, contradicting the lemma. Below, we show there are no discontinuities in
the CDFs of either firm below R.

By contradiction, assume in equilibrium one of the firms played a probability distribution that yielded
a discontinuous CDF in the interior of the support. That is, suppose there was some g < R within
the support such that:

Fj(g)− lim
ε→0+

Fj(g − ε) > 0.

Following Lemma 3, if that were the case, for an arbitrarily small ε > 0, g−ε would have to be part of
the support of the strategy. However, the equilibrium condition requiring equality of expected profits
at all prices in the support implies that it would also need to be the case that:

Fj(g)− lim
ε→0+

Fj(g − ε) = lim
ε→0+

(
ε

g − ε
1

OB
[
κj − Fl (g)OB

])
= 0,

which is a contradiction with the inequality above.

Lemma 5. In equilibrium, the extremes of the support coincide for both firms.

Proof. Lemma 1 rules out case in which the infima and/or the suprema of the supports are above R.
Below, we show that the extremes of the support coincide for both firms when they are at or below
R. Let pB

j
and pBj denote the infimum and supremum of the support of the strategies for firm j in

equilibrium, respectively.

For the infima, consider strategies for the two firms such that pB
j
< pB

l
≤ R. First, notice that firm j

would have a profitable deviation from this strategy, which is to move the mass of probability originally
placed at prices between pB

j
and pB

l
, F (pB

l
) − F (pB

j
), to a price equal to pB

l
. This form of iterative

elimination of dominated strategies would work for firm j because it would provide it with the same
probability of winning the tender at a higher margin for all the mass of probability previously assigned
below pB

l
. This argument mirrors, in a mixed-strategy context, one of the arguments used to rule out

asymmetric pure-strategy profiles. However, in the mixed-strategy context the argument does not rule
out equilibria, but instead shows that pB

j
coincides for both firms.

For the suprema, consider strategies for the two firms in which pBl < pBj ≤ R. First, if firm j were
pivotal, it would have an incentive to move all the mass of probability it currently assigns to prices
between pBl and pBj to R. This would maximise the margin on each unit of its captive demand, without
changing the expected amount of sales captured under any event.
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Second, if firm j were not pivotal, its expected profits would have to be zero because they would have
to be the same across all prices played with positive probability, and they would be zero for the prices
with positive probability located above pBl . Therefore, firm j would have incentives to move some or
all mass in its strategy to a price below pBl and obtain positive profits, provided that pBl > 0. That
pBl > 0 follows from the same argument as in Lemma 1. The assumptions of the model imply that
firm l would be necessarily pivotal if firm j were not. Thus, firm l could make positive profits based
on its captive sales, and would make zero profits if pBl were zero, which would preclude the latter from
being part of a strategy in equilibrium.

Given that the extremes of the supports coincide, in what follows we characterise the extremes of the
support using the following reduced notation: pB = pB

j
= pB

l
, and pB = pBj = pBl .

Lemma 6. In equilibrium, there is no probability mass at pB for either of the two firms.

Proof. Lemma 1 states that pB < R, while Lemma 2 implies that only one of the two firms could have

a mass at pB. Therefore it suffices that no individual firm would have incentives to place a mass of

probability at a price pB.

We show this by means of a contradiction. Assume that pB < R, that firm j had no mass at pB, and

that firm l assigned some probability Pl > 0 to pB, and distributed its probability using F ′l over the

remainder of the support. If this were the case, firm j would have higher profits at pB than it would

at price pB + ε for some arbitrarily small ε > 0:

lim
ε→0+

E
[
πBj
(
pBj , p

B
l

)∣∣ pBj = pB + ε
]

= lim
ε→0+

(pB + ε)
[
κj −

(
Pl + F ′l

(
pB + ε

))
OB
]

= p
[
κj − PlOB

]
< p

[
κj − Pl(1− sj)OB

]
= E

[
πBj
(
pBj , p

B
l

)∣∣ pBj = pB
]
.

