
UNIVERSITY OF BERGAMO

School of Doctoral Studies

Doctoral Degree in Engineering and Applied Sciences

XXXVI Cycle

SSD: ING-INF/05

Enforcing security boundaries and

protecting application data

Advisor

Prof. Stefano Paraboschi

Doctoral Thesis

Gianluca OLDANI

Student ID 1040358

Academic year 2022/2023

Acknowledgments

The research described in the contents of this thesis has been supervised by Prof. Stefano
Paraboschi (Università degli Studi di Bergamo). The works described have received
funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No. 825333 (Mosaicrown) and Horizon Europe – 2.4 programme
under agreement No. 101070141 (GLACIATION).
I would like to thank Prof. Stefano Paraboschi for the precious guidance offered to me
during this journey. My gratitude also goes to my colleagues of the Security Lab of
Università degli Studi di Bergamo: Marco Abbadini, Michele Beretta, Dario Facchinetti
and Matthew Rossi; their collaboration has been crucial to complete a large portion of the
works described in this thesis. A final thank is due to all the people that supported me
during my research, since it is thank to them that the most difficult parts of my journey
have been overcome.

To my family, Chiara and the friends that supported me

Table of contents

Introduction 1

1 Presentation 3
1.1 Document Structure 3
1.2 Publications 7

2 Protect Deno subprocesses through LSMs 9
2.1 Introduction 9
2.2 Background 11
2.3 Cage4Deno 14
2.4 Design and Implementation 17
2.5 Policy generation 23
2.6 Experiments 25
2.7 Related Work 30
2.8 Conclusions 34

3 Hardening WASI using eBPF programs 35
3.1 Introduction 35
3.2 Background 36
3.3 Motivation and threat model 37
3.4 Architecture 38
3.5 Experiments 40
3.6 Related Work 41
3.7 Conclusions 41

4 Extend the protection of Deno native code 43
4.1 Introduction 43
4.2 Background 44
4.3 Security motivation 45
4.4 Design and implementation 47
4.5 Policy 53
4.6 Case Study: Deno runtime 55
4.7 Experiments 58
4.8 Related Work 63

Gianluca Oldani

4.9 Conclusions 64

5 Data Anonymization for Large Datasets 65
5.1 Introduction 65
5.2 Basic concepts 66
5.3 Distributed anonymization 69
5.4 Data pre-processing 71
5.5 Data anonymization 77
5.6 Wrap up and information loss assessment 79
5.7 Implementation 81
5.8 Experimental results 83
5.9 Related work 88
5.10 Conclusions 90

6 Enabling queries on encrypted data 91
6.1 Introduction 91
6.2 Basic concepts 92
6.3 Multi-dimensional tuple partitioning 94
6.4 Index construction 95
6.5 Client-side maps 97
6.6 Query translation and execution 98
6.7 Implementation and experiments 99
6.8 Related work 102
6.9 Conclusions 103

7 Conclusions 105
7.1 Future Work 106

A Cage4Deno BPF implementation details 107
A.1 Hashing & collision handling 107
A.2 Map types 109
A.3 Stack limitation 109

B Policy files samples 111
B.1 GNU Tar policy file 111
B.2 curl policy 112

C Distributed Mondrian experiments 113
C.1 Introduction 113

C.2 Hardware and software requirements 113
C.3 Deployment of the prototype 114
C.4 Use of the prototype 114
C.5 Experimental results produced 117

References 119

List of figures 132

List of tables 133

Introduction

In the recent years, the main programming languages chosen by developers to develope their
applications are high level scripting languages, such as: JavaScript, Python, PHP and Ruby.
This is mainly due to the fact that application demands quick development times, in order to
comply with fast evolving requirements and new features demand.
The aforementioned languages share their ease of use and the possibility of integrating third-
party code into applications through package managers(e.g., npm, pip). In this thesis, great
focus will be on JavaScript, due to the fact that it is one of the most diffused language for the
development of applications. One of the main reason of its popularity in this scenario can be
found in the fact that, while it is born as a scripting language to be run in the client-side of a web
application, the creation of JavaScript runtimes enabled the execution of JavaScript server-side.
Thank to this property, the entirety of the application stack can be developed through the same
language, allowing front-end developers to reuse their skills also for back-end components.
While these properties are welcomed from a software development perspective, the characteris-
tics of JavaScript, when used in the back-end, have led to severe security vulnerabilities. Among
the main reasons of this problem, researchers have identified: i) common behaviors that can
be used when JavaScript is executed with restricted privileges in the browser, are not secure
when applied through JavaScript runtimes, ii) developers employ extensive use of third-party
dependencies, even when only a small portion of these packages are necessary, leading to larger
attack surfaces.
After acknowledging this issue, the research effort aimed at solving it has been mainly focused
on resolving vulnerabilities introduced by JavaScript code, in order to solve the problems which
can be mitigated within the language itself. While these efforts have been a huge improvement
in right direction concerning the security of applications written in JavaScript, the source of
vulnerabilities is not only limited to code written in JavaScript.
A common kind of third-party dependencies are libraries and tools written in low-level lan-
guages(e.g., C/C++ and Rust). This kind of component is usually employed when capabilities
beyond the reach of JavaScript are needed(e.g., performance delivered, hardware capabilities).
The studies presented in the first chapters of this thesis are part of the line of work performed by
the research community in this direction: mitigating security risk of JavaScript application when
native components are employed. The first work presented is Cage4Deno, a set of modifications
applied to the Deno JavaScript runtime in order to restrict privileges of native code run as a
subprocess, following the least-privilege principle. After the preliminary work performed in
Cage4Deno, it has been investigated the possibility of extending its security features to native
libraries. WASM is a popular proposal which is able to run untrusted native code in a secure

sandbox. In this scenario, the thesis exposes the work done in order to achieve better security
during the interaction between WASM and the underlying OS through WASI. While the results
achieved in this scenario are in line with the performance already obtained through modern
WASI-compliant runtimes, running WASM introduces a noticeable overhead compared to native
code. This lead to the development of NatiSand, a set of modification for JavaScript runtimes
which can apply access restriction to utilities that are employed both under form of subprocesses
and shared libraries.
While the collection of these first research efforts is able to limit the impact of a successful
breach of an application, the protection enforced on native components follows the least-privilege
principle. This enhances the security of such dependencies, since they are no longer able to reach
resources which are not needed to perform their duty. The highlighted issue in this scenario
is that it has to be taken into consideration that access is still granted to resources actually
needed by the native component: these are still reachable by attackers in case of a successful
exploit. For this reason, in order to have a comprehensive protection that also includes resources
inside the enforced security boundaries, the thesis addresses the problem of allowing access
to resources through methods that are able to provide security guarantees but with a limited
impact on the quality of the service provided by the protected application (e.g., latency and result
quality). In order to take full advantage of the kind of deployments that are commonly used in a
modern application scenario (e.g. the cloud), the protection techniques explored are applicable
through distributed technologies that can be leveraged through all the major cloud providers.
The protection of data collection described in the last chapters of this thesis has been explored
in order to achieve two different objectives: privacy protection of data points and information
confidentiality. The contribution to the first topic details how it is possible to leverage Apache
Spark to distribute a well-know single thread algorithm to enforce k-Anonymity: Mondrian.
Concerning the technique employed to enforce data confidentiality, the thesis explores how it
is possible to create indexes that can be stored on the client of a remote application in order to
allow the execution of query on encrypted data, without sharing any decryption key with the
host that may have been compromised.

Chapter 1. Presentation

1.1 Document Structure

This thesis is structured in seven chapters.

Chapter 1 describes structure of the thesis, gives an overview of the contents of each chapter
and lists the publications that are the foundations of its contributions.

Chapter 2 describes the first research efforts done to create a sandbox for native components
employed through the Deno JavaScript runtime. The product of this research direction is
Cage4Deno: a set of modifications to Deno to enable the creation of fine-grained sandboxes for
the execution of subprocesses. During the design of this first proposal, the following properties
have been set as primary goals: compatibility, transparency, flexibility, usability, security, and
low performance overhead. The realization of these requirements has been possible thanks to
the usage of Landlock and eBPF, two robust and efficient Linux Security Modules. In addition
to this, particular attention has been paid to the design of a flexible and compact policy model
consisting of RWX permissions. The process of formulating such policies is supported by a
toolchain, which can automatically create ruleset based on a test-suite provided by developers.

• Section 2.1 introduces the security gap concerning native utilities employed by JavaScript
applications and highlight the contributions of Cage4Deno

• Section 2.2 describes in detail the current state of the Deno JavaScript runtime and gives
an overview of the properties of the leveraged Linux Security Modules, Landlock and
eBPF

• Section 2.3 gives a high level description of the architecture of Cage4Deno, describes the
threat model addressed and the properties that are guaranteed

• Section 2.4 describes the policy model enforced by Cage4Deno and gives a detailed
description of the enforcement procedure of both permissions and prohibitions

• Section 2.5 proposes a method to automatically generate policy rules for Cage4Deno given
a test-suite

• Section 2.6 illustrates the experiments that have been done to assess that Cage4Deno is
both able to successfully mitigated recent vulnerabilities and to incur in low overhead
when its protections are in place

3

Gianluca Oldani

• Section 2.7 discusses related works

• Section 2.8 concludes the chapter

Chapter 3 describes how part of the techniques explored in Chapter 2 can also be applied to
WebAssembly in order to guarantee additional security properties when executing native code.
The use case for this research is similar to the one of Cage4Deno, since WebAssembly was
originally designed to be run inside web browsers and the introduction of modern runtimes like
Wasmtime and WasmEdge allows the execution of WebAssembly directly on various systems.
In order to access system resources with a universal hostcall interface, a standardization effort
named WebAssembly System Interface (WASI) is currently undergoing. With specific regard to
the file system, runtimes must prevent hostcalls to access arbitrary locations, thus they introduce
security checks to only permit access to a predefined list of directories. Previous works have
assessed that this approach suffers from poor granularity, is recognized as error-prone and has
led to several security issues. In this work it is illustrated how it is possible to replace the
security checks in hostcall wrappers with eBPF programs, enabling the introduction of fine
grained per-module policies. Preliminary experiments confirm that the approach introduces
limited overhead to existing runtimes.

• Section 3.1 introduces the security gap concerning the execution of WebAssembly outside
of the browser and illustrates the core idea of using BPF programs to strengthen WASI
security properties.

• Section 3.2 describes in details the current state of WASI runtimes

• Section 3.3 explains the motivations of this research and details the threat model

• Section 3.4 illustrates the architecture developed to perform the proposed security checks

• Section 3.5 shows the results of the performance evaluation of our approach when applied
to popular WebAssembly runtimes

• Section 3.6 discusses related works

• Section 3.7 concludes the chapter

Chapter 4 further extends the research done in Chapter 2 and 3, since it continues the research
performed on JavaScript runtimes and also complements the file system protection with security
guarantees concerning network and IPC resources. In this case, the research is again conducted
on JavaScript runtimes due to the possibility of executing shared libraries. When these are
leveraged, similarly to subprocess, no isolation guarantees are provided. This limitation affects
many popular runtimes including Node.js, Deno, and Bun.

4

Presentation

In this chapter it is described NatiSand, a component for JavaScript runtimes that leverages
Landlock, eBPF, and Seccomp to control the filesystem, Inter-Process Communication (IPC), and
network resources available to binary programs and shared libraries. Similarly to Cage4Deno,
NatiSand does not require changes to the application code and offers to the user an easy interface.
To demonstrate the effectiveness and efficiency of the proposed approach, the prototype of
NatiSand has been integrated into Deno. The security assessment has been conducted through
the reproduction of several vulnerabilities affecting shared libraries, showing how they are
mitigated by NatiSand. In addition to that, an extensive experimental evaluation to assess the
performance of NatiSand has been conducted, proving that the proposal is competitive with
state-of-the-art code sandboxing solutions. The implementation is available open source.

• Section 4.1 introduces the security gap concerning the execution of native libraries through
JavaScript runtimes and lists the contributions of the research exposed in the chapter.

• Section 4.2 describes Seccomp BPF

• Section 4.3 explains the motivations of this research and details the threat model

• Section 4.4 illustrates the objectives of the research exposed in the chapter and details the
architecture of NatiSand

• Section 4.5 describes the policy model used to express the security guarantees enforced
by NatiSand and proposes an approach to automatically generate policies

• Section 4.6 discusses the implementation of the prototype of NatiSand inside the Deno
JavaScript runtime

• Section 4.7 illustrates the experiments that have been done to assess that NatiSand is both
able to mitigate recent vulnerabilities while also exhibiting better performances compared
to state-of-the-art solutions

• Section 4.8 discusses related works

• Section 4.9 concludes the chapter and discusses future research directions

Chapter 5 explores a solution to address the issue of handling in a secure way data that
is included in the security boundary enforced through the research exposed in the previous
chapters. Particularly, k-Anonymity and ℓ-diversity are the techniques investigated. These are
two well-known privacy metrics that guarantee protection of individual data points in a dataset
by obfuscating information that can disclose identities and sensitive information. Existing
solutions for enforcing them implicitly assume to operate in a centralized scenario, since they
require complete visibility over the dataset to be anonymized, and can therefore have limited

5

Gianluca Oldani

applicability in anonymizing large datasets. In order for this techniques to be applied in an
environment more similar to the one of previous chapters, the research presented proposes a
solution that extends Mondrian (an efficient and effective approach designed for achieving k-
anonymity) for enforcing both k-anonymity and ℓ-diversity over large datasets in a distributed
manner, leveraging the parallel computation of multiple workers.

• Section 5.1 introduces the limitations of executing Mondrian in a centralized fashion and
exposes the contributions of the research

• Section 5.2 gives an overview of k-anonymity, ℓ-diversity and the discusses the Mondrian
algorithm

• Section 5.3 describes form a high level perspective the architecture implementation to
distribute the Mondrian algorithm

• Section 5.4 illustrates the techniques employed to distributed data among the cloud workers
and discusses alternative approaches

• Section 5.5 presents the anonymization techniques supported by the developed prototype

• Section 5.6 explains the metrics used to assess the quality of the developed approach and
how these are calculated

• Section 5.7 describes the technical details of the prototype implemented through Apache
Spark

• Section 5.8 exposes and discusses experimental results

• Section 5.9 discusses related works

• Section 5.10 concludes the chapter

Chapter 6 presents an approach for indexing encrypted data stored on the host of a vulnerable
web application to enable provider-side evaluation of queries. The approach designed supports
the evaluation of point and range conditions on multiple attributes. The core component of the
proposal is a spatial-based algorithm that partitions tuples to produce a clustering that ensures
efficient query execution. Query translation and processing require the client to store a compact
map. The experiments, evaluating query performance and client-storage requirements, confirm
the efficiency enjoyed by our solution.

• Section 6.1 introduces the addressed problem and the core ideas of the proposed architec-
ture to enable queries over encrypted data store on a remote host

6

Presentation

• Section 6.2 illustrates basic concept and presents the definition of the terms used in the
chapter

• Section 6.3 describes the partitioning procedure applied over protected data collections

• Section 6.4 illustrates how indexes are created from the partitioned dataset

• Section 6.5 presents format of the maps that are stored on the client of the web application

• Section 6.6 describes how query are translated in order to be executed on the encrypted
data collections

• Section 6.7 exposes the technical details of the implemented prototype and discusses
experimental results

• Section 6.8 discusses related works

• Section 6.9 concludes the chapter

Chapter 7 draws the conclusions of the thesis and discusses future work.

1.2 Publications

In this section are listed the publications produced during the PhD course that compose the basis
for this thesis.

• Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi and Stefano
Paraboschi. Cage4Deno: A Fine-Grained Sandbox for Deno Subprocesses . “ASIA
CCS ’23: ACM Asia Conference on Computer and Communications Security”, pp.
149–162. 2023.

• Marco Abbadini, Michele Beretta, Dario Facchinetti, Gianluca Oldani, Matthew Rossi
and Stefano Paraboschi. Leveraging EBPF to Enhance Sandboxing of WebAssembly
Runtimes. “ASIA CCS ’23: ACM Asia Conference on Computer and Communications
Security”, pp. 1028–1030. 2023.

• Marco Abbadini, Michele Beretta, Dario Facchinetti, Gianluca Oldani, Matthew Rossi
and Stefano Paraboschi. “Lightweight Cloud Application Sandboxing” . IEEE Inter-
national Conference on Cloud Computing Technology and Science (IEEE CLOUDCOM
2023).

7

Gianluca Oldani

• Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi and
Stefano Paraboschi. NatiSand: Native Code Sandboxing for JavaScript Runtimes . To
appear in “26th International Symposium on Research in Attacks, Intrusions and Defenses
(RAID 2023)”.

• Sabrina De Capitani di Vimercati, Dario Facchinetti, Sara Foresti, Gianluca Oldani,
Stefano Paraboschi, Matthew Rossi and Pierangela Samarati. “Scalable distributed
data anonymization”. IEEE International Conference on Pervasive Computing and
Communications Workshops and other Affiliated Events (PerCom Workshops), pp. 401-
403. IEEE, 2021.

• Sabrina De Capitani di Vimercati, Dario Facchinetti, Sara Foresti, Gianluca Oldani,
Stefano Paraboschi, Matthew Rossi and Pierangela Samarati. “Artifact: Scalable dis-
tributed data anonymization” . IEEE International Conference on Pervasive Computing
and Communications Workshops and other Affiliated Events (PerCom Workshops), pp.
450-451. IEEE, 2021.

• Sabrina De Capitani di Vimercati, Dario Facchinetti, Sara Foresti, Giovanni Livraga,
Gianluca Oldani, Stefano Paraboschi, Matthew Rossi and Pierangela Samarati. “Scalable
Distributed Data Anonymization for Large Datasets” . IEEE Transactions on Big Data
(Volume: 9, Issue: 3, 01 June 2023), pp. 818 - 831. IEEE, 2022.

• Sabrina De Capitani di Vimercati, Dario Facchinetti, Sara Foresti, Gianluca Oldani, Ste-
fano Paraboschi, Matthew Rossi and Pierangela Samarati. “Multi-dimensional indexes
for point and range queries on outsourced encrypted data” . 2021 IEEE global
communications conference (GLOBECOM). IEEE, 2021.

• Sabrina De Capitani di Vimercati, Dario Facchinetti, Sara Foresti, Gianluca Oldani,
Stefano Paraboschi, Matthew Rossi and Pierangela Samarati. “Multi-Dimensional Flat
Indexing for Encrypted Data Databases”. Under submission.

• Marco Abbadini, Michele Beretta, Sabrina De Capitani di Vimercati, Dario Facchinetti,
Sara Foresti, Gianluca Oldani, Stefano Paraboschi, Matthew Rossi and Pierangela Sama-
rati. “Supporting Data Owner Control in IPFS Networks” . 2024 IEEE International
Conference on Communications (ICC).

8

Chapter 2. Protect Deno subprocesses through LSMs

2.1 Introduction

JavaScript is currently among the most popular programming languages [160]. One of its
strengths is versatility, indeed, it can be used both in the front-end and in the back-end to
write fully fledged web applications. JavaScript was originally meant for the browser, and its
porting on the back-end by Node.js is not without security risks. As highlighted in previous
studies [67, 161, 173, 174, 184], vulnerabilities affecting the language or the toolchain can lead
to severe breaches.

A recent initiative aiming to reduce the risk coming from the execution of vulnerable or untrusted
JavaScript code on the back-end is Deno [101], a modern, secure, open-source, cross-platform
JavaScript runtime. Contrary to its well-known predecessor (i.e., Node.js), Deno was designed
with security as one of its primary goals [57]. This aspect partly stems from the programming
language used to implement it (i.e., Rust instead of C++), but mostly originates from its default
behavior of executing JavaScript code in a completely isolated sandbox. Unless otherwise
stated by the developer, Deno prevents any program from accessing the filesystem, network,
environment variables, and even high-resolution time measurements. Unfortunately, although
its permission model allows developers to grant fine-grained authorizations (read/write/execute
privilege on a single file, permissions to connect to a known hostname, etc.), dynamic libraries
and subprocesses can access system resources regardless of the permissions granted to the Deno
program that spawned them, essentially invalidating the security sandbox [59].

Research has shown that third-party code accounts for a great portion of a JavaScript appli-
cation codebase [173]. The 2022 State of Open Source Security [157] shows that on average
open-source JavaScript projects rely on 174 third-party dependencies. The practice of reusing
third-party libraries is so widespread that it led the authors of Deno to implement the Node
compatibility mode [61], which enables the execution of Node packages in Deno. Third-party
modules often depend on subprocesses [66,82,161]. There is a broad spectrum of programs that
fall into this category, ranging from Linux utilities to handle files [130], to programs that process
media (e.g., image/video conversions [129], metadata removal [128]), and many more. Since
these programs (i) are executed outside of a sandbox, (ii) are potentially exposed to unsanitized
input, and (iii) are often written with unsafe languages, the risk of security violations is concrete.
The 2022 State of Open Source Security reports that, on average, JavaScript projects are affected
by 40 vulnerabilities when dependencies are taken into account. Focusing on the records of
the last 5 years, it has been possible to identify a sample of 15 high-severity CVEs that affect

9

Gianluca Oldani

third-party software used by popular packages (averaging more than 1M downloads/week), and
allow an attacker to perform malicious actions such as: privilege escalation on the host, open
reverse shells, perform local file inclusion, and corrupt the filesystem.

Contributions of this research The following sections describe the development of a proposal
to address the issues just mentioned, Cage4Deno: an extension of the Deno security functions
aimed at mitigating vulnerabilities that may be introduced when subprocesses are used. The
prototype implementing Cage4Deno is open-source and available at https://github.
com/unibg-seclab/cage4deno. The design and implementation targets Linux systems,
since it leverages the recent Landlock Linux Security Module and the Extended Berkeley Packet
Filter (eBPF), to transparently sandbox processes currently executed outside of the sandbox by
Deno. The primary goal of the proposed protection mechanism is to preserve the integrity of
the filesystem, and preventing access to confidential resources. While designing Cage4Deno,
great attention has been paid offer a tool that is usable by developers: (i) no understanding of
the kernel security features leveraged by our solution is required to use it, and (ii) although
developers should be knowledgeable about the functionalities of the program they want to use,
it is not expected from them to be fully aware of its functioning under the hood. To this end,
the proposal of Cage4Deno also includes the design of a flexible and compact policy model.
It consists of rules granting read (R), write (W) or exec (X) permissions on a filesystem
node, which propagate towards its descendants, and deny rules (D) to block the propagation,
thus reducing the number of rules and the effort of the developer. To support developers in the
procedure of generating policy rules for Cage4Deno, the prototype includes the implementation
of an auxiliary open-source tool named dmng [6]. This addition part of the toolchain can be used
to generate policies that conform to the least-privileged principle for each subprocess employed.
dmng can be invoked interactively by the developer via CLI, or integrated into CI/CD pipelines
and run against a set of use cases, as best practice suggests. As a final remark of the design of
Cage4Deno: the set of extensions preserves backward compatibility, meaning that sandboxing of
existing code, including direct or transient dependencies, can be achieved without code changes.

The security benefits of Cage4Deno are demonstrated by showing how it is capable of mitigating
a several real-world vulnerabilities, which have been exploited against popular services (e.g.,
GitLab [45] and TikTok [88]). Finally, an experimental evaluation has been performed in order
to compare Cage4Deno to both scenarios with no sandboxing, and sandboxing through state-of-
the-art proposals, showing substantial performance improvements with respect to the available
alternatives.

10

https://github.com/unibg-seclab/cage4deno
https://github.com/unibg-seclab/cage4deno

Protect Deno subprocesses through LSMs

Deno

stdout 1

stderr 2

subprocess 3

Resources V8

fn op_run(...)

exec
/usr/bin/tar V8 sandbox

JS program

let proc =
 Deno.run({...})

Figure 2.1: High level view of the Deno architecture

2.2 Background

This section overviews the frameworks used to implement Cage4Deno.

2.2.1 Deno

Deno [101] is a runtime for JavaScript and TypeScript embedding V8 [169], an open-source
high-performance JavaScript and WebAssembly engine by Google. As already mentioned,
Deno can be seen as an alternative to Node.js, with some key security features that derive from
its design. In detail, it has a modular architecture organized into three main components: (i)
rusty v8, which defines the set of bindings to the V8’s API; (ii) deno core, a package built on
top of rusty v8 implementing the abstractions required to run JavaScript (i.e., the JsRuntime);
and (iii) deno, a package providing the Deno executable and the user-facing API.
Among the abstractions implemented in deno core there are ops, native functions directly called
from JavaScript that expose services not directly available in V8. These include primitives to
open files, create network sockets, spawn child processes, access environment variables, etc.
From a security perspective, each of the requests issued by the program running inside the V8
sandbox (i.e., the op calls) can be monitored by Deno and explicitly blocked or authorized based
on a set of permissions. By default, apps run without any permission, that is why Deno claims
to be secure by default. The permission system categorizes the resources based on their type
(filesystem, environment variables, network, etc.). There are two granularity levels: access to
the whole resource category (e.g., all the files on the filesystem), and access to a single resource
in the category (e.g., a single file). The resources accessible through ops are stored by deno core

11

Gianluca Oldani

T1

Landlock parent
sandbox

T2

Landlock child
sandbox

T3

T4

1. T1 forks T2

2. T1 restricts self (but not T2)

3. T1 forks T3, T3 inherits the parent sandbox

4. T3 forks T4, T4 inherits the parent sandbox

5. T4 restricts self

1

2

3

4

5

thread

Figure 2.2: Creation and inheritance of a Landlock sandbox

in a resource table, and are uniquely identified by integers, similarly to the Unix concept of file
descriptor.
The ops and resources interface abstraction gives Deno the ability to control the information
flow between the system and the sandboxed app. This is a big step forward compared to Node.js
in terms of security. Unfortunately, this level of protection applies only to the components
written in JavaScript. When the app executes a program on the host leveraging for example
the Deno.run() function, the request is handled by Deno spawning a new subprocess. As
depicted in the high level view of the Deno architecture shown in Figure 2.1, this process runs
unconstrained on the host (without sandboxing). This is a limitation of the current security
model as, in case of a vulnerability, the host can be compromised [57].

2.2.2 Landlock LSM

The Landlock Linux Security Module (LSM) aims to provide developers with an unprivileged
solution to implement application sandboxing. The availability of Landlock is expected to
help mitigate the security impact of bugs and unintended or malicious behavior of user-space
applications. Also, it is fully composable with other LSMs like SELinux, AppArmor and Yama.
Currently, Landlock focuses on the protection of the filesystem. In detail, Landlock classifies
kernel resources as objects, permitting actions over them based on rulesets. As an example, a
ruleset can grant the thread read and exec access to objects stored under /tmp. Rulesets are
created using the landlock create ruleset() and landlock add rule() system
calls, and subsequently activated with landlock restrict self(). Rules are inherited
by the children created after sandbox activation, and the actions available can only be further
restricted. The process is detailed in Figure 2.2.

12

Protect Deno subprocesses through LSMs

BPF program
& maps

source
code

BPF
front-end

bpf syscall

us
er

 s
pa

ce

Verifier

JIT
compiler

syscalls

ke
rn

el
 s

pa
ce

load time runtime

Thread

BPF
programBPF maps

resources

bpf syscall

BPF-aware
thread

Figure 2.3: Overview of the BPF architecture

Although Landlock permits to sandbox a thread ensuring low performance overhead, there are
a few limitations. The most relevant to the implementation of Cage4Deno are: (i) it is not
possible to perform any filesystem topology modification (i.e., arbitrary mounts), and (ii) there
is no support for a deny listing approach during policy creation.

2.2.3 eBPF

The Extended Berkeley Packet Filter (eBPF, henceforth referred to as BPF) [83, 96] enables the
execution of programs within the operating system kernel. The programs, which are loaded
at runtime, extend the kernel capabilities, without requiring the developer to change the kernel
source code, nor loading new kernel modules.
BPF programs are non-preemptable event-driven programs that are run when a certain user- or
kernel-space hook point is reached. Predefined hooks include system calls, tracepoints, network
events, function entry/exit, etc. BPF programs are usually written using a BPF front-end, which
provides an abstraction to write programs in a high-level language, specify attachment points,
declare data structures, and compile the source code into BPF bytecode. A few BPF front-ends
exist; we use libbpf [109, 125] as it elegantly addresses portability following a Compile Once –
Run Everywhere approach [125]. After a BPF program is compiled to bytecode, it can be loaded
into the Linux kernel via the bpf() system call. This is a privileged operation that requires the

13

Gianluca Oldani

CAP BPF Linux capability, and optionally CAP PERFMON (to load tracing-related programs)
an d CAP NET ADMIN (to load networking-related programs) [4]. As the program is loaded
into the kernel, it is subject to the verification and JIT compilation phases. The verification
phase ensures the program is safe and does not introduce reliability issues (e.g., termination
is guaranteed, memory requirements are satisfied), while the Just-In-Time (JIT) compilation
translates the generic bytecode to architecture-specific optimized code. Once completed, the
program is loaded into the kernel and attached to the selected hook. The architecture of BPF
and the loading process are shown in Figure 2.3.
BPF programs cannot call arbitrary kernel functions and cannot freely share the information
collected with user space. Instead, they rely on helper functions, a stable API implemented
by the kernel that is used for tasks like manipulating network packets, inspecting kernel data
structures, etc. Among the most frequently used helpers, there are functions to read and write
maps. Basically, maps are data structures that permit to keep a state between different invocations
of BPF programs, and share data with user-space applications.
BPF’s capabilities have been further extended in 2020 with the addition of the Kernel Runtime
Security Instrumentation (KRSI) [42], also known as BPF LSM. This feature permits to attach
BPF programs to LSM hooks, and thus enforce access control.

