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Highlights 

● From rest to task, GSCORR reduces in sensory but increases in associative areas. 

● Reallocation of functional resources from sensory to associative regions at task. 

● Two distinct clusters of areas are recruited during GO and STOP trials. 

● GSCORR correlates with deactivation rather than activation. 

● GSCORR, activation and deactivation reflect distinct neurofunctional processes. 
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ABSTRACT  

Background: The dynamics of global, state-dependent reconfigurations in brain connectivity 

are yet unclear. We aimed at assessing reconfigurations of the global signal correlation 

coefficient (GSCORR), a measure of the connectivity between each voxel timeseries and the 

global signal, from resting-state to a stop-signal task. The secondary aim was to assess the 

relationship between GSCORR and blood-oxygen-level-dependent (BOLD) activations or 

deactivation across three different trial-conditions (GO, STOP-correct, and STOP-incorrect).  

Methods: As primary analysis we computed whole-brain, voxel-wise GSCORR during 

resting-state (GSCORR-rest) and stop-signal task (GSCORR-task) in 107 healthy subjects 

aged 21-50, deriving GSCORR-shift as GSCORR-task minus GSCORR-rest. GSCORR-tr 

and trGSCORR-shift were also computed on the task residual time series to quantify the 

impact of the task-related activity during the trials. To test the secondary aim, brain regions 

were firstly divided in one cluster showing significant task-related activation and one showing 

significant deactivation across the three trial conditions. Then, correlations between 

GSCORR-rest/task/shift and activation/deactivation in the two clusters were computed. As 

sensitivity analysis, GSCORR-shift was computed on the same sample after performing a 

global signal regression and GSCORR-rest/task/shift were correlated with the task 

performance. 

Results: Sensory and temporo-parietal regions exhibited a negative GSCORR-shift. 

Conversely, associative regions (ie. left lingual gyrus, bilateral dorsal posterior cingulate 

gyrus, cerebellum areas, thalamus, posterolateral parietal cortex) displayed a positive 

GSCORR-shift (FDR-corrected p<0.05). GSCORR-shift showed similar patterns to 

trGSCORR-shift (magnitude increased) and after global signal regression (magnitude 

decreased). Concerning BOLD changes, Brodmann area 6 and inferior parietal lobule showed 

activation, while posterior parietal lobule, cuneus, precuneus, middle frontal gyrus showed 

deactivation (FDR-corrected p<0.05). No correlations were found between GSCORR-

rest/task/shift and beta-coefficients in the activation cluster, although negative correlations 

were observed between GSCORR-task and GO/STOP-correct deactivation (Pearson rho=-

0.299/-0.273; Bonferroni-p<0.05). Weak associations between GSCORR and task 

performance were observed (uncorrected p<0.05).  

Conclusion: GSCORR state-dependent reconfiguration indicates a reallocation of functional 

resources to associative areas during stop-signal task. GSCORR, activation and deactivation 

may represent distinct proxies of brain states with specific neurofunctional relevance. 
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Global Signal 

GSR 

Global Signal Regression 
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1. INTRODUCTION 

Human brain functionality is characterized by spatially and temporally correlated low-

frequency fluctuations in the blood oxygenation level-dependent (BOLD) signal (Choe et al., 

2015).  BOLD fluctuations can be assessed via functional Magnetic Resonance Imaging 

(fMRI), both when the individual is at rest (i.e., resting-state) and during the execution of 

specific tasks (Ma et al., 2012; Rogers et al., 2007; Scalabrini et al., 2020b). In order to 

regulate intrinsic brain activity, BOLD fluctuations are functionally organized at local, long-

range and global scales, which constantly communicate to generate complex dynamics (Qin et 

al., 2020). 

Recent studies attempted to characterize the state-dependent reconfigurations of local and 

long-range functional connectivity (FC), finding a reduced local connectivity opposed to an 

increased long-range FC from rest to task (Damiani et al., 2022; Tommasin et al., 2018).  

In contrast, the state-dependent reconfiguration of FC dynamics at a global scale has been 

poorly investigated up to the present date. On a global scale, FC can be measured by the 

global signal correlation coefficient (GSCORR), that is the correlation between each voxel 

time series and the averaged global signal (GS) of the gray matter (Ao et al., 2021; Fox et al., 

2009; Power et al., 2017; Scalabrini et al., 2020a). For this reason, GSCORR is also referred 

to as GS topography, representing an emerging measure for analyzing the relationship 

between global and local neural activities. Developed to gain a deeper understanding of the 

neurobiological significance of GS, GSCORR exhibits interesting physiological and 

pathological correlates opening up intriguing new frontiers for the neuroimaging research (Ao 

et al., 2021). For instance, GSCORR demonstrates an intrinsic architecture characterized by 

higher values in sensory cortices and lower values in high-order cortices during the resting 

state (Ao et al., 2021; Li et al., 2020; Power et al., 2017; Zhang et al., 2020). Furthermore, 

GSCORR has been found to be altered in states of unconsciousness, potentially linking 

GSCORR to brain states related to vigilance (Tanabe et al., 2020). Moreover, GSCORR was 

altered in various psychiatric and neurological disorders, such as patients with schizophrenia, 

major depressive disorder, bipolar disorder, and epilepsy (Li et al., 2020; Scalabrini et al., 

2020b; Yang et al., 2016). 