This would either violate the equality of expected profits within the support, or entail that pB + ε
were not part of the support of the strategy for firm j, implying a gap in the support of its strategy,
contradicting Lemma 3.

Lemma 7. In equilibrium, the expected profits for both firms are equal to those they obtain if they
capture as much demand as they can at a price of pB.

Proof. First, Lemma 6 states that there is no probability mass at pB for either player, which entails
that the probability of winning the tender tends to one for both firms as prices approach this point.
Second, in equilibrium, the expected profits a firm makes at any price included in the support of its
strategy, including the neighborhood of pB, are the same. Together, these two results imply that the

expected profits that each firm makes in equilibrium are equal to pBκj . Formally,

lim
ε→0+

E
[
πBj
(
pBj , p

B
l

)∣∣ pBj = pB + ε
]

= pBκj .
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A.2 The support of the strategies

In this subsection, we characterise the common extremes of the support that both firms have in
equilibrium. We describe the support for each of the firms in Proposition 1.

Lemma 8. In equilibrium, the supremum of the support of the strategies of both firms is R.

Proof. Consider an equilibrium where both firms use strategies with a supremum pB < R. The
definition of the common supremum entails that Fj(p

B) = 1. However, it is the case that at this point

E
[
πBj
(
pBj , p

B
l

)∣∣ pBj = pB
]

= pB(κj −OB)

≤ R(κj −OB)

= E
[
πBj
(
pBj , p

B
l

)∣∣ pBj = R
]
,

which means any pivotal firms, of which there is at least one by the model assumptions, would have
incentives to deviate to a price pB = R.

Lemma 9. In equilibrium, if κ1 > κ2 there is a probability mass at R in the strategy of firm 1.

Proof. Given that firm 1 is the largest of the two firms, it is necessarily pivotal. Its pivotality implies
that, in order for its strategy to be part of an equilibrium, in has to yield profits at least as high as
those firm 1 would make if it focused on its captive sales, R(DB − κ2), because those profits can be
secured independently of the actions of firm 2. If we combine this restriction with the result from
Lemma 7 we obtain:

pBκ1 ≥ R(DB − κ2).

The inequality above implies pB ≥ RDB−κ2
κ1

. We note here that if firm 2 were pivotal, a symmetric

restriction on pB would apply based on the expected profits firm 2 could secure by focusing on its
captive sales. However, this second restriction is not binding given that κ1 > κ2.

The restriction derived above combined with the result from Lemma 7 has implications for the limit
of F1 as it approaches R from the left:

lim
ε→0+

E
[
πB2
(
pB2 , p

B
1

)∣∣ pB2 = R− ε
]

= lim
ε→0+

(R− ε)
[
κ2 − F1 (R− ε)OB

]
= pBκ2 ≥ R

(
DB − κ2

) κ2
κ1
,

which implies:

lim
ε→0+

(R− ε)
[
κ2 − F1 (R− ε)OB

]
−R

(
DB − κ2

) κ2
κ1
≥ 0

The inequality above implies limε→0+ F1 (R− ε) < 1, since κ2 < κ1 by assumption. Given that R is
the supremum of the support of the strategy of firm 1 by Lemma 8, it follows that F1(R) = 1. Both
assertions combined imply F1 has a discontinuity at R, i.e. the strategy of firm 1 has a probability
mass at that point.
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Lemma 10. In equilibrium, the infimum of the support of the strategies of both firms is pB = RDB−κ2
κ1

.

Proof. From Lemma 9 we know that pB ≥ RDB−κ2
κ1

, so it suffices to show that the inequality is

binding. By contradiction, assume pB > RDB−κ2
κ1

. This restriction combined with the result from
Lemma 7 has implications for the limit of F2 as it approaches R from the left:

lim
ε→0+

E
[
πB1
(
pB1 , p

B
2

)∣∣ pB1 = R− ε
]

= lim
ε→0+

(R− ε)
[
κ1 − F2 (R− ε)OB

]
= pBκ1 > R

(
DB − κ2

)
,

which would imply:

lim
ε→0+

F2 (R− ε) < 1.