2.3 Cage4Deno

2.3.1 Overview

Cage4Deno aims to provide a set of sandboxing functions to strengthen the Deno security
model. The proposal arises from the need to provide isolation for subprocesses spawned with the
Deno.run() and Deno.Command.spawn() functions. As mentioned in Section 2.1, the
practice of executing subprocesses is heavily used by developers. Unfortunately, any subprocess
that executes this way falls outside of the Deno security model, essentially invalidating the
sandbox (see Section 2.2.1). Indeed, an attacker that successfully exploits a security flaw
affecting the utility run by a subprocess can perform privilege escalation on the host, open
reverse shells, perform local file inclusion, corrupt the filesystem, etc.
Cage4Deno extends Deno giving developers the ability to constrain the execution of subpro-
cesses. To do that, the developer associates each subprocess with a policy file, listing a set
of rules. Rules are straightforward, each of them granting read (R), write (W) or exec
(X) permissions on a filesystem node. To reduce the number of rules in the policy, the set of
RWX permissions is extended with deny (D). This enables permissions granted on a filesystem
node to propagate towards its descendants, and to block the propagation with the use of deny
rules. The permissions granted by the developer are then automatically assigned to the sub-

14

Protect Deno subprocesses through LSMs

process at runtime. Cage4Deno performs this process thanks to the sandboxer, a new module
added to Deno that leverages the Landlock LSM and the BPF framework (operating in stacking
mode [187]) to implement the sandbox at kernel level. This ensures security checks are not
bypassable, however it implies that our solution only works on Linux-based systems with these
features enabled. Nowadays, Landlock LSM is already available in most systems, BPF LSM
not yet. However, bleeding edge distributions, like Arch Linux, are starting to release with it
enabled by default.1 Compared to other well-known general-purpose sandboxing solutions like
Minijail [80], and Google Sandbox2 [81], Cage4Deno does not require the developer to know
anything about the advanced security features offered by the kernel to confine a process. All
the developer has to understand is the straightforward RWX+D permission model. Moreover,
Cage4Deno does not require the developer to understand the internal logic of the utility executed
by the subprocess, all she needs to know are its input and output (provided by either absolute or
relative path). An overview of our proposal is shown in Figure 2.4.

2.3.2 Threat model

Similarly to other research proposals [55, 162, 174], Cage4Deno focuses on the runtime com-
promise of possibly buggy or vulnerable utilities (i.e., binaries or libraries), and does not target
actively malicious ones. Therefore, developers of the utilities are not malicious actors, but, they
may inadvertently introduce vulnerabilities into their code. In this setting, attackers may control
arguments of the utilities by passing malicious payloads through web interfaces or programmatic
APIs. Prominent examples include utilities that offer manipulation capabilities of multimedia
files (e.g., ExifTool, FFmpeg, GraphicsMagick, ImageMagick), or object decompression (e.g.,
GNU Tar). These programs are usually written in memory-unsafe languages, such as C/C++,
and due to their size and complexity are often the source of vulnerabilities [126]. The constant
and extensive exposure to untrusted inputs in web applications may enable the attacker to trigger
these vulnerabilities, leading to memory corruption issues. Arbitrary file reading or writing,
local file inclusion and remote code execution are only a few of the possible risks associated
with this kind of attack vector. In addition to that, package managers for languages commonly
used in web development (e.g., npm, pip) do not enforce any kind of permission system. Thus,
attackers can exploit vulnerabilities introduced by direct or indirect dependencies installed when
3rd party modules are imported by the application. Previous studies [54,118,191] have reported
the risks associated with the propagation of vulnerabilities coming from dependencies in various
software ecosystems. Usually, the exploitation of this kind of vulnerability leads to breaches
that undermine confidentiality and integrity of data and code that reside outside the utility under
attack. The goal of Cage4Deno is preventing a compromised utility running inside a Deno sub-

1Enabling BPF LSM on systems not supporting it by default requires replacing the system kernel with the same
release of the kernel, but with BPF LSM available.

15

Gianluca Oldani

subprocess 3

Resources

us
er

 s
pa

ce
ke

rn
el

 s
pa

ce

sandboxer

exec args

Filesystem
resources

syscalls

BPF prog 1

BPF prog N

…
BPF maps

V8 sandbox Landlock sandboxCage4Deno changes

V8

BPF
front-end

Landlock LSM

JS program

Deno.run({args})

Policy DB

A

Deno

1B

bpf syscall landlock syscalls

1

2

4

3
subprocess

Figure 2.4: Overview of Cage4Deno implementation. Initial setup: (A) read the policy and
(B) load BPF programs and write maps according to it. On subprocess request: (1) intercept
subprocess creation, (2) create a Landlock-sandboxed subprocess with BPF deny, and (3) execute
the utility. All the requests issued by the subprocess are restricted according to the policy (4)

process to violate access confidentiality and integrity of the filesystem. Notice that preventing
integrity violation of the filesystem means, first and foremost, preserving the integrity of the
web application code, configurations and data.

2.3.3 Design objectives

Several objectives need to be fulfilled by our proposal to ensure security, efficiency and ease of
use.

O1. Integration with existing solutions (Compatibility): The proposal must be compatible
with the current Deno architecture, and should be considered as an opt-in feature by the

16

Protect Deno subprocesses through LSMs

developer (i.e., backward compatible). Also, it has to be stackable with other security
mechanisms already active on the host, like SELinux, AppArmor and Yama.

O2. Ease of use (Transparency): To be aligned with the needs of the web development scenario,
the solution must be simple and easy to use. No specific understanding of the advanced
security features leveraged by our solution, and of the underlying operating system, must be
required to use it.

O3. Fine-grained access control (Flexibility): Unlike other security features that create a
separated view of global resources (i.e., Linux namespaces), the solution must enable the
developer to access the whole filesystem, granting access with file-level granularity rather
than volume-level. Also, the developer must be able to flexibly switch between different
policies, without requiring a host reboot when a new policy needs to be loaded.

O4. Automatic generation of policies (Usability): The proposal must provide tools to sup-
port zero-effort policy creation. With the exception of its input and output, no specific
understanding of each utility should be required to run it successfully.

O5. Mitigation of vulnerabilities (Security): The proposal must prove effective in addressing
the threat model described in Section 2.3.2 and mitigate CVEs affecting common Linux
utilities.

O6. Low overhead (Performance): The overhead introduced with the additional security fea-
tures must be compatible with the requirements of Web applications, which tend to prioritize
short response time. It should be lower than the one introduced by state-of-the-art general
purpose sandboxing solutions, such as Minijail and Google Sandbox2.

2.4 Design and Implementation

This Section illustrates the design and implementation of Cage4Deno. The first component
described is the interface used by the developer to input the policy. After that, it is illustrated
what changes have been introduced to Deno in order to support read, write, exec and
deny rules. A minimal program executing the tar utility in a subprocess is used as running
example. The approach used to automatically generate the policy to confine tar is further
detailed in Section 2.5, while additional BPF implementation details that focus on performance
improvement are discussed in Appendix A.

2.4.1 Policy and interface

In the current Deno architecture, attributes and permissions associated with a program are
always specified prior to execution. The developer provides this information through the Deno

17

Gianluca Oldani

command line interface (CLI) using runtime flags. Runtime flags of the deno run instruction,
which precede the program name in the argument list, are immediately parsed and added to
the global state before the JS program is executed. This design philosophy permits to directly
address access requests issued by the application at runtime and, in case no permission is
available, the program is promptly terminated. As an example, consider the program shown in
Listing 2.1. Its purpose is simply to execute the tar utility to extract the compressed archive
input.tgz to the output directory. Since to execute tar it leverages a subprocess, the
argument --allow-run=tar must be provided, as the lack of such a permission would lead
to the operation being prohibited.

As explained in the overview (Section 2.3.1), Cage4Deno relies on the ability to attach a policy
to the program. To be compliant with the current design of Deno, we extended the global state
adding the --policy-file runtime flag. As the name suggests, it receives as input a policy
file. The policy file uses a JSON format, which is easy to edit and parse, and well-known by
web developers. The file contains an array of policies identified by a policy name. Each
policy includes four arrays, read, write, exec and deny, listing a set of filesystem entries.
As shown in Figure 2.4, the life cycle of Cage4Deno can be divided into two phases: load
time and enforcing time. When Cage4Deno starts, the content of the policy file is read by the
sandboxer (A); to avoid repeating this step each time a new subprocess is spawned, the rule
sets are stored in the permission state of Deno. Once all policies have been parsed, if any of
them contains negative rules, the sandboxer loads the set of BPF programs needed to enforce
deny, and a map for each policy containing the corresponding prohibited paths (B). Due to this
additional step, this is the only part of the execution in which Cage4Deno requires additional
privileges compared to Deno. These privileges consist of the set of Linux capabilities necessary
to load BPF components. To avoid any additional interaction the capabilities are configured as
file capabilities. Once every BPF component has been loaded, the setup procedure is responsible
for dropping these additional capabilities. This is done in order to avoid running with higher
privileges with respect to Deno at runtime.

After the initial setup, Cage4Deno is responsible of enforcing the policies provided by the
developer. The sandboxer intercepts subprocess creation requests issued by the JS application at
runtime (1) and, according to the policies available, it restricts the permissions associated with
the subprocess (2) before the exec of the command provided to the Deno.run() is performed
(3). During the subprocess (or any of its children) lifetime, file interactions are controlled by
Landlock and the developed BPF programs to make sure access to the requested path is granted
according to the policy definition provided by the developer (4). Two options are available to
retrieve proper policy from the list: (i) automatically select the one with policy name matching
the utility to be run in the subprocess (e.g., tar in Listing 2.1), and (ii) using the policy directly
specified by the developer in the JS code using the newly introduced policyId option as

18

Protect Deno subprocesses through LSMs

Listing 2.1: An example of child process in Deno
1 let a=Deno.run({cmd: ["tar", "xzf", "input.tgz", "-C", "output"]}

);
2 await a.status();

Listing 2.2: Restricting a child process using policyId
1 let a=Deno.run({cmd: ["tar", "xzf","input.tgz", "-C", "output"],

policyId:"tarPolicy"});
2 await a.status();

shown in Listing 2.2. In both cases, if no policy is found, Cage4Deno behavior falls back to the
default Deno permission model. Option (i) allows the developer to run the subprocess without
modifications to the JS program, while option (ii) gives more flexibility when multiple policy
profiles for the same utility are available. This interface is straightforward and is perfectly
aligned with the current Deno security model and architecture (Objective O1). Moreover, it
does not require the developer to understand how the sandboxer leverages the kernel security
features to add the restrictions, while granting the developer direct observability of the security
boundaries put in place (Objective O2).

2.4.2 Support to RWX rules

Deno permits to set filesystem-related permissions through the allow-read, allow-write
and allow-run runtime flags. As explained in the background (Section 2.2.1), the flags can
be used to configure access to the whole filesystem, or can be refined specifying a list of comma
separated filesystem entries. Similarly, to leverage Cage4Deno, developers are expected to detail
the read, write and exec permissions inside the JSON policy file. Listing 2.3 exemplifies
the RWX permissions associated with the tar example.
The support for RWX permissions was introduced to Deno changing the implementation of
deno core. Internally, when a program performs a call to the functions Deno.run() and
Deno.Command.spawn(), the bindings defined in rusty v8 are used to translate the request
into an op run. The operation is subsequently sent to the JS runtime, which is responsible to
manage the request. In the case of a subprocess creation, this is done leveraging the asynchronous
Tokio [63] runtime to configure an instance ofCommand, a process builder providing fine grained
control over how the process should be spawned. To apply the correct policy, Cage4Deno
changes the procedure employed at process creation: a a closure (Rust equivalent of a C++
lambda expression) is scheduled to be run just before the exec function is invoked. The
closure leverages the sandboxer module to create a new Landlock ruleset consisting of the RWX
permissions found in the policy, and then invokes the landlock restrict self() syscall

19

Gianluca Oldani

Listing 2.3: RWX+D permissions associated with tar
1 {
2 "policies": [
3 {
4 "policy_name": "tarPolicy",
5 "read": [
6 "/usr/bin/tar",
7 "/home/user/input.tgz"
8],
9 "write": ["/home/user/output"],

10 "exec": ["/usr/bin/tar"],
11 "deny": ["/home/user/output/misc"]
12 }
13]
14 }

to apply it. Thanks to the policy inheritance property of Landlock, the policy attached to the
process also restricts its children (as explained in Section 2.2.2). Should any of them try to
access a filesystem location not listed in the policy, the request is denied.

From a software development perspective, RWX permission rules are easy to understand and
immediate to write. Contrary to the use of other frameworks such as the combination of Linux
Namespaces [28] and Control Groups [78], RWX rules also permit to grant access with file-level
granularity on the whole filesystem, and not only on single volumes (Objective O3).

2.4.3 Support to deny rules

Deny rules ensure a process has no access privileges over a file or a directory. Its introduction
significantly reduces the overhead of the developer writing the policy. Unfortunately, the current
inode-based design of Landlock does not provide support for it [148]. Given the low overhead
associated with BPF (Objective O6), its fine-grained access control capabilities (Objective O3)
and its compatibility with other LSM security mechanisms including Landlock (Objective O1),
BPF has been identified as the ideal candidate to implement the support to deny rules. However,
loading BPF programs and maps is a privileged operation, so Cage4Deno needs to execute a
preliminary initialization phase with additional permissions (as highlighted in Section 2.4.1).

This Section details the work that has been done to support deny rules. First, it is presented the
problem of efficiently supporting access control decisions given a sequence of deny rules, then it
is explained how to translate the approach into BPF programs, making clear how the sandboxer
enforces access control at runtime.

20

Protect Deno subprocesses through LSMs

/

home

user

data lib

media

BPF Map
r Trie prefix pi Hash isLeaf

1 / hash(p1) 0
2 /home hash(p2) 0
3 /home/user hash(p3) 0
4 /home/user/data hash(p4) 1
5 /home/user/lib hash(p5) 1
6 /media hash(p6) 1

(a) (b)

Table 2.1: Deny prefix tree (a) and BPF Mappolicy (b)

Deny listing approach

Similarly to what happens for RWX rules, developers leveraging Cage4Deno are expected to list
the deny rules into the JSON policy file (see Listing 2.3). Based on the list provided, the
sandboxer instruments the kernel so that, upon receiving an access request from a sandboxed
process, the kernel is able to allow or deny it. For instance, assume the developer lists in the
policy the deny rules /home/user/data, /home/user/lib and /media. When the
sandboxed process issues an open to /home/user/file the request is allowed, but when
the process tries to access /home/user/data (or any of its content) the request is denied.
So, given a path request issued by the user, whether it matches exactly one of the rules in the
deny list, or a deny rule is a prefix of the requested path, the access request is blocked. A
classic solution to solve this problem efficiently can be implemented using a prefix tree (or trie).
The idea is to split each path into a sequence of substrings using / as delimiter, treating the
substrings as single character prefixes. The prefixes are then used to build a prefix tree as shown
in Table 2.1a. At runtime, access requests are simply evaluated traversing the trie. If a leaf
node is visited, it is possible to conclude that a deny rule was hit, and the access request must be
denied. The time complexity of a trie traversal depends on its maximum height. Given N the
length of the longest deny rule Dri in the policy,2 the maximum depth of the trie is N/2 (in the
case of a path structured as [/c]+). When a hashmap is used to implement the trie, each lookup
(used to jump from the parent to the child) takes O(1) time, thus traversing the trie takes O(N)

time (worst case upper bound).

Implementation using BPF maps

The trie-based approach presented above cannot be translated directly to a BPF program. Indeed,
there are some constraints a BPF program must satisfy to be executed by the kernel (see
Section 2.2.3). The most important, in the treated case, is related to the use of memory.
The current implementation of BPF does not provide support for multi-level map-in-map [114]

2The maximum path length is bounded to 4096 chars in linux/limits.h

21

Gianluca Oldani

structures required to implement the trie. To solve this issue, the trie is translated in BPF through
a single-level hashmap Mappolicy storing all the prefixes represented in the trie, as shown in
Table 2.1b. The hash of each prefix is used as lookup key, while the value is a boolean to indicate
whether the prefix is a leaf node in the trie. This representation permits to answer access queries
with the same efficiency of the high-level approach. In fact, the trie traversal is easily replaced
by a sequence of O(N) lookups, each taking O(1) time when a hash function is used to process
the string representing the access path. Storing in the map also the prefixes that are not leaves in
the trie increases the size of the map up to O(M ·N) given a list of M deny rules, yet, it permits
to reduce the query time for all the path prefixes that are not contained in the trie, as the lookup
sequence terminates when a key error (i.e., a miss) occurs.
This design strategy relies on the ability to convert strings to integers using a cryptographic hash
function. Unfortunately, such function is not currently available in BPF. In Appendix A this
aspect is further detailed, explaining how to adapt the maps design to achieve the best trade-off
between query response time and map size using an incremental hash function. Other details,
such as explicit collision handling, are also discussed there, as they complement the design of
the proposal.

BPF policy attachment

To enforce access control at runtime, the sandboxer must be able to retrieve the Mappolicy

according to the argument provided by the developer to the Deno.run(), and then to attach
it to the sandboxed process. The attachment of the proper policy to the sandboxed process is
delicate, and requires a set of programs to be loaded by Cage4Deno into the kernel alongside
the maps. To reduce the runtime overhead, BPF programs, together with the BPF policy maps
associated with all the policies listed in the JSON policy file, are loaded from user space to
kernel space by Cage4Deno at startup time. These operations are carried out using libbpf [109].
The programs are separated in two categories: (i) programs that are needed to trace the lifecycle
of a sandboxed process, and (ii) programs to evaluate the access queries it performs (according
to the strategy described in Section 2.4.3).
The first group of BPF programs, namely the ones used to trace the process lifecycle, are
responsible for maintaining in memory the map Maptask of processes running on the system
that are subject to the restrictions imposed by Cage4Deno. Specifically, Maptask associates
each thread identifier to the proper Mappolicy. The entries in Maptask are updated when one of
the hooks listed in Table 2.2a is reached. For instance, when a traced process issues the clone
syscall, the tracepoint tp btf/sched process fork is reached, the related BPF tracing
program executed, and the new child process, inheriting the policy of the parent, is added to
Maptask.
The second group of BPF programs, the ones that are associated with the evaluation of the access

22

Protect Deno subprocesses through LSMs

Thread lifecycle hooks

uprobe/attach policy
lsm/task alloc
tp btf/sched process fork
tp btf/sched process exit

Access control hooks

lsm/path mknod
lsm/path mkdir
lsm/path link
lsm/path symlink
lsm/file open
lsm/path rename
lsm/path rmdir
lsm/path unlink

(a) (b)

Table 2.2: Hooks and tracepoints monitored by Cage4Deno

query, are executed when any of the hooks listed in Table 2.2b is reached. The role of these
programs is to check whether the current process (i.e., the process issuing the access request)
belongs to the Maptask, and accordingly to perform the sequence of lookups in Mappolicy to
allow or deny the request.

2.5 Policy generation

A key aspect of Cage4Deno proposal is usability by developers. The straightforward RWX+D

permission model is functional to achieve ease of use (Objective O2), however, we a proposal of
this kind also has to offer to developers tools to support the generation of policies (Objective O4).
Indeed, each policy can be seen as a template comprising the dependencies to run a program
that can be further extended with information related to the input, the output, and the restrictions
the program may be subject to. This section details the work that has been done to support
the process, explaining how our solution can be leveraged to generate the RWX rules shown in
Listing 2.3.
The retrieval of the dependencies used by a program is a recurring problem. Just to mention a
few, it occurs in the Google Sandboxed API project, where the Sandbox2 sandboxing utility [81]
leverages ldd (acronym for List Dynamic Dependencies) to retrieve the dependencies used by
programs available on the host as Executable and Linkable Format (ELF) files; or in Slim-
Toolkit [141], where a containerized service is run against a test suite to automatically create
Seccomp [32] and AppArmor [33] security profiles matching the least-privilege principle. In
Cage4Deno, a similar approach has been adopted, which is able to retrieves the files a program
should be able to read, write, or execute to work as intended. Moreover, developer have also
the option of using functions to manage multiple policies simultaneously (updating the lists of
dependencies and denials), and to serialize them into the JSON format as shown in Listing 2.3.
The solution adopted was to develop dmng, a CLI tool written in Go (∼3.5k lines of code),
which ships within Cage4Deno, allowing the developer to automatically generate RWX rules,

23

Gianluca Oldani

Listing 2.4: Semi-automatic generation of tar policy (Listing 2.3)
1 # Set the active policy_name for a program
2 dmng -c tar --setcontext tarPolicy
3 # Add the dependencies of tar to the template
4 dmng -c tar -t -s
5 # Add the input to the template
6 dmng -c tar -a input.tgz -p r--
7 # Add the output to the template
8 dmng -c tar -a output -p -w-
9 # Add the denials

10 dmng -c tar -a output/misc -d
11 # Serialize the entries into a JSON file
12 dmng --serialize tar_policy_file

and interactively refine, the policy. The utility supports the retrieval of program dependencies
that are available on the host as ELF files, and those that are spawned by dedicated POSIX or
shell wrappers. It can also be used with programs loading dynamic modules at runtime (e.g.,
media processors loading custom encoders), or programs executing several binaries. To support
these use cases, dmng relies on both ldd and strace. The former was preferred to objdump
and readelf since it can be used to recover the so called transient dependencies of programs
available as ELF files; while the latter is a diagnostic, debugging and instructional user-space
utility for Linux that is used to trace programs at runtime.
Similarly to the approach presented in SandTrap [11], the developer can use dmng to run a test
suite against a program (or a script). This approach allows the developer to reuse existing tests to
generate RWX rules that satisfy multiple execution paths of the binary. By using strace, dmng
monitors the interactions between the threads spawned by the tested utility and the kernel for a
certain amount of time (usually less than 2s). In this time frame, the file-related syscalls issued by
the set of threads, along with their arguments, are captured and saved to a log file. The log is then
used bydmng to generate theRWX rules accordingly. The list of syscalls monitored comprises the
ones wrapped by the standard system functions execve(), open(), create(), link(),
mkdir(). The dmng tool exposes to the developer many functions to inspect, add, update
or remove the entries associated with the policy template. Specifically, it allows to add deny
rules, which generation cannot be automated. It also implements heuristics to reduce the
number of RWX rules, thus improving their readability, and facilitating policy auditing, when
explicitly requested by the developer. This inherently comes with the downside of producing
coarser permissions. The process is called permission pruning and it is based on common
security practices, like the identification of write-or-exec (WˆX) memory regions, but also
contextual information about the specific region of the filesystem being considered (e.g., there are
no practical advantages in assigning fine-grained permissions under /usr/share/fonts/,
while it is certainly useful to do so under /home/user/Documents). For this, the paths are

24

Protect Deno subprocesses through LSMs

arranged into a Trie, and then the above heuristics are used to incrementally prune leaf nodes
untill the developer’s target number of rules is met.
For each of the programs to be restricted, a sequence of commands may be input by the developer
to synthesize the final policy (state is persisted between tests using a SQLite database). Since the
developer can work with distinct programs and many policies simultaneously, a cache is used to
store the active context (i.e., the current policy) of each program (line 2 in Listing 2.4). Then,
each context is customized adding the dependencies as previously described. For instance, in
line 4 dmng collects all the dependencies required by tar using dynamic tracing, and in line 10
the developer manually adds the deny rule. After all the policy contexts have been configured,
the policy is serialized into the JSON format as expected by Cage4Deno (line 12). Appendix B.1
reports the complete tar policy produced following the instructions in Listing 2.4.
It is worth noting that, while Cage4Deno employes dynamic analysis for the automatic generation
of policies, this approach is widely known for producing results whose completeness depends
on the test suite coverage [177]. To address this limitation, the current approach could be
complemented by either source or binary code analysis. Relevant related works (e.g., [55])
use static analysis to pinpoint the system calls, however they do not keep track of parameter
values. On the other hand, AutoArmor [107] uses static taint analysis to perform semantics-
aided program slicing from network API invocations, and then uses these slices to extract access
control attributes. The approach also looks promising for the generation of file system policies,
which is the Cage4Deno use case.

2.6 Experiments

In this Section is presented the experimental evaluation of Cage4Deno. The evaluation considers
two aspects of the proposal: effectiveness in mitigating exploits (Section 2.6.1), and performance
overhead (Section 2.6.2). The evaluation has been performed in the following test environment:
an Ubuntu 22.04 LTS server powered by an AMD Ryzen 3900X CPU with 12 cores (24 threads),
64 GB RAM, 2 TB SSD. To be able to load every required BPF program, the pre-installed Linux
Kernel v5.15 has been replaced with the same release of the kernel, but with BPF LSM available
(Landlock LSM is enabled by default).

2.6.1 Exploit mitigation

The primary goal of this Section is to demonstrate the capability of Cage4Deno to mitigate real
CVEs (Objective O5). Focusing on the records of the last 6 years, a sample of 15 vulnerabilities
affecting common web application utilities has been selected. Among the targets there are
several popular utilities such as ExifTool, FFmpeg, Git, GNU Tar, GraphicsMagick, Ghostscript,
ImageMagick, OpenSSL, Pip, UnRAR, and Unzip. The CVEs considered are classified into three

25

Gianluca Oldani

CVE ID Utility Use case

Local File Read (LFR)

CVE-2016-1897 FFmpeg v3.2.5 Video processing
CVE-2016-1898 FFmpeg v3.2.5 Video processing
CVE-2019-12921 GraphicsMagick v1.3.31 Image processing

Arbitrary File Overwrite (AFO)

CVE-2016-6321 GNU Tar v1.29 Archive decompression
CVE-2019-20916 Pip v19.0.3 Dependency fetch
CVE-2022-30333 UnRAR v6.11 Archive decompression

Remote Code Execution (RCE)

CVE-2016–3714 ImageMagick v6.9.2-10 Image processing
CVE-2020-29599 ImageMagick v7.0.10-36 Image processing
CVE-2021-3781 Ghostscript v9.54.0 PDF processing
CVE-2021-21300 Git v2.30.0 Clone repository
CVE-2021-22204 ExifTool v12.23 Image processing
CVE-2022-0529 Unzip v6.0-25 Archive decompression
CVE-2022-0530 Unzip v6.0-25 Archive decompression
CVE-2022-1292 OpenSSL v3.0.2 Certificate verification
CVE-2022-2566 FFmpeg v5.1 Image processing

Table 2.3: Sample of CVEs mitigated by Cage4Deno. Despite being discovered in 2016, CVEs
1897, 1898, and 6321 have seen recent exploitation in 2018 [158] and 2021 [88]

categories: Remote Code Execution (RCE), Local File Read (LFR), and Arbitrary File Overwrite
(AFO). Their details are reported in Table 2.3. These vulnerabilities have been selected as they
represent examples of 0-click exploits, they can lead to severe security breaches, and they target
utilities are extensively used by web applications. In general, similar considerations extend to a
broader set of CVEs.

In this analysis, each one of the vulnerabilities has been reproduced by adapting public Proofs
of Concepts. For each of them, is has been possible to create a single-click test case to showcase
the sandboxing capabilities added to Deno. In particular, the experimental evaluation shows
that: (i) the attacker can successfully exploit the vulnerability when Deno is used (despite
its permission model being in place), and (ii) the attack is unsuccessful when the sandboxing
functions offered by Cage4Deno are used. The only difference between case (i) and (ii) is that
a policy is provided with the --policy-file argument. This aspect testifies how simple it
is to benefit from the sandboxing functions that Cage4Deno introduces (Objective O2). The
policy files used to restrict each utility have been automatically generated with the dmng tool
described in Section 2.5. Table 2.4 reports the number of rules generated for the selected list
of utilities without applying any form of policy minimization (i.e., pruning). As shown in the

26

Protect Deno subprocesses through LSMs

Utility #rules Deno [ms] Cage4Deno [ms]

cat 9 3.05±0.23 3.81±0.25
GraphicsMagick 81 10.16±1.02 12.16±1.12
UnRAR 25 13.86±1.97 15.84±2.71
ImageMagick 17 17.49±2.14 18.74±2.26
Unzip 15 20.90±3.95 22.66±3.62
OpenSSL 17 27.80±4.93 30.10±7.50
Git 26 66.52±4.75 72.46±5.22
ExifTool 38 109.20±6.67 112.88±4.25
GNU Tar 14 114.52±7.21 125.48±6.89
FFmpeg 12 321.50±9.55 336.70±9.78
Ghostscript 20 449.96±18.19 455.66±21.37
Pip 115 3022.52±20.55 3203.32±20.84

Table 2.4: Preliminary test showing the execution time of utilities reported in Table 2.3 over
500 runs (as µ± σ)

table, the utilities require less than 115 permissions to work as intended, with pip requiring the
largest set.

From a security standpoint, it is worth noting that Cage4Deno can block the attacks at multiple
levels. For instance, in CVE-2020-29599, in which a crafted picture is sent to ImageMagick
to execute a target command (e.g., id), Cage4Deno does not allow RX access to /usr/bin,
blocking /usr/bin/echo first (which is used to inject id in a subshell), and then the target
command itself (i.e., usr/bin/id). In this case, the denial is due to the Landlock sandbox
allowing access solely to /usr/bin/convert (i.e., the ImageMagick binary). Instead, when
CVE-2016-6321 is considered, in which a decompression of an archive permits the attacker to
overwrite a target file, it is possible to notice how deny rules can be used to prevent filesystem
corruption. As a final note, it is worth highlighting the ability to simultaneously use distinct
policies for a single utility. To give an example, in CVE-2021-21300 several distinct policies
can be assigned to pip. By doing so, the developer can select a dedicated policy based on the
Python virtual environment currently in use.

Popular packages affected by the aforementioned vulnerabilities can be found in bothdeno.land/x
and npm package archives. Among them, some popular packages can be found: astrodon
and fast forward from deno.land/x, fluent-ffmpeg and gm from npm (executed in
Node compatibility mode). Experiments confirmed that the vulnerable versions of the binaries
are still exploitable through the mediation of third-party modules, and Cage4Deno proves to be
effective in their mitigation without code modification to the application and its dependencies.

27

Gianluca Oldani

2.6.2 Performance evaluation

A requirement of Cage4Deno is that it must not introduce a large runtime overhead compared
to the scenario in which the developer relies solely on the basic functions offered by Deno
(Objective O6). This is fundamental, as any additional delay could negatively affect the end-
user experience or increase the cost to host the application. To investigate this aspect, the
performed tests compare the execution time of an application using vanilla Deno with respect to
the same application subject to access restrictions with Cage4Deno. A second interesting aspect
to consider in the evaluation is the overhead introduced by the proposal compared to general
purpose sandboxing solutions proposed by the industry. In the final part of the section, it is also
evaluated how the proposed solution scales with the number of rules in the policy.