Regarding the behavioral correlates of GSCORR in cognitive tasks, to our knowledge, only 

one study examined the presence of state-dependent changes in GSCORR from rest to task 

(Zhang et al., 2020). Irrespectively of task design, Zhang and colleagues observed a general 

GSCORR reduction in the majority of brain regions, especially in somatosensory areas. Of 

note, these results reported unchanged GSCORR values in brain areas that should have been 

                  



 

6 

engaged across tasks. One example is the primary visual cortex, as almost all the tasks 

evaluated included visual stimuli. However, no direct comparison between GSCORR and task 

activation was performed, leaving open questions regarding the relationship between these 

two indexes (Ao et al., 2021). 

Given the aforementioned gaps in the literature, the primary aim of this study was to evaluate 

the state-dependent reconfigurations of global connectivity in a sample of healthy subjects by 

measuring voxel-wise, within-group differences of GSCORR occurring from rest to a stop-

signal task (GSCORR-shift). The secondary objective of this study was to explore the 

relationship between GSCORR and task-related BOLD changes. To assess this relationship, 

we mapped the regions with positive and negative changes in the BOLD signal during a stop-

signal task and measured the correlation patterns between GSCORR-rest/task/shift and the 

beta coefficients in these regions.  

 2. MATERIALS AND METHODS 

2.1. Sample - Participants 

This study analyzed imaging and clinical data of 130 healthy controls adults (HC) from the 

University of California, Los Angeles (UCLA) Consortium for Neuropsychiatric Phenomics 

open-access neuroimaging dataset (Gorgolewski et al., 2017; Poldrack et al., 2016). 

Participants were aged 21-50 years, right-handed and English-speaking. Ethnic category was 

either White, Hispanic, or Latino. A screening urinalysis was performed, and only individuals 

negative for drugs of abuse were enrolled (Cocaine; Methamphetamine; Morphine; THC; 

Benzodiazepines). Subjects were excluded if they had lifetime diagnoses of: Schizophrenia or 

Other Psychotic Disorder; Bipolar I or II Disorder; Substance Abuse or Dependence (not 

counting caffeine or nicotine); current Major Depressive Disorder; suicidality; Anxiety 

Disorder (Obsessive Compulsive Disorder, Panic Disorder, Generalized Anxiety Disorder, 

Post-Traumatic Stress Disorder), Attention Deficit Hyperactivity Disorder (ADHD). 

Participants were also excluded if left-handed, believed they might be pregnant, or if had 

other contraindications to scanning (e.g., claustrophobia, metal in body, body too large to fit 

in scanner). Further details about recruiting and demographics can be found in two works 

from Poldrack, Gorgolewski and colleagues (Gorgolewski et al., 2017; Poldrack et al., 2016). 
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2.2. Informed consent and ethical approval 

As described in the original study, participants were given a verbal explanation of the study, 

after which written informed consent was signed. Procedures were approved by the 

Institutional Review Boards at UCLA and the Los Angeles County Department of Mental 

Health (Poldrack et al., 2016). 

2.3. Task description 

The stop-signal task was chosen for the analysis due to its constant recruitment of attentive 

resources required across the whole scan-time. This characteristic made stop-signal a 

continuous task-state which is ideal to be compared to rest. The stop-signal task run lasted 

386s. Participants were instructed to respond as fast as they could after a ‗go‘ stimulus was 

presented on the computer screen, except for the subset of trials where the ‗go‘ stimulus was 

paired with a ‗stop‘ signal. Go stimuli consisted of left- and right-wards pointing arrows to 

which participants were told to respond by pressing the respective button. For stop trials (25% 

of total trials), a stop-signal (a 500 Hz tone presented through headphones) was presented 

with a short delay -stop-signal delay- after the go stimulus appeared and lasted for 250ms. 

