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We propose a model of information transmission and reputation building within a social network 
that exploits portfolio theory and option structures. The network aims to estimate an unknown 
parameter through multiple communication rounds. At every communication round, estimates of 
different agents’ abilities are shared, avoiding the repetition of information. These estimates are 
interpreted as financial assets driven by a compound Poisson process. After every communication 
round, agents construct a fictitious portfolio of options whose underlying is the vector of shared 
estimates. The portfolio’s weights are exploited to aggregate the information received in the 
communication round. Sufficient conditions for reaching consensus or polarization are provided.

1. Introduction

Gathering and aggregating information from a variety of information sources is often a crucial step in a decision-making process, 
especially in the presence of repetition of information. Furthermore, an accurate assessment of the reliability of all available sources 
is fundamental to making the right decision. To tackle these two issues, this paper proposes two main contributions:

• a novel interpretation of the informative content of the network that excludes the repetition of information over time;

• an innovative procedure that exploits option structures and portfolio theory to determine the weights that agents should assign 
to their peers within a network.

Indeed, we consider rational and trustworthy agents that form a fully connected network and share, at every communication round, 
a different piece of information. At the first communication round, agents spread their initial estimates of the unknown parameters; 
at the second communication round, agents share the weights they assigned to their sources after the first communication round, 
representing their assessments of agents’ abilities to estimate the parameter; at the third round, agents communicate the weights 
assigned after the second communication round, rflecting their estimates of agents’ abilities to evaluate their prficiency in estimating 
the parameter, and so on. This approach seems reasonable and consistent with intuition. In summary, suppose that after the first 
communication round, agent 𝑖 has assigned a high (low) weight to some agent 𝑗. Subsequently, agent 𝑖 may wonder whether other 
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agents agree with her opinion. Moreover, agent 𝑖 could be interested in the weight agent 𝑗 assigned to herself. The lower agent 𝑖’s 
cofidence in her own assessments, the more valuable this piece of information is. At the same time, agent 𝑖 could be willing to make 
other agents aware of the weight she assigned to herself, which rflects her perception of the quality of her own estimates. Note that 
agents are willing to share their own information truthfully because, by assumption, the network aims to estimate correctly a vector 
of unknown parameters. Beyond this intuitive argument, our approach is found to rflect real-life interactions, especially in social 
networks. In a Twitter conversation, or under a Facebook post, the discussants usually first share their idea about a certain topic; 
then, they begin to support or oppose other participants’ opinions. Thus, a second communication round naturally emerges to spread 
estimates of the reliability of the network’s members. Given this new piece of information, every agent assigns to her peers new weights 
that rflect her perception of the other agents’ abilities to evaluate their prficiency at estimating the unknown parameter. Again, 
agents may be eager to argue about these new assessments in a third round of communication, and so on. Every piece of information 
exchanged at each communication round contributes to defining sources’ overall reliability and eventually the network structure, 
which is, therefore, endogenously determined. Agents’ rationality is thus rflected in their awareness of the whole informative content 
of the network and in the way they exploit it. A natural consequence of the outlined setting is the relaxation of the assumption of 
time-constant weights, provided that a different ability is evaluated after each interaction. A procedure to determine the weights to be 
assigned to each agent after every communication round is then required. Whilst many models propose some evolutionary law driving 
time-dependent weights, how agents should actually compute their initial weights remains a widely unexplored topic. In DeMarzo 
et al. (2003), each agent receives a noisy signal about the unknown parameter and then estimates the variance of every peer’s error 
term to assign a weight to her. However, variance estimation can seem like a demanding task, especially when other agents’ signals 
are considered. As mentioned above, we exploit portfolio theory to compute weights. Assume that, within the network, each agent 𝑖’s 
payoff is a decreasing function of the distance between the true value of the unknown parameter 𝜃 and its estimate. This mimics the 
payoff of a financial instrument named buttefly spread1 with agent 𝑖’s estimate of 𝜃 as underlying and the 𝜃 as center. Thus, assigning 
a positive weight to one of the available estimates is equivalent to (virtually) allocating a share of wealth to a buttefly with the shared 
estimate as center. We assume that each agent composes, after the first communication round, a mean-variance optimal portfolio 
of butteflies, each with a different center corresponding to the estimate of 𝜃 by an agent of the network. The vector of portfolio 
weights computed after the first communication round is shared at the second communication round. The underlying of a buttefly 
is now agent 𝑖’s estimate of the vector of weights, and its center is the estimated vector actually shared by an agent 𝑗. Again, each 
agent could choose among different butteflies, each centered on a different vector, and compose a second (virtual) mean-variance 
optimal portfolio. The vector of weights characterizing this new portfolio is shared at the third communication round and represents 
the underlying of the butteflies available after the third interaction. A third (virtual) mean-variance optimal portfolio of butteflies 
is then composed. The same reasoning is applied at every communication round. At first sight, the estimated value of a parameter 
is quite different from the price of a financial asset that fluctuates over time. However, once the final decision is made, agents may 
receive new information about either the unknown parameter or the reliability of the agents in their listening set.2 This could follow, 
for example, from an enlargement of agents’ initial networks. Furthermore, even if the structure of the network were fixed, the 
reputation of the agents within the network might evolve over time. Therefore, as a stock’s price evolves according to the information 
received by the market, the estimate of an unknown parameter might change over time as agents receive new information. Thus, a 
buttefly could become more or less profitable because the value of the underlying evolves over time according to the future flow of 
information. Notably, when applied to practical situations, our model leads to results consistent with intuition (see section 5). Both 
consensus and polarization of opinions are allowed, depending on agents’ self-confidence and their expectations about the future flow 
of relevant information. The assumption of risk-averse and non-self-confident agents results in a strong preference for diversfication 
and leads, under mild conditions, to unidimensional opinions3 and, in turn, to consensus. Conversely, agents with high (or rapidly 
growing) self-confidence would stick to their estimates, causing polarization of the opinions regardless of their risk aversion. Finally, 
unidimensionality of opinions is obtained regardless of any specific functional form for the listening matrix. This represents, to the 
best of our knowledge, a minor contribution to the theory of time-inhomogeneous Markov chains.

1.1. Related literature

Our model belongs to the literature on non-Bayesian opinion aggregation processes as it builds upon the crucial assumption that 
agents update their beliefs through an average-based updating process. This approach can be traced to DeGroot (1974)’s seminal 
paper, which considers a network with no strategic communication where genuinely new information is spread only at the first 
communication round. With each following interaction, each agent shares a linear combination of beliefs from the previous com

munication round. A standard result in this body of literature is that, under mild regularity conditions and with ifinite rounds of 
communication, consensus eventually emerges. However, DeGroot (1974)’s approach implies the repetition of information and, thus, 
a sub-optimal aggregation of the information available to the network. To update their estimates correctly, rational agents should 
recount the sources of all information that contributed to forming their beliefs, the beliefs of those to whom the agent listens and 

1 Even if our analysis is mainly cofined to buttefly strategies, other option strategies could be considered to rflect a different degree of precision required in the 
estimation of the unknown parameter for an agent to make the right decision (see Section 2).

2 The listening set of an agent comprises the individuals within the network to whom the agent listens. To keep the problem tractable, we exclude the possibility 
that new information could be received before a decision has been made.

3 This phenomenon refers to the circumstance that, over time, individuals’ opinions on a multidimensional set of issues can be well approximated by a simple linear 
(i.e. unidimensional) structure, where an individual’s position on the line determines the individual’s position on all issues.
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those to whom they listen, and so on. Thus, it would be extremely difficult to implement a rational updating in a large network, 
where beliefs are derived from many (overlapping) sources over an extended period. DeMarzo et al. (2003) introduces a concept of 
bounded rationality, named persuasion bias, to justify the repetition of information. In every communication round, each agent acts 
as though the beliefs spread by all agents were always derived from new and independent observations. Experimental investigations 
of persuasion bias within social networks can be found, among others, in Corazzini et al. (2012) and Brandts et al. (2015) under 
mild conditions. While the results in Brandts et al. (2015) are consistent with the theoretical framework, Corazzini et al. (2012) find 
that the most ifluential agents are not those with more outgoing links, as predicted by the persuasion bias hypothesis, but those 
with more incoming links. Other works that exploit persuasion bias for the transmission of political information are Enikolopov et 
al. (2011), Barone et al. (2015), and Martin and Yurukoglu (2017), while Hong et al. (2004) analyzes persuasion bias in the stock 
market. Golub and Jackson (2010) consider a variation of DeMarzo et al. (2003)’s model and highlight the pervasiveness of persua

sion bias by excluding the fact that a simple and boundedly rational updating rule leads to an accurate estimate of the unknown 
parameter, even if network grows large, unless no agent receives disproportionately high attention. Our model, whilst adopting a 
non-Bayesian opinion aggregation, departs from this literature in considering rational agents who dynamically update the weights 
assigned to their peers’ beliefs given the information made available at every communication round. The model retains the spirit 
characterizing the DeGroot model because agents revise their weights and beliefs by evaluating the weights assigned by their peers 
at every communication round. However, the weights spread throughout every communication round now represent an actually new 
piece of information, that is, the evaluation of a different ability of each agent. Thus, repetition of information and persuasion bias are 
ruled out at the root. Unlike our view of the informative content of the network, the idea of time-dependent weights has been widely 
proposed in the literature. DeMarzo et al. (2003) assume that the weights each agent assigns to her own peers as a whole might 
change proportionally over time as a consequence of her increasing self-confidence. More interestingly, Rapanos (2023) proposes a 
model of dynamically updated weights, where the weights assigned to the agents vary depending on the sources of information they 
contact over time. Agents with an initially low weight could be assigned a higher weight once they gather new information from a 
highly reliable source of information. Conversely, in our model, a low weight initially assigned to an agent might be revised after 
a new communication round not because of interaction with more valuable sources of information but because a different ability is 
considered. An agent who is not reliable when evaluating the unknown parameter could be trustworthy when the reliability of the 
initial estimates is considered. Polanski and Vega-Redondo (2023) analyzes the co-evolution of networks and opinions and suggests 
homophily as a descriptive postulate leading, under some topological conditions, to polarization. The weight of each link within a 
network should match the similarity of opinions of the connected agents. The role of homophily in leading to polarized opinions has 
been widely analyzed in many other papers, such as Melguizo (2019), and can be traced back to the seminal work by Lazarsfeld and 
Merton (1954). In our model, homophily could arise if agents do not expect to receive much future information and are therefore 
willing to give a positive weight only to peers with close estimates. However, we depart from this literature because our proposed 
model is not shaped by the observation of any social pattern or communication bias, and the final outcome of agents’ interactions 
depends only on the parameters that dfine each agent’s attitude toward both future information and estimating errors. As a conse

quence, both consensus and polarization are allowed as final outcome of any social interaction. The paper is organized as follows: 
in Section 2, we present the main features of our model and, in particular, our new interpretation of the informative content of the 
network. Two illustrative examples are also provided. In section 3 the agents’ belief dynamics is described. In Section 4.1, a sufficient 
and a necessary condition for convergence are outlined. In addition, unidimensionality of opinions and a special case with weights 
remaining constant over time are briefly discussed. Finally, Section 5 is devoted to some empirical examples that demonstrate how 
the model is able to properly mimic real situations.