Runtime overhead

A result that is expected analysis of Cage4Deno is that the runtime overhead has to vary according
to the size of the policy and the number of filesystem requests performed by the sandboxed
utility. The preliminary test conducted a involves the utilities affected by the CVEs detailed in
Section 2.6.1. For each of them, it has been measured the execution time of vanilla Deno and
Cage4Deno. The results of the test are reported in Table 2.4. The data clearly show that the
largest overhead is associated with the larger policies and the shorter execution time. To further
highlight this aspect, it is necessary to perform tests in the worst case scenario for Cage4Deno: a
simple and quick running binary is used to perform a single access to the filesystem. As shown in
row 1 of Table 2.4, printing the content of an empty file using the cat binary is associated with
the greatest overhead, roughly 25% of the execution time. cat is characterized by a minimal
execution time, and requires only 9 rules in the policy to work as intended, thus proving to be
the best candidate to highlight the overhead introduced by Cage4Deno.
To evaluate how Cage4Deno scales with a large number of rules in the policy, a second test has
been developed. Due to the aforementioned characteristics, cat is leveraged to conduct this
second experiment. In this scenario, additional rules have been added to its minimum set of
permissions. These rules are composed of a varying number of RWX rules, ranging from 25 to
150. To measure the execution time, the benchmarking module provided by the Deno standard
library [58] has been employed, and to ensure the statistical value of the results, tests have been
repeated 500 times. The first result illustrated, is the comparison between the execution time of
vanilla Deno and Cage4Deno. While the proposed sandboxing approach inevitably introduces
an overhead, its performance degradation (compared to Deno’s) ranges between 0.8 and 2.5 ms,
which is a reasonable price for the additional security guarantees it provides.
To further inquire the overhead introduced, Cage4Deno has also been compared with two
general-purpose sandboxing solutions: (i) Minijail [80], and (ii) Sandbox2, a key component of

28

Protect Deno subprocesses through LSMs

25 50 75 100 125 150
permissions

10

20

30

40

50

ru
nt

im
e

[m
s]

Sandbox2
Cage4Deno

Minijail
Deno

(a) Server execution time

25 50 75 100 125 150
rules

0

5

10

15

ov
er

he
ad

 [%
]

RWX+D
RWX

D

(b) Client perceived overhead

Figure 2.5: Deterioration of overhead varying the policy size

the Sandboxed API [81] framework. As shown in Figure 2.5a, the execution time associated
with the use of Minijail is 5.52 to 5.63 times slower compared to the one of Cage4Deno, and
Sandbox2 exhibits even a worse degradation, which is never less than 8.15 times. To investigate
the principal components causing the overhead, the execution of each tool has been profilled
through perf. Each of them presented two distinct phases: (i) sandbox setup, and (ii) restricted
execution. For Minijail and Sandbox2 the first phase is dominated by creating the mount
namespace, changing root directory, and performing a bind-mount for all the files needed to
run the utility. For Cage4Deno, equivalent protection can be achieved with only the creation
and enforcement of the Landlock rulesets. As for the execution phase, Minijail and Sandbox2
suffer slowdowns whenever performing filesystem operations due to the execution of kernel code
paths related to the resolution of namespaces and bind mounts. In addition, Sandbox2 reference
monitor architecture requires inter-process communication between the tracee and its tracer,
which further degrades performance. On the other hand, Cage4Deno only pays the overhead of
evaluating the Landlock security checks.3 This validates Cage4Deno design choices, proving
that our solution can provide significantly better performance with respect to industrial general-
purpose sandboxing solutions. Moreover, Figure 2.5a depicts an interesting trend. Among the
sandboxing alternatives, not only Cage4Deno delivers the best performance, but it also exhibits
the slowest linear growth with respect to the increase of the number of rules, making it the best
option when a large number of policy rules is necessary.

Overhead associated with deny rules

The previous tests do not take into account the deny rules. In fact, both Minijail and Sandbox2
do not support the presence of negative permissions. It is then important to measure the

3The flame graphs used for the analysis are available in the repository of the project.

29

Gianluca Oldani

overhead introduced by them, as well as its degradation when the policy size increases. To better
investigate the overhead experienced by end-users when Cage4Deno is used on the back-end, an
additional test has been designed. In this scenario it is evaluated the response time of a single
HTTP endpoint that responds to incoming request with the content printed by thecat command.
To generate the HTTP requests, JMeter [16] has been used, a tool written in Java designed to load
test and measure the performance of web applications. Specifically, the employed configuration
generates 100 warm up requests and measured the latency of the following 5000. To simulate
the overhead experienced by end users of a web application, we also set up a network delay of
10±5 ms (with a normal distribution) using tc [14], a Linux utility to configure and shape the
network traffic. The test is executed with four different policy configurations: (i) no policy (i.e.,
vanilla Deno), (ii) only positive rules (i.e., RWX), (iii) only deny rules, and finally (iv) a policy
characterized by the same number of RWX and D rules. Again, the number of rules in the policy
ranges between 25 and 150.

In general, the results reported in Figure 2.5b confirm the trend shown in Figure 2.5a, with an
overhead increasing almost linearly with the number of rules in the policy. This is a positive
aspect, since it applies to both RWX and D rules. The relative overhead perceived by clients,
with respect to the default implementation of Deno, ranges from 2.74% to 10.21% for policies
listing only RWX rules. This attests that the cost associated with Landlock is low, but it increases
linearly with the number of rules (in accordance with the current inode-based implementation
of the LSM). On the other hand, the use of BPF is distinguished by a higher initial cost, but
the performance degradation introduced when the number of deny rules increases is smaller
compared to the one measured with pure RWX policies, since it ranges between 10.17% and
12.79%. Moreover, policies composed of both rule types still exhibit a linear trend, with a client
perceived overhead ranging from 11.99% to 17.24%. It is important to note that the presence
of deny rules not only improves the readability and maintainability of the policy, but can also
improve the performance as it permits to reduce the overall number of rules in the policy.

2.7 Related Work

Several approaches to strengthen the security guarantees provided by JavaScript execution
environments have been proposed by both industry and academia. While developing Cage4Deno,
the focus has been gived to security gaps of solutions that target runtimes and are therefore
applicable to the server-side scenario. The proposal exposed in this chapter complements them,
providing effective isolation of subprocesses using recent technologies. In the following, the
related works are discussed and separated into four main categories.

30

Protect Deno subprocesses through LSMs

Secure JavaScript sandboxes

Several works have been proposed to strengthen the security guarantees offered by JavaScript
runtimes before the advent of Deno [11, 60, 115, 133, 134, 136, 164, 173, 174, 184].

Secure EcmaScript (SES) [115] is a runtime library to execute third-party code safely in
lightweight compartments. Essentially, SES implements a frozen execution environment in
which scripts have no abilities to interfere with each other. An alternative for the safe execution
of untrusted third-party JavaScript code is vm2 [136]. Its peculiarity is that it overrides the
built-in require, enabling the developer to restrict access to a pre-defined set of modules.
SES and vm2 have been effective in mitigating the vulnerabilities coming from unverified or
untrusted third-party JavaScript code, since they allow the developer to practically limit the APIs
exposed to the sandboxed JavaScript program. However, when access to a dangerous API such
as Deno.run() or child process.spawn() is granted, no restriction on the subprocess
is enforced.

Another interesting approach to reduce the security risks coming from the use of third-party
modules is BreakApp [173]. The authors use module boundaries to automate compartmental-
ization of systems and enforce security policies. To this end, BreakApp spawns and executes
modules in protected compartments, while preserving their original behavior. Compartments
are characterized by three levels of isolation: sandbox, process, and container level. While the
approach is powerful and ensures strong security properties when the container level is used,
it is not straightforward to setup fine-grained filesystem permissions when the process level is
selected.

Mir [174] is a relevant proposal to mitigate the security risks coming from third-party modules
through the use of library-specialized contexts. Mir applies a fine-grainedRWX permission model
to every field of every free variable name in the context of an imported library, with permissions
inferred through static and dynamic analysis. SandTrap [11] shares with Mir the idea of
protecting read, write and call on entities (primitive values, functions, objects) and construct
policies on cross-domain interaction. The goal again is to mitigate the security risk coming from
the use of third-party modules, but in the Trigger-Action Platforms (TAPs) framework. While
both the approaches can mitigate several JavaScript vulnerabilities, no restriction is applied on
code executed outside of the runtime.

Wolf at the Door [184] is a recent proposal to reduce the risk coming from the installation
of third-party modules. The authors propose to use the Apparmor LSM to detect install time
anomalies such as connection to unknown hosts or read of confidential files. The security checks
are enforced based on a policy typically written from the package maintainer. The approach
protects the host against undesired behavior of third-party packages installed through npm, but
the protection is enforced only at install time.

31

Gianluca Oldani

Isolation and sandboxing of unsafe libraries

The problem of isolating subprocesses addressed by Cage4Deno shares strong similarities with
the isolation and sandboxing of third-party libraries. This area has received significant attention
recently, and many proposals have been published [79, 89, 98, 126, 137, 144, 145, 151, 170,
175]. Galeed [144], PKRU-Safe [98], and NoJITsu [137] guarantee strong isolation of unsafe
components with the use of Memory Protection Keys (MPK). Galeed and PKRU-Safe preserve
the memory safety of Rust code when used in conjunction with unsafe code (e.g., C/C++).
NoJITsu brings hardware-backed, fine-grained memory access protection to JavaScript engines,
thus successfully hindering a wide range of memory corruption attacks. Differently from
previous solutions, RLBox [126] achieves sandboxing of third-party libraries through software-
based-fault isolation. RLBox facilitates the retrofitting of existing applications using a type-
driven approach that significantly ease the burden of securely sandboxing libraries in existing
code. These solutions are complementary to Cage4Deno, as they can be used in conjunction
with it to enforce trust boundaries in the interaction between Deno and its subprocesses.

General-purpose sandboxers

To reduce the impact of potentially vulnerable processes, several approaches leveraging system
call interposition have been proposed [27, 40, 55, 80, 81, 97, 127].
TRON [27] is a discretionary access control system. The authors designed a Unix based
capability system to limit process access to files, directories and directory trees. Although
the approach allows fine-granularity access control, it suffers from two major drawbacks: (i)
it requires modifications on the kernel, and (ii) it requires programs changes to make them
capability-aware.
Another interesting initiative to implement unprivileged sandboxes is MBOX [97]. MBOX
executes a program in a sandbox, and prevents it from modifying the host filesystem by layering
the sandbox filesystem on top of it. Only at the end of the execution the user can examine
changes in the layered filesystem and commit them back to the host. To do so, MBOX interposes
system calls using Seccomp filters, and relies on ptrace to enforce permissions. However, the
use of ptrace is prone to TOCTOU attacks [94], and as experimented by the authors, it can
lead to non-negligible overhead.
In practice, system call interposition is often used to limit the set of system calls available
to a program [55, 141, 177]. This effectively limits the capabilities of an attacker expoiting
the program, and reduces the attack surface of the kernel [108]. Nowadays, most solutions
rely on Seccomp filtering, a Linux kernel feature that allow to filter system calls based on
their identifiers and parameter values. While valid, Seccomp filters can neither dereference
pointers to user memory, nor actionably use file descriptor numbers, thus they are not suitable

32

Protect Deno subprocesses through LSMs

to perform access control of filesytem resources. These solutions can be used in conjunction
with Cage4Deno to reduce the attacker capabilities and the attack surface of the kernel.

In Section 2.6 we have already compared Cage4Deno to other general-purpose sandboxing
solutions such as Minijail [80], and Sandbox2 [81]. These tools support multiple types of
containment techniques such as the introduction of new user ids, restriction of capabilities,
policy-based Seccomp filtering, and namespace isolation. Both the tools are powerful and
flexible, but they are not specifically aimed towards protecting web applications. Thus, they
are not optimized for the execution of short-lived programs, and they target security experts,
making them of difficult use to a wider audience. Specifically, to achieve comparable protection
to Cage4DenoRWX rules, the developer needs to configure them to: (i) create a new mount
namespace, (ii) change the root directory of the binary, and (iii) remount every part of the
file hierarchy necessary for the functioning of the binary under the new root. On the other
hand, Minijail and Sandbox2 use well enstablished kernel features available in every modern
Linux kernel version, and can be used without additional privileges provided there is no need to
bind-mount privileged resources. Similar considerations can be made about Firejail [127] and
Bubblewrap [40]; sandboxing tools functionally comparable to Minijail and Sandbox2, but less
mature.

BPF-based sandboxers

Other proposals have used BPF as the primary means to enforce access control policies [7, 20,
21, 26, 74, 75, 92].

BPFBox [75] and BPFContain [74] are runtime security frameworks focusing on the containment
of processes and containers, respectively. Comparing Cage4Deno to both the proposals, (i) we
do not require a privileged runtime daemon to keep track of the traced processes (single point
of failure), (ii) we rely on Landlock to enforce RWX permissions so to guarantee low runtime
overhead, and (iii) we provide a tool for the automatic generation of policies.

Snappy [26] strengthens the security of containers using namespaces and BPF policies. To
support the programmable policies described, the authors introduced in the kernel a set of new
dynamic helpers. Jia et al. [92] present a mechanism to define advanced syscall filtering policies
with the extended BPF. This is currently achieved by hooking syscall tracepoints that cause
system-wide performance degradation and are still subject to TOCTOU attacks. On the other
hand, Jia et al. successfully address these limitations proposing changes to the Linux kernel.
These proposals require to recompile the kernel with the addition of ad hoc functions not part
of the kernel codebase, thus limiting their usability and portability.

There are also industrial solutions using BPF, for instance: Cilium [20] and Falco [21]. The
former provides BPF-based networking, observability and security between container workloads,

33

Gianluca Oldani

the latter is a threat detection engine for clusters. Both operate at the container granularity; hence,
developers may find it difficult to set up fine-grained permissions with these frameworks.
These proposals demonstrate the value of BPF in securing different types of system resources.

2.8 Conclusions

Web development is a fast-paced environment characterized by tight time constraints. In this vast
ecosystem, it has been specifically considered the role of Deno, a modern and secure runtime
for JavaScript and TypeScript. Cage4Deno proposes an approach to improve the Deno security
model by sandboxing the invocation of subprocesses, which represent an important attack
vector of web applications. As shown in the experimental evaluation, Cage4Deno effectively
mitigates real CVEs affecting widely-used utilities in web applications. Moreover, it exhibits
significantly better performance with respect to other general-purpose sandboxing solutions.
Great attention has been paid to reduce the additional work done by developers willing to
strengthen the security of their application. This is achieved not only by exposing a simple
and clear interface to the developer (requiring no mandatory code changes), but also providing
a command line tool to generate least-privileged, yet human-readable, access control policies.
The research that has been illustrated in this chapter is further extended by the work described
in Chapter 4, where the design of Cage4Deno is extended in order to be made general enough to
be applied to other JavaScript runtimes, since they share the same design as Deno regarding the
unconstrained execution of subprocesses (e.g., Node.js and Bun). In addition to a more general
design, Chapter 4 also describes how the protection guarantees provided for the file system in
Cage4Deno can be extended to other resources.

34

Chapter 3. Hardening WASI using eBPF programs

3.1 Introduction

The research efforts started with Cage4Deno have shown promising results. Continuing the
research on the same topic, this chapter explores a proposal to mitigate some of the security
gaps that the research community is recently exploring in WebAssembly (Wasm) [86].

This tool is a popular binary instruction format that enables the execution of untrusted code
in a safe, isolated environment. Moreover, it is a portable compilation target for different
languages, and can be executed efficiently on a wide range of platforms without the need of
dedicated hardware. Wasm was originally meant to be run inside web browsers, but given the
considerable advantages it brings, many runtimes that allow execution in standalone mode have
been developed recently. Popular examples are Wasmtime [13], WasmEdge [38], Wasmer [180],
and WAMR [12].

To answer the developers’ need to access resources of the host system from within the runtime,
a standardization effort called WebAssembly System Interface (WASI) [183] is undergoing.
Its goal is to provide a stable and multi-platform system interface. To be WASI-compliant,
each runtime must implement all the calls defined in the interface with dedicated functions,
which are named hostcalls. However, implementing these functions is non-trivial, since (i) the
code must not introduce violations to the Wasm memory model, and (ii) it is possible to break
the separation between the system and the isolated environment in which the Wasm module
is executed. The solution adopted by current runtimes leverages WASI Libc [181], a library
providing POSIX-compatible APIs built on top of hostcalls.

Currently, every WASI-compliant runtime implements the proposed file system interface with a
libpreopen-like layer [124]. Whenever the runtime receives a request to open a file, it first checks
whether the path belongs to the authorized list of directories, then it opens the file on behalf of
the Wasm program, redirecting the content to the caller. Previous work [29, 93, 106] proved the
approach to be error-prone, leaving the system unprotected when a vulnerability was introduced
in a hostcall wrapper (Figure 3.1). Moreover, this approach provides limited flexibility, as it is
associated with directory-based granularity instead of file-based. Lastly, in order to audit the
policy regulating resource access, one must find the permissions by looking at the code. It is
also worth noting that there is no practical advantage in having several implementations of the
same access control checks for different runtimes. The core idea illustrated in this chapter is to
replace the user-space runtime-specific security checks with a single in-kernel implementation
that leverages eBPF [166]. The initial considerations that supported this research are the

35

Gianluca Oldani

following properties of such approach: (i) it permits to decouple the implementation of hostcall
wrappers and the access control details, minimizing the risk of bugs [96, 145], (ii) it enables
the introduction of per-module policies with file-based granularity, and (iii) it fulfills Wasm’s
promise of portability as eBPF programs are portable across different kernel versions [125] and
also operating systems, thanks to Microsoft’s undergoing effort to port eBPF to Windows [123].

3.2 Background

This section gives a background on WASI runtimes. eBPF has already been treated, in Sec-
tion 2.2.3, which can be consulted for additional details.

3.2.1 WASI

Check for repetitions between here and intro The Web Assembly System Interface(WASI) [183]
is a set of standardized APIs with the objective of providing a modular, portable and safe in-
teraction with the underlying system to WASM modules. The specified OS-agnostic interfaces
are called hostcalls, and provide a wide set of functionalities related to OS resources. One of
the most notable interface is the host filesystem access interface utilized by a WASM module
to interact with filesystem resources. Another proposal that is gain growing interest is the def-
inition of an interface to interact with network sockets [23]. WASM runtimes which aims at
supporting the execution of WASI compliant modules, must implement the code executed when
hostcalls are invoked by WASM. This level of abstraction allows to maintain the decoupling
between WebAssembly code and the OS in which it is executed: the module is only responsible
of invoking a specific hostcall, while the WASI runtime is the component actually responsible of
the interaction with the underlying system. Among these positive feature, WASI also introduces

Wasm
module

+r +rw

hostcalls

No
Access

Pre-open
RO

Pre-open
RW

Buggy Security Checks

Wasm + WASI runtime

Figure 3.1: Current implementation of WASI by runtimes. A bug present in a hostcall wrapper
permits the module to read the unauthorized directory on the left (red dotted arrow)

36

Hardening WASI using eBPF programs

a critical aspect that must be taken into account: WebAssembly code, originally meant to be run
in a well-defined sandbox, is now capable of interact with system resources. A common use case
for WebAssembly is the execution of untrusted code, which can invoke hostcalls. To this end,
WASI also defines a set of security guarantees that have to be respected by the implementations
of the runtimes. In particular, the sandbox provided by the runtimes must be able to satisfy the
following properties when interacting with the underlying OS: 1) file system isolation and 2)
network isolation. In order to achieve file system isolation, runtimes must expose
an interface to list the directories available to the WASM module along their read and write
privileges. Network isolation is achieved through a similar method: runtimes allows users to
specify an allow-list of network addresses that can be reached, along the protocols that can be
used for the connection (e.g., UDP, TCP). Once the resources included in the sandbox have been
defined, runtimes are responsible of implementing and enforcing security checks in order to
avoid any access that violates the previously defined boundaries for both filesystem and network
resources. Taking as an example the case of the filesystem: currently every WASI-compliant
runtime implements the proposed file system interface with a libpreopen-like layer [124]. When-
ever the runtime receives a request to open a file, it first checks whether the path belongs to the
authorized list of directories, then it opens the file on behalf of the Wasm program, redirecting
the content to the caller.

3.3 Motivation and threat model

3.3.1 Resource isolation

As illustrated in Section 3.2.1, currently WASI-compliant runtimes must implement the inter-
action with the host system and the necessary security checks. In detail, to apply protections to
the filesystem, the majority of runtimes apply an approach similar to libpreopen [124]. In this
case, users must provide the runtime with a list of directories, with the corresponding opening
modes. Thanks to this list, the runtime is able to keep a list of all the paths that a WASM module
can access. Each time an hostcall is performed, it is checked if the requested path is in the
set of accessible resources. It is possible to note that this approach offers coarse granularity in
terms of protection: it is necessary to give access to an entire directory even when a single file
is necessary. In addition to this first issue, as noted in previous works [29,93,106], the sandbox
of WASM runtimes may suffer of bugs that invalidates its security guarantees. For instance,
in [93] is reported the effect of inconsistent security check enforcements when the hostcall
path remove directory is invoked [39] through the Wasmer [180] runtime. If malicious
code is able to utilize this interface, any file reachable by the user executing the WASM module
may be removed, violating the security requirements that a WASI runtime should guarantee.

37

Gianluca Oldani

This is not the only bug that can be linked to this design decision. Errors may be caused by
the fact that procedures normally handled at kernel level, now must be implemented in user
space in order to perform the security checks correctly. One of these procedures is the path
resolution, which implementation also caused known issues [120, 176] in Wasmer: in this case
the introduced bug allows malicious modules to access the parent of a directory even if it is not
part of the set of pre-opened paths. Finally, another drawback of this approach is that different
implementations lead to different behaviors when the same WASM module is executed through
different runtimes. For instance, since the procedure to implement the pre-open of multiple
directories is not specified by WASI, the security checks performed by different runtimes are not
the same, leading to different security boundaries [119, 155, 176]. The previously mentioned
issues only affects a specific type of system resource: the filesystem. This chapter will focus on
the effort to enhance the protection of this resource through eBPF. This is not the only system
resource that can be exposed through WASI: runtimes such as WasmEdge and Wasmtime allows
WASM modules to access network resources. While the WASI standard regulating this kind
of resources is still being completed, in Chapter 4 is discussed how to extend the results of the
proposal presented in this chapter also to network resources.

3.3.2 Threat Model

This work is based on assumptions that reflect the threat model employed by Wasm runtimes. It
is assumed that the code executed by the runtime is either untrusted or it is trusted but potentially
affected by security vulnerabilities due to bugs. The goal of the attacker providing the code
is to bypass the security checks enforced by the runtime to get access to the host file system.
To fulfill this objective, the attacker can leverage the interface provided by WASI and send any
argument. Runtime escapes caused by memory corruption or alteration of the program flow
are out of scope of our work, since protection can be provided by other existing solutions (e.g.,
[29]).

3.4 Architecture

The analysis presented in this chapter starts from the scenario illustrated in Figure 3.1. Currently,
WASI-compliant runtimes implement dedicated user-space wrappers to enforce the security
boundaries of hostcalls. File system access is granted by the user on a set of pre-opened
directories that are specified via CLI before the Wasm module is run (e.g., with the --dir
option). The presented proposal follows a similar approach, since it requires the user to state
the permissions of each Wasm module in a JSON policy file. Contrary to existing runtimes,
permissions can be granted with file-based granularity. Three permissions are available: (i)
read to open and read a file, (ii) write to modify, truncate and append content to a file, and

38

Hardening WASI using eBPF programs

(iii) delete to remove the file. When permissions are related to a directory, read translates
to listing its content, write allows to create and delete files within it. The proposed approach
has been tested thanks to the creation of extension for the following Wasm runtimes: Wasmtime
and WasmEdge. The runtimes have been modified in order to be able to load the policy at
startup, and, instead of pre-opening the directories available to the Wasm module, they enforce
the policy through eBPF programs. Programs store information about access privileges in eBPF
maps. Once these maps and eBPF programs are loaded, the runtime instantiates the Wasm
module selected by the user (arrow A in Figure 3.2). At this stage, the modified runtime invokes
a dedicated user probe specifying as a parameter the policy that confines the loaded Wasm
module (B). The argument is captured by a dedicated eBPF program that also annotates the
identifier of the thread running the Wasm interpreter in a tracing map. A crucial property of
this design is that the policy is activated before the runtime executes the module (i.e., before
untrusted code is interpreted). This procedure guarantees that, from this point on, all the
hostcalls performed by the Wasm module are restricted by the eBPF programs (arrows 1 , 2).
The eBPF programs that make the security decisions are evaluated every time a file-related
kernel security hook is reached (e.g., security file open), and any access decision is
enforced at kernel level. When an unauthorized request is performed by the Wasm code (3),
the related eBPF program detects the violation and denies the request, returning to the caller

configure
access policy

Dir2Dir1

Wasm + WASI
runtime

Wasm
module

A

2

Dir0

instantiate

open file
to read 3 open file

to write

BPF LSM

B

hostcalls1

No access Read-only access Read and write access

Figure 3.2: Proposal workflow. The runtime instantiates the Wasm module (A), and configures
the associated policy calling the traced user probe (B). After the Wasm module is run, all the
hostcalls issued by the program (1) are restricted by eBPF (2 , 3)

39

Gianluca Oldani

a permission denied error. When the execution of untrusted Wasm code terminates, another
eBPF program is responsible for removing the access restriction from the thread executing the
Wasm runtime. No further intervention from the runtime is required, as the maps and the eBPF
programs are automatically removed from the kernel immediately after the process running the
runtime terminates.

This architecture offers several advantages. First, it eliminates the risks coming from buggy
user-space security checks (e.g., wrong filepath resolution [120], wrong directory removal [39]).
Then, by leveraging kernel hook points [166], the presented approach allows the runtime de-
veloper to focus on the interaction between Wasm code and the memory unsafe system call,
leaving aside authorizations and policy-related issues. Lastly, access constraints can be audited
by simply looking at the JSON policy, instead of inspecting the code.

3.5 Experiments

To investigate the overhead introduced by the proposed solution, the extensions for both
WasmEdge and Wasmtime have been benchmarked. The evaluation has been performed in
the following test environment: an Ubuntu 22.04 LTS server powered by an AMD Ryzen 2950X
CPU with 16 cores, 128 GB RAM, and 2 TB SSD. No kernel upgrade or modification was re-
quired, as eBPF is already available in the default OS image. In order to assess the performance,
the tests have been performed through one of the most popular binary that can be compiled to
Wasm with support to WASI: uutils coreutils, the porting of the coreutils in Rust [43].
First, the binary has been compiled using with the wasm32-wasi target; runtime-specific
optimizations have been applied (with wasmedgec [3] for WasmEdge and with wasmtime

compile [2] for Wasmtime) to obtain optimal performances. Then, the benchmarks reported
in the coreutils repository have been reproduced, with the exception of those that are not portable
to WASI due to temporary lack of support (e.g., the dd utility needs to spawn threads, a feature
that is yet to be implemented [72]). Finally, the proposed protection has been applied to the
tested runtime. The Hyperfine benchmarking tool [47] has been used to perform the measure-
ments, with 1000 performed runs after 100 warmups executions. As shown from the results
in Table 3.1, the illustrated approach introduces a limited overhead, ranging from an additional
0.12% to 6.30% for WasmEdge, and from 0.28% to 14.29% for Wasmtime. As expected, the
highest overhead is experienced by short-living utilities (e.g., head). It also possible to observe
that there are notable differences between the WasmEdge and Wasmtime test execution time for
some utilities (e.g., ls and cut); from the performed analysis it is possible to conclude that
these differences are mostly caused by the specific post-compilation optimizations.

40

Hardening WASI using eBPF programs

Utility WasmEdge WasmEdge* Wasmtime Wasmtime*

head 32 34 (+6.25%) 14 16 (+14.29%)
sum 134 137 (+2.24%) 130 136 (+4.62%)
tac 149 150 (+0.67%) 152 155 (+1.97%)
wc 285 287 (+0.70%) 309 310 (+0.32%)
shuf 298 300 (+0.67%) 356 358 (+0.56%)
ls 512 526 (+2.73%) 1077 1113 (+3.34%)
seq 1155 1157 (+0.17%) 1526 1533 (+0.46%)
cut 1403 1411 (+0.57%) 359 360 (+0.28%)
join 1601 1603 (+0.12%) 2054 2065 (+0.54%)
split 4416 4694 (+6.30%) 4933 4998 (+1.32%)

Table 3.1: Average execution time in ms of the coreutils without and with* our approach (%
overhead in parenthesis)

3.6 Related Work

There are several successful solutions that leverage Wasm to sandbox untrusted code [77, 126,
138]. RLBox [126] is a framework that facilitates the isolation of third-party libraries in pre-
existing software. eWASM [138] optimizes the execution of Wasm in embedded systems with
constrained resources. Sledge [77] enables efficient Wasm-based serverless execution on the
edge. The use of the approach presented in this chapter for restricting access to the file system
within these frameworks can strengthen their security guarantees.
The memory safety guarantees of Wasm depend on the runtime implementation [106]. Hence,
Bosamiya et al. [29] explore the problem of producing provably safe sandboxes. WaVe [93]
explains that any interaction with the unsafe interfaces exposed by WASI can introduce security
and safety violations. Thus, the authors proposed a verified secure runtime system implementing
WASI. However, both works require to redesign the runtime toolchain, while the presented
eBPF-based solution can be directly integrated into existing runtimes employed in the industry.

3.7 Conclusions

The results achieved by the research presented in this chapter are promising: not only it permits
to introduce fine-grained policies to restrict file system access, it is also associated with a limited
overhead which is aligned with the needs of a modern sandbox. The protection is currently
applied only to the file system, but the applied approach can extended be extended also to
network sockets, as exposed in Chapter 4. Since this component of WASI is currently under
definition, having solutions to be able to protect network resources is a promising research
direction.

41

Chapter 4. Extend the protection of Deno native code

4.1 Introduction

As established in Chapter 2, the support provided by the runtime for the execution of native code
greatly simplifies the work of the developer building the backend of a web application. However,
the APIs enabling access to system resources and the execution of native code also raise security
concerns, since they effectively break the isolation between the JS application and the host OS.
The ability to control the resources accessible to a JS program was indeed one of the reasons
that led to the creation of Deno in 2018 [142], and the solution identified by the community
was to configure the resources available to an application with simple permission flags [62].
This change also influenced the design of Node.js, which introduced a similar flag-based control
model1 two years later [135]. Unfortunately, while permissions are effective in restricting access
to the JS application, they do not provide isolation guarantees when native code is executed,
leaving the host exposed to security breaches [62].
This chapter focuses on an argument treated also by previous research [73, 162]: JavaScript
modules frequently depend on components written in native languages such as C or C++. One
advantage of such practice is that the reuse of existing utilities permits to take advantage of
popular high performance libraries and, in addition to performance, it minimizes the cost of
development. There are several notable examples, such as: the node-sqlite3 [167] and deno-
sqlite3 [102] database drivers; modules to perform image/video conversions, such as sharp [132],
fluent-ffmpeg [128] and gm [129]; OCR engines like Tesseract [165]; and the cryptography
modules relying on bcrypt [131]. The 2022 State of Open Source Security [157] claims that
each open source JS project relies on an average of 174 third-party dependencies; also, each
project is estimated to be affected by 40 vulnerabilities when its dependencies are taken into
account. Taking into consideration that web applications in most cases process untrusted input,
the risk of security incidents is high. For instance, the research presented in this chapter has
identified a sample of 32 high severity CVEs2 that affect native code used by popular packages
(with 2.6M downloads/week), and allow an adversary to corrupt the filesystem, perform privilege
escalation, execute arbitrary code, open network connections to exfiltrate data, etc.