If κ1 > κ2, Lemma 9 implies that there would be a mass at R for firm 1, while the inequality above
implies that there would be one for firm 2 as well. This means that there would be mass at R in
the strategy of both firms, contradicting Lemma 2. Similarly, if κ1 = κ2, the inequality above applies
symmetrically, implying once more that there would be a probability mass in the strategy of both
firms at R, contradicting Lemma 2.
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B Further material

In this appendix we provide the characterization of the equilibrium with positive and asymmetric
marginal cost.

B.1 Normalisation

The demand that firm j absorbs in period t when prices are (ptj,abs), for j, l = {1, 2} and j 6= l and
the reservation price is r takes the form:

qtj
(
ptabs, r

)
= min{Dt, k − qAj 1(t = B)}
1
(
ptj,abs < r

) [
1
(
ptj,abs < ptl,abs

)
+ 1

(
ptj,abs = ptl,abs

)
1 (Winj)

]
+ min{Dt − qtl , k − qAj 1(t = B)} (B.1)

1
(
ptj,abs < r

) [
1
(
ptj,abs > ptl,abs

)
+ 1

(
ptj,abs = ptl,abs

)
1 (Losej)

]
,

where Winj and Losej represent the cases in which the two firms draw and the tie breaks in favour of
firm j (Winj) or against it (Losej), respectively.

This expression can be rewritten in terms of R = r − c so that R represents the maximum margin
with positive demand:

qtj
(
pt, R

)
= min{Dt, k − qAj 1(t = B)}
1
(
ptj < R

) [
1
(
ptj < ptl

)
+ 1

(
ptj = ptl

)
1 (Winj)

]
+ min{Dt − qtl , k − qAj 1(t = B)} (B.2)

1
(
ptj < R

) [
1
(
ptj > ptl

)
+ 1

(
ptj = ptl

)
1 (Losej)

]
.

Given that there is a one-to-one relationship between the demands in (B.1) and (B.2), we have that
for any other parameters (DA, DB, k, s):

E
[
πj,abs(p

t
j,abs, p

t
l,abs)

]
=
∑
t

E
[
(ptj,abs − c)qtj(ptj,abs, r)

]
=
∑
t

E
[
ptjq

t
j(p

t, R)
]

= E [πj(pj , pl)] .

It follows, therefore, that the solution to the game where firms 1 and 2 set margins ptj for t = {A,B}
with a reservation margin R is equivalent to the solution of that game where instead they set prices
pj,abs, t = {A,B}, with a reservation price r.

It is worth noticing that this result can also be used to show that the expected average prices derived in
equation (7) can be interpreted as percentage price increases relative to an arbitrary initial situation.
In that case pt could be rewritten as a percentage price increase and the relationship between (B.1)
and (B.2) would be of proportionality instead of equality.
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B.2 Asymmetric capacities

In the remainder of this appendix we assume that firms have different capacities. Yet, we impose that
this asymmetry is not too large — i.e., k1 > k2 ≥ k1 −DA.

Clearly, in this case, the equilibrium characterized for the symmetric case does not hold, since the
indifference point for both firms differ. We show that the asymmetric setup has no pure strategy
equilibrium, while it features infinitely many equilibria in mixed strategies. However, in spite of this
multiplicity, the market outcome that materialises in all of these equilibria is the same.

B.2.1 No pure strategies equilibrium

A symmetric equilibrium in pure strategies does not exist when the capacities of the competing firms
are asymmetric. This happens because the indifference points between winning and losing in period
A are different for each firm. The two expressions that define these indifference points are:

E[πj(p
A
j , p

A
l )|pAj < pAl ] = pAj D

A + E
[
πBj (·) |κj = kj −DA

]
,

E[πj(p
A
j , p

A
l )|pAj > pAl ] = E

[
πBj (·) |κj = kj

]
.

The indifference price of each firm, which we denote pAj
∗
, can be obtained by equating the expressions

above and solving for pAj .