2. The model

Consider a finite set of agents  = {1,2,… ,𝑁}, indexed by 𝑖, 𝑗 or ℎ, which constitute a social network. The initial network is 
described as a directed graph indicating whether agent 𝑖 "listens to" agent 𝑗. This graph, otherwise named a listening structure, is 
assumed to be exogenous and may correspond, for example, to geographical proximity or social or hierarchical relationships. An 
agent 𝑖’s listening set is dfined as 𝑖 ⊆ , and for every agent 𝑗, we dfine an indicator parameter 𝑞𝑖𝑗 ∈ {0,1} that specfies whether 
agent 𝑗 belongs to 𝑖 or not, with 𝑞𝑖𝑗 = 1 if and only if 𝑗 ∈ 𝑖. We assume that each agent listens to herself, that is 𝑖 ∈ 𝑖 for every 
𝑖 ∈ . Let 𝜃 ∈ℝ𝐿 be a 𝐿-dimensional unknown parameter (or state of nature) that each agent has to estimate to make a decision. 
For the sake of simplicity, two assumptions are introduced: first, we restrict our analysis to a fully connected network with 𝑖 =

for every agent 𝑖 ∈ ; second, we consider a unidimensional unknown parameter 𝜃 ∈ℝ.

2.1. Agents’ utility function

The utility of the agents is contingent upon the accuracy of their decisions or, which is equivalent, on the degree of precision 
of their estimates of the unknown parameter 𝜃. Thus, their utility is modeled as inversely proportional to the absolute estimation 
error, which is dfined as the absolute difference between the agent’s estimate 𝑥0

𝑖
of the unknown parameter and its actual value 

𝜃. Furthermore, the utility function is bounded from below: if the estimation error exceeds a given threshold 𝛿, the resulting utility 
attains its minimum value. Agent 𝑖’s utility function 𝑢𝑖 ∶ℝ ×ℝ→ℝ is then dfined as follows:
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Fig. 1. Payoff of a butterfly spread strategy. 

Fig. 2. Payoff of a bull spread strategy. 

𝑢𝑖
(
𝑥0
𝑖
, 𝜃

)
=
⎧⎪⎨⎪⎩
0 if |𝑥0

𝑖
− 𝜃| ≥ 𝛿

𝜃 − 𝑎 if 0 ≤ 𝑥0
𝑖
− 𝜃 < 𝛿

𝑐 − 𝜃 if 0 < 𝜃 − 𝑥0
𝑖
< 𝛿

(1)

where 𝑎 and 𝑐 are real positive parameters with 𝑎 < 𝑥0
𝑖
< 𝑐 and 𝑥0

𝑖
− 𝑎 = 𝑐 − 𝑥0

𝑖
= 𝛿. An agent’s utility is thus analogous to the payoff 

of a financial derivative instrument designated as buttefly spread 4 (see Fig. 1) when its middle strike is equal to 𝑥0
𝑖
. Therefore, when 

a network is considered, the adoption by agent 𝑖 of a parameter estimate 𝑥0
𝑗

shared by some agent 𝑗 is equivalent to purchasing a 
buttefly option with agent 𝑖’s estimate 𝑥0

𝑖,𝑡
as underlying asset and middle strike equal to 𝑥0

𝑗
. Agent 𝑖’s payoff will be maximal only 

if 𝑥0
𝑗

coincides with the eventually revealed true value of 𝜃, while the value of the parameter 𝛿 can be properly calibrated to rflect 
the agent’s payoff sensitivity with respect to an estimate error. It is well known (see, for example, Blyth (2014)) that, given a value 
of 𝛿 arbitrarily close to zero, the payoff of the buttefly approximates the (risk neutral) probability of the underlying being between 
the strikes of the two long call options composing the buttefly. Therefore, given suitable values of 𝛿, agents do trade probabilities 
when trading butteflies, in particular the risk neutral probabilities of profitable values of the underlying random variable.

2.2. Agents’ utility: a generalization of the approach

Alternative functional forms to equation (1), which similarly capture the payoff structures of option strategies like the buttefly 
spread, could also be considered. More specifically, the selection of a specific functional form for agent 𝑖’s utility is contingent upon 
the degree of estimation precision required to make an accurate decision. An agent’s utility mimics the payoff structure of a bull (bear) 
spread strategy5 (see Fig. 2) when an accurate decision is made, provided that the estimated parameter exceeds a lower (or upper) 
bound irrespective of the degree of precision. The payoff then decays linearly as the value of 𝑥0

𝑖
deviates from this bound, ultimately 

4 A buttefly spread is a neutral-outlook option strategy whose payoff depends primarily on the underlying financial asset’s price 𝑆𝑇 at the expiration date 𝑇 relative 
to the strike prices of the options involved. A buttefly spread, using call options, consists of buying one call option with a lower strike price 𝑎= 𝜃 − 𝛿, selling two call 
options with a middle strike price 𝜃, and buying one call option with a higher strike price 𝑐 = 𝜃 + 𝛿 (see Hull (2006)). All options have zero cost and an expiration 
date of 𝑇 . The buttefly’s final payoff is dfined as follows:

Payoff =max
(
𝑆𝑇 − 𝑎,0

)
− 2 ⋅max

(
𝑆𝑇 − 𝜃,0

)
+max

(
𝑆𝑇 − 𝑐,0

)
(2)

Thus, the buttefly spread is most profitable when the underlying asset’s price is close to the middle strike price at expiration, and it has limited risk on both the upside 
and downside. Furthermore, a narrow spread (i.e., strike prices that are closer together) tends to create a steeper peak. This means the maximum profit is reached 
quickly, but the range of values at which the strategy is profitable is smaller. Conversely, a wider spread (i.e., strike prices that are further apart) results in a flatter 
peak and a gentler slope. This allows for a broader range of values where the strategy is profitable, but the maximum profit is lower. Note that equations (1) and (2) 
coincide given 𝑆𝑇 = 𝜃.

5 See Hull (2006) for a formal definition.
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Fig. 3. Payoff of a condor strategy. 

reaching 𝑙 ≤ 0 when the estimation error exceeds a threshold of 𝛿. Similarly, a condor strategy6 properly describes an agent’s payoff 
when moderate errors in estimation are permissible without significantly impacting the overall outcome (see Fig. 3). 

2.3. Future evolution of agents’ initial estimates

In financial markets, a buttefly spread is constructed on a financial asset whose value evolves over time according to a specfied 
stochastic process. At first glance, the estimated value 𝑥0

𝑖
of the unknown parameter 𝜃, representing the underlying in our setting, 

appears to diverge considerably from the price of a financial asset. However, as a stock’s price evolves over time according to the 
information received by the market, the estimated vector of unknown parameters or weights changes over time as agent 𝑖 receives 
new information.

Assumption 2.1. Once consensus has been reached within the network, or agent 𝑖 has made her decision, her estimate of the unknown 
parameter 𝑥0

𝑖,𝑡
evolves over time according to a discrete compound Poisson process7 with intensity 𝜆0

𝑖
and, eventually, converges to 

the actual value of the parameter 𝜃.

The compound Poisson process enables the modeling of the future flow of relevant information that each agent 𝑖 might receive 
about the true value of the parameter, provided that both the relevance of each new piece of information and its time of occurrence 
can be modeled as random variables. Note that the value of the parameter 𝜆0

𝑖
is agent-specific, rflecting the expected amount of future 

information. Consequently, its value should be inversely proportional to the agent’s degree of cofidence in their estimate. Intuitively, 
an accurate estimate of 𝜆0

𝑖
would require knowledge of both the structure of the network of which agent 𝑖 will be part of in the future 

(because we allow for new sources of information) and the reliability of the initial estimate 𝑥0
𝑖
. If the quality of the initial estimate is 

poor, the probability that the agent will receive relevant new information in the future will be high. Furthermore, a natural question 
arises: which weight should be assigned to future information? It must be noted that a priori, an agent 𝑖 whose reliability is itself a 
random variable could not know even her future sources of information. Therefore, it seems that no weight can be assigned to future 
information in advance. However, a compound Poisson process also allows us to take reliability into account because the dimension 
of the jump is itself a random variable, and the random value of any jump can rflect both the impact of the received information and 
its quality. Furthermore, we assume that there is a future point in time when agents learn the true value of the parameter because 
all the information agents gather over time, or receive as a consequence of their choices, eventually reveals or at least rfines the 
initial estimate of the unknown parameter. This assumption, which is crucial to price an option strategy, seems reasonable. As an 
example, consider a college student’s choice of academic curriculum. The value of the unknown (multidimensional) parameter might 
represent the weights, in percentage terms, of all subjects within the curriculum. The closer the estimate of the parameter to its 
optimal value, the higher will be the student’s utility. Initially, the student makes a choice given the information gathered within 
her network. However, upon choosing the curriculum, the student could receive new information, such as unexpected exam results 
or feedback from new professors or other students that enlarge the initial network. Then, as her academic career proceeds, the flow 
of information eventually unveils the true value of the unknown vector. Similarly, in a political election, one could consider a bi

dimensional unknown parameter, with the first dimension representing the matching between the political program and the voter’s 
preferences, and the second dimension the degree of reliability of the nominee. Then, voters decide which candidate should get their 
preference, given the information available about the candidates and derived from (and shared with) different sources, such as family 
members, friends, and social networks. However, after the election, voters could change their minds, given how the nominee actually 
acts and fufills her electoral pledges. By the end of the nominee’s time in office, the true value of the unknown parameter will be 
actually known.

6 See Hull (2006) for a formal definition.
7 A compound Poisson process represents an extension of a Poisson process, designed to model situations in which not only do events occur randomly over time, but 

each event also has a random ``size'' or ``impact.'' The events occur independently, and the number of events in any given time period follows a Poisson distribution, 
with events happening at a constant average rate 𝜆0

𝑖
per unit of time. The total outcome of the process is the cumulative sum of the sizes of all the events that have 

occurred, see Appendix A.
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𝐴1 𝐴2𝜋11 = 0 𝜋22 = 0

𝜋12 = 1

𝜋21 = 1

Fig. 4. Two agent network. 

2.4. Examples

Two examples are here proposed to justify, in our setting, the assumption of self-confident agents (i.e. 𝜋0
𝑖𝑖
≠ 0 for every 𝑖 ∈ ) 

and to show how multiple rounds of communication are a natural part of social interaction without necessarily implying repetition 
of information. First, consider a simplfied network with only two agents indexed by 𝑖 with 𝑖 = 1,2 (see Fig. 4) who, after some 
communication round 𝑡, must choose one of two mutually exclusive alternatives depending on the estimated value 𝑥𝑡

𝑖
of an unknown 

parameter 𝜃 ∈ ℝ. We assume that agents’ initial estimates are, respectively, 𝑥01 = 1 and 𝑥02 = 0 and that the listening matrix 𝑇 is 
constant over time:

𝑇 =

(
𝜋0
11 𝜋0

12

𝜋0
21 𝜋0

22

)
=

(
0 1

1 0

)
Given 𝑇 , agents’ beliefs would move from one (zero) to zero (one) back and forth through communication rounds. Thus, dropping the 
assumption of self-confidence excludes consensus8 and leads, in our setting, to a striking contradiction: by construction, each agent 
assigns a zero weight to her initial estimate. However, after the second communication round, that is, upon knowing that agent 𝑗
considers 𝑥0

𝑖
trustworthy, agent i assigns weight 𝜋1

𝑖𝑗
= 1 to agent j. In other words, according to agent i, agent 𝑗 correctly considers 𝑥0

𝑖
a 

reliable estimate of 𝜃.9 This contradicts her initial evaluation of the quality of 𝑥0
𝑖
. Conversely, one might have expected that, after the 

second communication round, upon discovering that they assigned weight one to each other, both agents would doubt their ability 
to assess, respectively, 𝜋0

𝑖𝑗
and 𝜋0

𝑗𝑖
. If agent 𝑖 gives weight zero to her own information, then there is no reason for agent 𝑗 to consider 

that information as trustworthy, and vice-versa. The weights in 𝜋0
𝑖

and 𝜋0
𝑗

might suggest that agent 𝑖 is either underestimating the 
quality of 𝑥0

𝑖
or, symmetrically, overestimating the informative content of 𝑥0

𝑗
. Therefore, the weight 𝜋1

𝑖𝑖
should be positive for any 

agent 𝑖. This example, while representing a degenerate case, also seems useful in justifying multiple communication rounds: after the 
first communication round, an agent who is certain about her own initial weights should not enter any other communication round. 
An exception would be the case where the agent’s opponent does serve as a reliable source of information. Further interaction among 
the agents can be justfied only if agents were not cofident about their assigned weights and believe other agents have valuable 
information about them. Now, consider the network represented in Fig. 5 where agent J represents a journal with a clear political 
slant10 and agents 𝐴𝑖 = {1,2} the readers. The initial weight assigned to the journal’s article by the agents rflecting on the journal’s 
ability to evaluate a specific issue is 38 . Zero weight is implicitly placed by 𝐽 on both agents, because agent J does not even listen to 
them.11 The initial listening matrix T is then dfined as:

𝑇 =

⎛⎜⎜⎜⎜⎝
1 0 0
3
8

1
4

3
8

3
8

3
8

1
4

⎞⎟⎟⎟⎟⎠
(3)

It is easy to observe that if the newspaper cofirmed a weight 1 to itself over time, and the other two agents kept assigning some 
strictly positive weight to J at every communication round, then the agents’ beliefs would eventually converge to the journal’s belief 
𝑥0
𝐽

. According to persuasion bias this happens because agents 𝐴1 and 𝐴2 do not realize that agent 𝐽 is repeating the same information 
over time. Note that in this case the value of the unknown parameter spread by agent 𝐽 is constant over time and, thus, repetition of 
information should be obvious and interaction should stop. Conversely, in our setting, the information provided by 𝐽 at the second 
communication round is actually new. Agent 𝐽 reveals that its evaluation of the parameter is, up to its knowledge, correct. At the 
third communication round, the journal cofirms that the piece of information communicated at the second communication round 
is also correct and so on. The journal finally emerges as a guru within the network. This mimics the persuasion phenomenon, with a 

8 Given a Markov chain with constant transition matrix 𝑇 , dropping the hypothesis 𝜋0
𝑖𝑖
> 0 for any 𝑖 ∈ is equivalent to dropping the property of aperiodicity of 

the states which is a necessary condition for convergence. Reconsidering the example in ``Markovian terms'', agents’ initial estimates correspond to the two states of 
the Markov chain, with transition probabilities given by the assigned weights. Both states have periodicity two.

9 Recall that 𝜋1
𝑖𝑗

rflects agent 𝑖’s assessment of agent 𝑗 ’s ability to evaluate the prficiency at estimating the unknown parameter.
10 This example has already been proposed in DeMarzo et al. (2003).
11 An agent could assign zero weight to a source of information due to a lack of connection or cofidence. However, in this case, zero weights are not misleading 

because, although they stem from a lack of connection, we assume agent 𝐽 is actually self-confident and would assign, in any case, a zero weight to any other agent. 
Note that in this case we depart from the general assumption of a fully connected network. However, the example would still easily work if we considered a fully 
connected network and if zero weights were replaced by strictly positive weights arbitrarily close to zero.
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Fig. 5. Example 2. 

slightly different perspective because we are focusing on the reliability and the reputation of the sources that emerge over time. It 
is clear that the higher the journal’s overall reputation (i.e., the higher the weights assigned to it over time), the faster the speed of 
convergence.

3. Beliefs dynamics

3.1. First communication round

3.1.1. Estimate of agents’ precision

Formally, communications and estimate updates in our model are as follows. Each agent 𝑖 possesses some possibly different 
initial information 𝑥0

𝑖
regarding the value of the unknown parameter 𝜃. In the first communication round, agents truthfully report 

their initial evaluations 𝑥0
𝑖

and listen to other agents’ estimates 𝑥0
𝑗

with 𝑗 = 1,… ,𝑁 . Assigning a positive weight 𝜋0
𝑖𝑗
∈ [0,1] to the 

available estimate 𝑥0
𝑗

corresponds to agent i allocating a share 𝜋0
𝑖𝑗

of the available wealth on the buttefly 𝐵0
𝑖𝑗

with a center strike 𝑥0
𝑗

and width 𝛿𝑖. If agent 𝑖 considered agent 𝑗 as a completely trustworthy source of information she would give weight 𝜋0
𝑖𝑗
= 1 to the 

estimated value 𝑥0
𝑗
. This corresponds to investing all the wealth in the buttefly with the center strike 𝑥0

𝑗
. Conversely, if an agent 

does not regard any source of information as fully reliable, it would be reasonable to assign some weight to a collection of estimates, 
thus to a set of butteflies. We suggest that each agent dfines the weights by constructing a (virtual) portfolio of butteflies as the 
solution to a mean-variance portfolio optimization problem12:

Proposition 1. Given the set 0
𝑖

of available butteflies, the precision level 𝜋0
𝑖𝑗

assigned by agent 𝑖 to each agent 𝑗 at the first communication 
round is represented by the weight assigned to buttefly B0

𝑖𝑗
in 0

𝑖
determined as the outcome of a mean-variance optimization problem.

The choice of the mean-variance optimization seems natural because we are considering a risk-averse decision maker who aims to 
maximize the portfolio’s expected return and to minimize its variance. Unlike the former goal, the latter requires further discussion. 
Modern portfolio theory or mean-variance analysis, as introduced by Markowitz (1952), considers risk-averse investors who prefer 
outcomes with low uncertainty to those with high volatility even if the expected outcome of the latter is equal to or greater than 
the more certain outcome. Accordingly, we consider a risk-averse decision maker who prefers to avoid making choices with highly 
uncertain outcomes. Risk-averse investors prefer to diversify among financial instruments. Similarly, risk-averse agents who are 
uncertain about their estimates, and who, therefore, are willing to account for future information, prefer to diversify among different 
opinions by assigning positive weights to several agents.

3.1.2. The updating process

Each agent 𝑖, upon learning the estimates of the other agents in the listening set 𝑖 , updates the estimate of the parameter 
by computing a weighted average with weights 𝜋0

𝑖𝑗
which are the solution of the portfolio optimization described in the previous 

paragraph. The updated estimate, designated as 𝑥1
𝑖
, is dfined as follows:

𝑥1
𝑖
=
∑
𝑗

𝑞𝑖𝑗𝜋
0
𝑖𝑗
𝑥0
𝑗

(4)

The updating rule (4) can be expressed more concisely in vector notation. Let 𝑥0 represent the vector of estimates with elements 𝑥0
𝑗

and let 𝑇 0 denote the listening matrix with elements 𝑇 0
𝑖𝑗
= 𝑞𝑖𝑗𝜋

0
𝑖𝑗

. Then equation (4) can be written as follows:

12 The analytical description of the portfolio optimization process is reported in Appendix A.
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𝑥1 = 𝑇 0 ⋅ 𝑥0 (5)

3.2. Second communication round

In the second communication round, each agent truthfully discloses her evaluations of the reliability of the other agents, as repre

sented by the vector of weights 𝜋0
𝑖𝑗

assigned to the butteflies that comprise the optimal portfolio dfined in the initial communication 
round. In accordance with the outlined theoretical framework, we assume that each element 𝜋0

𝑖𝑗
of the vector 𝜋0

𝑖
evolves over time 

according to a compound Poisson process13 rflecting the information agent 𝑖 might receive about the reliability of her information 
sources:

Assumption 3.1. Once consensus has been reached within the network, or agent 𝑖 has made her decision, her estimate of any other 
agent reliability 𝜋0

𝑖𝑗,𝑡
evolves over time according to a discrete compound Poisson process with intensity 𝜆1

𝑖𝑗
and, eventually, converges 

to the actual value of the vector-valued parameter 𝜋0
𝑖
.

Let 1
𝑖

be the new set of butteflies in which agent 𝑖 could invest after this second interaction. For each buttefly B1
𝑖𝑗

in 1
𝑖
, with 

𝑗 = 1,… ,𝑁 , the underlying asset is now represented by the vector-valued random variable 𝜋0
𝑖,𝑡

while the middle strike is set at 𝜋0
𝑗
. 

Once again, each agent 𝑖 assigns a weight 𝜋1
𝑖𝑗

to each buttefly B1
𝑖𝑗

in 1
𝑖

by composing a (virtual) optimal portfolio obtained as a 
solution to a mean-variance optimization problem. Agents’ beliefs, after the second communication round, are then represented as 
follows:

𝑥2 = 𝑇 1 ⋅ 𝑇 0 ⋅ 𝑥0 (6)

given the matrix 𝑇 1 with elements 𝑇 1
𝑖𝑗
= 𝑞𝑖𝑗𝜋

1
𝑖𝑗

3.3. Subsequent communication rounds

The vector of weights 𝜋1
𝑖

will be shared by agent 𝑖 at the third communication round and will become the underlying of a new set of 
butteflies 2

𝑖
, each centered on a different vector 𝜋1

𝑗
and with the underlying of a vector 𝜋1

𝑖,𝑡
of random variables 𝜋1

𝑖𝑗,𝑡
each indexed by 

𝑗 and driven by a compound Poisson process with intensity parameter 𝜆2
𝑖𝑗

. A new (virtual) optimal mean-variance portfolio including 
just butteflies in 2

𝑖
is then composed by each agent and agents’ beliefs are updated accordingly. The same reasoning applies to any 

subsequent communication round. Therefore, we end up with countably many (virtual) portfolios of butteflies for every agent, with 
each portfolio constructed after every communication round. Note that, in principle, there is no reason to impose any correlation 
between the Poisson processes driving the weights shared at different communication rounds because we are referring to different 
abilities. However, one could assume that the value of the intensity parameter 𝜆𝑡

𝑖𝑗
with 𝑡 = 1,2… decreases or at least does not 

increase with time because, as the number of communication rounds increases, agent 𝑖 may be less likely to receive information 
about the specific ability to be evaluated. In general terms, we could write the following:

𝜆𝑡
𝑖𝑗
= 𝜆1

𝑖𝑗
𝑘𝑖 (𝑡) for 𝑡 > 1 (7)

where 𝑘𝑖 (𝑡) is some non-increasing and non-negative function of 𝑡 for every agent 𝑖. However, if the value of 𝜆𝑡
𝑖𝑗

decreased too rapidly, 
this would result in increasingly cofident agents and, consequently, put consensus at risk.

4. Opinion convergence

In our context, a crucial issue is to determine the conditions under which, given the sequence of stochastic matrices resulting from 
each communication round, the sequence of their left products converges to a rank-one matrix.14 We will refer to a set of matrices 
satisfying this property as a consensus set:

Definition 4.1. A set  of stochastic matrices is a consensus set if, for every sequence of matrices 𝑃1 , 𝑃2, 𝑃3… whose elements 
belong to  and for every initial state 𝑥0, the sequence of states dfined by 𝑥𝑡 = 𝑃𝑡 ⋅𝑃𝑡−1…𝑃1 ⋅𝑥0 converges to a vector whose entries 
are all identical.

13 After each jump, the resulting vector of non-negative weights must always have the sum of its components equal to one. In other terms, we assume that 𝜋0
𝑖

could 
just move within a 𝑁 − 1 dimensional simplex and, therefore, that the weights may need to be normalized. Alternatively, we could assume that the relative weights 
that each agent 𝑖 assigns to other agents providing information follow a compound Poisson process over time. Still, we must normalize the weights to ensure they are 
non-negative and sum up to one.
14 Necessary and sufficient conditions for an ifinite left product of stochastic matrices converging to a rank-one matrix have been widely studied in the literature; 

see, e.g., Tsitsiklis et al. (1986), Olfati-Saber and Murray (2004), Ren and Beard (2005), Cao et al. (2008), Olshevsky and Tsitsiklis (2009), Cao et al. (2008), and 
Egerstedt et al. (2012).
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The literature on the characterization of a consensus set can be traced back, at least, to the work of Wolfowitz (1963) in which 
the class of stochastic, indecomposable, aperiodic (SIA) matrices was first introduced:

Definition 4.2. A matrix 𝑃 is called SIA, i.e., stochastic, indecomposable and aperiodic, if it is stochastic and the limit

𝑄 = lim 
𝑛→∞

𝑃𝑛 (8)

exists and all the rows of 𝑄 are the same.