Our contribution Similarly to what has been exposed in Chapter 2 and 3, this research focus
on the security gap in the way modern JS runtimes execute native code, as neither Node.js,
nor Deno, nor Bun sandbox it. In this work it is proposed NatiSand, a framework to provide

1Node.js support for creating security policies is still experimental as of 2023.
2The list is reported in Table 4.3.

43

Gianluca Oldani

strong isolation guarantees against the execution of native code. Differently from Cage4Deno,
NatiSand allows the developer to control access not only to the filesystem, but also to Inter-
Process Communication, and network, effectively reducing the risks coming from the execution
of untrusted native code. These additional system resources protected are not the only source
of novelty introduced by NatiSand. While Cage4Deno focused only on providing security
guarantees for subprocesses, NatiSand is also albe to sandbox the execution of shared libraries.
The solution described in this chapter is characterized by a compact, generic architecture that fits
nicely with modern runtimes. Internally, it leverages Seccomp [32] and Linux Security Modules
(LSMs), such as Landlock [122] and eBPF [41] to restrict access to protected resources. Again,
in the design phase of NatiSand, specific attention has been paid to usability by developers. To
this end, the automatic policy generation approach described for Cage4Deno has been extended
in order to include the additional protected resources.
A prototype of NatiSand has been implemented and integrated into Deno and is available at
https://github.com/unibg-seclab/natisand. Concerning the performance of
NatiSand, the runtime overhead have been measured for both subprocesses and shared libraries;
in both scenario, popular utilities have been used to perform the benchmark. Due to the addition
of shared libraries as a protection target, the baseline for the benchmarks are not only the ones
used in Chapter 2, but Wasm modules, which are the most popular alternative to the usage of
native libraries. The benchmarks performed to assess the performance of show that, compared
to the alternatives, NatiSand exhibits substantial performance improvements.

4.2 Background

A detailed background on JavaScript runtimes, Landlock and eBPF has already been discussed
in Section 2.2. This gives an overview on the additional component used to create the NatiSand
sandbox: Seccomp BPF.

Seccomp

Seccomp BPF [32], henceforth Seccomp, is a mechanism provided by the Linux kernel to
restrict the set of system calls available to a userspace application. The rationale is that the
implementation of system calls may be affected by bugs or errors, therefore reducing the kernel
surface exposed to an unprivileged application narrows the attack surface.
The initial implementation of Seccomp restricted the set of allowed system calls only to exit,
sigreturn, read and write (on previously opened file descriptors) [91]. The implemen-
tation was greatly extended in 2012, and it now permits to intercept system calls and determine
whether each of them is safe to execute based on their arguments. To this purpose a filter
program written in the cBPF dialect must be provided. Unfortunately, a classic program has

44

https://github.com/unibg-seclab/natisand

Extend the protection of Deno native code

only access to the values of the arguments passed to the system calls (e.g., configuration flags),
and pointers cannot be dereferenced to avoid TOCTOU issues [70].

4.3 Security motivation

JavaScript runtimes let developers specify the set of access privileges given to a web applica-
tion [62, 135]. However, these constraints only apply to JS code; any function written in other
languages is executed unconstrained, either through a subprocess or the use of Foreign Function
Interfaces (FFI). Indeed, native code does not access system resources using the APIs provided
by the JS runtime and the reference monitor of the JS runtime is bypassed [62].

There is a broad variety of applications that rely on the use of native libraries. One well-known
example is the use of database drivers; low latency of queries is crucial to satisfy the constraints
on response time of a web application and a pure JavaScript implementation may not be able to
match them. This led to the development of third-party modules that depend on the code of shared
libraries corresponding to the required database driver (e.g., libsqlite3.so and libmysqlclient.so).
To testify the wide adoption of this practice, popular modules for both Node.js (e.g., node-
sqlite3) and Deno (e.g., deno-sqlite3) report more than 600 thousand downloads/week. Notably,
the deno-sqlite3 module was part of the official showcase of the performance of Deno when
invoking the native code of a shared library [100]. Previous work [162] demonstrated how this
module can be exploited with harmful effects for the web application and the underlying system.

Database drivers are just one example of how web application development relies on native code.
Other popular use cases are audio encoding (e.g., libopus), image processing (e.g., ImageMagick,
libvips), video manipulation (e.g., FFmpeg), optical character recognition (e.g., Tesseract), and
many others. The native code may contain vulnerabilities, which may be exploited and lead to
a variety of security violations.

The following paragraph describe in detail the three scenario addressed in this chapter.

Filesystem compromise Guaranteeing the integrity and confidentiality of the application host
filesystem is crucial to mitigate risks of data corruption and exfiltration [27]. A web application
often has access to many critical resources: databases, executables, private keys, user confidential
files, etc. When native code is executed, it can use the same privileges of the web application.
In line with the least privilege principle, the potentially vulnerable components should be able
to access only the files needed to perform their duties. Authorizing access only to the needed
portions of the file system restricts what can be read, written or run by an attacker, highly limiting
the security risk associated with the presence of vulnerabilities.

45

Gianluca Oldani

Escalation of privileges Another relevant attack surface is the privilege of using the IPC
channels provided by the operating system (e.g., pipes, message queues, unix sockets). By
leveraging IPC, a compromised binary can establish a communication channel with system
components and attempt a confused deputy attack to achieve privilege escalation on the host [30,
153]. Given the potential of this attack vector, it is important to limit the scope and set of IPC
channels available to a native component only to those strictly necessary for its benign behavior.

Malicious network channels Network access is a precious resource that a malicious actor can
leverage during an attack. A significant portion of malicious payloads open reverse shells to
gain control of the victim system over the network [31]. In addition, attackers may open network
channels to remotely recover data obtained on the vulnerable host [152]. Restrictions on how
a component of the web application can access the network can greatly improve the overall
security of the application. Network access should be forbidden or restricted only to domains
defined by the developer, thus restricting the ability of adversaries to perform data exfiltration
or fetch malicious payloads.

4.3.1 Threat model

The addressed threat model consider the operating system trusted, although binary utilities may
be malicious due to supply chain attacks, or affected by vulnerabilities due to incorrect memory
management, improper data validation, etc. Protection against attacks targeting JavaScript code
is out of the scope of our proposal, since JavaScript engines and the permissions system enforced
by JavaScript runtimes can be considered able to securely render JS code. NatiSand aims to
constrain the execution of potentially malicious, or vulnerable, binary utilities and functions
used by JavaScript applications. This native code accesses system resources unconstrained by
the security mechanisms offered by the JavaScript runtime, and its actions may cause severe
security breaches. Moreover, the input processed by the web application is often untrusted
and can be not sanitized, due to errors in the sanitization process, misconfiguration or lack
of awareness by the developer. Therefore, a malicious actor can exploit this attack vector
by submitting specifically crafted requests targeting the unconstrained native dependencies of
the web application, compromising the host system. The attack vectors may take multiple
forms, e.g., strings, videos, images, and audio files, depending on the input provided by the
JavaScript application to the vulnerable components. The goal of the proposal is to prevent the
execution of malicious payloads and mitigate the security risk, by empowering developers with
a way to establish clear security boundaries for the execution of binary utilities and components
depending on them.

46

Extend the protection of Deno native code

4.4 Design and implementation

In this section it is presented NatiSand, the proposal developed to enable the isolation of native
code for JS runtimes.

4.4.1 Objectives

From the experience gained from Cage4Deno, driving the design through a set of core objectives
has proven to be a successful approach. NatiSand follows some of the objectives already exposed
in 2.3.3, while expanding on others. In the following paragraphs, only the newly addressed goals
are exposed.

Security applied to multiple resources As a secure sandbox, NatiSand must provide pro-
tection against recent, high-severity vulnerabilities affecting native components used by web
applications. Furthermore, the additional protection must not result in a loss of functionality.
The goal is to enable the developer to follow the least privilege principle when designing its
application, reducing the attack surface in the presence of vulnerabilities. To do so, NatiSand
must be able to execute native code in lightweight compartments isolated from the rest of the
application, and characterized by policy-based ambient rights. The security restrictions must
be enforced independently of the method leveraged by the application to execute native code,
giving the developer the power to confine executables, shared libraries, and functions. Lastly, no
root permission should be used at runtime to configure and activate the isolated compartments.

Compatibility with multiple runtimes A valuable solution should be generic enough to
be integrated into different JS runtimes without requiring substantial changes to the internal
architecture. This also means that it must be aligned with the current permission-based model
implemented by the most widely used platforms. Moreover, it must be compatible with other
access control mechanisms already enabled by the underlying OS. This refers to the potential of
stacking the sandbox on top of security mechanism adopted by other software.

4.4.2 High level architecture

NatiSand permits to transparently execute code in ad hoc contexts, isolated compartments that
are characterized by policy-based ambient rights. This allows the developer to configure fine-
grained access to confidential or privileged system resources, such as files, message queues,
shared memory areas, sockets, and other resources.
NatiSand separates system resources into three categories: filesystem, IPC, and network. By
default, native code sandboxed by our solution cannot access any privileged resource in each

47

Gianluca Oldani

category. Indeed, the developer must explicitly grant access to resources using a JSON-formatted
policy file. JSON is a popular format among the web community and the ability to configure
fine-grained permissions using a single, easy-to-read text file greatly simplifies the development
activity. No specific knowledge is required to configure the policy, and no effort needs to be
spent by the developer to understand how permissions are enforced.
Internally, NatiSand leverages dedicated Linux Security Modules to restrict access to each
resource category. Filesystem-related permissions are enforced using Landlock, while the
availability of IPC channels to interact with other processes or services already running on
the host is controlled with Seccomp and BPF. Finally, BPF constrains the ability to open new
connections and limits the devices reachable by a context. Three important characteristics are
shared by the selected LSMs: (i) they are lightweight, (ii) they do not require to leverage root
permissions while the application is running, and (iii) they operate in stacking mode [156],
hence they are compatible with other LSMs already running on the host, such as AppArmor,
SELinux, and SMACK. The stacking behavior also means that whenever the access decisions
of two LSMs do not match, deny takes precedence. To give an example, Seccomp can deny the
application to create a fifo file, even when Landlock grants the permission to write in the target
directory.
The architecture of our solution is shown in Figure 4.1. Shortly after the JS runtime is executed,
NatiSand parses the policy file input by the developer. Based on the policy, a set of sandboxing
and tracing programs are initialized and loaded into the kernel. A pool of isolated contexts is
also prepared by the sandbox. Only then the web application is started. At runtime, NatiSand
intercepts all the calls to native code performed by the application and executes them safely in
the proper isolated context.

4.4.3 Integration with JS runtimes

Similarly to the naming convention applied in Cage4Deno, the component responsible of enforc-
ing NatiSand security constraints is called sandboxer, a component that extends the enhanced
JavaScript runtime. Another task perfomed by the sandboxer is to parse security policies in order
to enforce the isolation of native code accordingly. In the following we explain the operations
performed by the runtime to use it, referring to Figure 4.1.

Bootstrap This phase is similar to the one described in Section 2.4.1: the JSON file containing
security boundaries is parsed by the JavaScript runtime and BPF components(i.e., programs and
maps) are loaded into the Kernel. After these steps, the Linux capabilities needed to perform
these operations are dropped. In addition to these steps shared with Cage4Deno, the bootstrap
procedure of NatiSand performes additional operations, mainly addressed to the creation of
security contexts. Each context is an OS thread with permissions restricted through the following

48

Extend the protection of Deno native code

mechanisms: (i) Landlock rulesets are enforced through the dedicated syscalls, (ii) Seccomp
filters are installed in order to limit the set of syscalls available to the thread, and (iii) uprobes
are invoked in order to enforce the security checks performed by BPF programs on the security
context. This architecture has been chosen to avoid paying the performance cost to instantiate
each thread at the exect moment of the invocation of executables and shared libraries: the
sandboxer allocates and configures beforehand all the security contexts necessary and parks
them in a context pool (a , b , c). This design choice minimizes latency, one of the highlighted
goal expressed in Section 2.3.3.

Native context

JS runtime

taskcontext pool

JS engine

BPF
programs
& maps

user
kernel

resource access

BPF maps
JS context

JS runtime changes

α

1β

bpf landlock seccomp

BPF frontend

JS application
Rt.command(prog,args)
Rt.dlopen(lib:function)

BPF
programs

sandboxer

executable / library

2

Core module

1

b

c

Policy

JSON

Landlock

ipc net

3

4c4a

fs

4b

BPF filters

a

Figure 4.1: Integration of NatiSand in the JavaScript runtimes. Bootstrap: import security
contexts (α, β), creation of the context pool (a, b, c). Application runtime: isolated execution
of binary programs and shared library functions (1, 2, 3, 4a, 4b, 4c)

49

Gianluca Oldani

Access control

IP
C

fentry/fifo open
lsm/socket bind

lsm/socket connect

N
et

w
or

k lsm/socket bind
lsm/socket create
lsm/socket connect

Table 4.1: Hooks and tracepoints monitored by NatiSand

Application runtime After the web application is started, two operations can lead to the
execution of native code: (i) the execution of a binary program in a subprocess, and (ii) the
invocation of a shared library. NatiSand intercepts all the requests originating from the web
application that require to execute native code 1 , and leverages the sandboxer to assign them
to the proper isolated context 2 . Based on the type of request, a dedicated task inheriting
the selected security context is launched, finally it is used to execute native code 3 . The
consequence is that any request to access filesystem, IPC, and network resources will be subject
to the restrictions imposed by the LSMs (4a , 4b , 4c). The approach implemented by NatiSand
ensures that native code is never loaded nor executed in a task running unconstrained, thus
strengthening the boundary between the web application and the OS.

4.4.4 Isolation features

Native code executed in isolated contexts can vary from library functions to entire programs. In
the following we detail how NatiSand enforces isolation and summarize the sandboxing features.

Policy inheritance and filesystem protection The same concerns explained in Section 2.4.3
also applies for NatiSand: Landlock and Seccomp guarantee policy inheritance after a clone
syscall is performed, but BPF does not have such guarantee out of the box, since BPF maps
responsible of tracking the restricted contexts must be updated explicitly. To this end, NatiSand
relies on the same mechanisms based on the security hooks mentioned in Table 2.2(a).

Concerning the filesystem, NatiSand restricts access to the filesystem using Landlock. The
properties of this tools have already been described in detail in Section 2.4.2: the sandbox
enforces a read, write, exec (RWX) permission model, specified with three allow-list
vectors (e.g., lines 5, 6, and 7 in Listing 4.1). After the security context has been activated
to limit access privileges of a security context, the available permissions can only be further
restricted.

50

Extend the protection of Deno native code

IPC To explain the isolation features NatiSand provides, it is first necessary to describe how
programs and libraries generally use IPC.
Native programs often rely on parallelism and concurrency to achieve high resource utilization.
Parallel execution typically requires to handle synchronization and communication between a
parent and a group of child tasks. In this setting, best practice suggests to provide the children
with the necessary communication channels through the inheritance properties of the clone
syscall [112]. For instance, when two programs are piped in the Bash shell, an IPC mechanism,
in the form of a pipe, is created by the shell process and is inherited by the two child programs,
so that the latter can read the output from the former. Similarly, a parent and a child task
can leverage an unnamed UNIX socket pair to share messages [113]. These use cases do not
pose a significant security risk, since (i) the communication happens between tasks associated
with the same security context, and (ii) the IPC channels used to communicate are not visible
to other services running on the host OS. Conversely, CVE-2020-16125 and CVE-2021-3560
demonstrate that uncontrolled interaction with globally available IPC channels used by other
services can lead to concrete security problems.
To block the communication between components associated with incompatible security con-
texts, NatiSand by default denies IPC over globally visible communication mechanisms. In this
category there are fifo (i.e., named pipes), message queues, named semaphores, non-private
shared memory, signals, and UNIX named sockets. Many of these mechanisms can be fully
blocked by denying access to the related system calls, but in some cases the evaluation of
syscall configuration flags is necessary. For instance, the creation of shared memory maps is
permitted by the sandbox only when the mmap syscall is invoked with MAP ANONYMOUS or
MAP PRIVATE. Similarly, the creation of named special files is allowed only when the mknod
and mknodat syscalls are not invoked with S IFIFO and S IFSOCK. Syscall filtering based
on configuration flags is performed efficiently by NatiSand using Seccomp.
However, the information available to Seccomp is not always sufficient to make the access
decision. This is the case for the bind, connect, open, and openat syscalls. Indeed, infor-
mation about the type of socket referenced for the bind and connect syscalls resides in user
memory, and unfortunately Seccomp cannot safely dereference it (due to TOCTOU risks [70]).
Likewise, the open and openat syscalls do not represent the type of file to be opened through
configuration flags, so Seccomp cannot handle the specific case properly. To solve these prob-
lems NatiSand relies on the BPF programs attached to the hooks reported in Table 4.1 (which
are not affected by TOCTOU issues). In particular, in the case of UNIX sockets the programs
are attached to the lsm/socket bind and lsm/socket connect hooks, while with fifo
files, the kernel function fifo open is used. A summary of the IPC mechanisms controlled by
NatiSand, along with the LSM leveraged to perform the security checks, is reported in Table 4.2.

51

Gianluca Oldani

IPC Subclass Linux system call Seccomp BPF

Message
queue POSIX

mq open, mq getsetattr,
✓mq notify, mq timedreceive,

mq timedsend, mq unlink
System V msgctl, msgget, msgrcv, msgsnd ✓

Pipe Named mknod, mknodat, open, openat ✓* ✓

Semaphore POSIX futex, mmap ✓*

System V semctl, semget, semop,
✓semtimedop

Shared
memory

POSIX mmap ✓*
System V shmat, shmctl, shmdt, shmget ✓

Signal Standard kill, pidfd send signal, tgkill,
✓tkill

Real-time rt sigqueueinfo,
✓rt tgsigqueueinfo

UNIX
socket Named bind, connect, mknod, mknodat ✓* ✓

Table 4.2: LSMs used by NatiSand to restrict Linux IPC. The checkmark ✓* indicates when
Seccomp needs to evaluate the syscall configuration flags to make the access decision

Network NatiSand permits to control how each isolated context connects to network resources.
In detail, it permits to completely revoke access to the network, to connect only to a restricted list
of hosts, and when needed, to use the network without restrictions. The sandboxer relies on BPF
programs to enforce permissions. The programs restrict the ability to create, connect, and
bind sockets, and are thereby attached to the LSM hooks reported in Table 4.1. The approach
described in this section can be efficiently applied to the protection mechanism described in
Chapter 3 in order to protect also network resources.
The creation of a socket opens a communication channel and returns a file descriptor as a result.
By default, the sandboxer restricts the available communication domains to Internet Protocol
(IP), denying applications the use of protocol families such as Bluetooth, Radio, VSOCK, and
many more. No restrictions are instead applied to UNIX domain sockets and the type of socket
to be opened (e.g., stream, datagram). Opening a connection to a host is permitted only when
the developer grants the isolated context to do so. The BPF program that checks the opening
of a connection performs a sequence of lookups in a BPF map storing the reachable (i.e.,
policy allowed) hosts. Each network resource is uniquely identified by its IP address and port.
Internally, the value zero for the port is used to allow opening a connection on every port.
Up to now we have discussed the restrictions applied to a context when the application connects
as a client to a service. However, web applications frequently need to serve incoming requests.
To do so, it is necessary to assign a “name” to a socket – i.e., configuring its address. This
operation is done with bind. We decided to allow a security context to bind a socket only when
the policy grants access to localhost. The rationale is that the developer should specify in the

52

Extend the protection of Deno native code

policy which ports are available to a security context. No restrictions are instead applied to the
listen and accept syscalls. Listen only marks a socket as passive, meaning that it will be
used to accept incoming requests. However, no connection to a socket can happen if an address
was not previously assigned to it [111]. The same applies to accept, which is used to extract
the first connection request from the queue of pending connections [110].

4.5 Policy

In this section it is presented the structure of the policy file. After that, it is proposed an approach
to automatically generate the permission rules.

4.5.1 Policy structure

JavaScript applications executed through NatiSand are associated with a policy file. The policy
must be provided by the developer before the application is run, and to this end, a CLI flag (e.g.,
native-sandbox) needs to be added to the JS runtime. The policy file is formatted in JSON,
with the following structure: a policy defines an array of objects and each object details the
permissions available to a security context. Within each object, a name is used to identify the
context, a type indicates whether the context applies to an executable, a library, or a function of
a library; the sections fs, ipc and net are used to configure the corresponding permissions. The
structure of the objects is flexible, and only a name is required to configure a valid context. As the
policy follows a default-deny model, a context that specifies only its name has no permissions at
runtime. An excerpt from a policy file is shown in Listing 4.1 (the complete example is reported
in Appendix B.2), while a summary of the most relevant policy features is described next.

name and type The name and type elements are used by NatiSand to determine which policy
context must be enforced. The type element can be set to executable (the default value),
library or function. At runtime NatiSand extracts the binary program, library, and
function names, and based on the information available, it identifies the most selective entry in
the policy. This gives the developer the flexibility to use different policies in case binaries and
libraries have the same name, or when different functions from the same library are invoked.
Listing 4.1 shows a policy that is enforced every time the application runs the curl program.

fs The structute of the policy in this part is similar to what has been described in Section 2.4.2,
but contained in the fs element. It stores three optional arrays: read, write and exec. Filesystem
paths are used as array values. As an example, the context detailed in Listing 4.1 can read and
execute the curl binary, and write to response.json in the current working directory of the
web application. In case the developer wants to operate with a coarser granularity, the value

53

Gianluca Oldani

Listing 4.1: Example of JSON policy file with single context
1 [{
2 "name": "curl",
3 "type": "executable",
4 "fs": {
5 "read": ["/usr/bin/curl", ...],
6 "write": ["response.json"],
7 "exec": ["/usr/bin/curl", ...]
8 },
9 "ipc": {

10 "socket": true,
11 },
12 "net": [{
13 "name": "https://www.example.com",
14 "ports": [443]
15 }]
16 }]

true can be used to replace any of the fs, read, write and exec arrays to grant access to the
whole filesystem.

ipc To restrict IPC access, the developer is provided with a simple interface consisting in flags
that can be turned on and off based on security requirements. Six optional flags are available in
the policy: fifo, message, semaphore, shmem, signal, and socket. For example, in Listing 4.1,
curl is allowed to use abstract, named, and unnamed Unix sockets. It is up to our sandboxer to
abstract away the complexity of the underlying architecture and enforce the policy when IPC
is performed between groups of threads associated with separate contexts. No understanding
of the standards available (e.g., System V, POSIX) is required by the developer to restrict the
permissions associated with her application. Similarly to the filesystem case, the developer
can use a coarser granularity by setting the ipc element to true, enabling all communication
mechanisms.

net Web application developers are often interested in restricting the hosts an application can
connect to. The policy permits to specify an array of reachable hosts. Each host is fully qualified
by its URL/IP, and the sequence of permitted ports. As in the case of the filesystem, the policy
permits to grant access to the network without limitations (setting net to true), enable all the
ports for a specific host (setting ports to true), or completely remove access to the network
(leveraging the default-deny behavior). In Listing 4.1, the process executing curl is only allowed
to connect to https://www.example.com on port 443.

54

Extend the protection of Deno native code

4.5.2 Policy generation

Similarly to what described in Section 2.5, the approach proposed to automatically generate
policies is similar to the one applied in SlimToolkit [141], where a service is run against a test
suite to automatically generate the least privilege security profile. For filesystem rules, the same
approach already applied for Cage4Deno can be applied. Concerning the protection of IPC
mechanisms, the dmng utility has been extended to support the generation of the required set
of policy flags by analyzing the results of multiple test cases where the Seccomp filter and BPF
programs of the sandboxer are set to auditing mode (i.e., instead of blocking an access request,
the event is reported in system logs). Finally, network rules generation can be automated by
observing the execution of the binary with BPF programs. In fact, with this approach is possible
to retrieve a list of the domain names resolved, their IPs, and those hardcoded IPs the utility
connects to without performing name resolution. To track domain name resolutions, a uprobe
has been attached to the getaddrinfo function of the libc library, for IPs, network socket
connections are observable using kprobes on socket bind and socket connect LSM
hooks.
It is important to recall the limits of the proposed approach to automatically generate policies:
(i) test suite with limited coverage might provide overly strict policies not allowing the execution
of legitimate code, (ii) policy generation for malicious code produces overly permissive policy
and obviously cannot be trusted.

4.6 Case Study: Deno runtime

There are three well-known alternatives for the execution of JS code on the backend, namely
Node.js, Deno, and Bun. Their architectures have strong similarities, and NatiSand is designed
to be compatible with all of them (since no assumption is made on specific runtime components).
Nevertheless, the integration is not trivial, and it requires significant engineering effort, therefore,
in order to create a function proof of concept, NatiSand has been integrated into only one of
them to demonstrate the achievement of the set objectives (Section 4.4.1). In this section it is
explained the rationale of the decision that has been taken. After that, the main architectural
changes applied to the chosen runtime are detailed.

4.6.1 Runtime selection

Considering (i) popularity among web developers, (ii) availability and support of third-party
modules, and (iii) security-oriented features provided by the runtime and (iv) greater familiarity
with the code base, the Deno runtime has been selected. The main motivation for not selecting
Bun is the fact that it is still in the early stages of its lifecycle (version v1.0 has just been

55

Gianluca Oldani

released at the time of writing of this thesis), so it is the least used by developers and the one
that may have major changes in the future. Node.js is nowadays the most widely used platform,
and it offers developers the largest collection of open source packages. However, Node.js by
default does not prevent JavaScript applications to access system resources, and although it
recently introduced a module-based permission model, the feature is experimental [135]. Deno
was instead designed with the protection of the host as one of its main goals [142], thus no
access to privileged system resources is given to JavaScript applications unless the developer
explicitly grants it. Deno provides the Node Compatibility Mode [61], a feature enabling the
reuse of code and libraries originally built for Node.js. The availability of this function permits
to import packages hosted by Deno on deno.land/x, as well as modules published to npm.
To conclude, Node.js and Deno prevail over Bun on all three dimensions. Node.js wins over
Deno on popularity (but Deno is quickly growing), they are comparable in terms of third-party
modules, and Deno significantly outperforms Node.js on security oriented-features, making
Deno the ideal candidate to implement the prototype of NatiSand.

4.6.2 Deno integration

Deno has a modular architecture organized into components. Three of them are particularly
important for NatiSand: (i) rusty v8, the package that bridges Deno and the V8 engine imple-
menting the set of bindings to the V8’s C++ API, (ii) deno core, which leverages rusty v8 to
expose the interfaces provided by Deno to the JS application, and (iii) deno, which defines the
runtime executable together with the Command Line Interface.

Bootstrap Shortly after the Deno executable is run, the deno component is used to read the
permissions granted by the developer via CLI. This stage has been modified in order to also
read and parse the policy file specified with the new native-sandbox flag. After that, the
permissions associated with each security context are added to the global state stored by the
runtime. To complete the bootstrap phase, the steps to load the necessary BPF programs and to
initialize the pool of isolated contexts have also been integrated, as mentioned in Section 4.4.3.

Application runtime After the JS application is started, the function calls that cannot be
directly handled by V8 are routed to the Deno runtime through the bindings defined by rusty v8.
Each of them is associated with the op code, a unique code identifying the operation to be
performed. The deno core component receives such requests, it checks the permissions available
from the global state, and serves them accordingly. The requests that are required to execute
native code (e.g., command, dlopen, run) have been identified and modified, in this way
deno core is able to apply the security restrictions enforced by NatiSand. The op code along
with the arguments are used to select the proper security context.

56

Extend the protection of Deno native code

Listing 4.2: Code sandboxing with nativeCall()
1 function query(db, stmt) {
2 const sqliteDB = new sqlite3.Database(db);
3 const query = sqliteDB.prepare(stmt);
4 const tuples = query.all();
5 sqlite_db.close();
6 return tuples;
7 }
8 const db = "database.db";
9 const stmt = "SELECT * FROM table";

10 const ts = Deno.nativeCall(query, [db, stmt]);
11 console.log(ts); // print tuples

4.6.3 Support to fast JS calls

In October 2020 V8 announced the support to fast JS calls [168]. The function allows V8 to
directly invoke optimized native functions without leveraging the bindings that connect V8 and
the embedder (e.g., a JavaScript runtime). This permits to obtain substantial performance gains,
since native function calls can be resolved in nanoseconds.

Deno has introduced unstable support to fast JavaScript calls in July 2022 [99]. The change
affected the implementation of the dlopen API, which is now able to generate an optimized and a
fallback (i.e., standard) execution path for native functions. The optimized path is triggered only
when V8 is actually able to optimize a symbol, and it entails the execution of code leveraging
the fast call interface. While the optimized path is associated with minimum overhead, from a
security perspective it permits the web application to execute native code without the mediation
of the JavaScript runtime, invalidating the security reference monitor of Deno. In the developed
prototype, this Deno security issue has been addressed by offering developers two alternatives:
(i) turn off the fast call support and safely rely on the execution of sandboxed native functions with
NatiSand without any code change, and (ii) enable fast calls but allow to select the JavaScript
functions that need to be isolated with minimal code changes. The second option permits to
take advantage of fast calls when performance is critical and risks are limited (e.g., arithmetic
operations), and at the same time benefit from the security features NatiSand provides. To this
end, a new API named Deno.nativeCall() has been introduced in the runtime. The API
receives, as first argument, the name of the function to be sandboxed, along with the list of its
arguments. Listing 4.2 shows how to sandbox the functions from the native database driver
sqlite3.

57

Gianluca Oldani

4.7 Experiments

NatiSand must satisfy two properties to be practical: (i) it must mitigate real-world vulnerabilities
by blocking the associated exploits, and (ii) it must introduce a limited overhead compared to
a scenario where no protection is applied. In the experimental evaluation, it is first shown how
the solution is able to protect web applications relying on binary programs and shared libraries
affected by high severity vulnerabilities (Section 4.7.1), then we investigate the performance of
our approach (Section 4.7.2). Both tests use a server with Ubuntu 22.04 LTS, an AMD Ryzen
3900X CPU, 64 GB RAM, and 2 TB SSD.