Participants were instructed to respond as quickly and accurately as possible in all trials, but 

to withhold their response if they heard the stop-signal. They were also instructed that 

stopping and going were equally important. Performance was then measured through the 

Stop-Signal Reaction Time (SSRT), an index based on the horse-race model and considered a 

critical measure of the cognitive control processes involved in stopping (Logan and Cowan, 

1984; Verbruggen and Logan, 2009, 2008). SSRT is the time it takes for an individual to 

inhibit a preplanned action in response to a stop signal. SSRT was computed as the quantile 

reaction time minus the mean of all stop-signal delay values; longer SSRTs corresponded to 

worse performances. To yield approximately 50% successful response inhibition for the 

estimation of stop-signal reaction time (SSRT), the stop-signal delay of each Stop trial was 

dynamically adjusted (Band et al., 2003). As additional performance measure, uncorrected, 

we used mean reaction time (RT) on all correct GO trials as they were collected for each 

participant. 
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2.4. Preprocessing 

fMRI data were preprocessed with AFNI software (Bowring et al., 2021; Cox, 1996; Cox and 

Hyde, 1997). The structural and functional reference images were co-registered (Saad et al., 

2009). The first 4 frames of each fMRI run were removed to discard the transient effects in 

amplitude observed until magnetization achieves steady state (Caballero-Gaudes and 

Reynolds, 2017). Slice timing correction (Konstantareas and Hewitt, 2001) and despike 

methods (Satterthwaite et al., 2013) were applied. Rigid-body alignment of the structural and 

functional image was performed. The anatomical image was then warped to the Montreal 

Neurological Institute standard space (MNI152_T1_2009c) template provided with the AFNI 

binaries. Spatial smoothing was applied using a Gaussian filter with full width at half 

maximum (FWHM) kernel sizes of 6 mm. Bandpass within the standard frequency range 

(0.01-0.1 Hz) was performed (Shirer et al., 2015). Each of the voxel time series was then 

scaled to have a mean of 100. To control for non-neural noise, regression based on the 6 rigid 

body motion parameters and their 6 derivatives was applied, as well as mean time series from 

cerebro-spinal fluid masks (Fox et al., 2005; Vovk et al., 2011) and eroded by one voxel (Chai 

et al., 2012). For GSCORR analysis, regression of white matter artifacts was performed 

through the fast ANATICOR technique provided by AFNI (Jo et al., 2010) to further improve 

motion correction, censoring of voxels with a Framewise Displacement (FD) above 0.5 mm 

was applied to the timeseries (Power et al., 2014). A strict control of motion was performed, 

as subjects with >2mm or >2° of motion and/or more than 20% of timepoints above FD 

0.5mm in rest or task run were excluded (Damiani et al., 2022). 

2.5. Primary analysis:  GSCORR  

The global signal (GS) was calculated for each participant by averaging the fMRI signals of 

all the gray matter voxels. For each voxel, the GS topography (i.e., GSCORR) was calculated 

as the Pearson correlation coefficient between the time series of the voxel and the GS time 

series (Fox et al., 2009; Power et al., 2017; Scalabrini et al., 2020b) . The Pearson correlation 

coefficients were computed for the rest and task run and then transformed through Fisher z 

transformation for statistical analysis (GSCORR-rest and GSCORR-task respectively) (Cole 

et al., 2016, 2014). Voxel-wise differences between GSCORR-rest and GSCORR-task, i.e. 

GSCORR-shift, were evaluated through a paired t-test (task minus rest). Results were masked 

using a gray matter mask derived from the MNI template of choice. For all primary and 

secondary analyses, the significance threshold was False Discovery Rate-corrected p value 
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(FDR-p) of 0.05  with a minimum cluster size > 30 significant voxels, calculated by the three 

nearest neighbors, to further strengthen the robustness of our results (Zhu et al., 2019). 

2.6 Secondary analyses  

2.6.1. GSCORR-shift computed as rest – task residual 

Fair and colleagues introduced the concept of task residual BOLD activity, suggesting that 

this measure should represent the spontaneous signal of the brain during a ―task state‖ (Fair et 

al., 2007). Task residual activity is obtained by removing from the task time-series the task-

related activation using a General Linear Model (GLM). As GSCORR was computed using 

task time-series where task-related activity was not regressed out, to compare GSCORR-task 

with GSCORR on task residuals (GSCORR-tr) would allow to quantify the impact of the 

task-related activity during the trials.  

 After obtaining GSCORR-tr, a t-test between GSCORR-tr and GSCORR-rest was performed 

to obtain task residual GSCORR-shift (trGSCORR-shift). A congruence between GSCORR-

shift and trGSCORR-shift maps would confirm the existence of a task-oriented state, 

characterized by the continuous engagement of attentional resources and readiness to 

respond, in the context of the stop-signal task. As suggested by Zhang and colleagues, such 

task-oriented state would be trial-independent (Zhang et al., 2020). 