The differential in profits for period B We denote the differential in profits for period B between
winning and waiting in period A as

∆E
[
πBj (·)

]
= E

[
πBj (·) |κj = kj

]
− E

[
πBj (·) |κj = kj −DA

]
= ρλR

(
D − kl −

kj −DA

kl
(D − kj)

)
.

= ρλR(D − kj)
(
D − kl
D − kj

− kj −DA

kl

)
.

The analysis of period B in Section 3 shows that the differential is positive in the symmetric case
when k < D. In contrast, in the asymmetric case, its sign can vary depending on the term

D − kl
D − kj

− kj −DA

kl
.

For both firms, the term (kj−DA)/kl is smaller than or equal to one because the asymmetry between
firms is small (i.e., k1 > k2 ≥ k1 − DA). For firm 1, this condition ensures that its differential is
positive since D−k2

D−k1 > 1. For firm 2, the sign of ∆E
[
πB2 (·)

]
is ambiguous and becomes positive when

k2 is close to k1.

When its profits differential in period B is negative, firm 2 prefers to be the winning bid in period
A independently of the demand in this period. This situation can arise when the capacity of firm
1 increases because the profits from waiting become very small, while the profits from winning re-
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main unchanged. Additional restrictions would be required to ensure ∆E
[
πB2 (·)

]
is always positive.

However, we do not impose them since the equilibrium characterisation that we develop only requires
∆E

[
πB1 (·)

]
to be positive.

The order of indifference points for the small and large firm We can use the term ∆E[πBj ]
to express the indifference point between selling at period A and B for firms 1 and 2 as

pAj
∗

=
∆E[πBj ]

DA
.

If we evaluate this expression for firms 1 and 2, take their difference, and normalize it by ρλR, we can
establish the indifference point is larger for firm 1 than for firm 2:

pA1
∗ − pA2

∗

ρλR
=


O(k1−k2)(O+DB)

DAk1k2
if k2 < k1 ≤ DB,

DBO(k1−k2)+(k2−DA)((DB−k2)(k2−DA)+DB(k1−DB))
DADBk2

if k2 < DB < k1,
(k1−k2)(k1+k2−2DA)

DADB
if DB ≤ k2 < k1.

It is immediate that the expressions are positive since all factors in the differences are positive by
assumption.

Asymmetric indifference points preclude any possible equilibrium in pure strategies The
asymmetry in the indifference points for the two firms rules out any possible symmetric equilibrium.
An equilibrium where both firms set their prices symmetrically at pA1

∗
does not exist because at this

price firm 2 would strictly prefer to win at period A over waiting until period B and thus would have
incentives to undercut firm 1. Similarly, a symmetric equilibrium where both firms price at pA2

∗
cannot

exist because firm 1 would prefer to wait until period B instead of selling in period A. Therefore,
it would deviate to a higher price. It is worth noting that: (i) the first argument applies also to
prices above pA1

∗
although in that case firm 1 would also have incentives to undercut; (ii) the second

argument applies also to prices below pA2
∗
, although in that case firm 2 might also have incentives to

wait depending on parameters; and (iii) both arguments apply simultaneously to prices in the interval(
pA2
∗
, pA1

∗)
. This shows that there are no symmetric pure-strategy equilibria.

The same arguments used to rule out asymmetric pure-strategy equilibria in the case of symmetric
capacities can be applied to rule out most candidates to an asymmetric pure-strategy equilibrium in
the asymmetric case. First, consider any pure strategies equilibrium where firm 1 wins and prices
below pA1

∗
, or in which firm 2 wins and prices below pA2

∗
. In such equilibria the winning firm would

expect profits that are below those it could make if it loses, and would prefer to deviate to a price
above the one set by firm 2. Second, if firm 1 wins with a price above pA2

∗
, or if firm 2 wins with

a price above pA1
∗
, the losing firm would have incentives to undercut since in those regions the price

that needs to be immaterially undercut would not be low enough for the losing firm to be indifferent
between winning and losing, undercutting would provide larger profits.