A classical result in Wolfowitz (1963) states that any product of transition matrices from  converges to a rank-one matrix if and 
only if every product of matrices in  is SIA. Informally, the chain composed by such matrices in  forgets its distant past. This 
theorem has found many applications (see, e.g., Ren and Beard (2005) and Sarymsakov (1961)) and guarantees convergence of the 
modeled stochastic system in every possible scenario or switching between matrices in  . More generally, we will make use of the 
following result:

Theorem 4.1. Let  be a compact set of 𝑛× 𝑛 stochastic matrices. The following conditions are equivalent.

1.  is a consensus set.
2. For each integer 𝑘≥ 1 and any 𝑃𝑖 ∈  with 1≤ 𝑖 ≤ 𝑘, the matrix 𝑃𝑘 ⋅ 𝑃𝑘−1…𝑃1 is SIA.

3. There is an integer 𝑣≥ 1 such that for each 𝑘≥ 𝑣 and any 𝑃𝑖 ∈  with 1≤ 𝑖 ≤ 𝑘, the matrix 𝑃𝑘 ⋅ 𝑃𝑘−1…𝑃1 is scrambling.

4. There is an integer 𝜇 ≥ 1 such that for each 𝑘 ≥ 𝜇 and any 𝑃𝑖 ∈  with 1 ≤ 𝑖 ≤ 𝑘, the matrix 𝑃𝑘 ⋅ 𝑃𝑘−1…𝑃1 has a column with only 
positive elements.

5. There is an integer 𝛼 ≥ 1 such that for each 𝑘≥ 𝛼 and any 𝑃𝑖 ∈  with 1≤ 𝑖 ≤ 𝑘, the matrix 𝑃𝑘 ⋅𝑃𝑘−1…𝑃1 belongs to the Sarymsakov 
class.

While condition (2) provides a necessary condition for convergence, imposing the requirement that every matrix in  must be 
SIA, conditions (3), (4), and (5) establish that  must be a set of matrices with at least one column of strictly positive elements or 
must consist of scrambling or Sarymsakov matrices, which constitutes a sufficient but not necessary condition for convergence.

4.1. Positive matrices

We first consider a proper subset of the SIA class of stochastic matrices, namely positive stochastic matrices. Although this rep

resents a very special case of a network in which all agents assign positive weights to each other, it allows for the formulation of a 
sufficient condition for opinion convergence with an interesting financial interpretation.

Definition 4.3. A stochastic matrix 𝐴 is positive if and only if 𝑎𝑖𝑗 > 0 for all 𝑖, 𝑗

Proposition 2. Let 𝐴1,𝐴2,𝐴3… be an ifinite sequence of matrices where each matrix 𝐴𝑖 is a positive stochastic matrix. Then, the left 
product 𝐴𝑛 𝐴𝑛−1…𝐴1 converges to a rank-one matrix as 𝑛→∞.

In other words, consensus is reached if every agent within the network is regarded as a trustworthy information source or, 
equivalently, if at every communication round all available option strategies receive a positive weight in each agent’s portfolio. 
Defining necessary and sufficient conditions that ensure non-negative (positive) portfolio weights is a well-known problem in portfolio 
theory. We refer to this literature and, in particular, to Best and Grauer (1992) who derive an easily computable necessary and 
sufficient condition for a minimum variance portfolio to achieve all non-negative (positive) weights.15 In order to formalize their 
argument, consider the optimization problem each agent 𝑖 solves at the first communication round. Given the collection 0

𝑖
of 

𝑁 butteflies, let Σ be its variance-covariance matrix, 𝜇 its 𝑁 -dimensional vector of expected returns and 𝑒 the 𝑁 -vector whose 
components are all units. The matrix Σ is positive definite and the value of the parameter 𝛾𝑖 represents the agent’s risk tolerance 
parameter: the higher the value of 𝛾𝑖, the more tolerant the investor will be to risk. The mean-variance (hereafter MV) problem is:

max
𝜋0
𝑖

{
𝛾𝑖𝜇

⊺𝜋0
𝑖
− 1

2
(
𝜋0
𝑖

)⊺ Σ𝜋0
𝑖
|𝑒⊺𝜋0

𝑖
= 1

}
(9)

where 𝜋0
𝑖

is the 𝑁 -vector of portfolio weights, and 𝑒⊺𝜋0
𝑖
= 1 is the budget constraint. Equation (B.7) in Appendix B implies that every 

component of the optimal vector of weights 𝜋0
𝑖

(
𝛾𝑖
)

is a linear function of 𝛾𝑖 that is:

𝜋0
𝑖𝑗

(
𝛾𝑖
)
= 𝛼0𝑗 + 𝛾𝑖𝛼1𝑗 with 𝑗 = 1,… ,𝑁

15 Green and Hollfield (1992) extended the results in Best and Grauer (1992) to the case where the weights of the minimum variance portfolios lie between upper 
and lower bounds.
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If 𝛼1𝑗 > 0
(
𝛼1𝑗 < 0

)
, then 𝜋0

𝑖𝑗

(
𝛾𝑖
)

is increasing (decreasing) in 𝛾𝑖 and will be non-negative, provided that 𝛾𝑖 ≥ − 𝛼0𝑗
𝛼1𝑗

(
𝛾𝑖 ≤ − 𝛼0𝑗

𝛼1𝑗

)
. Let:

𝛾𝑙
𝑖
=max

{
−
𝛼0𝑗

𝛼1𝑗
| all j with 𝛼1𝑗 > 0

}
(10)

𝛾𝑢
𝑖
=min

{
−
𝛼0𝑗

𝛼1𝑗
| all j with 𝛼1𝑗 < 0

}
(11)

It follows that:

𝜋0
𝑖𝑗

(
𝛾𝑖
)
≥ 0 for all j with 𝛼1𝑗 > 0 and for all 𝛾𝑖 ≥ 𝛾𝑙

𝑖
(12)

𝜋0
𝑖𝑗

(
𝛾𝑖
)
≥ 0 for all j with 𝛼1𝑗 < 0 and for all 𝛾𝑖 ≤ 𝛾𝑢

𝑖
(13)

If 𝛼1𝑗 were equal to zero for one or more assets 𝑗, in order to have 𝜋0
𝑖𝑗

(
𝛾𝑖
)
≥ 0, it would be necessary that:

𝛼0𝑗 ≥ 0 for all j such that 𝛼1𝑗 = 0 (14)

Therefore, given Theorem 1 in Best and Grauer (1992), we can state a necessary and sufficient condition for the transition matrix 𝑇 0

to be positive:

Theorem 4.2. The transition matrix 𝑇 0 is positive if and only if for every agent 𝑖∈ , given the collection 0
𝑖

of 𝑁 butteflies with positive 
definite variance-covariance matrix Σ, we have 𝛾𝑙

𝑖
< 𝛾𝑢

𝑖
and 𝛼0𝑗 > 0 for all 𝑗 such that 𝛼1𝑗 = 0. The entries of matrix 𝑇 0 are given by 

𝑇 0
𝑖𝑗
= 𝜋0

𝑖𝑗

(
𝛾𝑖
)
= 𝛼0 + 𝛾𝑖 𝛼1 for all 𝛾𝑖 satisfying 𝛾𝑙

𝑖
< 𝛾𝑖 < 𝛾𝑢

𝑖
.

Intuitively, this condition explicitly requires a certain degree of risk-aversion for each agent (see Appendix B) and can be easily 
extended to every communication round to get a sequence of positive matrices and thus convergence. Interestingly, Best and Grauer 
(1992) have also proven that positively weighted minimum-variance portfolios may not exist when the number of assets increases 
significantly. This result can be easily translated to our setting: as the number of agents within the network increases, it becomes more 
difficult to reach a consensus. As a second condition a positive definite variance-covariance matrix Σ is required. This would exclude 
arbitrarily small values of the intensity parameter 𝜆0

𝑖
that characterizes the compound Poisson process. When the underlying asset 

experiences infrequent jumps, its price remains near its initial value 𝑥0
𝑖

for a significant period. Consequently, butteflies with central 
strikes far from 𝑥0

𝑖
would not be profitable, leading to zero variance in their payoffs. This intuitively implies that agents should be 

cofident about the future flow of relevant information.

4.2. Sarymsakov matrices

It is important to note, however, that while positive transition matrices are a sufficient condition for convergence, they are not a 
necessary one. There exist classes of transition matrices that, despite not being positive, still ensure convergence. In the literature, the 
set of stochastic Sarymsakov matrices, first introduced by Sarymsakov (1961), is the largest known subset of the class of stochastic 
matrices whose compact subsets are all consensus sets; in particular, the set is closed under matrix multiplication, and the left product 
of the elements from its compact subset converges to a rank-one matrix.

Definition 4.4. Given a non negative 𝑁 -dimensional matrix 𝑇 , for any set 𝑆 ⊆ {1,…𝑁}, the consequent function 𝐹𝑇 is dfined as 
follows:

𝐹𝑇 (𝑆) =
{
𝑗 ∶ ∃𝑖 ∈ 𝑆 such that 𝑇𝑖𝑗 > 0

}
(15)

Then, a stochastic matrix 𝑇 is called a Sarymsakov matrix if and only if, for any two disjoint non-empty subsets 𝑆 and 𝑆̃ , given 𝐹𝑇 (𝑆)
and 𝐹𝑇

(
𝑆̃
)
, either 𝐹𝑇 (𝑆) ∩𝐹𝑇

(
𝑆̃
)
≠ ∅ (first condition) or 𝐹𝑇 (𝑆) ∩𝐹𝑇

(
𝑆̃
)
= ∅ and |𝐹𝑇 (𝑆) ∪𝐹𝑇

(
𝑆̃
) | > |𝑆 ∪ 𝑆̃| (second condition), 

where |𝑆| denotes the cardinality of S.

We say that 𝑇 is a scrambling matrix if for any pair of distinct indices 𝑖, 𝑗 ∈𝑁 , there holds 𝐹𝑇 (𝑖) ∩𝐹𝑇 (𝑗) ≠ ∅, which is equivalent 
to the property that there always exists an index 𝑘 ∈ 𝑁 such that both 𝑝𝑖𝑘 and 𝑝𝑗𝑘 are positive. From the preceding definitions, it 
is clear that a scrambling matrix belongs to the Sarymsakov class. It has been shown that any product of 𝑛 − 1 matrices from the 
Sarymsakov class is a scrambling matrix. Because a scrambling matrix is SIA, any Sarymsakov matrix must be an SIA matrix.

Proposition 3. Let 𝐴1,𝐴2,𝐴3… be an ifinite sequence of Sarymsakov matrices. Then, the left product 𝐴𝑛 𝐴𝑛−1…𝐴1 converges to a 
rank-one matrix as 𝑛→∞.

Intuitively, 𝐹𝑇 (𝑆) is indeed the set of informative sources with ifluence on the agents in the set 𝑆 . The definition of a Sarymsakov 
matrix implies that the sets 𝑆 and 𝑆̃ may have ifluencing nodes in common or have no ifluencing nodes in common but that the 
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number of ifluencers is greater than that of ifluences. A scrambling matrix is one for which each pair of distinct nodes shares at 
least one common ifluencing node. In the context of our analysis, the Sarymsakov matrices emerge when agents demonstrate the 
willingness to construct diversfied portfolios. As previously indicated, this stipulation can be satified when a certain level of risk 
aversion is present. Moreover, the jump processes must possess an intensity parameter that is sufficiently large to generate payoffs 
from a diverse range of butteflies with varying strike prices over time. Each agent anticipates acquiring new information regarding 
the unknown parameters, which leads them to assign a positive weight to other butteflies that may prove profitable. If the jumps were 
too rare or too small, and if most of the portfolio’s payoff will be concentrated in butteflies near the current underlying price, there 
will be poor diversfication. In contrast to positive definite matrices, to the best of our knowledge, there is no established theoretical 
framework that dfines the necessary and sufficient conditions to guarantee that the optimization process will result in a transition 
matrix belonging to the class of Sarymsakov matrices.