2.6.2 Task activation analysis 

We planned to model the following task conditions for each subject: successful ―go‖ 

condition (―GO‖), unsuccessful ―go‖ condition (―MISS‖), successful ―stop‖ condition (correct 

rejection, ―STOPcor‖), and unsuccessful ―stop‖ condition (―STOPincor‖). However, as 

observed by a previous study, MISS conditions were excluded from the analysis due to the 

very low number of events per subject (Cao and Cannon, 2021). GO, STOPcor and 

STOPincor conditions were therefore convolved with a hemodynamic response function and 

included in a general linear model together with other regressors such as 6 rigid body 

parameters and their 6 derivatives, mean time series from cerebro-spinal fluid and white 
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matter masks eroded by one voxel and FD-based censoring (see above) at each time point. A 

gray matter mask was then applied on the resulting activation maps. 

In addition to computing BOLD activation with positive beta coefficients, we also considered 

BOLD deactivation measuring the negative beta coefficients. The physiological basis and 

precise meaning of negative beta coefficients  remains a topic of ongoing debate, and up to 

the present day the literature has provided insufficient information concerning its dynamics in 

stop-signal tasks (Nakata et al., 2019). Several mechanisms have been proposed to explain 

negative beta coefficients, including: a) the "blood steal" phenomenon, whereby a decrease in 

blood flow occurs in regions adjacent to activated regions with increased blood flow and 

supplied by a common artery (Harel et al., 2002; Kannurpatti and Biswal, 2004); b) the 

―neural inhibition hypothesis‖ (Buzsáki et al., 2007; Devor et al., 2008; Shmuel et al., 2002; 

Sten et al., 2017), according to which negative BOLD responses are caused by local neural 

inhibition, as a result of interhemispheric transcallosal inhibition (Allison et al., 2000; Hamzei 

et al., 2002; Stefanovic et al., 2004; Sten et al., 2017; Tzourio-Mazoyer et al., 2015; Yuan et 

al., 2013; Zeharia et al., 2012) or task-related deactivation of associated areas belonging to an 

irrelevant sensory modality (Sadato et al., 1998, 1996; Sten et al., 2017). While considering 

these premises that highlight the functional relevance of negative beta coefficients, for 

practical reasons we will refer to these values using the term ―deactivation‖.  

The clusters of areas that resulted significantly activated or deactivated during the execution 

of the stop-signal task were extracted as masks. This analysis was performed for the three trial 

conditions, namely: STOPcor, STOPincor and GO. The surviving clusters of voxels for each 

trial were overlapped to produce: a) one mask constituted by regions showing activation 

across the three different conditions; b) one mask constituted by regions showing deactivation 

across the three different conditions.  

2.6.3. GSCORR relationship with task-related changes in BOLD activity. 

Aside from providing a precise mapping of the regions involved in the processing of stop-

signal tasks, the generation of maps across the three conditions allowed to compare GSCORR 

and task activation measures. In fact, GSCORR is computed across all task states and does 

not distinguish GO, STOPcor and STOPincor responses. To quantify the level of association 

between GSCORR and activation/deactivation, the following values were extracted in areas 

of overlap between activation and deactivation for each subject: a) GO, STOPcor and 

STOPincor trials beta coefficients; b) GSCORR-rest, GSCORR-task and GSCORR-shift. 

Finally, Pearson's correlation coefficients were calculated between beta coefficients and 
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GSCORR-rest/task/shift. Bonferroni correction for multiple comparisons was performed. This 

analysis offered not only the possibility to compare GSCORR with BOLD changes, but also 

to map the brain regions that are recruited during each of the three task conditions. Finally, to 

facilitate the topographic comparison between GSCORR-shift and clusters of common 

activation/deactivation during the task, we created two maps comparing GSCORR-shift with 

activation and deactivation. The thresholds for this analysis were set at FDR-p=0.05 with a 

minimum cluster size > 30 significant voxels, calculated by the three nearest neighbors. These 

maps are available in Supplementary materials (eFigure4). 

2.7. Sensitivity analyses: Global Signal Regression (GSR) analysis and performance 

correlation. 

i) Whether preprocessing should include GSR or not is controversial (Murphy and Fox, 2017; 

Shirer et al., 2015); in particular, GSR was shown to significantly influence GSCORR 

analyzes (Scalabrini et al., 2020a, 2020b). In order to account for the GSR effect, primary 

analyses were repeated after the regression of the gray matter averaged time series. Due to the 

global nature of the GSCORR index, we expected a reduction or absence of significant 

findings in the GSR-related analysis.  

ii) In order to evaluate the behavioral correlates of GSCORR, SSRT and RT scores were 

introduced as covariates using the option -covariate in the 3dttest++ AFNI command to 

explore how this measure covaried with GSCORR-rest, GSCORR-task, and GSCORR-shift 

on a voxel-wise level. The -covariate option produced 3 whole-brain maps as output. Each 

map refers to one of the paired t-test parameters (map1: covariance with GSCORR-rest; 

map2: covariance with GSCORR-task; map3: covariance with GSCORR-shift). Covariance 

voxel-wise maps thus showed the significant regions of covariance between GSCORR and 

performance (SSRT and RT). As no significant differences were observed at FDR-p=0.05, 

uncorrected p=0.05 thresholds were adopted for the results of this explorative analysis. 