4.7.1 Exploit mitigation

To conduct the analysis, it has built a representative sample of vulnerabilities targeting exe-
cutables and libraries widely used in web applications consinsting in the 32 CVEs reported
in Table 4.3. The entries are separated into three classes: Arbitrary Code Execution (ACE),
Arbitrary File Overwrite (AFO), and Local File Inclusion (LFI). The list of vulnerable utilities
includes programs used to compress files (e.g., GNU Tar, RAR, Zip), to process multimedia
(e.g., FFmpeg, GraphicsMagick, ImageMagick), database drivers (e.g., SQLite), and also Ma-
chine Learning libraries (e.g., Lightning, Sockeye, TensorFlow). It is important to note that the
vulnerabilities affect popular open source modules with 2.6M downloads/week available from
the npm and deno.land/x archives. Concrete examples are sharp and fluent-ffmpeg from
npm, or flat and sqlite from deno.land/x.
Similarly to the analysis perfomed in Section 2.6, the public Proofs of Concept of the CVEs
in Table 4.3 have been retrieved and successfully used to exploit the vulnerable version of the
utilities. Then, it has been analyzed whether the vulnerabilities were exploitable sending the
malicious payload through the JavaScript module interface, and confirmed the feasibility of the
attack. The Node compatibility mode was leveraged to execute in Deno the modules downloaded
from npm. Finally, the experiment is repeated while the security functions provided by NatiSand
are in place, in order to verify that the attack was no longer successful, while the application
was still able to serve benign requests (i.e., no functionality loss). The only change introduced
in the experiment was the specification of a security policy through the native-sandbox
CLI argument. The policy was generated using the approach described in Section 4.5.2. No
modification to the web application, nor its dependencies, was required to benefit from the new
sandboxing capabilities.
From a security perspective it is worth mentioning that NatiSand can mitigate attacks at multiple
levels. For instance, in CVE-2022-2566 a heap out-of-bound memory bug exists in FFmpeg.
The goal of the attacker is to achieve Arbitrary Code Execution sending to the web application
a malicious MP4 payload. NatiSand denies the compromised component attempts to access

58

Extend the protection of Deno native code

Class CVE Id Utility Type Use case

ACE

CVE-2016–3714 ImageMagick bin Image processing
CVE-2019-5063 OpenCV lib Computer Vision
CVE-2019-5064 OpenCV lib Computer Vision
CVE-2020-6016 GNSockets lib P2P networking
CVE-2020-6017 GNSockets lib P2P networking
CVE-2020-6018 GNSockets lib P2P networking
CVE-2020-17541 libjpeg-turbo lib Compress image
CVE-2020-24020 FFmpeg lib Video processing
CVE-2020-24995 FFmpeg lib Video processing
CVE-2020-29599 ImageMagick bin Image processing
CVE-2021-3246 libsndfile lib Audio encoding
CVE-2021-3781 Ghostscript bin PDF processing
CVE-2021-4118 Lightning lib Machine learning
CVE-2021-20227 SQLite lib Query database
CVE-2021-21300 Git bin Clone repository
CVE-2021-22204 ExifTool bin Extract metadata
CVE-2021-37678 TensorFlow lib Machine learning
CVE-2021-43811 Sockeye lib Translation
CVE-2022-0529 Unzip bin Decompress archive
CVE-2022-0530 Unzip bin Decompress archive
CVE-2022-0845 Lightning lib Machine learning
CVE-2022-1292 OpenSSL bin Verify certificate
CVE-2022-2068 OpenSSL bin Verify certificate
CVE-2022-2274 OpenSSL lib Cryptography
CVE-2022-2566 FFmpeg bin Video processing

AFO

CVE-2016-6321 GNU Tar bin Decompress archive
CVE-2017-1000472 POCO lib Common libraries
CVE-2019-20916 Pip bin Dependency fetch
CVE-2022-30333 UnRAR bin Decompress archive

LFI
CVE-2016-1897 FFmpeg bin Video processing
CVE-2016-1898 FFmpeg bin Video processing
CVE-2019-12921 GraphicsMagick bin Image processing

Table 4.3: Sample of CVEs mitigated by NatiSand

confidential files, open reverse shells, interact with privileged services through IPC, and transfer
data to unauthorized network hosts. It is important to note that, while sandboxing limits
the privileges an attacker can gain from exploiting a vulnerable program, it cannot eliminate
vulnerabilities, nor it can make infeasible to use them in an exploit chain.

4.7.2 Performance evaluation

To assess the performance of NatiSand, a broad set of programs has been considered, including
several GNU Core Utilities, executables to process multimedia, database drivers, and Object

59

Gianluca Oldani

Utility Deno [ms] Minijail Sandbox2 NatiSand

b2sum 2.37 7.19x 9.37x 2.88x
cut 2.52 7.11x 8.97x 2.86x
sum 2.61 7.00x 8.25x 2.87x
tac 2.76 6.51x 8.21x 2.34x
wc 2.97 6.25x 7.69x 2.44x
dd 3.60 5.29x 6.26x 2.23x
seq 3.80 5.02x 5.96x 2.13x
shuf 4.29 4.68x 5.55x 2.17x
ls 4.75 3.72x 4.68x 1.76x
factor 5.03 4.06x 5.03x 1.86x
join 5.20 4.08x 5.18x 2.05x
head 6.73 3.16x 3.85x 1.56x
ping 12.20 2.27x 2.79x 1.47x
sort 14.37 1.44x 1.77x 1.43x
dig 22.14 1.71x 2.15x 1.17x
wget 53.24 1.18x 1.42x 1.13x
curl 81.27 1.23x 1.24x 1.16x

Table 4.4: Average execution time for common Linux utilities

Character Recognition engines. The goal is twofold: (i) evaluate the slowdown compared to a
scenario where no protection is available (i.e., regular Deno), and (ii) compare NatiSand with
well known sandboxing and isolation frameworks. In the following we first investigate the
impact on executables, then we analyze libraries.

Executables

In the first batch of experiments we analyze the overhead associated with executables. Compared
to the default scenario where no protection is available, NatiSand spawns each program in a
dedicated subprocess with constrained ambient rights. A handful of general purpose sandboxers
can be adopted to achieve a comparable degree of protection. In the evaluation, Minijail [80] and
Sandbox2 [81] have been used as alternatives. The features of these two tools can be consulted
in detail in Section 2.6.2

Benchmark I In the first benchmark, a JavaScript application has been implemented to test
the execution of 17 common Linux utilities with four configurations: Deno, NatiSand, Minijail,
and Sandbox2. The application uses Deno.run() to spawn each utility in a subprocess, and
it leverages Deno.bench() to determine the duration of each request. The function ensures
that each measure is statistically robust, as it automatically performs a dynamic number of
rounds based on the duration of the test. The results are shown in Table 4.4 (tests are ordered
by increasing execution time). As expected, the cost of activating the sandbox is amortized

60

Extend the protection of Deno native code

GM IM Tesseract0

100

200

300

La
te

nc
y

[m
s]

Deno
NatiSand

Minijail
Sandbox2

GM IM Tesseract0

5

10

15

20

25

Th
ro

ug
hp

ut
 [r

eq
/s

]

Deno
NatiSand

Minijail
Sandbox2

Figure 4.2: Average latency and throughput for microservices that execute subprocesses

with the increase in the test duration. The tests also show that NatiSand suffers from a smaller
performance degradation compared to Minijail and Sandbox2. This aspect is particularly evident
for short-lived utilities. The reason is that our approach is integrated by design and, contrary
to the other solutions, leverages lightweight technologies that introduce a smaller performance
footprint.

Benchmark II While the experiments part of Benchmark I focus on the server side scenario,
with Benchmark II is designed to show the overhead experienced by a remote client. To this
end, three microservices have been used, each one representing a real use case scenario of high
performance native programs. Two microservices rely on GraphicsMagick and ImageMagick, to
perform a sharpen operation on images input by the client, while the third microservice relies on
Tesseract to perform Optical Character Recognition on a second sequence of images input by the
client. Similarly to the previous case, the test was repeated for each of the four configurations:
Deno, NatiSand, Minijail, and Sandbox2. This time the HTTP benchmarking tool wrk was used
to measure the performance of each microservice. Network bandwidth and latency are 1 Gbps
and 10 ms, respectively, while 100 warmup requests were carried out. Figure 4.2 shows the
average latency and the throughput observed over a period of 30 seconds. The results once again
confirm the previous analysis, as longer durations make the cost to setup the native sandbox less
relevant. It is worth to mention that NatiSand exhibits lower overhead compared to Minijail and
Sandbox2, with approximately 5 to 10 ms less latency for each microservice.

Usability Although general purpose sandboxers can be used to restrict the permissions as-
sociated with executables, to provide a protection comparable to NatiSand: (i) they force the
developer to introduce changes in the web application, and (ii) they require to understand in
depth the techniques used by the kernel to restrict ambient rights (e.g., capabilities, namespaces,

61

Gianluca Oldani

Test Deno [µs] Wasm NatiSand

libxml2 (open) 9.33 8.96x 2.51x
libxml2 (query) 11.53 4.35x 1.63x
libpng (verify) 11.58 13.34x 9.61x
libpng (info) 28.33 12.63x 9.39x
opus (encode) 58.67 2.03x 1.55x
opus (create) 203.72 1.70x 1.64x
sqlite3 (open) 63.62 5.68x 1.54x
sqlite3* (query) 143.98 2.43x 1.51x

Table 4.5: Average execution time for common native libraries (* marks the use of
nativeCall)

Seccomp filters). Another problem is that to restrict IPC and network with Minijail and Sand-
box2 it is necessary to leverage namespaces, which are characterized by coarser granularity than
NatiSand policies.

Libraries

In the second batch of experiments, it has been measured the overhead associated with libraries.
Contrary to the default JavaScript runtime behavior, NatiSand transparently executes native
library functions in dedicated contexts with limited ambient rights. As explored in Chapter 3,
the most popular alternative approach to isolate libraries is to compile them to WebAssembly
(Wasm). As explored in related works, this approach has gained considerable attention recently,
as browsers such as Firefox have used it to retrofit some of their components to safely interface
with native libraries [126].

Benchmark III Similarly to Benchmark I, a JavaScript application has been implemented to
highlight the overhead experienced on the server when native libraries are executed. In this
case three configurations are evaluated: Deno, NatiSand, and Wasm. The application tests
the operations provided by four popular libraries: (i) libxml2, to open and query XML data,
(ii) libpng, to read metadata information and verify the signature of a png image, (iii) opus to
encode and create an audio trace, and (iv) sqlite3, to open and query the Northwind database.
Test durations were again measured with Deno.bench(), and the results are reported in
Table 4.5. Deno exhibits a consistent performance advantage for operations that require up to
30 microseconds. However, NatiSand proves to be more efficient than Wasm, which in turn is
affected by a substantial overhead in almost every test. This difference is due to the nature of
Wasm; while there have been improvements, the interpreted language remains slower than its
native counterpart. Remarkable are the cases of opus and sqlite3, which used nativeCall
and demonstrate its efficiency.

62

Extend the protection of Deno native code

libpng opus* sqlite*0

200

400

600

800

La
te

nc
y

[m
s]

Deno NatiSand Wasm

libpng opus* sqlite*0

10

20

30

Th
ro

ug
hp

ut
 [r

eq
/s

]

Deno NatiSand Wasm

Figure 4.3: Average latency and throughput for microservices that execute native functions (*
marks the use of nativeCall)

Benchmark IV To understand the slowdown perceived by a remote client, the functionalities
of the libpng, opus, and sqlite3 libraries have been exposed through microservices. For each
of them, a client has been configured to send the input to the server, and measured the latency
and throughput using wrk (as explained in Benchmark II setup). The results are visualized
in Figure 4.3. Once again the client observes a small degradation of latency and throughput
when using NatiSand instead of Deno, but the overhead is far less noticeable compared to the
results discussed in Benchmark III. Conversely, Wasm is affected by a significant degradation of
latency. The main reason for such performance overhead is due to the Wasm interpreter and the
additional memory management required to exchange data between the JavaScript application
and Wasm code.

Usability While Wasm offers strong isolation guarantees, it also comes with drawbacks com-
pared to NatiSand. First of all it requires the developer to use a Wasm-compatible version of the
library. In the evaluation described in this chapter, it has been used a precompiled version of
sqlite3, but it has been also necessary to manually compile opus and libpng using the Emscripten
toolchain [71] and the WASI Sdk [182], respectively. Moreover, current implementations of
the WebAssembly System Interface (WASI) can only restrict ambient rights programmatically,
and, as noted in Chapter 3, filesystem privileges work at directory granularity. Lastly, Wasm
requires the developer to explicitly allocate, write, and read bytes from the Wasm module linear
memory.

4.8 Related Work

The majority of previous research efforts that are related to NatiSand, have been already exposed
in Section 2.7. In addition to the ones already mentioned, the BinWrap framewrok [36], proposed

63

Gianluca Oldani

by Christou et al., shares a lot of the consideration that lead to the creationg of NatiSand. In
particular, the usage of threads to enforce security guarantees over native code in Node.js,
testifies the generality of the NatiSand design. In BinWrap, the authors propose an approach
that is able to separate the runtime execution of and untrusted component from the rest of the
application. Similarly to NatiSand, the separation is achieved using different execution threads.
While focusing on memory protection, BinWrap also leverages Seccomp in order to limit the
set of available syscalls to threads that are responsible for the execution of code that may be
affected by vulnerabilities.

4.9 Conclusions

The increase in scale and complexity of modern web applications has led to the introduction
of new security mechanisms in JS runtimes. Unfortunately, the execution of native code still
represents a clear risk, since no isolation is provided by all the major platforms. NatiSand solves
this problem, introducing new measures to confine the execution of binary programs and shared
libraries. The proposal is not dependent on a particular JavaScript runtime, and was designed
to be integrated into different architectures. Considerable attention was dedicated to usability;
little effort is required by the developer to sandbox her applications. Indeed, no specific security
expertise is necessary to benefit from the protection, nor are changes to the application source
code.
The research effort describe in this paper enhance both the protections of what have been
described in Chapters 2 and 3, showing how novel LSMs can be used to protect a wide variety
of programs and system resources.
While these results are already a considerable step in the right direction in terms of protection
against attackers, it has to be taken into account that resources that are part of the boundaries
of the applied sandbox can still be reached after a succefull exploit of a vulnerable utility. For
instance, database drivers such as sqlite3 can reach sensitive data even when protections that
applies the least-privilege principle are in place. In order to protect against such security risk, it
is also necessary to handle this kind of data with particular attention. The next chapters of this
thesis details methods that can be applied to address the concerns just exposed.

64

Chapter 5. Data Anonymization for Large Datasets

5.1 Introduction

Previous chapters have explored approaches that can be used to enforce a well defined security
boundary to protect a device that hosts vulnerable software. While valuable, these techniques
do not always prevent the and exploit from being successful, thus they only limit the resources
exposed to the attacker only to the one that reachable by the compromised application component.
If the exploited component has access to data collections(e.g., a database driver), this breach
may rise privacy concerns for the subjects that are represented by data points in the leaked data
collection. In particular, in order to obtain privacy guarantees in datasets containing possible
identifying and sensitive information, it is required not only to refrain from publishing explicit
identities, but also to obfuscate data that can disclose such identities as well as their association
with sensitive information. k-Anonymity [37, 149, 150, 163], extended with ℓ-diversity [116],
is a technique that can offer such protection. k-Anonymity requires generalizing values of the
quasi-identifier attributes (i.e., attributes that can expose to linkage with external sources and
leak information on respondents’ identities) to ensure each quasi-identifier combination of values
to appear at least k times. ℓ-Diversity considers each sensitive attribute in grouping tuples for
quasi-identifier generalization so to ensure each group of tuples (whose quasi-identifiers will
then be generalized to the same values) be associated with at least ℓ different values of the
sensitive attribute.

While simple to express, k-anonymity and ℓ-diversity are far from simple to enforce, given the
need to balance privacy (in terms of the desired k and ℓ) and utility (in terms of information
loss due to generalization). Also, the computation of an optimal solution requires evaluating
(based on the dataset content) which quasi-identifying attributes generalize and how, and hence
demands complete visibility of the whole dataset. Hence, existing solutions implicitly assume to
operate in a centralized environment. Such an assumption clearly does not fit the web application
scenario addressed in the previous chapters, where large scale systems operate on a huge amount
of collected data (e.g., smart cars are reported to upload to the cloud 25GB per hour). The core
idea exposed in this chapter is that the scalable distributed architectures commonly employed
in a web application scenario, can help in performing computation on such large datasets, but
their usage in computing an optimal k-anonymous solution requires careful design. In fact, a
simple distribution of the anonymization load among workers would affect either the quality
of the solution or the scalability of the computation, for instance it may require expensive
synchronization and data exchange among workers [17]).

65

Gianluca Oldani

In the research illustrated in this chapter, it is addressed the problem of efficiently anonymizing
large data collections. The proposed solution extends Mondrian [104], an efficient and effective
approach originally proposed for achieving k-anonymity in a centralized scenario, to enforce both
k-anonymity and ℓ-diversity in a distributed scenario. With the proposed method, anonymization
is executed in parallel by multiple workers, each operating on a portion of the original dataset to
be anonymized. The design of our partitioning approach aims at limiting the need for workers to
exchange data, by splitting the dataset to be anonymized into as many partitions as the number of
available workers. Then, each worker runs a version of Mondrian that has been updated in order
to operate in a distributed environment; each node of the cluster is able to independently operate
on their portion of the data. A distinctive feature of the proposal is that the partitioning approach
does not require knowledge of the entire dataset to be anonymized. Rather, it can be executed
on a sample of the dataset whose size can be dynamically adjusted. The approach is therefore
applicable in scenarios where the dataset is very large, maybe even distributed, and does not
entirely fit in main memory. In addition to that, the implemented approach is able to perform
parallel execution on a dynamically chosen number of workers. The experimental evaluation
confirms both the goodness of our partitioning strategy with respect to maintaining utility of the
anonymized dataset and the scalability of our approach. The main contributions of this research
are thus summarized as follows. First, it proposes and evaluates different partitioning strategies
for distributing data to workers. Second, it extends the original Mondrian algorithm to operate
in a distributed scenario without asking workers to interact, and to enforce both k-anonymity
and ℓ-diversity. Third, it supports different strategies for managing generalization, including
the use of generalization hierarchies that permit to produce semantically-aware anonymization.
Fourth, the approach have been evaluated through different metrics for assessing the information
loss caused by the distribution of the anonymization process.

5.2 Basic concepts

The proposed solution is based on three main components: k-anonymity, ℓ-diversity, and
Mondrian.

k-Anonymity. k-Anonymity [149] is a privacy property aimed at protecting respondents iden-
tities in data publication. k-Anonymity starts from the observation that a dataset, even if
de-identified (i.e., with explicit identifying information removed) can contain other attributes,
called quasi-identifiers (abbreviated QI) such as gender, date of birth, and living area, that can
be exploited for linking the dataset with other data sources and enable observers to reduce
uncertainty on the identity (or identities) to whom the tuples in the de-identified dataset refer.
k-Anonymity demands that no tuple in a released dataset can be related to less than a certain
number k of respondents. k-Anonymity operates on the values of the QI attributes to ensure

66

Data Anonymization for Large Datasets

that no tuple can be uniquely associated with the identity of its respondent through its QI values,
and vice versa. In practice, k-anonymity is enforced by ensuring (through generalization of
data values) that each combination of values of the quasi-identifier in a dataset appears with at
least k occurrences. In this way, any linking attack exploiting the quasi-identifier will always
find at least k individuals to which each anonymized tuple can correspond and vice versa. k-
Anonymity can be guaranteed in different ways. The original proposal of k-anonymity applies
generalization to the QI attributes [149]. Generalization is a data protection technique that
replaces attribute values with other, more general values. For instance, an individual’s Age may
be generalized in age ranges (e.g., replacing all age values from 25 to 30 with a single interval
[25, 30]). While numeric attributes (i.e., attributes defined on a totally ordered domain) naturally
generalize to ranges of values, the generalization of categorical attributes (i.e., attributes defined
on a non-ordered domain) can leverage generalization hierarchies (e.g., Figure 5.1 illustrates a
generalization hierarchy for attribute Country). Since generalization (while maintaining data
truthfulness) removes details from data, it reduces the risk of finding unique correspondences for
QI values with external data sources. For example, the dataset in Figure 5.2(c) is a 3-anonymous
version of the dataset in Figure 5.2(a), considering attributes Age and Country as quasi-
identifer. In the figure, quasi-identifying attributes Age and Country have been generalized so
that their values appear with at least 3 occurrences (for readability, the ith tuple in Figure 5.2(a)
corresponds to the ith tuple in Figure 5.2(c)). For example, the Age and Country of the
respondents of the first three tuples have been generalized to range [25, 30] and to value Europe,
respectively. Note that neither the values for Age nor the values for Country of the last three
tuples have been generalized to obtain 3-anonymity, since they already share the same values for
the quasi-identifier (38 and USA, respectively). It is easy to see that no record in external data
sources can be linked, through Age and Country, to less than three tuples in the 3-anonymous
dataset.

World

Europe

Italy France Spain

North America

USA Canada Greenland

Asia

China Japan India

Figure 5.1: Generalization hierarchy for attribute Country

ℓ-Diversity. ℓ-Diversity [116] extends k-anonymity to prevent attribute disclosure, that is, to
protect against possible inferences aimed at associating a value for the sensitive attribute to the
respondent’s identity. With reference to the datasets in Figure 5.2, suppose that the TopSpeed
of the respondent aged 30 from France (third tuple) were 132. The 3-anonymous dataset in

67

Gianluca Oldani

Age Country TopSpeed
25 Italy 132
25 Italy 132
30 France 128
42 Italy 110
50 France 115
43 Canada 115
38 USA 126
38 USA 127
38 USA 140

Age Country TopSpeed
[25,30] Europe 132
[25,30] Europe 132
[25,30] Europe 128
[42,50] World 110
[42,50] World 115
[42,50] World 115

38 USA 126
38 USA 127
38 USA 140

(a) (b) (c)

Figure 5.2: An example of a dataset (a), its spatial representation and partitioning (b), and a
3-anonymous and 2-diverse version (c), considering quasi-identifier QI={Age,Country} and
sensitive attribute TopSpeed

Figure 5.2(c) would have, for the first three tuples, the same sensitive value (132). While,
thanks to the protection offered by 3-anonymity, no record in an external data source (e.g., a
voter list) can be uniquely mapped to any of these tuples, this 3-anonymous dataset would still
leak the fact that European respondents with Age between 25 and 30 have TopSpeed equal to
132. ℓ-Diversity extends k-anonymity by demanding that each equivalence class E (i.e., each
set of tuples sharing the same generalized values for the quasi-identifier) have at least ℓ well-
represented values for the sensitive attribute(s). Several definitions of well-represented have
been proposed, and a natural interpretation requires at least ℓ different values for the sensitive
attribute(s). For example, the 3-anonymous dataset in Figure 5.2(c) is also 2-diverse, since each
equivalence class contains at least two different values for TopSpeed.

Mondrian. Mondrian [104] is a multi-dimensional algorithm that provides an efficient and
effective approach for achieving k-anonymity. Mondrian leverages a spatial representation of
the data, mapping each quasi-identifier attribute to a dimension and each combination of values
of the quasi-identifier attributes to a point in such a space. Mondrian operates a recursive process
to partition the space in regions containing a certain number of points (which corresponds to
splitting the dataset represented by the points in the space in fragments that contain a certain
number of records). In particular, at each iteration Mondrian cuts the set of tuples in each
fragment F computed at the previous iteration (the whole dataset at the first step) based on
the values (e.g., for numerical attributes, whether lower/higher than the median) for a quasi-
identifying attribute chosen for each cut. The algorithm terminates when any further cut
would generate only sub-fragments with less than k tuples, at which point values of the quasi-
identifying attributes in each fragment are substituted with their generalization. Figure 5.2(b)
shows the spatial representation and partitioning of the dataset in Figure 5.2(a), where the number
associated with each data point is the number of tuples with such values for quasi-identifier Age
and Country in the dataset. The 3-anonymous version of the dataset in Figure 5.2(c) has
been obtained by first partitioning the dataset in Figure 5.2(a) based on attribute Age: fragment

68

Data Anonymization for Large Datasets

FAge≤38 includes all the tuples with Age less than or equal to the median value 38, and FAge>38

the remaining tuples. FAge≤38 is further partitioned based on attribute Country, obtaining
FAge≤38, Country in {Canada,USA} including all tuples with Country equal to Canada or USA, and
FAge≤38, Country in {France,Italy} including the remaining tuples. No further partitioning is possible
(all fragments include exactly three tuples), and the quasi-identifying attributes in each fragment
can be generalized. The dataset in Figure 5.2(c) has been obtained generalizing the dataset in
Figure 5.2(a) according to the partitioning in Figure 5.2(b) and leveraging the generalization
hierarchy in Figure 5.1 for attribute Country.

5.3 Distributed anonymization

The considered scenario consists of a large and possibly distributed dataset D that needs to
be anonymized. D may not entirely fit into the main memory of a single machine. The
objective of the research presented in this chapter is then to distribute the anonymization of D
to a set W = {w1, . . . , wn} of workers so that they can operate in parallel and independently
from one another, to have benefits in terms of performance while not compromising on the
quality of the solution (with respect to a traditional centralized anonymization of D). To this
purpose,Mondrian has been extended to operate in such a way that workers in W are assigned
(non-overlapping) partitions ofD (i.e., sets of tuples ofD, defined as fragments in the rest of the
chapter) and can operate limiting the need for data exchanges with other workers. Each worker
w ∈ W can independently anonymize its fragment satisfying k-anonymity and ℓ-diversity, with
the guarantee that the combination of the anonymized fragments is a k-anonymous and ℓ-diverse
version of D.

Figure 5.3: Overall view of the distributed anonymization process

The overall process is overseen by a Coordinator, and includes a pre-processing phase (which
partitions the dataset D in fragments and assigns fragments to workers) and a wrap-up phase
(which collects the anonymized fragments from the workers, recombines them, and evaluates

69

Gianluca Oldani

the quality of the computed solution). The reference scenario of the approach (as graphically
represented in Figure 5.3) is then characterized by a (distributed) storage platform, storing and
managing the dataset D to be anonymized (as well as its anonymized version D̂, after workers
have anonymized their fragments), the anonymizing workers, and the Coordinator. In the
remainder of this chapter, given a dataset D with quasi-identifier QI={a1, . . . , aq} and privacy
parameters k and ℓ, the following notation is adopted:

• D̂ refers to the k-anonymous and ℓ-diverse version of D

• t̂∈D̂ represents the generalized version of t in the anonymized dataset, ∀t∈D

• F̂ denotes the anonymized version of fragment F (i.e., ∀t ∈ F, ∃t̂ ∈ F̂ s.t. t̂ is the
generalized version of t)

The pre-processing phase is crucial to achieve distributed anonymization. The first problem to
be addressed is the definition, by the Coordinator, of a fragmentation strategy, regulating which
tuples belong to which fragment. An effective strategy, as demonstrated by the experimental
results (Section 5.8), is to fragment D based on the values of (some of the) quasi-identifying
attributes a1, . . . , ah, in such a way that a tuple t of D is assigned to a fragment F based on
the values of t[a1], . . . , t[ah]. To illustrate, consider the dataset in Figure 5.2(a) and suppose
to define two fragments F1 and F2 based on the values of Age. The Coordinator may define a
strategy such that F1 contains all tuples of D with values lower than or equal to 38 (i.e., the first
three and last three tuples of the table), and F2 the remaining tuples ofD. In principle, this would
require the Coordinator to have complete visibility over D for defining fragments. However,
D might be too large to fit into the main memory of the Coordinator. The proposed approach
also presents a strategy in which the Coordinator can define the conditions that regulate the
fragmentation of D based on a sample of D, whose size can be dynamically adjusted according
to the storage capabilities of theCoordinator. TheCoordinator then communicates the conditions
to the workers, which will then download the tuples in D that satisfy such conditions directly
from the storage platform (i.e., without the need for the Coordinator to send any dataset to the
workers). With reference to the example above, where fragments are defined based on the values
of Age, the Coordinator communicates to workers the value ranges (e.g., lower than or equal to
38, and greater than 38) for the tuples in their fragments. The anonymization phase following
the pre-processing operates in parallel at the workers. For the design of this phase, special
attention has been given on the support, for categorical attributes, of generalization hierarchies
to the aim of producing semantically-aware generalized (anonymous) data. The pre-processing
phase is discussed in Section 5.4, while the anonymization and wrap-up phases are described in
Sections 5.5 and 5.6, respectively.

70

Data Anonymization for Large Datasets

5.4 Data pre-processing

The pre-processing phase of the proposed approach operates on a sample D of D, whose size is
tuned depending on the storage capabilities of the Coordinator. For the sake of readability, the
discussion presented in this chapter refers to a generic dataset D with the note that D is a sample
of the original dataset D to be anonymized (clearly the quasi-identifier attributes considered for
D are those defined for D).

5.4.1 Partitioning strategies

Selecting a strategy for partitioning the dataset D is crucial, since a random partitioning may
cause considerable information loss. Indeed, if fragments include tuples with heterogeneous
values for the quasi-identifier, each worker (which independently operates on its fragment)
would need a considerable amount of generalization to satisfy k-anonymity. On the contrary,
information loss is mitigated if partitioning does not spread across fragments tuples that assume
similar values for the quasi-identifier. To illustrate, consider a dataset with four tuples t1, . . . , t4
having values 25, 25, 60, and 60 for Age, which needs to be partitioned in two fragments. If
partitioning generates two fragments F1={t1, t2} and F2={t3, t4}, no generalization is needed
to enforce 2-anonymity. On the contrary, fragments F1={t1, t3} and F2={t2, t4} requires
generalizing Age to the range [25,60] in each fragment, causing higher information loss.
To limit the information loss implied by the partitioning of a dataset D with quasi-identifier
QI among a set W={w1, . . . , wn} of workers, the proposed approach adopts one of the two
following strategies:

• The first one takes the name of quantile-based approach, it selects an attribute a from the
QI, and partitions D in n fragments F1, . . . , Fn according to the n-quantiles of a in D.

• The second one is named multi-dimensional approach, it recursively partitions D in a
similar way as the Mondrian approach (see Section 5.2). Given a fragment F (the entire
dataset D at the first iteration), the multi-dimensional strategy selects an attribute a∈QI
and partitions F in two fragments according to the median value of a in F. Each of the
resulting fragments is then further partitioned, until n fragments have been obtained.