4.3. Necessary conditions for convergence

In light of the above discussion, a necessary condition for consensus is straightforward. First, we introduce an assumption about 
the intensity parameters that characterize the composite Poisson processes in each communication round:

Assumption 4.3. 
∑∞

ℎ=1 𝜆
ℎ
𝑖𝑗
→∞

Proposition 4. If an ifinite left product of non-homogeneous transition matrices will converge then:

1. Assumption 4.3 is not violated, and

2. max𝑖∈ℕ 𝜆ℎ
𝑖𝑗

is not arbitrarily close to zero for every ℎ= 0,1,….

A violation of one the two conditions in Proposition 4 is a sufficient condition for polarization:

• if 4.1 is violated then 𝜆ℎ
𝑖𝑗

goes to zero too quickly and the transition matrix will become an identity matrix meaning that the 
agents become too self-confident at short hand;

• if 4.2 is violated, then agents give a positive weight only to agents with a close opinion, creating opinion clusters when estimates 
are far apart.

In other words, agents become increasingly self-confident over time, which in turn leads the transition matrix to converge to the 
identity matrix, leading to polarization. More interestingly, if the values of the intensity parameter of the compound Poisson process 
are arbitrarily close to zero, this precludes the possibility of receiving future relevant information. Therefore either the agent maintains 
their opinion assigning a weight of one to themself, or tends to consider only the opinions of others if they are sufficiently close to their 
own, within a given cofidence range. Note that this resembles the setting proposed by Rainer and Krause (2002), where individuals 
consider the opinions of others only if they are sufficiently close to their own, within a cofidence range. This bounded cofidence 
rflects the idea that people tend to disregard opinions that are too far from their own. If the cofidence bound is large, agents tend 
to reach a global consensus: all agents converge to the same opinion. When it is small, agents tend to form clusters: groups of agents 
converge to different opinions, and multiple stable opinion clusters emerge. The initial distribution of opinions also plays a role in 
determining the number and size of clusters.

4.4. Uni-dimensional opinions

Unidimensional opinions are a nice implication of De Groot’s model as shown in DeMarzo et al. (2003). They refer to the circum

stance that, over time, individuals’ opinions on a multi-dimensional set of issues can be well approximated by a simple linear (i.e. 
unidimensional) structure, where an individual’s position on the line determines their position on all issues. According to DeMarzo 
et al. (2003), ``(. . . ) unidimensionality depends on the Markovian structure of updating (whereby old information does not affect updating 
in a given period save through the formation of prior beliefs entering into that period) and the constant relative weights that an agent gives 
others over time''. More interestingly, they conclude that ``(. . . ) there is little reason to believe that other, more general, updating processes 
would yield long-run linear differences of opinion''. Conversely, we prove (see Theorem Appendix D.2 in Appendix D) that our model, 
when consensus is eventually reached, is characterized by long-run unidimensional opinions, even though the relative weights that 
an agent assigns to others are not generally constant over time. This result suggests that only the Markovian structure of the updating 
process leads, under mild conditions, to unidimensionality, excluding constancy of relative weights as a necessary requirement.

4.5. Time constant weights

As already pointed out, in our model weights vary over time because a different ability is considered at every interaction. Time

constant weights are a special case in which, at every communication round, each agent has an identical evaluation of her neighbors’ 
reliability. Intuitively, as the number of communication rounds increases, it may become increasingly difficult for an agent to assess 
the corresponding ability of other agents. Thus, time-constant weights could rflect a kind of bounded rationality. However, we prove 
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(see Appendix C) that they could also arise under the assumption of perfect rationality as a stationary state of the iterative process 
that describes the interactions among the agents over time. For clarity, let us provide a brief overview of the iterative process: at each 
communication round 𝑡 > 1, each agent 𝑖 solves a portfolio optimization problem by assigning a weight to each available buttefly. 
The solution is a vector of weights 𝜋𝑡−1

𝑖
in an 𝑁 -dimensional simplex Δ𝑁 . At communication round 𝑡+1, each vector of weights 𝜋𝑡−1

𝑖

with 𝑖 = 1,…𝑁 dfined after communication round 𝑡 becomes the center of a new buttefly. A new optimization problem must be 
solved by each agent 𝑖 by assigning a weight to each of the new butteflies. The optimization problem faced by each agent is basically 
the same at every communication round. What changes, from time to time, are the center strikes of each buttefly while any other 
parameter is assumed to be constant. Therefore, we claim that the solution to each of the 𝑁 × (𝑇 − 1) optimization problems (one 
for each agent 𝑖 = 1,… ,𝑁 at each round 𝑡 = 2,…𝑇 ) is the solution of a general parametric optimization problem for a given set of 
parameters.16

5. Empirical case studies

In this section, we propose some examples to show that our model, when applied to practical situations, leads to results consistent 
with intuition. In particular, the examples highlight the crucial role of the intensity parameters in determining the outcome of the 
social interaction. We always consider a fully connected network with four agents sharing their opinions on two issues. For the sake 
of simplicity, we assume that an estimation error affects payoffs identically across issues and agents. The examples differ in terms 
of the agents’ initial estimates and their self-confidence which is allowed to change over time (for details see Appendix E). Both 
consensus and polarization of opinions might emerge as result of social interaction. Consensus might have different characterizations 
with agents converging to a middle opinion (see Example 5.1 and Example 5.3) or following a dominant one (see Example 5.4). On the 
other hand, interaction could result in polarized opinions when agents stick to their estimates or become increasingly self-confident 
over time (see Example 5.2). Finally, a kind of herd behavior might also emerge when we consider uninformed agents that, having 
no reliable information, are willing to follow other agents’ ideas (see Example 5.5).

5.1. First example: a general case

Let us assume that agents’ initial estimates of the unknown parameters 𝜃 ∈ℝ2 show no clusters:

𝑥0 =
⎡⎢⎢⎢⎣
100 40
110 100
150 80
170 50

⎤⎥⎥⎥⎦
Each estimate 𝑥0

𝑖,𝑙
, for every agent 𝑖 and every issue 𝑙, evolves according to a compound Poisson process with intensity parameters 

dfined by matrix 𝜆0 with generic element 𝜆0
𝑖,𝑙

:

𝜆0 =
⎡⎢⎢⎢⎣
0.3 0.2
0.4 0.4
0.5 0.5
0.4 0.4

⎤⎥⎥⎥⎦
At the first communication round, every agent’s most profitable buttefly is centered at their own initial estimate (see Fig. 6). In 
principle, agents would invest mainly in butteflies with a high expected payoff, even if, given risk-averse agents, a positive weight 
could also be assigned by agent 𝑖 to butteflies centered at other agents’ opinions just to reduce the strategy risk from a portfolio 
selection perspective. As a result, agents assign positive weights pairwise:

𝑇 0 =
⎡⎢⎢⎢⎣
0.73 0.27 0 0
0.45 0.55 0 0
0 0.54 0.46 0

0.49 0 0 0.51

⎤⎥⎥⎥⎦ 𝑥1 =
⎡⎢⎢⎢⎣
102.7 56.3
105.5 72.9
128.5 90.8
135.7 45.1

⎤⎥⎥⎥⎦
After the first interaction, set 𝜆𝑡−1

𝑖
= 𝜆 with 𝜆 = 0.1 for every 𝑖 ∈ and for every 𝑡 > 1. The value of 𝜆 implies that agents are 

more likely to receive information about the true value of the unknown parameter 𝜃 rather than about the reliability of all agents. 
Still, this ensures that every agent 𝑖 at every communication round considers at least another agent’s estimates to be worthy and thus 
assigns to that agent a positive weight. In other terms, no agent excludes the possibility of receiving, in the future, new information 
supporting some other agent’s opinions. Consider the second communication round: each buttefly 𝛽1

𝑖𝑗
available to agent 𝑖 is centered 

16 In other terms, the solution at any time 𝑡 > 1 to each optimization problem is just a function of all the parameters. Because we consider, an objective function that 
is continuous with respect to the parameters for each agent 𝑖, we can apply the Maximum theorem, which provides conditions for a parametric optimization problem 
to have, as a solution, an upper hemicontinuous correspondence 𝐶∗ with non-empty and compact values. Thus, the Kakutani’s theorem applies and 𝐶∗ admits a fixed 
point. Clearly, if a fixed point were chosen by the agents at some point in time, both the underlying of the butteflies and their weights in the optimal portfolio would 
be fixed from that time on, and the transition matrix would be constant as in DeGroot (1974)’s model, which can be regarded as a special case of our model.
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Fig. 6. Butterflies’ payoffs after the 1-st communication round. Red color refers to agent 1, black to agent 2, blue to agent 3, and green to agent 4. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 7. First example: (a) agents’ initial opinions, (b) agents’ opinions after the 10-th iteration. 

at the vector of weights 𝜋0
𝑗

that agent 𝑗 computed in the previous step. Then each agent assigns each buttefly a weight by solving a 
new portfolio optimization problem. The resulting listening matrix 𝑇 1 and the updated opinions 𝑥2 are as follows:

𝑇 1 =
⎡⎢⎢⎢⎣
0.61 0.39 0 0
0.31 0.69 0 0
0.01 0 0.99 0
0.01 0 0 0.99

⎤⎥⎥⎥⎦ 𝑥2 =
⎡⎢⎢⎢⎣
103.8 62.8
104.6 67.8
128.1 90.5
135.6 45.5

⎤⎥⎥⎥⎦
After every communication round, the opinions get closer and eventually converge; see Fig. 7. Note that, not surprisingly, after ten 
iterations, agents’ estimates are arranged almost in a line. 
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Fig. 8. Second example: (a) agents’ initial opinions, (b) agents’ opinions after the 10-th iteration. 

5.2. Second example: two clusters and increasingly self-confident agents

Consider a network with two clusters, represented by [Agent 1 - Agent 2] and [Agent 3 - Agent 4]:

𝑥0 =
⎡⎢⎢⎢⎣
30 20
40 25
130 80
140 85

⎤⎥⎥⎥⎦
In addition, assume 𝜆𝑡−1

𝑖
= 𝜆0

𝑖

(
1 
1.3

)𝑡−1
for every 𝑡 > 1; that is, the intensity parameter 𝜆𝑡−1

𝑖
of the compound Poisson processes 

decreases, at every communication round 𝑡 > 1, by a factor of 1.3 for every agent 𝑖. Then, agents become increasingly self-confident 
over time and the listening matrix eventually converges to the identity matrix. This might seem reasonable because the abilities to be 
evaluated at every communication round are increasingly difficult to estimate and it might seem less likely that future information 
will be received about them. Any other parameter is the same as in the first example; the first listening matrix 𝑇 0 , the updated beliefs 
𝑥1, and the second listening matrix 𝑇 1 already show that the initial clusters persist over time:

𝑇 0 =
⎡⎢⎢⎢⎣
0.63 0.37 0 0
0.48 0.52 0 0
0 0 0.45 0.55
0 0 0.52 0.48

⎤⎥⎥⎥⎦ 𝑥1 =
⎡⎢⎢⎢⎣
33.71 21.85
35.18 22.59
135.52 82.76
134.82 82.41

⎤⎥⎥⎥⎦
𝑇 1 =

⎡⎢⎢⎢⎣
0.47 0.52 0 0
0.50 0.50 0 0
0 0 0.46 0.54
0 0 0.55 0.45

⎤⎥⎥⎥⎦
After 20 communication rounds, the two groups are still polarized:

𝑥20 =
⎡⎢⎢⎢⎣
40.57 25.89
40.57 25.89
135.17 82.58
135.17 82.58

⎤⎥⎥⎥⎦
Eventually, opinions converge within each cluster (see Fig. 8) while agents become self-confident too rapidly to reach a consensus 
within the network. 