There exists, though, the remaining possibility not covered above of an asymmetric equilibrium in
which firm 2 wins with a price in the interval (pA2

∗
, pA1

∗
). The reason such an equilibrium does not

exist is standard and of a technical nature. Given that both firms set prices (pA1 , p
A
2 ) ∈ R2, then for

any pA2 < pA1
∗

there exists some ε > 0 such that pA2 + ε < pA1
∗

to which firm 2 would want to deviate.
The argument that discards these potential equilibria is weaker than those ruling out other cases, in
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the sense that it does not resist the application of a coarser equilibrium notion, concretely that of
an epsilon equilibrium. Based on this intuition a mixed strategies equilibrium in which firm 2 prices
purely at pA1

∗
and always wins can be derived, which we do in the following subsection.

B.2.2 Infinitely many mixed-strategy equilibria

In this section, we characterise the infinitely many mixed-strategy equilibria of this subgame. From a
game theoretic perspective, we have identified a plethora of equilibria where firm 2 prices at pA1

∗
and

firm 1 mixes. However, the economically relevant outcomes are all equivalent because in all of them
firm 2 wins with certainty, and the price charged for all sales in period A is pA1

∗
. Firm 1 randomizes

above pA1
∗
, with the infimum at that point and without any mass on it, but the exact form of firm 1’s

strategy is not determined beyond these properties and a functional inequality.

We develop this equilibrium characterisation in two steps. We start from a situation similar to the
epsilon equilibrium in pure strategies and argue that, in equilibrium, it has to be the case that the
support of both firms coincide in their infimum. Then, we use the equilibrium condition of indifference
between period A and B to characterise a non-degenerate support of prices in equilibrium for firm 1.
Finally, we derive the functional inequality in equilibrium so that firm 2 does not have incentives to
deviate.

B.2.3 The infima of the supports coincide

Consider an equilibrium in mixed strategies where only one of the firms prices using a non-degenerate
probability distribution. In this equilibrium it has to be the case that the infimum of the support is
the same for both firms. If the infimum of the support of the firm mixing were above its competitor’s
price, then the competitor would have incentives to deviate and price higher, but still below that
infimum.

Alternatively, if the infimum of the support of the firm mixing were below the point at which its
competitor prices purely, it would have an incentive to concentrate all the mass below the point at
which its competitor prices to one slightly below it, and obtain a larger profit in expectation.

Formally, let FAj denote the non-degenerate strategy and pAl ≤ R the price at which the competitor
prices. We focus on prices at or below R because if the competitor prices above it the best response
of firm j would be to price purely at R without mixing, and hence deviating from a non-degenerate
FAj . Therefore, if pAl ≤ R, there exists an arbitrarily small ε > 0 that defines a profitable deviation

strategy F ′Aj such that F ′Aj = 0 if p < pAl − ε and F ′Aj = FAj (p) for all p ≥ pAl − ε. We now show

F ′Aj provides a profitable deviation. To this effect, notice that the average expected profits for FAj
and F ′Aj are equal conditional on p > pAl − ε, while they differ when p ≤ pAl − ε. In both cases, the

continuation payoffs in period B and the sales in period A are the same, but the average price for FAj
is lower than that of F ′Aj (pj − ε) and thus firm j would prefer to deviate to the latter. That is,

E
[
π(pAj , p

A
l )
∣∣ pAl , F ′Aj ]− E

[
π(pAj , p

A
l )
∣∣ pAl , FAj ] =

[(
pAl − ε

)
−
∫ pAl −ε

0
pdFj(p)

]
DA > 0.

The above argument shows there are no equilibria with one firm pricing purely in which the infimum of
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the support of the firm mixing and the price set by the firm playing a pure strategy differ. Nevertheless,
there are equilibria in which the pure strategy and infimum of the support coincide, which we discuss
in the next subsection.