Both the quantile-based and the multi-dimensional partitioning approaches rely on an ordering
among the values that the attribute a selected for partitioning assumes in D to compute quantiles
(for the quantile-based approach) and median values (for the multi-dimensional approach). In
fact, given a sample D of the dataset and the attribute a selected for partitioning, the tuples in D

are first ordered according to their value of a, establishing a ranking among the attribute values.
Quantiles and the median values are then computed on such a ranking. When a is numerical,

71

Gianluca Oldani

Q PARTITION(D,W)
1: let a be the attribute used to partition D
2: R := {rank(t[a]) | t∈D} /* rank of a’s values in the ordering */
3: let qi be the ith |W |-quantile for R,∀i = 1, . . . , |W |
4: F1 := {t∈D | rank(t[a]) ≤ q1}
5: for each i = 2, . . . , |W | do
6: Fi := {t∈D | qi−1 < rank(t[a]) ≤ qi}

Figure 5.4: Quantile-based partitioning

ordering among values is naturally defined. When a is categorical and has a generalization
hierarchyH(a), attribute values are considered with the order in which they appear in the leaves
ofH(a), aiming at keeping in the same fragment values that generalize to a more specific value.
Indeed, leaf values that are close in the hierarchy will have a common ancestor (to which they
would be generalized) at a lower level in the hierarchy (see Section 5.5), thus limiting information
loss. For instance, with reference to the hierarchy in Figure 5.1, it is possible to use the order
⟨Italy, France, Spain, USA, Canada, Greenland, China, Japan, India⟩. This ordering would
combine in the same fragment values Italy and France, which generalize to a more specific value
(i.e., Europe) than a fragment with values Italy and Canada (i.e., World).

Figure 5.4 illustrates the procedure implementing quantile-based partitioning executed by the
Coordinator. Given a dataset D and a set W of workers, the procedure selects the attribute a

for partitioning, orders the tuples in D according to t[a], and determines the rank rank(t[a])

of each value t[a] (lines 1–2). It then computes the |W |-quantiles of such ranking R (line 3).
The first fragment F1 is obtained by including all the tuples t∈D with rank of t[a] lower than
or equal to the first computed quantile (line 4). The remaining fragments F2, . . . , F|W | are
obtained by including in Fi all the tuples t∈D with ranks of t[a] in the interval (qi−1, qi], with
qi the ith |W |-quantile of the computed ranks (lines 5–6). To illustrate, consider partitioning
in 4 fragments the dataset in Figure 5.2(a) with the quantile-based approach over attribute Age
(for simplicity, the dataset in Figure 5.2(a) is considered as a sample). For the first tuple t1,
it is possible to notice that rank(t1[Age])=rank(25)=1, since 25 is the first value (i.e., the
smallest) in the ordering for Age. Similarly, for the third tuple t3, rank(t3[Age])=rank(30)=2,
since 30 is the second value in the ordering for Age. The 4-quantiles q1, . . . , q4 for such ranks
are q1=2, q2=3, q3=4, and q4=6. The first fragment F1 then includes all the tuples t such that
rank(t[Age])≤2, that is, all the tuples such that t[Age]≤30. Fragment F2 includes all tuples t
such that 2<rank(t[Age])≤3. Fragments F3 and F4 are computed in a similar way.

Figure 5.5 illustrates the recursive procedure implementing multi-dimensional partitioning ex-
ecuted by the Coordinator. The procedure takes as input a dataset D, the set W of workers,
and the recursive level of iteration i (1 at the first invocation). The procedure first selects the
attribute a for partitioning, orders the tuples in D according to t[a], and determines the rank

72

Data Anonymization for Large Datasets

M PARTITION(D,W, i)
1: let a be the attribute used to partition D
2: R := {rank(t[a]) | t∈D} /* rank of a’s values in the ordering */
3: let m be the median of R
4: F1 := {t∈D | rank(t[a]) ≤ m}
5: F2 := {t∈D | rank(t[a]) > m}
6: if i < ⌈log2 |W |⌉ then
7: M Partition(F1,W , i+ 1)
8: M Partition(F2,W , i+ 1)

Figure 5.5: Multi-dimensional partitioning

rank(t[a]) of each value t[a] (lines 1–2). It then computes the median value m for R (line 3), and
defines two fragments F1, including the tuples t of D having rank for t[a] lower than or equal
to m, and F2, including the remaining tuples (lines 4–5). The procedure then recursively calls
itself on the two computed fragments (lines 7–8) with i+1 to further fragment them, unless the
necessary number of iterations have already been executed (i.e., i = ⌈log2 |W |⌉, since at each
iteration the number of fragments doubles and ⌈log2 |W |⌉ fragments are sufficient to assign at
least a fragment to each worker) (line 6). To illustrate, consider partitioning in 4 fragments the
(sample) dataset in Figure 5.2(a) with the multi-dimensional approach, and suppose that at the
first iteration (i=1) the attribute chosen for partitioning is Age. The median of the ranks for the
values of Age is 3, and the sample is split in two fragments F12 and F34 such that F12 includes
all tuples t for which rank(t[Age)]≤3, and F34 the remaining ones. At the second (and last)
iteration (i=2), the procedure selects an attribute (which could possibly be different from Age)
for fragment F12 and an attribute for F34, and partitions each fragment in two more fragments
based on the median of the ranks of such attribute values in F12 (F34, respectively). Since 4
fragments have been obtained, the partitioning process terminates.

The quantile-based and the multi-dimensional partitioning exhibit different behavior in the
definition of the fragments. The quantile-based partitioning ensures balancing among the
fragments, since all n fragments will include (approximately) the same number of tuples, but its
application can be limited by the domain of the attribute a chosen for partitioning (it cannot be
used if the number n of workers is larger than the domain of a). On the contrary, while being
always applicable, the multi-dimensional approach may result in some workers being assigned
twice the workload of other workers. Since multi-dimensional partitioning doubles the number
of fragments at each iteration, when the number n of workers is a power of 2, the recursive
process can be executed log2 n times, obtaining n fragments of (approximately) the same size.
However, n may not be a power of 2. Aiming at using all the workers, the partitioning strategy
stops when n ≤ 2i (multi-dimensional partitioning generates 2i fragments at the i-th iteration)
and 2i − n workers are assigned two fragments, resulting in some workers having twice the
workload of the others. For instance, assume W = {w1, . . . , w7} and |D| = 1000. Multi-

73

Gianluca Oldani

dimensional partitioning needs 3 iterations for generating at least 7 fragments (22 < 7 ≤ 23).
Since 2i − n = 8− 7 = 1, one worker (e.g., w1) will be assigned two fragments, resulting in a
workload of nearly 250 tuples for w1 and of 125 tuples for each of the other workers.
The computational complexity of the two approaches is slightly different, with quantile-based
partitioning resulting more efficient than multi-dimensional partitioning (as confirmed by the
experimental results in Section 8). Procedure Q Partition costs O(|D|), while procedure
M Partition costs O(|D| log |W |). The first two steps (lines 1-2) are the same for the two
procedures and cost O(|D|), and the computation of quantiles has the same cost as the compu-
tation of the median and cost O(|D|). The for each loop at line 5 of procedure Q Partition
has cost O(|W |), and therefore the overall cost of quantile-based partitioning is O(|D|), since
the number of workers is smaller than the number of tuples in the dataset. The recursive calls
of procedure M Partition imply a cost of O(|D| log |W |) since the procedure recursively calls
itself with i from 1 to ⌈log2 |W |⌉ and, for each value of i, the overall size of the fragments input
to the different recursive calls is |D|.

5.4.2 Fragments retrieval

While the Coordinator operates on a sample D of the dataset D to be anonymized for defining
fragments, workers need to operate on the whole fragment assigned to them. To minimize com-
munication overhead, the proposed approach defines fragments assigned to workers according
to the partitioning conditions identified by the Coordinator to partition D. These conditions,
comparing the attribute a selected for partitioning with the values in its domain corresponding to
the quantiles or median value of the ranking of tuples in D according to a, are communicated to
workers (see Section 5.7). Each worker can then retrieve the tuples in its fragment directly, with-
out need for the Coordinator to retrieve and communicate such tuples. For instance, consider two
fragments F1 and F2 computed over a sample D ofD with the multi-dimensional approach, and
assume to adopt attribute Age for partitioning and that the median of the ranking corresponds to
value 38 in the attribute domain. The worker in charge of the anonymization of F1 will retrieve
all the tuples in D having Age≤38, while the worker in charge of the anonymization of F2 will
retrieve all the tuples in D having Age>38.
Given a set W={w1, . . . , wn} of workers, ci denotes the condition describing the fragment Fi

assigned towi, i = 1, . . . , n. When using the quantile-based approach, condition ci, i = 1, . . . , n,
describes the values for a that are included in the i-th n-quantile of D (i.e., its endpoints). For
example, with reference to the example in Section 5.4.1 for the quantile-based partitioning
of the dataset in Figure 5.2(a) in 4 fragments over attribute Age, the conditions identifying
fragments F1, . . . , F4 would be defined as c1=“(Age≤30)”; c2=“(Age>30) and (Age≤38)”;
c3=“(Age>38) and (Age≤42)”; and c4=“(Age>42) and (Age≤50)”. When using the multi-
dimensional approach, condition ci, i = 1, . . . , n, is a conjunction of conditions of the forma ≤ v

74

Data Anonymization for Large Datasets

(a) Quantile-based partitioning

Figure 5.6: Partitioning strategies: Quantile-based partitioning

or a > v describing the recursive partitioning performed by the Coordinator to obtain fragment
Fi. Intuitively, each recursive call to M Partition (Figure 5.5) partitions the input fragment
D into two fragments F1 and F2, described by condition c and (a ≤ v) or c and (a > v),
respectively, with c the condition describing the input fragment D (empty at the first iteration),
a the attribute selected for partitioning, and v the value in the domain of a corresponding to the
median m of the ranking of the tuples in D according to a (i.e., v=t[a] s.t. rank(t[a])=m).
To illustrate, consider the example in Section 5.4.1 for the multi-dimensional partitioning of
the dataset in Figure 5.2(a) in 4 fragments. The first partitioning, based on attribute Age,
produces F12 and F34 described by conditions Age≤38 and Age>38, respectively. At the
second iteration, assume that F12 is split into fragments F1 and F2 according to the value of
attribute Country, which is Italy or France in F1 and USA or Canada in F2. The conditions
describing fragments F1 and F2 (and communicated to the corresponding workers) would be
c1 = “(Age≤38) and (Country in {Italy, France})”; c2 = “(Age≤38) and (Country in
{USA, Canada})”. Figures 5.6 and 5.7 graphically illustrate the pre-processing operated by the
Coordinator to partition a sample D ofD assuming to produce 4 fragments (to be then assigned
to 4 workers) adopting quantile-based and multi-dimensional partitioning. In the figures, it is
denoted with ci...j the condition describing the fragment of D that will be further partitioned to
generate Fi, . . . , Fj .

It is worth discussing an additional option: the possibility of leveraging the availability of
multiple workers for the pre-processing. The multi-dimensional approach (Figures 5.5 and 5.6)
could in fact be performed in parallel by workers (see Figure 5.8. Intuitively, each of the two
fragments F1 and F2 produced by the partitioning of a fragment F (D at the first iteration)
can be assigned to two different workers for further partitioning, so that partitioning can run

75

Gianluca Oldani

(b) Multi-dimensional partitioning

Figure 5.7: Partitioning strategies: Multi-dimensional partitioning

in parallel (i.e., one fragment can be partitioned by the same worker in charge of splitting F

while the other can be delegated to a different worker). This strategy has been investigated, both
theoretically and experimentally and, while clearly permitting to reduce the computation effort
for theCoordinator, it would require data transfer among workers, resulting in lower performance
than the traditional (non parallelized) multi-dimensional partitioning.

(c) Parallelized multi-dimensional partitioning

Figure 5.8: Partitioning strategies: Parallelized multi-dimensional partitioning

5.4.3 Attributes for partitioning

The first step for partitioning the dataset, regardless of the approach (i.e., quantile-based or
multi-dimensional) adopted, is the selection of the quasi-identifying attribute a used to split
(line 1 in procedures Q Partition in Figure 5.4 and M Partition in Figure 5.5).
For quantile-based partitioning, the attribute ai∈QI with more distinct values in D is selected.
This strategy distributes the values for ai among different fragments, limiting the necessary
amount of generalization over ai. Indeed, generalization needs to operate only over the subset

76

Data Anonymization for Large Datasets

of values for ai appearing in the fragment, which are expected to be close. On the contrary,
partitioning according to a different attribute aj having a limited number of values might cause
excessive generalization for ai, if a fragment has tuples with values at the extremes of the domain
for the attribute.
For multi-dimensional partitioning, similarly to the original Mondrian approach, it is selected
the attribute a∈QI that has, in the fragment F to be partitioned, the highest representativity of
the values it assumed in D. If a is numerical, its representativity is defined as the ratio between
the span (i.e., the width of the range) of the values in F and the span of the values in the entire
dataset D. If a is categorical, its representativity can be defined as the ratio between the number
of distinct values in F and the number of distinct values in D. Formally, the representativity
rep(a) of a quasi-identifying attribute a ∈ QI is defined as follows:

rep(a) =

maxF{t[a]}−minF{t[a]}
maxD{t[a]}−minD{t[a]} if a is numerical

countF (distinct t[a])

countD(distinct t[a])
if a is categorical

(5.1)

where maxF{t[a]} and minF{t[a]} (maxD{t[a]} and minD{t[a]}, resp.) are the maximum
and minimum values for a assumed by the tuples in fragment F (in dataset D, resp.); and
countF(distinct t[a]) (countD(distinct t[a]), resp.), is the number of distinct values assumed
by attribute a in F (in D, resp.). For both numerical and categorical attributes, rep(a) ∈ (0, 1].
For example, consider a fragment F with QI = {a1, a2, a3}, where a1 is categorical and
a2 and a3 are numerical. Suppose that: i) the distinct values for a1 are 1000 in D and
100 in F; ii) the values for a2 are in a range of width 1000 in D and of width 500 in F;
and iii) the values of a3 are in a range of width 1000 in D and of width 700 in F. Since
rep(a1) = 100/1000 = 0.1 < rep(a2) = 500/1000 = 0.5 < rep(a3) = 700/1000 = 0.7, a3 is
chosen for partitioning F.
Note that, at the first iteration of multi-dimensional partitioning, all quasi-identifying attributes
have representativity equal to 1 because F=D (the entire dataset D is to be partitioned). In these
cases, select the attribute with the maximum number of distinct values in the dataset is selected
(similarly to what is done in quantile-based partitioning).

5.5 Data anonymization

During the anonymization phase, each worker anonymizes the fragment assigned to it, inde-
pendently (i.e., without interacting with other workers) executing the distributed version of
the Mondrian algorithm. In particular, this version of the algorithm enforces also ℓ-diversity,
besides k-anonymity considered by the original approach [104]. To this end, the recursive par-
titioning at the core of the anonymization algorithm (Section 5.2) terminates when any further

77

Gianluca Oldani

sub-partitioning would generate fragments that have less than k occurrences for the combination
of values for the quasi-identifying a ttributes (which would violate k-anonymity), or less than ℓ

values for the sensitive attributes (which would violate ℓ-diversity). The anonymization phase
of the proposed distributed Mondrian has computational complexity O(|F| log |F|), with F the
fragment input to function Anonymize in Figure 5.9. Indeed, the cost of lines 1–8 is O(|F|), as
discussed in Section 5.4. Due to the recursive calls on a partition of F including two fragments
of size |F|

2
, the overall complexity is O(|F| log |F|), which is in line with the complexity of the

original Mondrian algorithm [104].

ANONYMIZE(F)
1: if no partitioning can be done without violating
1: k-anonymity or ℓ-diversity then
2: generalize F[QI]
3: else
4: let a be the attribute for partitioning
5: R := {rank(t[a]) | t∈F} /* rank of a’s values in the ordering */
6: let m be the median of R
7: F1 := {t∈F | rank(t[a]) ≤ m}
8: F2 := {t∈F | rank(t[a]) > m}
9: Anonymize(F1)
10: Anonymize(F2)

Figure 5.9: Anonymization algorithm for a fragment F

Figure 5.9 illustrates the anonymization algorithm executed by each worker for anonymizing
the fragment assigned to it. The recursive partitioning (lines 3–10), which operates according
to the same logic as multi-dimensional partitioning in the pre-processings phase (Section 5.4),
terminates when any further sub-partitioning of a fragment would violate k-anonymity or ℓ-
diversity (lines 1–2). The attribute a with maximum representativity (Equation 5.1) is chosen
for partitioning (line 4). Clearly, since during the anonymization phase each worker wi has
visibility only on its fragment Fi, representativity is computed over Fi (in contrast to the entire
dataset D in Equation 5.1). Like in multi-dimensional partitioning, at the first recursive call,
representativity is equal to 1 for all quasi-identifying attributes. The implemented approach
then selects the attribute that has the highest number of distinct values in the fragment. When
a fragment F cannot be further partitioned as this would violate k-anonymity or ℓ-diversity,
the anonymization algorithm produces the anonymized version of F, obtained generalizing
the values of the quasi-identifying attributes to guarantee that all the tuples share the same
(generalized) quasi-identifier values (line 2). The proposed distributed Mondrian approach
supports the following generalization strategies:

• Generalization hierarchies: applicable to categorical attributes only, the values for at-
tribute a∈QI are substituted with their lowest common ancestor in the generalization hier-

78

Data Anonymization for Large Datasets

archyH(a) defined for a (Section 5.3). To illustrate, consider the dataset in Figure 5.2(a)
and suppose, for simplicity, it is a fragment retrieved by a worker for anonymization. Its
anonymized version in Figure 5.2(c) is obtained generalizing attribute Country accord-
ing to the generalization hierarchy in Figure 5.1, considering the partitions in Figure 5.2(b).
For example, values Italy, Italy, and France of the first three tuples (partition at the bottom-
left of Figure 5.2(b)) are generalized to their lowest common ancestor in the hierarchy
(i.e., Europe).

• Common prefix: applicable to categorical and numerical attributes interpreted as strings,
the values for attribute a∈QI are replaced with a string that includes their common prefix
(substituting with a wildcard character the characters that differ). For example, values
10010, 10020, 10030 for attribute ZIP can be generalized to 100∗∗, maintaining common
prefix 100 and redacting the last two characters.

• Set definition: applicable to both categorical and numerical attributes, the values for
attribute a∈QI are replaced with the set of values including all of them. For example,
values Italy, Italy, and France for attribute Country can be generalized to the set
{Italy, France}.

• Interval definition: applicable to numerical attributes defined on a totally ordered domain,
the values for attribute a∈QI are replaced with a range of values including all of them.
While the smallest range containing all the values to be generalized (i.e., the one delimited
by the minimum and maximum value) is the most natural choice, also larger (possibly
pre-defined) intervals may be adopted. Note that this generalization is different from set
definition: while the set definition explicitly maintains all the (original) values generalized
in a set, interval definition maintains only the extremes of the range. To illustrate,
consider the dataset in Figure 5.2(a) and suppose, for simplicity, it is a fragment retrieved
by a worker for anonymization. Its anonymized version in Figure 5.2(c) is obtained
generalizing attribute Age by grouping its values in intervals, considering the partitions
in Figure 5.2(b). For example, values 42, 50, and 43 (fourth, fifth, and sixth tuples,
corresponding to the partition on the right-hand-side of Figure 5.2(b)) are generalized to
[42,50].

5.6 Wrap up and information loss assessment

The wrap-up phase of the illustrated approach is aimed at collecting anonymized fragments,
and at assessing information loss. To this purpose, each worker stores the anonymized fragment
F̂ assigned to it in the storage platform, and computes the information loss implied by the
anonymization ofF. The information loss characterizing the anonymized fragments are collected

79

Gianluca Oldani

and combined by the Coordinator to assess the information loss of the entire dataset. The
following parts of this section describe the information loss metrics adopted. For the sake of
readability, the formulas refer to a dataset D and its anonymized version D̂, with the note that
each worker operates on the fragment F (and its anonymization F̂) assigned to it.

• Discernibility Penalty (DP [24, 104]) assigns a penalty to each tuple in D based on the
size of the equivalence class E (the larger an equivalence class, the larger the penalty) to
which the tuple belongs (i.e., number of tuples generalized to the same values). Formally,
the Discernibility Penalty of an anonymized dataset D̂ is computed as follows:

DP(D̂) =
∑
E∈D̂

|E|2 (5.2)

• Normalized Certainty Penalty (NCP [186]) assigns penalties based on the amount of
generalization (more generalization resulting in higher penalties) applied to the values of
the quasi-identifying attributes. NCP is applicable to numerical attributes generalized in
intervals, and to categorical attributes for which a generalization hierarchy exists. Given
a tuple t∈D, the normalized certainty penalty NCPa(t̂) of its generalization t̂∈D̂ for
attribute a∈QI is computed as follows:

NCPa(t̂) =

vmax−vmin

Range(a)
if a is numerical

|Ind(v̂)|
|Dom(a)| if a is categorical

(5.3)

where t̂[a]=[vmax, vmin] and Range(a) is the range of the values assumed by a, if a is
a numerical attribute generalized in intervals; t̂[a]=v̂ and Ind(v̂) is the set of values in
Dom(a) that could be generalized to v̂ (i.e., the number of leaves of the generalization
hierarchy H(a) for a that are descendants of v̂), if a is a categorical attribute with
generalization hierarchy.
Given an anonymized dataset D̂ with quasi-identifier QI, the Normalized Certainty Penalty
of D̂ is computed summing the Normalized Certainty Penalties of the attributes in QI for
all the tuples in D̂ as follow:

NCP(D̂) =
∑
t̂∈D̂

∑
a∈QI

NCPa(t̂) (5.4)

Given the information loss measures DP(F̂1), . . . ,DP(F̂|W |) (NCP(F̂1), . . . ,NCP(F̂|W |), resp.)
for the fragments, the Coordinator can compute the information loss for the whole dataset by
simply summing them. For evaluating the approach presented in this chapter, both DP and
NCP metrics have been taken into consideration, since they take a different approach in the

80

Data Anonymization for Large Datasets

assessment: DP is independent from the amount of generalization adopted and only considers
the size of equivalence classes, while NCP precisely assesses the amount of generalization,
regardless of the number of tuples in equivalence classes.

5.7 Implementation

In this section, it is illustrated the architectural design and the deployment of the implemented
prototype for the proposed distributed anonymization approach. The implementation is available
at https://github.com/mosaicrown/mondrian.

5.7.1 Architecture

Figure 5.10: Spark-based distributed anonymization system

The implementation is based on an Apache Spark cluster, whose nodes perform the three
phases (pre-processing, anonymization, and wrap-up) of the proposal. Figure 5.10 illustrates
the components and working of the prototype. The dataset D to be anonymized can be stored
on any storage platform (centralized or distributed) reachable by Apache Spark with a URL.
The Spark cluster includes a Spark Cluster Manager, which coordinates the cluster, and a set
W of Spark Workers, which perform the tasks assigned to them by the Cluster Manager. The
implementation of the proposed distributed anonymization in Python. This allows to leverage
the Pandas framework [121, 143], which can be conveniently used for managing very large
datasets.

81

https://github.com/mosaicrown/mondrian

Gianluca Oldani

In the Spark cluster architecture in Figure 5.10, the Spark Driver plays the role of ourCoordinator:
it is responsible for calling the Spark Context in the user-written code, implementing the parti-
tioning process. (Note that the Spark Driver and the Spark Cluster Manager are not necessarily
hosted on the same node of the cluster.) The Spark Driver is also responsible for translating
the code to be executed in the cluster into jobs, which are further divided into smaller execution
units, called tasks (which actually implement the distributed anonymization), executed by the
workers.
To anonymize a dataset D, first the Spark Driver downloads from the storage platform a sample
D ofD that fits into its memory. It then locally executes the pre-processing phase. In particular,
the Spark Driver locally partitions the downloaded sample D running procedure Q Partition in
Figures 5.4 (if quantile-based approach is adopted), or procedure M Partition in Figure 5.5 (if
multi-dimensional approach is adopted), keeping track of the conditions describing the computed
fragments. The Spark Driver then defines a set of |W | Spark Tasks. Each task corresponds to
the anonymization of a fragment Fi and includes the conditions defining Fi. Once the Spark
Driver has terminated the pre-processing phase, the Spark Cluster Manager selects the workers
that will be involved in the distributed anonymization process. The Spark Driver then sends
to each identified worker wi its anonymization task, enabling wi to download from the storage
platform the tuples in the fragment Fi assigned to it. Each Spark Worker w then retrieves from
the storage platform the fragment ofD satisfying the conditions included in the task assigned to
it. The Spark Worker anonymizes the fragment through the distributed Mondrian (Figure 5.9,
Section 5.5), computes the amount of information loss caused by anonymization (Equations 5.2
and 5.4, Section 5.5), and stores the results in the storage platform using the services of the
Spark Driver. The Spark Driver combines the information loss computed by the Spark Workers
to obtain the information loss of the overall dataset.

5.7.2 Deployment

Aiming at creating a solution that can be easily deployed in a cloud infrastructure (e.g., AWS or
Google Cloud), the prototype is delivered as a multi-container application, leveraging Docker
containers, in order to achieve an architecture that is easy to deploy. The deployed Spark
architecture is shown in Figure 5.10 and is composed of: i) a Docker container for the Spark
Driver; ii) a Docker container for the Spark Cluster Manager; iii) a variable number of Docker
containers for the Spark Workers; and iv) a Docker container to expose a Spark History Server,
for additional information about the task scheduling and assignment performed by Spark.
In this prototype, Docker containers are spawned through Docker Compose. To manage the
distribution of the containers to the nodes (machines) of the Spark cluster, different orchestrator
tools (e.g., Kubernetes) can be adopted. Due to its simplicity, for the prototype it has been
leveraged Docker Swarm. Figure 5.11 illustrates an example of the Docker Swarm distribution

82

Data Anonymization for Large Datasets

Figure 5.11: Container deployment in a cloud environment

of Docker containers to the nodes of a Spark cluster. In the figure, white solid boxes represent the
nodes in the Spark cluster, while blue (gray, in b/w printouts) boxes represent Docker containers.
Note that each node in the Spark cluster can spawn more than one Docker container. One of the
nodes in the cluster acts as Docker Swarm Manager, while the other nodes act as Docker Swarm
Workers. The Docker Swarm Manager coordinates and is in charge of distributing the workload
on the Docker Swarm Workers, which in turn are used to spawn the Docker containers that act
as Spark Manager, Spark Driver, and Spark Workers. One of the Docker Swarm Workers is then
dedicated to spawn one container for the Spark Cluster Manager and one container for the Spark
Driver. The other Docker Swarm Workers spawn the containers modeling Spark Workers.

5.8 Experimental results

Several experiments have been performed to evaluate the scalability and applicability of the
proposed distributed Mondrian anonymization approach, compared to the traditional centralized

83

Gianluca Oldani

Mondrian algorithm, considered as a baseline.

5.8.1 Experimental settings

Server specifications and cloud deployment. Since the solution does not require any specific
cloud environment, to obtain reproducible results, in the experiments a cloud environment have
been simulated using Docker Compose. Experiments have been run on a machine equipped
with an AMD Ryzen 3900X CPU (12 physical cores, 24 logical cores), 64 GB RAM and 2 TB
SSD, running Ubuntu 20.04 LTS, Apache Spark 3.0.1, Hadoop 3.2.1, and Pandas 1.1.3. Each
worker is equipped with 2GB of RAM and 1 CPU core. Centralized Mondrian relies on 1 CPU
core, with no limitation on the use of the RAM. To prove the applicability and scalability of
our solution in a real-world distributed environment, the prototype has also been deployed in
Amazon Elastic Compute Cloud (t2.medium instances equipped with 2 cores, 4GB of RAM,
and 8GB of gp3 SSD, running Ubuntu 20.04 LTS, and located in the us-east-1 region). The
results obtained in this real-world cloud environment confirm the ones obtained in our simulated
environment illustrated in Section 5.8.2.

Storage platform. Hadoop Distributed File System (HDFS) has been used as the distributed
storage platform for storing the dataset to be anonymized. The HDFS cluster has been deployed
leveraging Docker containers, with one container for the Hadoop Namenode (responsible for
the cluster management); and multiple containers for the Hadoop Datanodes (responsible for
storing data and servicing read and write requests).

Dataset. The considered datasets are the Poker Hand dataset [34] and ACS PUMS USA 2019
dataset [146]. The choice has been dictated by the need to consider very large datasets, to test
the scalability of our approach. In addition to these results, in Appendix C are illustrated the
steps necessary to reproduce the results presented in this chapter on a smaller sample of the
well-known ACS PUMS USA 2018 dataset [146].
The Poker Hand dataset is composed of 1,000,000 tuples. Each tuple represents the cards in a
hand of Poker. Each card is described through 2 attributes: the seed (an integer value in the range
{1, . . . , 4}) and the rank (an integer value in the range {1, . . . , 13}). These attributes have been
considered as the quasi-identifier in the experiments. An additional attribute identifying the
entire hand (an integer value in the range {0, . . . , 9}) has been treated as the sensitive attribute
during the evaluation.
For the ACS PUMS USA 2019 dataset, a sample of 1,500,000 tuples has been used. Each
tuple of the dataset represents an individual respondent with attributes ST, OCCP, AGEP, and
WAGP, representing respectively the respondent’s US State of residence, occupational status
(expressed with a numeric code), age, and annual income.ST, OCCP, AGEP has been considered
as the quasi-identifier, and WAGP as the sensitive attribute. While OCCP, AGEP, and WAGP

84

Data Anonymization for Large Datasets

are numeric attributes, ST is categorical. For attribute ST, a generalization hierarchy H(ST)
defined according to the criteria adopted by the US Census Bureau [1] has been employed. In
this hierarchy States are at the leaf level and are grouped in Divisions, which are in turn grouped
in Regions. For example, States NJ, NY, and PA (leaf level) can be generalized to MiddleAtlantic
(which is their parent in the hierarchy), which in turn can be generalized to Northeast, which in
turn can be generalized to US (which is the root of the hierarchy).