5.3. Third example: two clusters and one not self-confident agent

We now consider the same setting proposed in the previous example except that we set different intensity parameters for the 
agents with 𝜆𝑡−1

1 = 0.8 and 𝜆𝑡−1
𝑖

= 0.1 for every 𝑖 ≠ 1 and for every communication round 𝑡 > 1. Thus, Agent 1 is quite insecure about 
his ability to evaluate his sources of information, including himself. If any other parameter is unchanged, matrix 𝑇 0 will be as in the 
previous example, while the value of 𝜆11 has a clear effect on the listening matrix 𝑇 1 and, therefore, on the updated beliefs 𝑥2:

𝑇 1 =
⎡⎢⎢⎢⎣
0.37 0.37 0.17 0.07
0.50 0.49 0 0
0 0 0.46 0.54
0 0 0.55 0.45

⎤⎥⎥⎥⎦ 𝑥2 =
⎡⎢⎢⎢⎣
59.27 37.09
34.44 22.22
135.14 82.57
135.20 82.60

⎤⎥⎥⎥⎦
Agent 1, being quite uncertain about his own estimates of 𝜋0

𝑖
, assigns the lowest weight to himself and positive weights to all other 

agents’ opinions. While Agent 3 and Agent 4 maintain their opinions almost unchanged, Agent 1 gets closer to their estimates. As 
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Fig. 9. Third example: (a) agents’ initial opinions, (b) agents’ opinions after the 10-th iteration. 

long as agents reveal their information truthfully, when 𝜋1
1 is shared at the third communication round, Agent 2 believes that Agent 

1 is genuinely uncertain about his own reliability in estimating 𝜋0
1 . Being close enough to 𝜋1

2 , Agent 1’s estimate 𝜋1
1 represents a 

possibly profitable future scenario for Agent 2. Reasonably, Agent 2 still assigns a positive weight to Agent 1 and so, indirectly, to the 
estimates 𝑥21. Therefore, loosely speaking, Agent 1 acts as a bridge between the two groups. Agent 2, although quite self-confident, is 
willing to assign a positive weight to Agent 1 and thus, albeit indirectly, to Agent 3 and Agent 4.

𝑇 2 =
⎡⎢⎢⎢⎣
0.38 0.39 0.23 0
0.47 0.53 0 0
0 0 0.47 0.53
0 0 0.56 0.44

⎤⎥⎥⎥⎦
This also happens in the subsequent communication rounds, and the network’s opinions eventually converge. Therefore, reaching 
a consensus between two groups of individuals requires, quite reasonably, at least one agent to be both not self-confident and a 
trustworthy source of information within his group. A graphical representation of this convergence process is reported in Fig. 9. 

5.4. Fourth example: two clusters and one self-confident agent

Let us consider a network with two different clusters [Agent 1- Agent 2 - Agent 3] and [Agent 4] and initial estimates 𝑥0 dfined 
as follows:

𝑥0 =
⎡⎢⎢⎢⎣
30 20
40 25
35 22
140 100

⎤⎥⎥⎥⎦
In the first communication round, with 𝜆0 the same as in the first example, the first three agents disregard Agent 4’s estimates, while 
Agent 4 considers the other agents’ opinions to be slightly reliable:

𝑇 0 =
⎡⎢⎢⎢⎣
0.55 0.19 0.25 0
0.43 0.50 0.06 0
0.48 0.43 0.07 0
0.15 0.15 0.15 0.52

⎤⎥⎥⎥⎦𝑥
1 =

⎡⎢⎢⎢⎣
33.21 21.48
35.36 22.65
34.76 22.34
90.05 63.06

⎤⎥⎥⎥⎦
For every communication round 𝑡 > 1, set 𝜆𝑡−1

4 = 0.05 and 𝜆𝑡−1
𝑖

= 0.7 for each agent 𝑖 ≠ 4. Thus, the agents in the first cluster, unlike 
Agent 4, are quite uncofident about their own estimates of their abilities to evaluate the unknown parameter. Therefore, in the 
second communication round, they are willing to assign a significant weight to Agent 4, whose opinion remains unchanged:

𝑇 1 =
⎡⎢⎢⎢⎣
0.34 0.38 0.01 0.26
0.15 0.35 0.15 0.32
0.18 0.37 0.15 0.28
0.06 0 0 0.93

⎤⎥⎥⎥⎦𝑥
2 =

⎡⎢⎢⎢⎣
49.15 32.98
52.71 35.55
50.72 34.10
86.49 60.45

⎤⎥⎥⎥⎦
At the third communication round, the agents in the first cluster, although their opinions are still far apart, assume that Agent 4 is 
genuinely convinced about her evaluations provided that our setting excludes strategic behavior. This behavior has a clear impact 
on the other agents, who are, in a way, persuaded by Agent 4 because they are still uncertain about their estimates. The network’s 
opinions converge, in approximately 10 iterations, to Agent 4’s opinion; see Fig. 10. This result is perfectly consistent with intuition. 
To be persuasive, an agent should be (or show herself to be) cofident and should face doubtful counterparts. 
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Fig. 10. Fourth example: (a) agents’ initial opinions, (b) agents’ opinions after the 10-th iteration. 

Fig. 11. Fifth example: (a) agents’ initial opinions, (b) agents’ opinions after the 3-rd iteration. 

5.5. Fifth example: herd behavior

The values of the intensity parameters, appropriately chosen, enable modeling of so-called herd behavior, which is dfined as the 
phenomenon of individuals following others and imitating group behaviors rather than making decisions independently on the basis 
of their own information. In economic markets, herding behaviors are quite common because new information sources are scarce for 
most individuals and, thus, they behave similarly to each other in decision-making. Note that having no information is equivalent 
to having invaluable information. Agents who consider available information to be completely unreliable expect to receive, in the 
future, new elements or data that will considerably modify their initial estimates. This situation can be mimicked by assuming a 
high value of 𝜆𝑡−1

𝑖
for every agent 𝑖 at every communication round 𝑡 > 1. Thus, we adopt the setting of the second example with two 

distinct clusters and we assume 𝜆𝑡−1
𝑖

= 0.9 for 𝑡 > 1. While the first round remains unchanged, now matrix 𝑇 1 shows a much faster 
convergence:

𝑇 1 =
⎡⎢⎢⎢⎣
0.36 0.36 0.26 0
0.44 0.30 0.11 0.13
0.36 0 0.36 0.27
0.32 0 0.35 0.32

⎤⎥⎥⎥⎦𝑥
2 =

⎡⎢⎢⎢⎣
61.71 38.55
60.17 37.65
98.55 60.66
101.82 62.62

⎤⎥⎥⎥⎦
Finally, the network’s opinion converges in just three iterations to a consensus. A graphical representation of the convergence is in 
Fig. 11. 

6. Conclusions

Our study proposes a new model of information transmission within a social network that introduces two major innovations. First, 
multiple communication rounds are justfied by the idea that the informative content of the social network has different dimensions, 
all of which are valuable for the agents. Except for the first interaction, in which the estimates of the unknown parameters are shared, 
in all the others we consider the exchange of new information about the reliability of the agents. This eliminates the repetition 
of information, which has always been considered an inevitable feature of an average-based updating process. Second, we suggest 
a new procedure to determine the value of the weights adopted after each communication round in order to dfine the updated 
estimates. We believe that this is also a relevant contribution because it proposes an unexpected bridge between decision theory and 
portfolio theory exploiting option spreads and portfolio optimization. Interestingly, many practical examples are proposed in which 
the model predicts reasonable behaviors for the agents. Mainly, the model does not indicate a precise outcome of social interaction. 
Both consensus and persistent disagreement are permissible outcomes, depending on each agent’s self-confidence and sensitivity 
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to estimation errors. The weights assigned to other information sources decrease as agents become more self-confident. Agents who 
believe their estimates to be correct and reliable rule out any future flow of relevant information that might change their assessments. 
Therefore, they would give zero weight to any other source of information and would retain their opinion, preventing consensus. 
Similarly, disagreement will persist if the network is divided into self-confident clusters. In short, achieving consensus relies on the 
presence of uncertain agents who assign positive weights to alternative sources of information as a hedge against the possibility of 
unexpected new information.
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Appendix A. Portfolio optimization

We first model the stochastic process that drives the underlying of option strategies. Let Π𝑖

(
𝑡;𝜆0

𝑖

)
be a Poisson process with 

intensity parameter 𝜆0
𝑖

and discrete jump times 𝑡1, 𝑡2,…. Construct a new process Π𝑌
𝑖

(
𝑡;𝜆0

𝑖

)
by assigning jump 𝑌1 at time 𝑡1, 𝑌2

at time 𝑡2, etc., where 𝑌1, 𝑌2,… are independent identically distributed (standard) normal random variables.17 This process can be 
written as follows:

Π𝑌
𝑖

(
𝑡;𝜆0

𝑖

)
=

Π𝑖

(
𝑡;𝜆0

𝑖

)∑
𝑘=1 

𝑌𝑘 (A.1)

In other words, at time t, Π𝑌
𝑖

is the sum of Π𝑖

(
𝑡;𝜆0

𝑖

)
independent identically distributed copies of a random variable 𝑌 , where Π𝑖

(
𝑡;𝜆0

𝑖

)
is a standard Poisson process.18 Let 𝑡 be the point in time when the decision-maker makes a choice or a consensus is reached. Then 
agent 𝑖’s estimated value of the unknown parameter 𝑥0

𝑖,𝑡
at any time 𝑡 > 𝑡 is given by the following:

𝑥0
𝑖,𝑡
= 𝑥0

𝑖
+

Π𝑖

(
𝑡;𝜆0

𝑖

)∑
𝑘=1 

𝑌𝑘 (A.2)

As already mentioned, at the first communication round agent i can invest in a set 0
𝑖

of 𝑁 butteflies indexed by i and j, with each 
buttefly 𝛽0

𝑖𝑗
in 0

𝑖
having a different center strike equal to the estimate 𝑥0

𝑗
of the unknown parameter shared by agent 𝑗. Each buttefly 

𝛽0
𝑖𝑗

is constructed by two long call options with strike 𝑥0
𝑖𝑗
= 𝑥0

𝑗
+ 𝛿0

𝑖
and 𝑥0

𝑖𝑗
= 𝑥0

𝑗
− 𝛿0

𝑖
with 𝛿0

𝑖
∈ ℝ, respectively, and two short call 

options with strike 𝑥0
𝑗
. Loosely speaking, the value of the parameter 𝛿0

𝑖
rflects the sensitivity of agent i’s utility with respect to a 

mistake in the estimate of the unknown parameter because it determines both the maximal payoff of the buttefly and the degree of 
precision required for the payoff to be positive. Let each buttefly consist of call options with maturity 𝜏 , with 𝜏 being a conceivable 
point in time long after the decision is made. The random variable 𝑥0

𝑖,𝜏
represents the future value at time 𝜏 of the current estimate 

𝑥0
𝑖
. Thus, we can dfine the random variable of agent 𝑖’s discounted payoff 𝑃𝑖,𝜏

(
𝛽0
𝑖𝑗

)
of buttefly 𝛽0

𝑖𝑗
as follows19:

𝑃𝑖,𝜏

(
𝛽0
𝑖𝑗

)
= 𝑒−𝑟𝑓 ⋅𝜏

[
max

(
𝑥0
𝑖,𝜏

− 𝑥
0
𝑖𝑗
,0
)
+max

(
𝑥0
𝑖,𝜏

− 𝑥0
𝑖𝑗
,0
)
− 2max

(
𝑥0
𝑖,𝜏

− 𝑥0
𝑗
,0
)]