Results are available in Supplementary materials. 

 

3. RESULTS 

3.1. Descriptive statistics 

23 subjects were excluded from the analyses due to excessive motion in either rest or task run. 

A total of 107 subjects were finally selected. The sample was composed of 52% males; had an 
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average age of 30.85 ± 8.6 years; the mean SSRT was 213.28 ± 40.35 ms; the mean RT was 

213.28 ± 112.36 ms.  

3.2. GSCORR-shift 

GSCORR-shift (GSCORR-task vs GSCORR-rest) map is shown in Figure 1. We found a 

reduction of GSCORR during task in bilateral insula, bilateral somatosensory cortex, bilateral 

auditory cortex, bilateral secondary visual network areas, bilateral middle temporal gyrus, 

bilateral fusiform gyrus, right inferior frontal gyrus. Increased GSCORR values were found in 

associative areas such as left lingual gyrus, bilateral dorsal posterior cingulate gyrus (dPCC), 

bilateral cerebellum areas, bilateral thalamus, bilateral posterolateral parietal cortex (PLPC). 

The trGSCORR-shift map (see Figure 1) exhibited a very similar pattern to that of GSCORR-

shift. Notably, a general enhancement in the signal-to-noise ratio was observed in 

trGSCORR-shift compared to GSCORR-shift. However, this enhancement was especially 

relevant in specific clusters of subcortical areas including the cerebellum.  
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Figure 1. GSCORR-shift and trGSCORR-shift maps. Whole brain, voxel-wise z maps displaying areas of significant 

differences at the paired t-test between: A) GSCORR-task and GSCORR-rest (i.e. GSCORR-shift); B) GSCORR-tr and 

GSCORR-rest (i.e. trGSCORR-shift 

 

3.3. Task-related BOLD changes 

Figure 2 and 3 display the regions respectively showing activation or deactivation during GO, 

STOPcor and STOPincor task conditions. 
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The regions showing activation across all the three trials included left Area 6 of Brodmann 

(including: supplementary motor areas, SMA; pre-supplementary motor areas, pre-SMA) and 

inferior parietal lobule (IPL) (including: supra-marginalis gyrus; left superior temporal gyrus).  

The regions showing deactivation across all the three trials involved bilateral posterior 

parietal lobule, bilateral cuneus and bilateral precuneus, left middle frontal gyrus. 

While STOP conditions were mainly linked to activations, the GO condition mainly produced 

deactivation. Activation/deactivation maps for all task conditions have been provided as 

NIFTI files in the Supplementary materials. 

 

Figure 2. BOLD activation map during stop-signal task. Whole brain, voxel-wise map showing areas activating during the 

stop-signal trials (GO, STOP correct and STOP incorrect, FDR-p=0.05). Red regions are the ones exhibiting activation 

across all the three trias. 
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Figure 3. BOLD deactivation map during stop-signal task. Whole brain, voxel-wise map showing areas exhibiting 

deactivation during the stop-signal trials (GO, STOP correct and STOP incorrect, FDR-p=0.05). Red regions are the ones 

exhibiting deactivation across all the three trials. 

3.4. Relationship between GSCORR and task-related BOLD changes. 

eFigure4 shows the conjunction map between GSCORR-shift and areas showing 

activation/deactivation during the task. GSCORR-shift exhibited minimal overlap with both 

activation and deactivation clusters. Specifically, a small overlap between negative GSCORR-

shift and activation clusters was visible in left Inferior Parietal Lobule (IPL) and left 

Brodmann area 6. Concerning GSCORR-shift/deactivation overlaps, the map only showed 

very restricted area in left precuneus (positive GSCORR-shift) and right cuneus (negative 

GSCORR-shift).  

Tables 1A and 1B show correlation analysis between GSCORR values and the beta 

coefficients for the regions showing either activation or deactivation across all the three task 

conditions. 

We found significant correlations only in areas showing common deactivation, where 

GSCORR-task values exhibited a negative correlation with GO beta coefficients (r = -0.299; 

uncorrected p = 0.002, corrected p= 0.018) and STOPcor beta coefficients (r = -0.273; 
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uncorrected p = 0.005, corrected p= 0.040). Marginal significances, not surviving Bonferroni 

correction, were also found in areas of common deactivation for GO beta coefficients and 

GSCORR-rest (r = -0.210; uncorrected p = 0.031), STOPincor and GSCORR-rest (r= -0.251; 

uncorrected p=0.013) and STOPincor and GSCORR-task (r= -0.198; p=0.042). Marginally 

significant correlation was also found in areas showing common activation for STOPcor beta 

coefficients and GSCORR-shift values (r = 0.245; uncorrected p= 0.011). See Table 1. 