5.8.2 Results

To assess the scalability of the approach described in the chapter, it has been analyzed the
computation time of our distributed Mondrian varying the number of workers. Also, to assess
the quality of the solution computed by the proposed distributed Mondrian, it has been analyzed
the information loss varying the size of the sample used for partitioning the dataset among
workers. Both computation times and information loss values reported in this section have
been obtained as the average over 5 runs. The values are compared with centralized Mondrian,
considered as the baseline for the evaluation performed.
Computation time. Figure 5.12 compares the computation times of the proposed distributed
Mondrian anonymization algorithm over Poker Hand dataset, while Firgue 5.13 shows the results
obtained over the ACM PUMS USA 2019 sample. Both evaluations are performed for the two
partitioning methods, then they are compared with centralized Mondrian anonymization, and
results have collected varying the number of workers and values of parameters k and ℓ. In
particular, the values for k are {5, 10, 20}, while the ones for ℓ are {2, 3, 4}. The numbers of
of workers considered are between 2 and 12 workers (12 is the largest number of partitions that
quantile-based partitioning can produce due to the domain of the attributes of the Poker Hand
dataset). As expected, for the Poker Hand dataset, the execution time decreases when the number
of workers grows, with savings with respect to centralized Mondrian between 28% and 98%,
confirming the scalability of the proposed distributed approach. Similar results can be observed
on the ACS PUMS USA 2019 dataset, with savings between 45% and 98%. As visible from
the figures, the chosen pre-processing strategy does not significantly affect computation times.
Quantile-based and multi-dimensional partitioning exhibit the same execution time when using
two workers. Indeed, both approaches would perform the same partitioning. It is also possible
to note that, when using quantile-based partitioning, each additional worker provides a saving
in computation time. On the contrary, when using multi-dimensional partitioning, computation
time saving can be enjoyed when the number of workers reaches a power of 2 (i.e., it is necessary
to have 2i workers for saving on computation time). For instance, this is particulary visible in
Figure 5.12, where there is a marginal saving when passing from 6 to 7 workers, but there is
a considerable saving from 7 to 8 workers. This is due to the fact that, when the number of
workers is not a power of 2, some workers are assigned twice the workload as the others (see

85

Gianluca Oldani

k=5, ℓ=2 k=5, ℓ=3 k=5, ℓ=4

k=10, ℓ=2 k=10, ℓ=3 k=10, ℓ=4

k=20, ℓ=2 k=20, ℓ=3 k=20, ℓ=4

Figure 5.12: Execution times of centralized Mondrian and distributed Mondrian varying the
number of workers, k, and ℓ (Poker Hand)

Section 5.4.1) and therefore represent a bottleneck.

Information loss. The usage of the proposed distributed Mondrian might cause additional in-
formation loss compared to the centralized Mondrian, since each worker independently operates
on its fragment without coordinating with other workers. The evaluation performed allows to
observe that the information loss caused by distribution can be impacted by: 1) the number of
workers (and hence of fragments), and 2) the size of the sample used to partition the dataset.
Figure 5.14 compares the average information loss (and its variance) obtained in 5 runs of the
distributed (with 5 and 10 workers) Mondrian with the average information loss of the centralized
Mondrian for computing a k-anonymous (with k = 5, k = 10, and k = 20) 2-diverse version of
the Poker Hand dataset, assuming different sampling sizes (0.1%, 0.01%, 0.001%). The value
used for ℓ is 2. The same results but produced over the ACM PUMS USA 2019 are visible
in 5.15. The results in Figure 5.14 and 5.15 show that, for all values of k, sampling has a very
limited impact on information loss. The results also confirm that, for all values of k, also the
number of workers has negligible impact on information loss. More precisely, multi-dimensional

86

Data Anonymization for Large Datasets

 0

 2000

 4000

 6000

 8000

 10000

 12000

 2 3 4 5 6 7 8 9 10 11 12

Ti
m

e
 [

s]

Number of workers

Centralized Mondrian
Multi-Dimensional

Quantile

k=5, ℓ=2

 0

 2000

 4000

 6000

 8000

 10000

 12000

 2 3 4 5 6 7 8 9 10 11 12

Ti
m

e
 [

s]

Number of workers

Centralized Mondrian
Multi-Dimensional

Quantile

k=5, ℓ=3

 0

 2000

 4000

 6000

 8000

 10000

 12000

 2 3 4 5 6 7 8 9 10 11 12

Ti
m

e
 [

s]

Number of workers

Centralized Mondrian
Multi-Dimensional

Quantile

k=5, ℓ=4

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 2 3 4 5 6 7 8 9 10 11 12

Ti
m

e
 [

s]

Number of workers

Centralized Mondrian
Multi-Dimensional

Quantile

k=10, ℓ=2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 2 3 4 5 6 7 8 9 10 11 12

Ti
m

e
 [

s]

Number of workers

Centralized Mondrian
Multi-Dimensional

Quantile

k=10, ℓ=3

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 2 3 4 5 6 7 8 9 10 11 12

Ti
m

e
 [

s]

Number of workers

Centralized Mondrian
Multi-Dimensional

Quantile

k=10, ℓ=4

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 3 4 5 6 7 8 9 10 11 12

Ti
m

e
 [

s]

Number of workers

Centralized Mondrian
Multi-Dimensional

Quantile

k=20, ℓ=2

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 3 4 5 6 7 8 9 10 11 12

Ti
m

e
 [

s]

Number of workers

Centralized Mondrian
Multi-Dimensional

Quantile

k=20, ℓ=3

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 3 4 5 6 7 8 9 10 11 12

Ti
m

e
 [

s]

Number of workers

Centralized Mondrian
Multi-Dimensional

Quantile

k=20, ℓ=4

Figure 5.13: Execution times of centralized Mondrian and distributed Mondrian varying the
number of workers, k, and ℓ (ACS PUMS USA 2019)

partitioning performs similarly for all tested numbers of workers, while quantile-based parti-
tioning produces higher information loss when the number of workers grows. The reported
values for DP reveal that multi-dimensional partitioning produces equivalence classes similar
to the ones produced by centralized Mondrian, while the quantile-based approach produces
slightly smaller equivalence classes, especially when the sample used for partitioning is small.
The results also show that, in some of the tested scenarios, the values for DP are higher in the
centralized scenario. Even if the difference is negligible, it reveals that, when using sampling
for partitioning the dataset, (a subset of) the equivalence classes are smaller compared to the
equivalence classes obtained without sampling. Smaller equivalence classes, however, do not
imply less generalization, as testified by the values of NCP. Indeed, quantile-based partitioning,
multi-dimensional partitioning, and the centralized algorithm present similar (small) values for
NCP.

87

Gianluca Oldani

Information Loss (DP) Information Loss (NCP)
Sampling Partitioning 5 workers 10 workers 5 workers 10 workers

0.1% Quantile 7.14e06 ± 5.13e02 7.10e06 ± 8.31e03 1.83e06 ± 3.18e02 1.97e06 ± 3.99e02
Multi-dimensional 7.22e06 ± 1.63e04 7.22e06 ± 9.25e03 1.80e06 ± 2.46e03 1.80e06 ± 2.15e03

0.01% Quantile 7.14e06 ± 2.78e04 7.10e06 ± 9.35e03 1.83e06 ± 3.41e03 1.96e06 ± 1.01e04
Multi-dimensional 7.17e06 ± 1.93e04 7.15e06 ± 1.36e04 1.79e06 ± 4.02e03 1.80e06 ± 7.44e03

0.001% Quantile 7.14e06 ± 2.78e04 7.13e06 ± 1.27e04 1.83e06 ± 3.41e03 1.91e06 ± 7.92e02
Multi-dimensional 7.20e06 ± 5.02e04 7.20e06 ± 5.02e04 1.80e06 ± 3.82e03 1.80e06 ± 3.82e03

Centralized 7.23e06 1.50e06

(a) k=5, ℓ=2

Information Loss (DP) Information Loss (NCP)
Sampling Partitioning 5 workers 10 workers 5 workers 10 workers

0.1% Quantile 1.42e07 ± 7.44e03 1.41e07 ± 9.94e03 2.20e06 ± 1.38e03 2.34e06 ± 1.14e03
Multi-dimensional 1.42e07 ± 2.39e04 1.43e07 ± 1.47e04 2.17e06 ± 6.50e02 2.17e06 ± 8.62e02

0.01% Quantile 1.42e07 ± 2.16e04 1.41e07 ± 7.92e03 2.20e06 ± 1.67e03 2.34e06 ± 1.10e04
Multi-dimensional 1.42e07 ± 2.35e04 1.42e07 ± 1.71e04 2.17e06 ± 4.90e03 2.17e06 ± 4.29e03

0.001% Quantile 1.42e07 ± 2.16e04 1.41e07 ± 2.95e04 2.20e06 ± 1.67e03 2.24e06 ± 8.00e04
Multi-dimensional 1.43e07 ± 2.36e04 1.47e07 ± 2.36e04 2.17e06 ± 4.67e03 2.17e06 ± 4.51e03

Centralized 1.43e07 1.82e06

(b) k=10, ℓ=2

Information Loss (DP) Information Loss (NCP)
Sampling Partitioning 5 workers 10 workers 5 workers 10 workers

0.1% Quantile 2.88e07 ± 2.82e04 2.86e07 ± 2.06e04 2.50e06 ± 3.30e01 2.66e06 ± 1.55e03
Multi-dimensional 2.88e07 ± 4.44e04 2.88e07 ± 5.77e04 2.47e06 ± 1.56e03 2.46e06 ± 4.32e03

0.01% Quantile 2.88e07 ± 6.73e04 2.85e07 ± 4.21e04 2.50e06 ± 1.32e03 2.65e06 ± 1.76e04
Multi-dimensional 2.88e07 ± 5.03e04 2.88e07 ± 1.86e04 2.47e06 ± 5.75e03 2.46e06 ± 4.00e03

0.001% Quantile 2.88e07 ± 6.73e04 2.86e07 ± 2.86e04 2.50e06 ± 1.32e03 2.63e06 ± 3.43e03
Multi-dimensional 2.88e07 ± 7.23e04 2.88e07 ± 6.83e04 2.47e06 ± 8.32e03 2.46e06 ± 6.17e03

Centralized 2.88e07 2.07e06

(c) k=20, ℓ=2

Figure 5.14: DP and NCP information loss varying the number of workers and k (Poker Hand)

The experiments confirm that our distributed Mondrian provides high scalability, while causing
limited impact on information loss. When the number of workers is a power of 2, multi-
dimensional and quantile-based partitioning exhibit similar computation time. However, when
the number of workers is not a power of 2, quantile-based partitioning provides better perfor-
mance. Both approaches have limited impact on information loss.

5.9 Related work

The problem of protecting privacy in data publishing has been widely studied (e.g., [64,
65, 68, 149, 171]). The solutions proposed in the literature include both syntactic (e.g., k-
anonymity [149] and ℓ-diversity [117]) and semantic techniques (e.g., differential privacy [68]
and its variations [69]). Traditional algorithms aimed at enforcing k-anonymity and/or ℓ-
diversity (e.g., [90,103, 104]) operate in centralized scenarios. The problem of distributing and

88

Data Anonymization for Large Datasets

Information Loss (DP) Information Loss (NCP)
Sampling Partitioning 5 workers 10 workers 5 workers 10 workers

0.1% Quantile 4.12e07 ± 1.06e06 4.21e07 ± 2.03e06 1.69e05 ± 5.22e03 1.72e05 ± 1.91e03
Multi-dimensional 3.91e07 ± 1.51e06 3.95e07 ± 1.22e06 1.27e05 ± 9.43e03 1.31e05 ± 1.13e03

0.01% Quantile 4.14e07 ± 1.21e06 4.24e07 ± 1.98e06 1.68e05 ± 3.02e03 1.76e05 ± 4.93e03
Multi-dimensional 4.06e07 ± 1.21e06 4.16e07 ± 1.54e06 1.41e05 ± 2.81e04 1.46e05 ± 2.74e04

0.001% Quantile 4.15e07 ± 1.15e06 4.22e07 ± 1.72e06 1.75e05 ± 2.44e03 1.76e05 ± 4.11e03
Multi-dimensional 4.12e07 ± 1.53e06 4.13e07 ± 2.01e06 1.79e05 ± 2.91e03 1.81e05 ± 3.41e03

Centralized 3.87e07 1.21e05

(a) k=5, ℓ=2

Information Loss (DP) Information Loss (NCP)
Sampling Partitioning 5 workers 10 workers 5 workers 10 workers

0.1% Quantile 5.46e07 ± 1.33e04 5.70e07 ± 5.46e04 1.95e05 ± 7.41e03 2.03e05 ± 1.05e03
Multi-dimensional 5.46e07 ± 3.44e05 5.46e07 ± 5.31e05 1.58e05 ± 1.01e04 1.67e05 ± 2.11e04

0.01% Quantile 5.47e07 ± 1.72e06 5.55e07 ± 9.22e05 2.02e05 ± 3.62e03 2.04e05 ± 5.06e03
Multi-dimensional 5.47e07 ± 2.92e05 5.47e07 ± 6.09e05 1.64e05 ± 1.81e04 1.83e05 ± 3.53e04

0.001% Quantile 5.56e07 ± 1.25e06 5.57e07 ± 1.81e06 2.03e05 ± 2.17e03 2.07e05 ± 3.57e03
Multi-dimensional 5.47e07 ± 3.23e05 5.47e07 ± 4.43e05 1.95e05 ± 2.05e04 1.98e05 ± 1.51e04

Centralized 5.46e07 1.46e05

(b) k=10, ℓ=2

Information Loss (DP) Information Loss (NCP)
Sampling Partitioning 5 workers 10 workers 5 workers 10 workers

0.1% Quantile 6.31e07 ± 9.82e05 6.42e07 ± 8.06e05 2.28e05 ± 1.03e04 2.32e05 ± 9.05e03
Multi-dimensional 5.91e07 ± 7.44e05 6.21e07 ± 5.61e05 1.91e05 ± 2.08e04 1.96e05 ± 1.33e04

0.01% Quantile 6.42e07 ± 8.73e05 6.55e07 ± 4.22e05 2.31e05 ± 5.8e03 2.36e05 ± 5.49e03
Multi-dimensional 6.40e07 ± 3.22e05 6.38e07 ± 4.09e05 1.96e05 ± 4.17e04 2.11e05 ± 2.03e04

0.001% Quantile 6.54e07 ± 5.15e05 6.61e07 ± 6.83e05 2.37e05 ± 3.31e03 2.37e05 ± 3.57e03
Multi-dimensional 6.51e07 ± 3.23e05 6.57e07 ± 2.43e05 2.07e05 ± 1.09e01 2.12e05 ± 2.11e04

Centralized 5.73e07 1.81e05

(c) k=20, ℓ=2

Figure 5.15: DP and NCP information loss varying the number of workers and k (ACM PUMS
USA 2019)

parallelizing anonymization has been recently studied, to the aim of protecting also large datasets
(e.g., [188, 190]). The approach in [190] partitions the dataset and anonymizes the resulting
fragments, leveraging MapReduce [53] paradigm to parallelize the centralized anonymization
solution in [76]. The proposal in [190] takes a different approach in partitioning with respect to
the one presented in this chapter, since it aims at maintaining in each fragment the same value
distribution as the whole dataset while the approach just illustrated aims at maintaining in each
fragment homogeneous values for the quasi-identifier, so to reduce the amount of generalization
needed to enforce k-anonymity (and hence the information loss due to generalization). The
distributed anonymization approach in [188] partitions data so that fragments contain records
that are semantically similar (leveraging Locally Sensitive Hashing, semantic distance measure,
and k-member clustering), but it does not leverage Mondrian for computing fragments.

Different distributed anonymization approaches rely, similarly to the proposal illustrated in this

89

Gianluca Oldani

chapter, on distributed architectures for parallelization (e.g., [15, 17, 18, 25, 35, 159, 189]). The
approach in [17] parallelizes Mondrian through Apache Spark, but relies on data exchange
among workers to coordinate anonymization of different portions of the original dataset dis-
tributed to workers. In the researched approach one of the objective is limiting data exchange
among workers. The solution in [18] differs from the presented research since it uses hierarchi-
cal clustering and k-means to provide ℓ-diversity instead of performing partitioning according
to Mondrian strategy. The approach in [15] considers Apache Spark for parallelizing differ-
ent anonymization approaches, but does not discuss the Spark-based adaptation of Mondrian.
The solution in [159] randomly assigns tuples to workers, while the solution just described
specifically studies a strategy for distributing tuples to workers to minimize information loss.
The first approach aimed at parallelizing Mondrian algorithm has been proposed in [35] and is
based on MapReduce paradigm. This solution heavily relies on data exchanges among workers.
Again, this is avoided in the proposed approach in order to minimize the need for workers to
communicate for anonymization purposes so to reduce the delays and costs inevitably entailed by
exchanging data over a network. A more recent approach relying on MapReduce for parallelizing
Mondrian algorithm has been proposed in [189]. Besides the use of MapReduce in contrast to
Apache Spark, this solution differs from the one presented in this chapter in the strategy adopted
for splitting the dataset among workers. The approach in [189] operates on the whole dataset
(and not on a sample of the same) and adopts a distributed algorithm for partitioning, using a
tree structure shared among the workers in the cluster. Also, the proposal in [189] does not
use quantiles for partitioning. The proposal in [25], which enforces Mondrian using Spark, is
complementary to what has been exposed in this thesis, as it focuses on improving performances
by optimizing data structures used by Spark.

5.10 Conclusions

This chapter explores a technique that can be used to enforce privacy guarantees over data
collections that are part of the security boundaries defined through the technique exposed in
Chaper 2, 3 and 4. The research produced a prototype of scalable approach for the distributed
execution of the Mondrian algorithm. This allows developers to achieve data anonymization of
very large datasets by fully utilizing the computational resources at their disposal.

90

Chapter 6. Enabling queries on encrypted data

6.1 Introduction

The technique described in Chapter 5 is effective in enforcing privacy guarantee of data points
of a data collection. Such method can be applied when the dataset is composed of information
that can be divided into sensitive and not. In general, data sanitization techniques are applicable
when privacy is the main concern that has to be guaranteed. In a case in which every piece
of information has to be protected, such approach is not able to enforce the correct security
guarantees. The classical solution to this threat is represented by the use of encryption, so that
the control of the physical representation of the data does not give access to the information
content, as long as the attacker does not have access to the encryption key. A valuable addition
to the sandbox that can be constructed through the technique described in Chapter 2, 3 and 4 is
to adapt encryption scheme in such a way that compromised components are not able to reach
access credentials(e.g. encryption keys).

Concerning data in the form of relational tables, the research and development community have
dedicated significant effort to this problem, considering different lines of investigations. Possible
approaches include: i) the use of searchable encryption (e.g., [139]), supporting the evaluation
of conditions on encrypted data; ii) the use of trusted hardware components at the server (e.g.,
Intel SGX), offering a trusted execution environment residing at, but not accessible by, the
server (e.g., [154]); iii) the association with the encrypted data of metadata working as indexes
offering support for the evaluation of conditions (e.g., [46, 87]). All these approaches represent
valid alternatives depending on the application scenario. The first two, while enjoying strong
protection guarantees, suffer from a significant performance overhead, making them still not
applicable in many practical scenarios. On the other hand, indexes, while applicable in practice,
may suffer from a possible exposure to inferences, as they might leak information on the values
behind them once the data collection has been leaked. The vulnerability of indexes typically
resides in the frequencies of their occurrences, which can bear relationship with the plaintext
values. Frequencies of both individual attributes values as well as combinations of them can
be exposed to inference. A solution to this problem is guaranteeing indexes with collisions
(i.e., mapping different plaintext values into the same index value), so to provide confusion and
indistinguishability. Unfortunately, this is easier said than done, as constructing such an index
requires addressing two (interconnected) aspects which are far from being trivial. First, an
inevitable curse of dimensionality, while it can easily provide collisions and indistinguishability
over one attribute, it is not so when multiple attributes need to be considered. The problem is

91

Gianluca Oldani

complicated by the second aspect, which is the need to guarantee effectiveness of indexes (in
terms of the limited overhead caused by spurious tuples returned to the clients due to collisions)
and their efficiency (in terms of low performance overhead) for query execution. A third non
trivial aspect is the need to limit the storage required at the client for (re)constructing indexes to
translate queries on original plaintext data into queries on indexes at the server.
In this chapter, all these problems are addressed by proposing a multi-dimensional index (i.e.,
an index on multiple attributes) that is robust against inference exposure and, at the same
time, performs well for query execution and requires limited storage at the client side. The
designed multi-dimensional index ensures not only that index values on individual attributes
are guaranteed to appear at least a given number of times (i.e., no peculiar frequencies can be
exploited for inference attacks) but that the same holds for their combination. In other words,
each combination of index values enjoys the property of having at least a given number of
occurrences. Besides providing protection against static inference attacks (which can no longer
exploit frequencies of index values), the approach illustrated in this chapter guarantees protection
after the application host has been compromised, since the encryption keys are never shared
with the server. The price to pay for such a protection is the overhead in query execution: being
tuples with the same indexes indistinguishable one from the others since any query touching one
of them would return all the others as well. It is therefore important to carefully group tuples for
indexing so to limit the overhead in query execution and hence guarantee performance. While
this can be trivial when only one attribute is to be indexed, it is far from being so (it is an NP-hard
problem) when multiple attributes need to be indexed.
The illustrated approach for index construction employs a spatial-based representation of tuples
to be outsourced and an algorithm performing recursive cuts on such space, resulting in a
partitioning of tuples for indexing. As confirmed by the experimental evaluation, the proposal
provides for effective and efficient query evaluation, enjoying limited overhead and limited
storage requirements at the client side.

6.2 Basic concepts

This chapter focus on the protection of relational database systems. As anticipated, the protected
relation is available in the security boundary of a vulnerable application that may be exploited
by an attacker. The relation r is defined over schema R(a1, . . . , an), where each attribute aj is
defined over a domain d(aj), for j = 1, . . . , n. In the following, it is used the notation val(aj)
to denote the set of values of attribute aj stored in r (i.e., val(aj) = select distinct aj from
R). As an example, Figure 6.1(a) illustrates a relation r with three attributes: Name, State,
and Age. Here, d(Age)={0, . . . , 120} and val(Age)={27, 30, 35, 38, 42, 45, 50}. To protect
the confidentiality of data even in the case in which the server application is compromised

92

Enabling queries on encrypted data

r
Name State Age

t1 Ada Ak 38
t2 Bob Mi 27
t3 Coy Wy 35
t4 Dan Ca 42
t5 Eve Ca 45
t6 Fay Wy 50
t7 Gil Ny 38
t8 Hal Tx 30
t9 Ian Tx 27

3827 35 42 45 50383027
Ak

Mi

Wy

Ca

Ny

Tx
State Age

t1 AkMiWy [27,38]
t2 AkMiWy [27,38]
t3 AkMiWy [27,38]
t4 CaWy [42,50]
t5 CaWy [42,50]
t6 CaWy [42,50]
t7 NyTx [27,38]
t8 NyTx [27,38]
t9 NyTx [27,38]

(a) (b) (c)
re

et iState iAge

te1 but6yv ω α
te2 lmoe!. ω α
te3 p4?llq ω α
te4 gbS1.X γ β
te5 c493pw γ β
te6 WD.23b γ β
te7 Q.co43 τ α′

te8 de31As τ α′

te9 xMe1!K τ α′

MapAge
Bucket Count
[27,38] 2
[42,50] 1

MapState
Value Bucketsσ

Ak AkMiWy
Ca CaWy
Mi AkMiWy
Ny NyTx
Tx NyTx
Wy AkMiWy, CaWy

(d) (e) (f)

Figure 6.1: Plaintext relation (a), its spatial representation (b), partitioning (c), encrypted and
indexed relation (d), and maps for attribute Age (e) and State (f)

by an attacker, the owner of the data collection encrypts the relation at the tuple level before
outsourcing it, using a symmetric encryption scheme with a key that is not shared with the
application host. Queries on the encrypted relation are supported via a set of indexes associated
with a set I={a1, . . . , al}⊆R of attributes in the original relation on which conditions need
to be evaluated in the execution of queries (State and Age for our running example). An
encrypted and indexed relation is formally defined as follows.

Definition 6.2.1 (Encrypted and indexed relation) Let r be a relation over schemaR(a1, . . . , an),
and I = {a1, . . . , al} ⊆ R be a subset of the attributes in R. The encrypted and indexed version
of r is a relation re over schema Re(et, i1, . . . , il) where ∀t ∈ r, ∃te ∈ re such that te[et]=Ek(t),
with Ek a symmetric encryption function with key k, and te[ij] the index value derived from
t[aj], j = 1, . . . , l.

According to this definition, the encrypted and indexed version re of relation r has an attribute
et, which is the encrypted representation of the tuples in the plaintext relation, and an attribute

93

Gianluca Oldani

ij , which is the index for attribute aj in I, j = 1, . . . , l. Figure 6.1(d) illustrates an example
of encrypted and indexed version of the relation in Figure 6.1(a), where State and Age are
indexed. For simplicity, in the example Greek letters are used to represent index values.
The goal of the research presented in this chapter, is to compute a multi-dimensional index that
is effective and efficient for the execution of queries with support for equality (=) and range
(>,≥, <,≤) conditions.

6.3 Multi-dimensional tuple partitioning

The designed approach for partitioning tuples for indexing employs an algorithm similar to the
one used by the Mondrian anonymization algorithm [51, 105] explored in Chapter 5. While
similar, the algorithm developed in this chapter bears differences to accommodate the fact
that in the considered scenario it is needed to cluster tuples to produce obfuscated indexes
performing well for query evaluation (in contrast to cluster tuples for semantically meaningful
generalization). The partitioning process developed works then in a multi-dimensional space,
with one dimension for each indexed attribute, and where tuples correspond to points in the multi-
dimensional space where their coordinates correspond to the values of the indexed attributes in
the tuples. Figure 6.1(b) shows the two-dimensional representation for the indexing of attributes
State and Age of the relation in Figure 6.1(a). Since more tuples can have the same values
for the indexed attributes, a point in the multi-dimensional space can correspond to more than
one tuple, which is represented in the figure with the number of occurrences associated with it
(this is omitted in the proposed example since it is always equal to 1).
To construct the multi-dimensional space on which the algorithm operates, by partitioning tuples
in boxes of at least b tuples, attributes to be indexed are classified into two categories:

• continuous attributes (e.g.,Age in Figure 6.1(a)), characterized by a total order relationship
on their domain, and on which range conditions need to be supported;

• nominal attributes (e.g., State in Figure 6.1(a)), which do not have a semantic order in
their domain and hence on which only equality conditions make sense.

When partitioning tuples in boxes, care must be taken to put as much tuples as possible that share
the same values for an attribute in the same box. Also, for continuous attributes, close values
should fall as much as possible in the same space. It is important to note that this objective
might intrinsically not be possible for all attributes. Consistently with these observations, values
of continuous attributes are considered in their natural order along the axis of their dimension,
while values of nominal attributes are considered in increasing order of their relative frequencies
in the tuples.

94

Enabling queries on encrypted data

The partitioning process of the multi-dimensional space works recursively, cutting, at each step,
a space (e.g., in the first step, the whole space is cut) with respect to a selected attribute and a
value in its domain as threshold. The cut divides the space in two sub-spaces, each containing
the points (i.e., the tuples) falling on its side of the cut.
The process is recursively repeated on each of the two resulting sub-spaces, and terminates when
any further cut would generate a partition with less than b tuples. At each step, the attribute
chosen for the cut is the one that, in the considered space, has the maximum span. For continuous
attributes, the span is the distance between the minimum and maximum value that the tuples
in the (sub-)space assume. For nominal attributes, it is the number of distinct values that the
tuples in the (sub-)space assume. For instance, with reference to the relation in Figure 6.1(a),
the span for attribute Age is 50− 27 = 23, while the span for attribute State is 6. The value
chosen as threshold for the cut is the median for continuous attributes, and the value that splits
the (sub-)space in two sub-spaces with nearly 50% of the tuples each for nominal attributes.
Note that cuts change the relative frequency of values in the generated sub-spaces, and hence
also the order in which values for nominal attributes are considered on their axis.

6.4 Index construction

At the end of the partitioning process, the tuples in r are grouped in non-overlapping boxes (i.e.,
disjoint groups of tuples whose union corresponds to r) such that each box contains at least b

tuples. The dotted lines in Figure 6.1(b) denote the cuts performed and hence the resulting boxes
for our example. Two cuts have been performed, resulting in three boxes, each containing three
tuples.
Intuitively, boxes determine the tuples that will be mapped to the same combination of index
values. In other words, for each indexed attribute, all the values that fall in the same box will
be mapped to the same index values. Since this applies to all indexed attributes, this implies
that all tuples in the same box will be mapped to the same combination of index values. In the
following, the notation B is used to denote the set of all boxes, and Bj∈B to denote the j-th box.
Also, for each box B∈B and attribute a∈I, it is denoted with B[a] the set of values of a, called
bucket, covered by B. A bucket is expressed as an interval for continuous attributes and as a set
of values for nominal attributes. Formally, for each box B and attribute a:

• B[a] = [v,v′] such that v = min {t[a] | t ∈ B} and v′ = max {t[a] | t ∈ B}, if a is a
continuous attribute;

• B[a] = {t[a] | t ∈ B}, if a is a nominal attribute.

95

Gianluca Oldani

Figure 6.1(c) reports the buckets of the three boxes corresponding to the partitioning in Fig-
ure 6.1(b). For readability, each set is represent as a string composed of all its elements; for
instance, AkMiWy stands for set {Ak,Mi,Wy}.
Note that, different boxes might be associated with the same bucket for one or more of their
attributes. Formally, it is possible to have Bx[a] = By[a], with x ̸= y. For instance, in the
proposed example, box B1 containing the first three tuples and box B3 containing the last three
tuples have B1[Age] = B3[Age] = [27,38].
Since, for each attribute, index values in different boxes must be different, the generation of
indexes cannot depend only on the bucket. To map the same bucket of different boxes to
different index values, the procedure designed combines buckets for their indexing with a salt.
This is formalized by the following definition.

Definition 6.4.1 (Index function) Let r be a relation, a∈I be an indexed attribute, B be the set
of boxes of relation r, and hk be a cryptographic hash function with key k. An index function
for attribute a is a function ιa:B→Ia such that:

• ∀B ∈ B, ιa(B)=hk(B[a]||σ), with σ a randomly generated salt;

• ∀a, a′ ∈ I, ∀B,B′ ∈ B, with ιa(B)=hk(B[a]||σ), ιa′(B′)=hk(B′[a′]||σ′), if B[a] =

B′[a′] and (a ̸= a′ or B ̸= B′), then σ ̸= σ′.