(A.3)

where 𝑟𝑓 is the risk-free rate and 𝜏 the time to maturity of all options. At the first communication round, each agent i assumes 𝑥0
𝑖

as the initial value of the underlying and constructs a portfolio of butteflies by computing the vector of weights 𝜋0
𝑖

that solve the 
following optimization problem:

max
𝜋0
𝑖

𝛾𝑖E

[
𝑁∑
𝑗=1 

𝜋0
𝑖𝑗
⋅ 𝑃𝑖,𝜏

(
𝛽0
𝑖𝑗

)]
− 1

2
Var

[
𝑁∑
𝑗=1 

𝜋0
𝑖𝑗
⋅ 𝑃𝑖,𝜏

(
𝛽0
𝑖𝑗

)]
(A.4)

s.t

𝑁∑
𝑗=1 

𝜋0
𝑖𝑗
= 1

17 We could easily assume a normal distribution with mean zero and time-dependent variance decreasing over time. This would rflect the fact that an agent 
is unlikely to receive information long after a decision has been made. Alternatively, instead of a standard normal distribution, one could consider a Student’s 
t-distribution allowing for fat tails and thus for a greater chance of extreme values than normal distributions.
18 A discrete approach is adopted here. This is just a simplifying assumption and the idea can be easily applied in continuous time.
19 Assume that every option strategy has cost zero. This hypothesis is not only to keep things simple but also because no agent actually buys options.
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0 ≤ 𝜋0
𝑖𝑗
≤ 1 for ∀𝑖, 𝑗

where 𝛾𝑖 is the risk tolerance coefficient of agent 𝑖, and E [⋅] and Var [⋅] represent the expected value and the variance. At every time 
𝑡 > 𝑡, the weight 𝜋0

𝑖𝑗,𝑡
assigned by agent 𝑖 to agent 𝑗 will be given by the following:

𝜋0
𝑖𝑗,𝑡

=

max

(
𝜋0
𝑖𝑗
+
∑Π𝑖

(
𝑡;𝜆1

𝑖𝑗

)
𝑘=1 𝑌𝑘, 𝜅𝑖𝑗𝜙

)
∑𝑁

𝑗=1 max

(
𝜋0
𝑖𝑗
+
∑Π𝑖

(
𝑡;𝜆1

𝑖𝑗

)
𝑘=1 𝑌𝑘, 𝜅𝑖𝑗𝜙

) (A.5)

where 𝜅𝑖𝑗 ∈ {0,1} is an indicator parameter with 𝜅𝑖𝑗 = 1 if and only if 𝑖 = 𝑗 and 𝜙 is a positive scalar arbitrarily close to zero. The 
𝜙 parameter has been introduced to ensure that each agent listens to herself. Thus, the value of the denominator is always positive 
and 𝜋0

𝑖𝑗,𝑡
is well dfined for every pair of agents {𝑖, 𝑗} at every time 𝑡. In addition, the weights sum up to one. We dfine the random 

variable of each buttefly’s payoff 𝑃𝑖,𝜏

(
𝛽1
𝑖𝑗

)
as the sum of the payoffs of 𝑁 different sub-butterflies 𝛽1

𝑖𝑗ℎ
, each with center 𝜋0

𝑗ℎ
, with 

ℎ = 1,… ,𝑁 . In order to compute the payoff of the butteflies, we cannot assume that butteflies are constructed from basket options: 
given that the weights in every vector 𝜋0

𝑖
must sum to one, the equally weighted average of the elements in 𝜋0

𝑖
would be identical 

for every agent i. Butteflies’ payoffs cannot even be computed by introducing a norm for the distance between the vectors. Because 
a norm is non-negative by definition, the payoff of every call option would always be non-zero, unless 𝜋0

𝑖
= 𝜋0

𝑖,𝜏
.

𝑃𝑖,𝜏

(
𝛽1
𝑖𝑗ℎ

)
= 𝑒−𝑟𝑓 ⋅𝜏

[
max

(
𝜋0
𝑖ℎ,𝜏

− 𝜋
0
𝑖𝑗ℎ

,0
)
+max

(
𝜋0
𝑖ℎ,𝜏

− 𝜋0
𝑖𝑗ℎ

,0
)

(A.6)

−2max
(
𝜋0
𝑖ℎ,𝜏

− 𝜋0
𝑗ℎ
,0
)]

where 𝜏 is the time to maturity of all options. Each sub-butterfly 𝛽1
𝑖𝑗ℎ

is thus constructed by two long call options with strike 𝜋0
𝑖𝑗ℎ

=
𝜋0
𝑗ℎ

+ 𝛿1
𝑖

and 𝜋0
𝑖𝑗ℎ

= 𝜋0
𝑗ℎ

− 𝛿1
𝑖
, respectively, and two short call options with strike 𝜋0

𝑗ℎ
. Again, the value of the parameter 𝛿1

𝑖
rflects 

the sensitivity of agent i’s utility with respect to a mistake in the estimate of the unknown parameter.20 The random variable 𝜋0
𝑖ℎ,𝜏

represents the future value at time 𝜏 of the current estimate 𝜋0
𝑖ℎ

. Therefore the random variable of each buttefly’s payoff 𝑃𝑖,𝜏

(
𝛽1
𝑖𝑗

)
, 

is the sum of the payoffs of 𝑁 different sub-butterflies 𝛽1
𝑖𝑗ℎ

:

𝑃𝑖,𝜏

(
𝛽1
𝑖𝑗

)
=

𝑁∑
ℎ=1

𝑃𝑖,𝜏

(
𝛽1
𝑖𝑗ℎ

)
Finally, the agent dfines the new vector of weights 𝜋1

𝑖
solving an optimization problem analog to (A.4).

Appendix B. Convergence

Consider a collection 0
𝑖

of 𝑁 butteflies and let Σ be its variance-covariance matrix and 𝜇 its 𝑁 -dimensional vector of expected 
returns; let 𝑒 denote the 𝑁 -vector whose components are all units. The matrix Σ is positive definite. The mean-variance (hereafter 
MV) problem is as follows:

max
𝜋0
𝑖

{
𝛾𝑖𝜇

⊺𝜋0
𝑖
− 1

2
(
𝜋0
𝑖

)⊺ Σ𝜋0
𝑖
|𝑒⊺𝜋0

𝑖
= 1

}
(B.1)

where 𝛾𝑖 is a scalar parameter, 𝜋0
𝑖

is an 𝑁 -vector of portfolio weights, and 𝑒⊺𝜋0
𝑖
= 1 is the budget constraint. The value of the parameter 

𝛾𝑖 represents the agent’s risk tolerance parameter: the higher the value of 𝛾𝑖 , the more tolerant the investor will be to the risk. The 
first-order conditions are as follows:

Σ𝜋0
𝑖
+ 𝑒𝜓𝑖 = 𝛾𝑖𝜇 (B.2)

𝑒⊺𝜋0
𝑖
= 1 (B.3)

where 𝜓𝑖 is the Lagrange multiplier for the budget constraint. Then, solving for 𝜋0
𝑖

and 𝜓𝑖, we have the following:

𝜋0
𝑖

(
𝛾𝑖
)
= Σ−1 𝑒 

𝑐
+ 𝛾𝑖

[
Σ−1

(
𝜇 − 𝑒

𝑎

𝑐

)]
, (B.4)

and:

𝜓𝑖

(
𝛾𝑖
)
= −1

𝑐
+ 𝛾𝑖

𝑎

𝑐
(B.5)

20 This value could be reasonably assumed to be constant over time.
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where efficient set constants 𝑎 and 𝑐 are dfined as follows:

𝑎 = 𝑒⊺Σ−1𝜇 𝑐 = 𝑒⊺Σ−1𝑒 (B.6)

Therefore 𝜋0
𝑖

(
𝛾𝑖
)

can be expressed as follows:

𝜋0
𝑖

(
𝛾𝑖
)
= 𝛼0 + 𝛾𝑖𝛼1 (B.7)

where:

𝛼0 = Σ−1 𝑒 
𝑐

𝛼1 = Σ−1
(
𝜇 − 𝑒

𝑎

𝑐

)
(B.8)

Equation (B.7) implies that every component 𝜋0
𝑖𝑗
= 𝛼0𝑗 +𝛾𝑖𝛼1𝑗 with 𝑗 = 1,… ,𝑁 of 𝜋0

𝑖

(
𝛾𝑖
)

is a linear function of 𝛾𝑖 . If 𝛼1𝑗 > 0
(
𝛼1𝑗 < 0

)
, 

then 𝜋0
𝑖𝑗

(
𝛾𝑖
)

is increasing (decreasing) in 𝛾𝑖 and will be non-negative, provided that 𝛾𝑖 ≥ − 𝛼0𝑗
𝛼1𝑗

(𝛾𝑖 ≤ − 𝛼0𝑗
𝛼1𝑗

). Let:

𝛾𝑙
𝑖
=max

{
−
𝛼0𝑗

𝛼1𝑗
| all j with 𝛼1𝑗 > 0

}
(B.9)

𝛾𝑢
𝑖
=min

{
−
𝛼0𝑗

𝛼1𝑗
| all j with 𝛼1𝑗 < 0

}
(B.10)

It follows that:

𝜋0
𝑖𝑗

(
𝛾𝑖
)
≥ 0 for all j with 𝛼1𝑗 > 0 and for all 𝛾𝑖 ≥ 𝛾𝑙

𝑖
(B.11)

𝜋0
𝑖𝑗

(
𝛾𝑖
)
≥ 0 for all j with 𝛼1𝑗 < 0 and for all 𝛾𝑖 ≤ 𝛾𝑢

𝑖
(B.12)

If 𝛼1𝑗 were equal to zero for one or more asset 𝑗, in order to have 𝜋0
𝑖𝑗

(
𝛾𝑖
)
≥ 0, the following would be necessary:

𝛼0𝑗 ≥ 0 for all j such that 𝛼1𝑗 = 0 (B.13)

Then, the condition 𝜋0
𝑖𝑗

(
𝛾𝑖
)
≥ 0 would be verfied if and only if 𝛾𝑙

𝑖
≤ 𝛾𝑖 ≤ 𝛾𝑢

𝑖
and condition (B.13) were verfied. Furthermore, positively 

weighted minimum variance portfolios lie on a single segment of the minimum variance frontier. Then, consider a compact set Ω of 
stochastic matrices with strictly positive entries 𝜋0

𝑖𝑗
. It must be noted that we have to prove the convergence of a left ifinite product 

of matrices with all matrices in Ω, not the convergence of an Ω - Markov chain.21 Given that Ω is a compact set of Markov matrices,22

convergence is a natural consequence. This is a classic result present, among others,23 in Shen (1988).24

Appendix C. Time constant weights

Maximum theorem: Let 𝑋 and Θ be two topological spaces, 𝑓 ∶𝑋 ×Θ→ℝ be a continuous function on the product 𝑋 ×Θ, and 
𝐶 ∶ Θ⇉𝑋 be a compact-valued correspondence such that 𝐶 (𝜃) ≠∅ for all 𝜃 ∈Θ. 
Define the marginal function (value function) 𝑓 ∗ ∶ Θ→ℝ by the following:

𝑓 ∗ (𝜃) = sup{𝑓 (𝑥, 𝜃) ∶ 𝑥 ∈ 𝐶 (𝜃)} (C.1)

And dfine the set of maximizers 𝐶∗ ∶ Θ⇉𝑋 by the following:

𝐶∗ (𝜃) = 𝑎𝑟𝑔𝑠𝑢𝑝{𝑓 (𝑥, 𝜃)} =
{
𝑥 ∈ 𝐶 (𝜃) ∶ 𝑓 (𝑥, 𝜃) = 𝑓 ∗ (𝜃)

}
(C.2)