 

Table 1A – Correlation maps between GSCORR and beta coefficients in the mask of regions 

showing activation across the three different trial conditions (n = 107) 

Whole brain, voxel-wise significant regions  GSCORR-shift GSCORR-rest GSCORR-task 

GO trials beta coefficients  r 0.095 -0.087 0.010 

 p value 0.334 0.373 0.923 

 p value corr 1.000 1.000 1.000 

STOPcor trials beta coefficients r 0.245** -0.128 0.125 

 p value  0.011 0.192 0.201 

 p value corr 1.000 1.000 1.000 

STOPincor trials beta coefficients r 0.109 -0.006 0.108 

 p value 0.267 0.953 0.271 

 p value corr 1.000    1.000    1.000 

r = Pearson correlation coefficient; Shift=task-rest difference; STOPcor= Stop correct; STOPincor= STOP incorrect; p value 

corr= Bonferroni correction for multiple comparison, * p value<0.05; **p value<0.001. 

 

Table 1B – Correlation maps between GSCORR and beta coefficients in the mask of regions 

showing deactivation across the three different trial conditions (n = 107) 

Whole brain, voxel-wise significant regions  GSCORR-shift GSCORR-rest GSCORR-task 

GO trials beta coefficients  r -0.093 -0.210* -0.299*** 

 p value 0.343 0.031 0.002 

 p value corr 0.686 0.186 0.018 

STOPcor trials beta coefficients r -0.121 -0.152 -0.273*** 

 p value 0.215 0.119 0.005 

 p value corr 0.645 0.476 0.040 

STOPincor trials beta coefficients r 0.035 -0.241** -0.198* 

 p value 0.725 0.013 0.042 

 p value corr 0.725 0.091 0.210 
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r = Pearson correlation coefficient; p= P value; Shift=task-rest difference; STOPcor= Stop correct; STOPincor= STOP 

incorrect; p value corr= Bonferroni correction for multiple comparison, * p value<0.05; **p value<0.001, ***Bonferroni 

correction p value<0.05. 

 

3.5. Sensitivity analyses 

The analyses conducted after GSR showed that GSCORR-shift was largely inferior in 

magnitude compared to the GSCORR-shift measured without GSR (eFigure 1). However, the 

global pattern was still characterized by a predominance of areas with negative GSCORR-

shift. Interestingly, the regions where GSCORR-shift was significant in GSR were almost 

complementary to the ones observed in the no-GSR analysis.  

The covariance analyses between GSCORR-rest/task/shift and SSRT found minimally 

significant results even when adopting the uncorrected-p threshold of 0.05. However, at the 

same threshold of uncorrected-p=0.05, RT showed both positive and negative correlations 

with GSCORR-rest, GSCORR-task, and GSCORR-shift. Voxel-wise findings are reported in 

eFigure 2 and 3. 

 

4. DISCUSSION 

Our primary findings showed non-uniform, state-dependent GSCORR reconfigurations, 

highlighting a negative GSCORR-shift (task < rest) in the majority of sensory and temporo-

parietal regions, as opposed to a positive GSCORR-shift (task > rest) in associative regions. 

Although separate regions were involved in the processing of STOP and GO conditions, a few 

areas were recruited in all the stop-signal trials. Activation in these regions did not correlate to 

GSCORR-rest/task/shift. Conversely, small but reliable negative associations were observed 

between deactivation and GSCORR-task. 

 4.1. State-dependent GSCORR reconfiguration 

The primary aim of this study was to evaluate state-dependent reconfigurations of whole-

brain, voxel-wise GSCORR. According to the current knowledge, FC reconfiguration 

dynamics from rest to task involve a generalized reduction in ReHo (Damiani et al., 2022; 

Tommasin et al., 2018), a reduction in within-network FC (Cole et al., 2019; Tommasin et al., 

2018), and an increase in between-networks FC (Cole et al., 2019; Tommasin et al., 2018). 

The present findings add important information concerning the state-dependency of global 
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connectivity by observing two state-dependent reconfiguration patterns of GSCORR. The first 

dominant pattern showed widespread GSCORR reductions in somatosensory and auditory 

regions. This pattern has also been observed by Zhang and colleagues across several tasks, 

suggesting a common and unspecific trend when transitioning from rest to task states (Zhang 

et al., 2020). 