Equilibrium characterisation We start by considering the incentives of the largest firm. Firm 1
loses with certainty at any price pA1 > pA1

∗
and is indifferent between any of these prices. Moreover,

it is not a profitable deviation for firm 1 to price at pA1 = pA1
∗

since, at this point, its profits are the
same regardless of how the tie from pricing equally is resolved (i.e. independently of s1) and thus
yields the same expected profits as pA1 > pA1

∗
. This shows that any set of prices composed exclusively

by pA1 ≥ pA1
∗

could form a support for firm 1’s strategy in equilibrium, since any of these prices yield
equal expected profits and firm 1 has no strict incentives to deviate from them.

Next, we analyse the incentives of firm 2 to deviate and in the process determine the requirements for
FA1 that ensure there is an equilibrium. Firm 2 has no incentive to price lower than pA1

∗
because it

would still win with certainty, capture the same sales, but make a smaller margin on them. However,
it may have an incentive to price higher than pA1

∗
. Whether this is profitable or not depends on how

the trade-off between a larger price and an increased probability of losing resolves. The rate at which
the probability of losing increases depends on the strategy of firm 1, which we need to determine in
order to characterise the equilibria.

Let firm 1 randomise following a strategy FA1 . Then, an equilibrium exists if, for all p ≥ pA1
∗
, FA1

meets the following condition:

E
[
π2(p

A
2 , p

A
1 )
∣∣ pA2 = pA1

∗
, FA1

]
≥ E

[
π2(p

A
2 , p

A
1 )
∣∣ pA2 = p, FA1

]
.

If we substitute the corresponding expressions in the above inequality it is straightforward to obtain:

FA1 (p) ≥ p− pA1
∗

p− pA2
∗ for all p ≥ pA1

∗
.

The restrictions that this condition imposes on FA1 do not preclude it from being a probability measure
with the required properties. First, the right-hand side of the expression vanishes when p → pA1

∗
,

allowing the infimum of the support to be located at that point as long as it has no mass. Second,
even if increasing in p, the expression is smaller than one because pA1

∗
> pA2

∗
.

Finally, it is interesting to note that this equilibrium is a generalization of the pure-strategy one derived
under symmetric capacities, it converges to it: when k1 = k2 so that pA1

∗
= pA2

∗
, the probability

distribution degenerates and reaches FA1 (p) = 1 at pA1
∗

= pA2
∗

= pA
∗
.

B.2.4 Expected average market prices across periods under asymmetry

The expressions that pin down the expected average price in the market for the model with asymmetric
capacities can be expressed as a generalization of the ones in the main text. This is,

E[p] =Rλρ

[
1− O

D
(1− ω1) + (1− λ)

(
D − k1
D

DB − ω2

k2 − ω2
+ ω3

)
DB

D

]
, (11)
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where ω1, ω2 and ω3 help accommodate the expression in the body of the article to allow for (i)
asymmetry between the competing firms and (ii) that either one or both firms are pivotal in period
B.

ω1 =


(O+DB)(k1−k2)

k1k2
, if DB ≥ k1 ≥ k2

k1−DA
k2

− (k2−DA)
2

ODB
, if k1 > DB ≥ k2

(k1−DA)
2

ODB
− (k2−DA)

2

ODB
, if k1 ≥ k2 > DB,

ω2 =

{
0, if DB ≥ k2
k2 −DA, if DB < k2,

ω3 =

{
k1−k2
DA

O
D
DB

k2
, if DB ≥ k2

k1−k2
DA

O
D

(
1− k2−DB

O

)
, if DB < k2.

It is interesting to notice that (11) converges to (6) if k1 = k2 < DB.

B.2.5 Pivotality changes, market prices, compensating marginal cost reductions, and
mergers under asymmetry

The analyses conducted in Sections 6 and 7 produce complex analytical expressions when capacity is
asymmetric. The reason for this relates to the way in which DA enters the expected prices expression
(11). Nevertheless, even if the expressions are more complex, the analysis can be conducted in an
analogous way as the one in the sections mentioned above.
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