If 𝐶 is continuous at 𝜃, then 𝑓 ∗ is continuous and 𝐶∗ is upper hemi-continuous with non-empty and compact values. As a consequence, 
the sup may be replaced by max and the arg sup by arg max. 
The theorem is typically interpreted as providing conditions for a parametric optimization problem to have continuous solutions with 
regard to the parameter. In this case, Θ is the parameter space, 𝑓 (𝑥, 𝜃) is the function to be maximized, and 𝐶(𝜃) gives the constraint 
set over which 𝑓 is maximized. Then, 𝑓 ∗(𝜃) is the maximized value of the function and 𝐶∗(𝜃) is the set of points that maximize 𝑓 . 
The result is that, if the elements of an optimization problem are sufficiently continuous, then some, but not all, of that continuity 
is preserved in the solutions. In our case, let 𝑓𝑖 ∶

(
𝑋 ⊆ℝ𝑁

)
×
(
Θ ⊆ℝ𝑁×𝑁)

→ ℝ be a continuous risk reward objective function of 
the optimization problem for agent 𝑖. At every communication round 𝑡 > 1, the choice of 𝜋𝑡−1

𝑖
affects just agent 𝑖’s payoffs. Because 

each agent’s choice does not affect other agents’ payoffs, consider, instead of 𝑁 distinct optimization problems, a single constraint 
maximization with the objective function 

∑𝑁

𝑖=1 𝑓𝑖 ∶𝑋𝑁 ×Θ→ℝ where 𝑋𝑁 =Δ𝑁×𝑁 is the set of all possible weights to be assigned 
by each agent 𝑖 to all the available butteflies being Θ =Δ𝑁×𝑁 the Cartesian product of 𝑁 simplices of dimension 𝑁 . Recall that each 

21 An Ω - Markov chain is a Markov chain whose transition matrices all belong to Ω.
22 A Markov matrix is a stochastic matrix with at least one positive column.
23 The convergence of left products of stochastic matrices has been widely discussed in the literature, such as that by Hajnal (1976) or Seneta (1981).
24 See proof of theorem 5.1 in Shen (1988).
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buttefly has, as underlying, a vector of dimension 𝑁 (whose entries must sum to one), and we have one buttefly for each of the 𝑁
agents. Furthermore, each agent’s initial estimate coincides with the center strike of one of the available butteflies. The constraint 
set 𝐶 over which 

∑𝑁

𝑖=1 𝑓𝑖 is maximized, is a constant function of 𝜃 because 𝐶 (𝜃) = Δ𝑁×𝑁 . Then, 𝐶 is continuous as required by the 
theorem. Because 

∑𝑁

𝑖=1 𝑓𝑖 is the sum of continuous functions, 𝐶∗ is an upper hemi-continuous correspondence with non-empty and 
compact values, and the Kakutani fixed-point theorem applies. If a fixed point were chosen by the agents, both the underlying of 
butteflies and their weights in the optimal portfolio would be time-independent.

Appendix D. Unidimensionality of opinions

We start with a proof of unidimensional opinions when the transition matrix is constant over time: 

Theorem Appendix D.1. Consider an 𝑁 -dimensional non-singular, diagonalizable, generic,25 stochastic matrix 𝑇 . The rank of 𝑇𝑚, when 
𝑚 goes to ifinity, is equal to one. Moreover, for 𝑚 sufficiently large, the rank of 𝑇𝑚 approximates to 2, that is, the points represented by the 
rows of 𝑇𝑚 are arranged on a line before converging to a point.

Proof. Let 𝜉𝑘 be the 𝑘-th eigenvalue of 𝑇 . Because 𝑇 is a generic stochastic matrix, we can assume, without loss of generality, 
that 𝜉1 = 1 and ‖‖𝜉𝑘‖‖ > ‖‖𝜉𝑘+1‖‖ for 𝑘 = 1,… , (𝑁 − 1) with 0 < ‖‖𝜉𝑘‖‖ < 1 for 𝑘 = 2,… ,𝑁 . Note that, for every integer 𝑚, ‖‖‖𝜉𝑚𝑘+1‖‖‖ is an 

ifinitesimal of higher order than ‖‖‖𝜉𝑚𝑘 ‖‖‖ provided that:

lim 
𝑚→∞

‖‖‖𝜉𝑚𝑘+1‖‖‖‖‖‖𝜉𝑚𝑘 ‖‖‖ = lim 
𝑚→∞

‖‖𝜉𝑘+1‖‖𝑚‖‖𝜉𝑘‖‖𝑚 = lim 
𝑚→∞

(‖‖𝜉𝑘+1‖‖‖‖𝜉𝑘‖‖
)𝑚

= 0 (D.1)

Then, from a computational point of view, there exists a value 𝑀 of 𝑚 sufficiently large such that ‖‖‖𝜉𝑚𝑘 ‖‖‖→ 0 for 𝑘 =𝑁 and ‖‖‖𝜉𝑚𝑘 ‖‖‖ > 0, 
∀𝑘 <𝑁 . Recall that, according to the Rank Nullity Theorem, for any square matrix 𝐴 of order 𝑁 , we have the following:

𝑅𝑎𝑛𝑘 (𝐴) +𝐷𝑖𝑚 (𝐾𝑒𝑟 (𝐴)) =𝑁 (D.2)

Because the dimension of the null space corresponds to the geometric multiplicity of the zero eigenvalues, and because a matrix is 
diagonalizable if and only if the algebraic multiplicity of every eigenvalue equals its geometric multiplicity, we have that 𝑅𝑎𝑛𝑘 (𝑇𝑚)→
𝑁 − 1 when 𝜉𝑚

𝑁
goes to zero. Similarly, there exists a sufficiently large value 𝑀̃ of 𝑚 such that ‖‖‖𝜉𝑚𝑘 ‖‖‖→ 0 for any 𝑘 > 2 and ‖‖‖𝜉𝑚𝑘 ‖‖‖ > 0

for 𝑘 = 1,2. Therefore, for 𝑚 = 𝑀̃ , the rank of 𝑇𝑚 approximates to 2. Because lim𝑚→∞ 𝜉𝑚
𝑘
= 0 for any 𝑘 > 1 we eventually have 

𝑙𝑖𝑚𝑚→∞𝑅𝑎𝑛𝑘 (𝑇𝑚) = 1. □

Now consider a more general case where a specific class of time inhomogeneous Markov chains is considered26:

Theorem Appendix D.2. Let 𝑇1∶𝑚 be any left product of 𝑚 𝑁 -dimensional, non-singular, diagonalizable, generic, stochastic matrices. 
Assume that for every positive integer 𝑚, the matrix 𝑇 (𝑚) = 𝑇1∶𝑚 is still generic and diagonalizable. Then the rank of 𝑇 (𝑚), when 𝑚 goes to 
ifinity, is equal to one. Moreover, for 𝑚 sufficiently large, the rank of 𝑇 (𝑚) approximates to 2, that is, the points represented by the rows of 
𝑇 (𝑚) are arranged on a line before converging to a point.

Proof. Consider the left product 𝑇 (𝑚) with 𝑚 any finite positive integer. Because, by assumption, 𝑇 (𝑚) is diagonalizable for every 
𝑚, there exists a diagonal matrix Γ (𝑚) such that:

𝑇 (𝑚) = 𝑉 𝑐 (𝑚) Γ (𝑚)𝑉 𝑟 (𝑚) (D.3)

where 𝑉 𝑐 (𝑚) is the matrix whose columns are the column eigenvectors of 𝑇 (𝑚) and 𝑉 𝑟 (𝑚) is the matrix whose rows are the row 
eigenvectors of 𝑇 . Thus 𝑇 (𝑚) can be expressed as the product of 𝑚 identical diagonalizable matrices Φ𝑚:

𝑇𝑚 = (Φ(𝑚))𝑚 with Φ(𝑚) = 𝑉 𝑐 (𝑚)Γ (𝑚)
1 
𝑚 𝑉 𝑟 (𝑚) (D.4)

Matrix Φ(𝑚) could obviously change over time depending on the matrices that are part of the left product 𝑇1∶𝑚 . Because 𝑇 (𝑚)
is not singular, being presumably the product of 𝑚 non-singular matrices, matrix Φ(𝑚), while not necessarily stochastic, has one 
eigenvalue equal to one and all distinct positive eigenvalues with modulus lower than or equal to one for any integer 𝑚 ≥ 1. Therefore 
Theorem Appendix D.1 applies. □

25 A generic matrix is a matrix whose eigenvalues are all distinct. Non-singularity also ensures that all eigenvalues are different from zero.
26 This result represents, up to our knowledge, an original contribution to the theory of left convergent matrix products.
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Appendix E. Examples

We briefly outline the general setting that characterizes the practical cases outlined in section 5. In every example for any agent 
𝑖 ∈ and for every 𝑙 ∈ {1,2}, we always set 𝛿0

𝑖,𝑙
= 5 and 𝛿𝑡−1

𝑖
= 0.1 for any 𝑡 > 1.27 In other terms, the width of any buttefly available 

after each communication round is identical across both agents and issues so that an estimation error of any of the unknown parameters 
has an identical effect on each agent’s payoff. Conversely, examples differ in both agents’ initial estimates 𝑥0

𝑖
and intensities 𝜆𝑡−1

𝑖
of 

the compound Poisson processes driving 𝑥0
𝑖

and 𝜋𝑡−1
𝑖

for 𝑖 = 1,… ,𝑁 and 𝑡 ≥ 1.28 At the first communication round every agent 𝑖, 
given the initial estimate 𝑥0

𝑖
of 𝜃 and the vector 𝜆0

𝑖
of intensity parameters characterizing the compound Poisson processes driving 

𝑥0
𝑖
, generates 𝑆 = 2000 equally likely scenarios indexed by 𝑠 = 1, ..., 𝑆 . Denote by 𝑠𝑥0𝑖,𝑙,𝜏 the value of variable 𝑥0

𝑖,𝑙
at time 𝜏 in the 𝑠-th 

scenario. Since 𝜃 is a vector, agent 𝑖’s payoff, at the expiry date 𝜏 , of each buttefly 𝛽0
𝑖𝑗

in the 𝑠-th scenario is dfined as follows:

𝑠𝑃𝑖,𝜏

(
𝛽0
𝑖𝑗

)
=

∑
𝑙=1,2

𝑒−𝑟𝑓 ⋅𝜏
[
max

(
𝑠𝑥

0
𝑖𝑙,𝜏

− 𝑥
0
𝑖𝑗𝑙
,0
)
+max

(
𝑠𝑥

0
𝑖𝑙,𝜏

− 𝑥0
𝑖𝑗𝑙
,0
)

(E.1)

−2max
(
𝑠𝑥

0
𝑖𝑙,𝜏

− 𝑥0
𝑗𝑙
,0
)]

where 𝑟𝑓 = 0.01 is the risk-free rate, 𝑥0
𝑖𝑗𝑙

= 𝑥0
𝑗𝑙
+ 𝛿0

𝑖𝑙
and 𝑥0

𝑖𝑗𝑙
= 𝑥0

𝑗𝑙
− 𝛿0

𝑖𝑙
are the strikes of the two long call options, and the time to 

maturity of all options is set equal to 𝜏 = 20. Thus, buttefly’s payoff is dfined as the sum of the payoffs of two distinct butteflies each 
written on a different underlying. Dfine agent 𝑖’s risk-reward function 𝑓𝑖 as a combination of the expected value and the variance 
of the payoffs generated by the portfolio strategy:

max
𝜋0
𝑖

𝛾𝑖 𝔼

(
𝑁∑
𝑗=1 

𝜋0
𝑖𝑗
⋅𝑠 𝑃𝑖,𝜏

(
𝛽0
𝑖𝑗

))
− 1

2
𝕍ar

(
𝑁∑
𝑗=1 

𝜋0
𝑖𝑗
⋅𝑠 𝑃𝑖,𝜏

(
𝛽0
𝑖𝑗

))
(E.2)

where 𝛾𝑖 = 0,1 for every 𝑖. At each following communication round, the same procedure applies, changing the values of the parameters 
as required by the specific example.

Data availability

No data was used for the research described in the article.
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