Nonetheless, the current study is the first to describe a second pattern, that is a GSCORR 

increase in associative subcortical (thalamus and cerebellum) and cortical regions (dPCC and 

PLPC) during the stop-signal task. The thalamus, as a gateway to the cortex, plays a crucial 

role in cognitive control, regulation of thoughts and actions, and goal-directed behaviors 

(Hwang and D‘Esposito, 2022). The cerebellum, traditionally known for its role in motor 

coordination, has been increasingly recognized for its involvement in cognitive, behavioral 

processes and to play a role in cognition, emotion, and autonomic function (Rapoport et al., 

2000; Schmahmann, 2019). PLPC is a higher-level association area, suggested to play a role 

in the executive control of attention, sensory integration and problem solving (Marek and 

Dosenbach, 2018; Middag‐van Spanje et al., 2022; Thomson and Jaque, 2017). Finally, dPCC 

is one of the most important functional hubs belonging to the default mode network (Leech 

and Sharp, 2014), which was found to be associated with an increased metabolism during 

cognitive tasks (Rogan et al., 2022), rapid adjustments to visuospatial needs (Vogt and 

Palomero-Gallagher, 2012) and the modulation of attentional focus (Leech and Sharp, 2014). 

Considering these two opposite patterns, a reallocation of resources from sensory to 

associative regions during the execution of this attention-demanding task can be postulated. 

This hypothesis is further supported by previous evidence suggesting that at rest - when 

associative areas are less recruited than during tasks - GSCORR values are higher in sensory 

than associative regions (Liu et al., 2018; Yang et al., 2016; Zhang et al., 2020).  

In the next chapter we will delve deeper into the relationship between GSCORR and brain 

activation by exploring the functional relationships between the regions with positive 

GSCORR-shift and those that were activated during the task. 

4.2. Task-related BOLD changes 

The current analysis revealed two well-distinguished clusters of BOLD task-related changes, 

one for the GO-baseline and one for the STOP(cor/incor)-baseline contrast, as previously 

observed (Zhang and Li, 2012a). These clusters are evident in both activation and 

deactivation maps and show opposite directions. Despite the many overlaps between 

STOPcor and STOPincor maps, very limited overlaps were found between GO and STOPcor 
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maps, reflecting the presence of two separate systems operating for the response elicitation 

and inhibition. A few overlaps were found, however, between GO and STOPincor maps. This 

may reflect the fact that, during STOPincor trials, inhibition was not efficient and could not 

avoid the elicitation of the motor system.  

Specifically, two regions (left-pre SMA and left IPL) were activated across the three task 

conditions. The novelty of the present findings resides in the observation of task>rest 

contrasts, while the majority of the literature reports comparisons between the trial conditions 

(e.g. STOPcor>STOPincor contrasts). However, we know from the available evidence that 

SMA has been linked to performance-monitoring and the dynamic update of motor schemes 

(Cao and Cannon, 2021; Fauth-Bühler et al., 2012; Hughes et al., 2013), while IPL influences 

working memory and response inhibition (Chambers et al., 2009; Ray Li et al., 2006). 

Although some studies identified IPL and pre-SMA as part of the inhibition circuit activated 

during STOPcor trials, other studies observed that the involvement of this network goes 

beyond inhibition, as it is also recruited during positive behavioral responses (GO trials). The 

presence of BOLD-changes within the same regions (i.e. IPL and SMA) during both GO and 

STOP trials suggests that a common neural network may intervene in the phase immediately 

following the appearance of the first signal, when the subject is still uncertain about whether 

to press the button (GO trial) or inhibit the response (STOP trial) (Chikazoe et al., 2009).  

4.2.1. Activation and GSCORR 

Turning the attention to the GSCORR-activation relationship, the regions exhibiting a 

significant positive GSCORR-shift were not the same showing an activation throughout the 

task (eFigure 4). This is because GSCORR-shift and BOLD task-related changes provide 

information on different neurofunctional domains. A positive GSCORR-shift identifies 

regions whose activity becomes more prominent on the global signal during task execution, 

regardless of the specific type of trial. Thus, GSCORR-shift reflects a process that occurs 

across trial-types because this very process does not depend on the specific trial, but on the 

fact that the subject is in a task-oriented state. Activation, on the other hand, appears to be a 

trial-dependent measure, identifying regions that respond to specific stimuli such as GO or 

STOP prompts. Additionally, GSCORR-shift includes all the time points in the rest and task 

runs, while activation compares the stimulus-induced signal with the ―rest‖ BOLD values of 

the intertrial interval. However, this rest period is different from the one observed during a 

resting-state run, as it could be considered a "task-oriented state" where the subject reflects on 

a recently completed trial and expects further prompts. Coherently with this hypothesis, no 
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significant correlation between GSCORR (rest/task/shift) and activation 

(GO/STOPcor/STOPincor) was observed.  

The presence of a task-oriented state is further confirmed by the fact that the GSCORR-shift 

findings are topographically similar, although further enhanced, when using task residuals. In 

trGSCORR-shift, the activity related to single trials is indeed regressed out. In fact, task 

residual activity can be considered as the spontaneous signals during a task state.  In light of 

these results, GSCORR mirrors the task-engagement, that is, the predisposition of the 

individual to react to task-related stimuli (Zhang and Li, 2010, 2012b). The behavioral 

relevance of such attentional shift from rest to task is supported by the fact that correlation 

analyses with performance indices (i.e., SSRT and RT) identified behavioral correlates of 

GSCORR (eFigure 2 and 3). 

4.2.2. Deactivation and GSCORR 

Although the information from previous literature is too scarce to allow direct comparisons, it 

is noteworthy that deactivation displays stronger correlations with GSCORR compared to 

activation. Specifically, during the task, areas showing deactivation are more functionally 

correlated with the global signal. There are at least two possible explanations for this 

association. Firstly, one of the most important theories about negative beta-coefficients 

describes them as the result of local neural inhibition (Sten et al., 2017). Therefore, specific 

areas may require local inhibition in order to increase their global connectivity. Secondly, the 

increased global connectivity of a region implies that this region is more influenced by distant 

areas that, in our specific case, may be inhibitory. Future studies on the interplay between 

local and global connectivity are required to shed further light on these intriguing 

possibilities. 

A last but fundamental observation can be derived from our sensitivity analyses. In fact, 

GSCORR-shift pattern after GSR was not only reduced, but also complementary to the map 

observed without GSR (eFigure 1). These findings are consistent with the hypothesis 

advocating for the informative nature of the global signal (Scalabrini et al., 2020b; Zhang et 

al., 2020). Besides, they confirm that inclusion and exclusion of GSR are two potentially 
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complementary preprocessing methods whose use depends on the specific research questions 

(Murphy and Fox, 2017). 

 

4.3. Future directions 

GSCORR assesses the strength of association between regional brain activity and the global 

signal. However, recent studies focused instead on characterizing the temporal dynamics 

underlying the association between local and global connectivity in fMRI analyses (Amemiya 

et al., 2014; Kavroulakis et al., 2021; Lv et al., 2013; Mitra et al., 2014). This approach is 

defined as time-shift analysis or lag-structure analysis (Mitra et al., 2014) and explores how 

local-to-global correlations change when shifting the lag between the local and the global 

timeseries. As GSCORR can be defined as a zero-lag time-shift analysis, the present study 

lays the groundwork to better interpret task-related activation/deactivation when taking into 

account the temporal structure of brain dynamics. 

In light of the magnitude of the GSCORR findings for the stop-signal task, we also expect 

this brain dynamic to be characteristic of all the conditions requiring a continuous 

engagement. Future studies may try to replicate the present findings in other tasks that are 

more intermittent or less attentionally demanding in order to test whether GSCORR-shift is 

subject to similar changes or not. These observations would further help to differentiate trial-

independent modulations from trial-dependent ones.    

 

4.4. Limitations 

Although the main dataset on which analyses were performed was of high quality, no other 

sample available online included both rest and stop-signal task runs. Therefore, the 

replicability of the present findings could not be tested. The replication crisis is well 

documented in psychology and psychiatry and requires collaborative efforts to ensure data 

sharing and harmonized infrastructures (Salazar de Pablo et al., 2021).  

This study primarily provides correlational data, thereby restricting our capacity to infer 

causality between GSCORR and changes in task-related activation/deactivation. Future 

studies could delve into the contribution of connectivity measures to task-related BOLD 

changes, for example, by employing linear regression models (Yuan et al., 2013). In 

particular, we found a significant correlation between GSCORR and deactivation, whose 

causal relationship could yield interesting results. 
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Of note, these results are not generalizable to the task condition in general, as our analyses 

exclusively focused on a specific type of task (i.e., the stop-signal). Predicting the outcomes 

of analyses applied to tasks beyond the stop-signal task presents a challenge, compounded by 

the scant literature on the GSCORR-task (and GSCORR-shift) measures. Zhang et al. 

identified a consistent pattern of GSCORR-shift across seven diverse tasks (emotional, 

reward-learning, language, motor, relational reasoning, social cognition, visual N-back), 

calling for the involvement of GSCORR-shift not only across trials within the same task, but 

also across tasks (Zhang et al., 2020). 

As discussed in section 2.7, the interpretation of our results must acknowledge the limitations 

associated with the use of "global signal" approaches. For this reason, we have presented the 

results both with and without GSR (Murphy and Fox, 2017; Shirer et al., 2015).  

5. CONCLUSIONS 

The state-dependent reconfiguration of GSCORR suggests a reallocation of functional 

resources to associative areas during a stop-signal task. Findings showed that GSCORR and 

task-related BOLD changes (i.e. activation and deactivation) represent distinct 

neurofunctional proxies of brain activity, shedding new light about the functional meaning of 

deactivation. 
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