Indexes are then computed as the result of a cryptographic hash function on the concatenation
of the bucket to be indexed and a salt. The second bullet in the definition dictates the use of
a different salt for buckets that are equal but refer to different attributes (i.e., dimensions) or
for a same bucket that appears in different boxes for the same attribute. Satisfaction of such a
condition is guaranteed by generating salts using a pseudo-random generation function with a
different seed for each attribute and using a different salt in the sequence for different occurrences
of a same bucket. Hence, different attributes will be associated with a different sequence of
randomly generated salts. For each attribute a∈I, we denote with σa(j) the j-th salt generated
by function σ with the seed of attribute a. Each bucket Bx[a] is then associated with the j-th salt
σa(j), with j − 1 the number of boxes By ∈ B such that Bx[a]=By[a] and y < x. For instance,
with reference to the example in Figure 6.1, bucket B3[Age] is combined with salt σAge(2) since
B1[Age]=B3[Age] and 1 < 3. Figure 6.1(d) shows the encrypted and indexed version of the
plaintext relation in Figure 6.1(a). Here, combinations of index values ⟨ω, α⟩, ⟨γ, β⟩, and ⟨τ, α′⟩
are those computed for the three boxes in Figure 6.1(c). Indexes α and α′ represent different
salted versions of the same bucket (i.e., [27,38]).

96

Enabling queries on encrypted data

6.5 Client-side maps

The process illustrated in the previous sections of this chapter enables the creation of indexes to
be associated with the tuples in the plaintext relation that has to be protected on a vulnerable host.
The encrypted and indexed relation (Def. 6.2.1) will then have, for each tuple in the original
plaintext relation, its encrypted version and the values of the indexes computed as illustrated
(Def. 6.4.1). For simplicity, in the proposed examples tuples are maintained in the same order
in both the original and outsourced relations; it is worth noting that tuples should be shuffled
before upload them to the storage provider.
The next problem that has to be addressed is the definition of the information to be stored at
the client side to enable the translation of queries on the plaintext relation into queries on the
encrypted and indexed relation that can then be executed by the application host without the
need of sharing any decryption key. According to Def. 6.4.1, such information comprises:

• the cryptographic hash function h along with the corresponding key k;

• the function σa used for salt generation;

• a map, denoted Mapa , enabling the translation of plaintext attribute values into index
values.

While the first two bullets only require a client to memorize one function, the third one, requires
the creation of a map for the attributes, thus it needs more consideration. Being maps stored
client side, it is important to maintain them compact, to limit the storage needed at the client.
In Section 6.7, it will be possible to notice that the implemented maps enjoy such compactness.
The attributes’ maps are maintained in a compact form, compliant to what is defined in the
following.
Continuous attributes. For each continuous attributea, Mapa is a set of pairs (Bucket,Count),
reporting the buckets in which the attribute has been divided and, for each bucket, the number
of boxes in which it appears. Formally, Mapa = {⟨B[a], c⟩ | B ∈ B, c = |{B′ ∈ B | B′[a] =

B[a]}|}.
The counter associated with each bucket gives the number of distinct index values corresponding
to the bucket and hence the number of salts to be used for reconstructing such indexes for query
translation. Figure 6.1(e) illustrates the map for attribute Age that contains the information
about the two buckets resulting from partitioning (i.e., [27,38] and [42,50]). Bucket [27,38]
has 2 occurrences and the sequence of salts used in the generation of the corresponding index
values is σAge(1) and σAge(2). Hence, the index values corresponding to bucket [27,38] are
hk([27,38]||σAge(1))=α and hk([27,38]||σAge(2))=α′ (see Figure 6.1(d)).

97

Gianluca Oldani

A) maps

7) plaintext
 result of q

Query
Translator

6) qc

STORAGE PROVIDER

B) encrypted & indexed
relation re

1) q

USER

Query
Executor

re

3) qs

5) encrypted
 result of qs

DATA
OWNER

CLIENT

Query
Executor

2)

4)

Figure 6.2: Query execution process

Nominal attributes. For each nominal attribute a, Mapa is a set of pairs (Value, Bucketsσ)

for each value v in a, the buckets B[a] that include v, concatenated with the corresponding
salt value. Formally, Mapa = {⟨v, {(B[a] || σ)}⟩ | v ∈ val(a), B ∈ B : v ∈ B[a], ιa(B) =

hk(B[a] || σ)}.
Figure 6.1(f) illustrates the map for attribute State. For simplicity, in the figure, noting that in
the proposed example all buckets have only one occurrence, and therefore only one salt is to be
used, the unsalted bucket values is reported.

6.6 Query translation and execution

Once the (encrypted and indexed) relation is stored in the web application host, only the
information needed for query translation (i.e., the maps) will be stored client side. Each query q

on R, formulated at the client side, will then need to be translated into a query qs operating on
indexes at server side. The retrieved result (encrypted tuples whose indexes satisfy qs) will be
decrypted and query qc will be executed to eliminate possible spurious tuples, where qc is the
same as q but executed on the decryption of the result of qs instead of R. Figure 6.2 illustrates
the overall architecture and query execution process.
Translating q into qs requires mapping each of the conditions appearing in its where clause into
a condition on indexes. In the following it is illustrated such a mapping depending on whether
the condition is on a continuous or nominal attribute.

Continuous attribute. Continuous attributes support both point (i.e., equality) as well as range
conditions. Conditions can then be of the form “a op v” or “a between vx and vy”, with a∈I,

98

Enabling queries on encrypted data

v,vx,vy∈d(a), and op ∈ {>,≥, <,≤}.
To illustrate the mapping, it is taken into consideration a general form capturing all the cases
above and illustrate the mapping of condition “a∈Range”, where Range is an (open or closed)
interval specified by two values vl and vr, with vl ≤ vr. Such a general form captures all the
conditions above, by simply considering vl = vr = v for point conditions; vl the lowest value
in val(a) for < or ≤ conditions; vr the highest value in val(a) for > or ≥ conditions; and the
interval open on the left (right, resp.) side if values equal to vl (vr, resp.) should be excluded.
For instance, Age<30, is equivalent to Age∈[27,30).
A condition of the form “a∈Range” is translated into a condition on a’s index ia , requesting it
to be in the set of index values to which the a’s buckets intersecting Range have been mapped,
that is, in condition:

• ia in (hk(b||σa(j)) s.t. ⟨b, c⟩ ∈Mapa , b ∩ Range ̸= ∅, j = 1, . . . , c)

Here ⟨b, c⟩ ∈ Mapa denotes the different buckets in Mapa , b ∩ Range ̸= ∅ restricts the
consideration to the ones intersecting Range, and c expresses the number of salts to be used for
each bucket b (i.e., the number of distinct index values to which the bucket has been mapped).
For instance, consider attribute Age and its map in Figure 6.1(e). Condition “Age=30” is trans-
lated to “iAge in (α, α′)”, with α=hk([27,38]||σAge(1)) and α′=hk([27,38]||σAge(2)). Condition
“Age>39” is translated to “iAge in (β)”, with β=hk([42,50]||σAge(1)).

Nominal attribute. Nominal attributes support the evaluation of point conditions only. A
condition“a=v” is translated into a condition on a’s index ia , requesting it to be in the set of
index values to which v has been mapped, that is, in condition:

• ia in({hk(setj) s.t. m∈Mapa , with m[Value]=v and
setj ∈ m[Bucketsσ], j = 1, . . . , |m[Bucketsσ]|})

For instance, consider attribute State and its map in Figure 6.1(f). Condition “State=‘Wy’”
is translated to “iState in (ω, γ)”, withω=hk(AkMiWy) andγ=hk(CaWy). Condition “State=‘Ca’”
is translated to “iState in (γ)”.

6.7 Implementation and experiments

In order to perform the evaluation described in this Section, it has been built a prototype in
Python that implements both the generation of the encrypted and indexed relation and the query
evaluation process. The code prototype is available at https://github.com/unibg-
seclab/flat-index. The tests have been perfomed on a sample of the PUMS USA ACS
2019 dataset containing 3.2M tuples [146]. The dataset schema includes two nominal attributes,

99

https://github.com/unibg-seclab/flat-index
https://github.com/unibg-seclab/flat-index

Gianluca Oldani

namely (State and Occupation) and two continuous ones: (Age and Income). The
experiments analyze the overhead in query execution and the size of the client-side maps.

Indexing and encryption. In order to realize a distributed version of the partitioning process
illustrated in Section 6.3, it has been employed an architecture similar to the one illustrated in
Chapter 5. Thank to this decision, the tool implemented uses a scalable Apache Spark platform
and parallelizes the indexing process relying on an arbitrary number of workers. Partitions of
the dataset are assigned to the workers, which independently apply the indexing process on the
tuples assigned to them. Each worker computes index values (Def. 6.4.1) using the Blake2b [19]
hash function and a different 16-byte salt for each attribute. The encrypted tuple (attribute
et) is computed using XSalsa20 with Poly1305 MAC (to guarantee both confidentiality and
integrity) with a 32-byte high-entropy key. The tool also generates a fresh nonce for each
encryption invocation to provide indistinguishability of tuples with the same values for all
encrypted attributes. The encryption functions are implemented by PyNacl. The encrypted and
indexed relations generated by each worker are uploaded, in randomized order, to a containerized
PostgreSQL DBMS.

Query translation. Each client side query q is parsed using sqlparse, a SQL parser for Python,
and translated as described in Section 6.6. Query qs is submitted to the PostgreSQL DBMS
hosted at the storage provider, and its result is decrypted and checked for integrity by the client.
The client executes query qc on an in-memory SQLite DB to filter spurious tuples and project
the attributes of interest.

Query overhead. The solution described in this chapter has been compared with a naive
approach that builds boxes of b tuples, each by ordering tuples according to the values of a
sequence of attributes and then splitting the ordered dataset in boxes of b contiguous tuples.
Two kinds of query have been run for the evaluation: 1) point queries for each attribute a in the
dataset schema (i.e., State, Occupation, Age, Income), and each value v in val(a); 2)
range queries for attribute Age and for each range [vi,vj] of values in val(Age). Figure 6.3
compares the overhead in query execution for the naive approach and for the proposal prototype,
called b-indexed, approach. Figures 6.3(a,c,e) refer to point queries and Figures 6.3(b,d,f) refer
to range queries. The overhead is measured in terms of the average ratio between the number of
tuples returned by the query on index ia and the original query on a, considering b with values
10, 25, and 50. For point queries, such an overhead is measured depending on the selectivity
(%age of tuples returned) of the original query on the plaintext data (plotted on the x axis). It
is assumed that each query to be issued as many times as the frequency of the requested value.
For range queries, Figures 6.3(b,d,f), the overhead is measured depending on the percentage of
domain values covered by the range condition (plotted on the x axis).
As visible from the figures, the proposed approach largely outperforms the naive one, whose
overhead compared is between 1.5x and 3x larger for point queries and between 5x and 10x for

100

Enabling queries on encrypted data

[0,2) [2,4) [6,8) [8,10)
% of plaintext dataset retrieved

0
5

10
15
20
25
30
35
40

Ov
er

he
ad

Naive
b-indexed

(a) b=10

[2,3) [3,4) [4,5) [5,6) [6,7) [7,8) [8,9)[9,10)
% of domain covered

0
5

10
15
20
25
30
35
40

Ov
er

he
ad

Naive
b-indexed

(b) b=10

[0,2) [2,4) [6,8) [8,10)
% of plaintext dataset retrieved

0
5

10
15
20
25
30
35
40

Ov
er

he
ad

Naive
b-indexed

(c) b=25

[2,3) [3,4) [4,5) [5,6) [6,7) [7,8) [8,9)[9,10)
% of domain covered

0
5

10
15
20
25
30
35
40

Ov
er

he
ad

Naive
b-indexed

(d) b=25

[0,2) [2,4) [6,8) [8,10)
% of plaintext dataset retrieved

0
5

10
15
20
25
30
35
40

Ov
er

he
ad

Naive
b-indexed

(e) b=50

[2,3) [3,4) [4,5) [5,6) [6,7) [7,8) [8,9)[9,10)
% of domain covered

0
5

10
15
20
25
30
35
40

Ov
er

he
ad

Naive
b-indexed

(f) b=50

Figure 6.3: Point (a,c,e) and range (b,d,f) queries overhead

range queries.
It is interesting to note the limited overhead provided by the b-indexed approach, which is much
smaller than the value of b.

Local data structure. Figure 6.4(a) illustrates the size of the maps stored at the client side,

101

Gianluca Oldani

0.5 1.0 1.5 2.0 2.5 3.0
Millions of tuples in the dataset

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

In
de

x
siz

e
(M

iB
)

b=50
b=25
b=10

(a)

0.5 1.0 1.5 2.0 2.5 3.0
Millions of tuples in the dataset

0.00

0.20

0.40

0.60

0.80

1.00

1.20

By
te

s p
er

 tu
pl

e

b=50
b=25
b=10

(b)

Figure 6.4: Absolute (a) and relative (b) size of the maps

varying the number of tuples in the dataset between 0.5 and 3 millions and b equal to 10, 25,
and 50. As visible from Figure 6.4(b), the implemented maps require in almost all the analyzed
configurations less than 1 byte per tuple. Note that the storage space per tuple required by the
map decreases as the number of tuples increases.

6.8 Related work

Several research efforts have addressed the problem of supporting queries on encrypted data
stored on a remote host through the definition of indexing techniques or specific cryptographic
schemes (e.g., [46, 87, 139, 140, 179]). The definition of efficient solutions also depends on
the specific queries to be supported. In particular, the support of range queries requires to
define techniques that consider the order relationship characterizing the domain of the at-
tributes on which queries have to be executed, which can complicate the definition of such
techniques (e.g., [46, 56, 172]). The approach illustrated in this chapter share the goal of these
solutions proposed by the research community: supporting queries over encrypted data; in
the considered scenario, the shortcoming of these works is that they operate on a single at-
tribute. The described approach instead is based on a multi-dimensional interpretation of the
dataset that allows the definition of indexes over multiple attributes. The problem of indexing
multi-dimensional datasets has been already considered and resulted in the definition of multi-
dimensional indexes for supporting queries with conditions on multiple attributes (e.g., [178]).
These solutions, however, differ from the one just described since they define one index only
for the whole set of attributes/dimensions considered. Differently, the techniques illustrated
defines a multi-dimensional index with a component for each attribute, considering the intrinsic
multi-dimensional nature of relations.

102

Enabling queries on encrypted data

A line of work close to what just presented is represented by approaches aimed at supporting
query evaluation over data organized in multiple relations and/or fragments that cannot be joined
by non-authorized subjects (e.g., [44, 52, 185]). These solutions reduce the precision of join
operations introducing a degree k of uncertainty (i.e., it is never possible to reconstruct a tuple
in the join result with uncertainty lower than 1/k). Protection is obtained by grouping tuples in
the relations/fragments and performing joins at the group (in contrast to tuple) level.

6.9 Conclusions

This Chapter have addressed the problem of allowing clients to query encrypted data that are
stored server side in a vulnerable host. The approach illustrated create indexes that are able
to work on a relation composed of multiple attributes. This guarantees protection against
attacker that are able to recover the data collection reachable through an exploited application,
while providing effective and efficient query execution, with support for both point and range
conditions. The experimental evaluation of the approach has been performed on a large publicly
available dataset and confirms the validity of the proposal and its applicability in practical
scenarios.

103

Chapter 7. Conclusions

This thesis presents novel techniques to leverage Linux Security Modules to enforce security
boundaries in applications that leverages components written in unsafe languages. Since the
enforced protection follows the least-privilege principle, this thesis also proposes techniques to
further protects data collections that are still reachable in case of a succefull exploit.

Concerning the protection of JavaScript applications leveraging unsafe utilities under the form
of subprocesses, it has been described Cage4Deno, a set of extensions for the Deno JavaScript
runtime. This set of extensions is able to create a sandbox for subprocesses spawned thorugh
Deno by leveraging Landlock and eBPF LSM. For Cage4Deno, the security boundaries enforced
concern file system resources. Since the proposal has as main objective usability, this thesis has
described a simple policy language for Cage4Deno that realizes a simple RWX+D permission
system. In addition to that, it has been also proposed an approach to automate the creation
of policies for Cage4Deno. Finally, the experimental evaluation demonstrates that Cage4Deno
is able to protect the system against attacks leveraging recent CVEs while also suffering a
performance overhead that is much smaller compared to alternative solutions.

After this initial research effort, techniques similar to the ones used to realize Cage4Deno have
been employed to protect application run through WebAssembly runtimes. In particular, the
thesis proposes a method to strengthen the security guarantees of runtimes that implements
the WebAssembly System Interface. In this case, only eBPF programs have been employed
to sandbox the execution of code that interact with the host file system. Again, the performed
performance evaluation has shown that the proposed approach introduces limited overhead
compared to a scenario in which no protection is applied.

Then, it has been explored how to extend the protection applied to the file system also to
other system resources (i.e., IPC and network). NatiSand realizes this objective by leveraging
Landlock, eBPF LSM and Seccomp BPF to create a sandbox that protects all the aforementioned
resources and can be applied to both subprocesses and native libraries. Similarly to Cage4Deno,
the proposal is capable of protecting vulnerable hosts compromised through recent CVEs while
being affected by an acceptable overhead.

In the final part of the thesis, it has been taken into account the protection of data collections that
are inside the security boundaries defined through the techniques treated in the previous chapters.
In particular, two methods have been proposed to address security concerns over these resources:
the first one protects the privacy of data points, the second ensures confidentiality. Both methods
achieve the objective of providing security guarantees while suffering low performance overhead.

105

Gianluca Oldani

7.1 Future Work

This section concludes the thesis with a discussion on the future works that can be done by
grouping the research done in three areas: creation of fine-grained sandboxes, enforcing privacy
guarantees and enabling operations on encrypted data.

Creation of fine-grained sandboxes –Chapter 2 and 4 illustrated the usage of modern LSMs
to create fine-grained sandboxes for native components leveraged by JavaScript runtimes. While
the architecture described in this thesis is versatile, as shown by similar works that extend
Node.js [36], an evaluation on the use of these techniques to protect Node native addons(e.g.,
Node-API) would be of great interest. In addition to that, Chapter 3 has shown the flexibility of
the approach outside of JavaScript runtimes, thus would be interesting to explore how to enable
similar protection in other environments such as Android [10]. Finally, another interesting future
work would be the integration with memory protection techniques, in order to cover a wider
range of use cases.

Enforcing privacy guarantees –Chapter 5 explored how to enforce privacy guarantees on
data collections that are reachable by vulnerable applications. During the chapter it has been
presented a scalable approach to apply sanitization to large collections of sensors data. As a
future work, it would be interesting to extend the set of criteria used to perform the cut and
determine the partitions, for instance by considering the usage of K-means clustering [18]. From
a technical perspective, the support of Kubernetes as an orchestrator to ease the deployment of
the solution on popular cloud providers would open the possibility of investigating the impact
of a well designed mechanism to position workers on nodes.

Enabling operation on encrypted data –Chapter 6 detailed an approach to support the
execution of point and range queries over encrypted data. As a future work, it would be
interesting to explore how to enable additional operations on data that is not strictly a relational
table [6, 22]. Among the future directions considered concerning this topic, implementing a
block rotation strategy to support the insertion, deletion and update of records would be an
interesting addition.

106

Chapter A. Cage4Deno BPF implementation details

In the following it is detailed, as a complement, some of the issues that has been found while
working with the current implementation of BPF, explaining how they have been addressed.

A.1 Hashing & collision handling

As anticipated in the design and implementation of deny rules (Section 2.4.3), at the time of
writing, the implementation of the BPF framework does not provide support for map-in-map
structures [114]. Moreover, support for using string keys in a map is still limited [85]. At the
time of writing, a patch for providing this option, along with efficient ternary search support
to lookup the map [84], are under active development on bpf-next, the branch dedicated
to the features and improvements that should eventually land in BPF. Nonetheless, it has been
necessary to cope with the temporary limitation of using an integer key to lookup the Mappolicy,
hence, during the research it has been developed a method to transform the string prefixes stored
in the trie to fixed size integers. A typical approach to solve this problem is to use a hash
function. Given the need to preserve the ability to search for prefixes efficiently, it has been
opted for using an incremental hash function. Given Sr, the string representing the access path,
an incremental hash function permits to compute hash(Sr [i]), the hash of the prefix terminating
at character i, in constant time given the hash of the prefix terminating at i−1. The function that
has been employed is djb2 [95], a non-cryptographic low-complexity incremental hash function
proposed by D. J. Bernstein.
The use of a hashing function also required to handle the collisions explicitly. Indeed, collisions
may occur during map creation, and at runtime upon receiving an access request. Basically,
this means that every time a key is found in the policy map Mappolicy, a collision check has
to be performed to determine whether a deny rule was hit. The best trade-off between query
response time and size of the policy map has been achieved adapting the separate hash chaining
approach, in which a fixed size array is used to store a sequence of colliding paths. To explain
how it works, in here it is illustrated the following example. Assume to have three deny rules
in the policy: /home/user/data, /home/user/lib and /media. Also, assume that
the djb2 hash of /home/user/lib and /media collide. Instead of using the deny rules
to build a prefix tree, it is possible to build the policy map Mappolicy as shown in Table A.1.
Upon receiving an access request Sr, the verifier computes the incremental hash for each of its
prefixes, and then performs a sequence of map lookups. In case no lookup is successful, the
verifier concludes that no deny rule was hit, hence the access request is granted. Conversely, the

107

Gianluca Oldani

BPF Map
Deny rule hash Array of colliding paths

djb2(Dr1) /home/user/data→ ∅
djb2(Dr2, Dr3) /home/user/lib→ /media→ ∅

Table A.1: Mappolicy with separate hash chaining (assuming the hashes of/home/user/lib
and /media colliding)

Algorithm 1 Modified deny rule verifier
1: procedure Deny Verifier(Sr)
2: task ← bpf get current task btf()
3: if ¬task ∈Maptask then
4: return 0 ▷ Grant request
5: end if
6: Mappolicy ←Maptask [task]

7: for each prefix in Sr do
8: if djb2(prefix) ∈Mappolicy then
9: collision chain←Mappolicy [djb2(prefix)]

10: for Dr in collision chain do
11: if isPrefix(Dr, prefix) then
12: return -EPERM ▷ Deny request
13: end if
14: end for
15: end if
16: end for
17: return 0 ▷ Grant request
18: end procedure

verifier must check whether a deny rule was hit, or a collision was found. To do that, the verifier
compares the access request Sr, and each of the colliding paths associated with the lookup key.
Algorithm 1 details the procedure.

The time complexity of the proposed approach varies according to the presence of collisions.
When none occurs, the worst case time complexity is given by the total hashing time O(N), plus
the total lookup time O(N) (i.e., in the worst case Sr is structured as [/c]+, hence N/2 lookups
each takingO(1) time are performed). Instead, each time a collision occurs (or a deny rule is hit),
the verifier incurs in an O(N ·L) extra time, where L is the length of the longest collision chain.
Similarly to other research proposals [95], the results presented in the Experimental Evaluation
performed showed a limited impact associated with the presence of collisions (see Section 2.6).
It is worth mentioning that the number of collisions can be reduced using a cryptographic hash
function, at the expense of a lower efficiency. With regard to the size of the policy map, given
M the number of deny rules in the policy, a space of O(M ·N) is required.

108

Cage4Deno BPF implementation details

A.2 Map types

BPF provides several map types to the developer. Each of them is characterized by distinct
performance and functions. In Sections 2.4.3 and A.1 it has been illustrated the construction of
the verifier, detailing the role of Maptask and Mappolicy. The former permits to keep track of the
processes subject to the control of Cage4Deno and to associate them with a policy map, while the
latter stores the restrictions listed in a policy. Since the content and number of entries of Maptask

varies at runtime, in the implementation it has been opted for the TASK STORAGE map type,
which permits to be modified calling the following BPF helpers: bpf task storage get()

and bpf task storage delete(). With regard to Mappolicy, no modification is permitted
after the creation of the map. The only parameter to be minimized is the lookup time, hence in
this case the map type employed is the HASH type.

A.3 Stack limitation

The maximum path length on a Linux system is bounded to 4096 characters (in linux/

limits.h). Unfortunately, the stack size of a BPF program is limited to 512 bytes. To
circumvent this limitation, each access path outside is stored outside of the BPF stack, through
a dedicated PERCPU ARRAY map. As the name suggests, each CPU core executing a BPF
program has an instance of the PERCPU map, which can hold a different state. However, the
content of an instance cannot be modified for the whole duration of the check performed by
the verifier (except for the verifier itself), as BPF programs are non-preemptable. Therefore,
the use of the PERCPU type bypasses the BPF stack limitation without requiring any additional
concurrency primitive (e.g., spinlocks).

109

Chapter B. Policy files samples

This appendix collects the full extract of policy files used in Chapter 2 and 4

B.1 GNU Tar policy file

Listing B.1 reports the policy associated with GNU Tar. The policy has been generated using
dmng according to the procedure described in Listing 2.4.

Listing B.1: Example of policy associated with tar
1 {
2 "policies": [
3 {
4 "policy_name": "tarPolicy",
5 "read": [
6 "/usr/local/bin/tar",
7 "/usr/lib/locale/locale-archive",
8 "/usr/share/locale/locale.alias",
9 "/usr/bin/gzip",

10 "/lib/x86_64-linux-gnu/libc.so.6",
11 "/lib64/ld-linux-x86-64.so.2",
12 "/etc/ld.so.cache",
13 "/home/user/input.tgz",
14],
15 "write": [
16 "/home/user/output"
17],
18 "exec": [
19 "/usr/local/bin/tar",
20 "/usr/bin/gzip",
21 "/lib/x86_64-linux-gnu/libc.so.6",
22 "/lib64/ld-linux-x86-64.so.2"
23],
24 "deny": [
25 "/home/user/output/output/misc"
26]
27 },
28 }

111

Gianluca Oldani

B.2 curl policy

Listing B.2 reports the policy associated with the execution of the curl utility to reach the
URL: https://www.example.com. The policy has been automatically generated using
the approach described in Section 4.5.2.

Listing B.2: Example of policy associated with curl
1 [{
2 "name": "curl",

3 "fs": {
4 "read": [

5 "/etc/gai.conf",

6 "/etc/host.conf",

7 "/etc/hosts",

8 "/etc/ld.so.cache",

9 "/etc/localtime",

10 "/etc/nsswitch.conf",

11 "/etc/passwd",

12 "/etc/resolv.conf",

13 "/etc/ssl/certs/ca-certificates.crt",

14 "/lib/x86_64-linux-gnu",

15 "/lib64/ld-linux-x86-64.so.2",

16 "/usr/bin/curl",

17 "/usr/lib/locale/locale-archive",

18 "/usr/lib/ssl/openssl.cnf"

19],

20 "exec": [

21 "/lib/x86_64-linux-gnu",

22 "/lib64/ld-linux-x86-64.so.2",

23 "/usr/bin/curl"

24]

25 },
26 "net": [{
27 "name": "https://www.example.com",

28 "ports": [443]

29 }]
30 }]

112

Chapter C. Distributed Mondrian experiments

C.1 Introduction

This appendix describes the contents of the repositoty publicly available athttps://github.
com/mosaicrown/mondrian, that implements the proposal described in Chapter 5, and
how to reproduce the experimental results on a small dataset.

C.2 Hardware and software requirements

Hardware requirements. The deployment of the prototype requires a machine having:

• a CPU with at least one logical core for each worker;

• at least 2 GB of RAM for each worker.

Software requirements. The deployment of the prototype requires a machine with Linux
operating system (the experimental results have been obtained using Ubuntu 20.04 LTS) and the
following packages installed:

• make, version 4.3;

• git, version 2.27.0;

• zip, version 3.0, and gzip, version 1.10-2;

• python3, version 3.8.6;

• python3-venv, version 3.8.6;

• gnuplot, version 5.2 patchlevel 8.

When these packages are available, the environment set up should be finalized through the
following steps:

1. install and set up docker and docker-compose (for more details on this step, see Section
“Prerequisites” in the provided repository);

2. run sudo usermod -aG docker <USER>;

3. reboot the system;

113

https://github.com/mosaicrown/mondrian
https://github.com/mosaicrown/mondrian

Gianluca Oldani

4. check that the following commands run without root privileges:
docker run hello-world

docker-compose -version

C.3 Deployment of the prototype

The steps for deploying the prototype are the following:

1. clone the repository through command

git clone --depth 1 --branch \

percom2021_artifact \

https://github.com/mosaicrown/mondrian.git

2. run make to verify that all the software requirements illustrated in Section C.2, which
are needed for the distributed (Spark-based) version of the algorithm, are satisfied by the
environment;

3. run make start to pull and build a copy of the Docker images necessary to the
prototype.

The prototype uses the following Docker containers:

• Hadoop Namenode at http://localhost:9870
(the web page available at this url permits to check the status of the Hadoop Datanode
and to browse the distributed file system);

• Hadoop Datanode at http://localhost:9864;

• Spark History Server at http://localhost:18080;

• Spark Cluster Manager (and thus Spark workers) at
http://localhost:8080.

C.4 Use of the prototype

The prototype implements the centralized and the distributed version of the Mondrian algorithm.
The prototype is complemented with a web UI that can be deployed running command make
ui. The web UI is available athttp://localhost:5000 and can be used to run customized
experiments. A complete user guide to the web UI is available in the provided repository. In

114

http://localhost:9870
http://localhost:9864
http://localhost:18080
http://localhost:8080
http://localhost:5000

Distributed Mondrian experiments

the following, it is described how to use the prototype to reproduce the experimental results
presented on a small dataset.

IPUMS USA dataset. The experiments run by following the contents of this appendix use a
sample from the IPUMS USA dataset [147]. The dataset is available at https://ipums.
org/, together with a detailed guide for its download. With the steps detailed in the following,
it is possible to obtain a data sample that can be anonymized through a one-click command
implemented in the repository. As a first step, go to IPUMS website https://usa.ipums.
org/usa/ and click on “Get Data”. Then, select the attributes of interest (harmonized variables
State FIP Code, Age, Education Number, Occupation, and Income in the case
of the automated procedure) and add them to the cart. For convenience, it is possible to
use the direct links at https://github.com/mosaicrown/mondrian#usa-2018-
dataset (each variable name is a link that redirects to the page at ipums.org that permits to
add the variable to the cart). Select the sample of interest (among USA samples, 2018 ACS in the
case of the automated procedure) and create the data extract. To customize the sample size, set
parameter Persons (to run the automated procedure Persons, set this parameter to 510 in order
to obtain a dataset with at least 500,000 tuples). Among the formats available for downloading
the dataset, select the CSV format and save the downloaded gzip archive in the root folder of the
project, with name usa <extract number>.csv.gz.
Note that the sample of the dataset is randomly extracted at each download from the IPUMS
USA web site. Hence, results may differ from the different experimental evaluations.

Prototype execution. The repository implements a procedure to run the experiments in an
automated way and can be started running the command make artifact experiments

from the root folder of the project. The procedure operates as follows:

1. it cleans the test environment stopping every Docker container that is still running and
removing from HDFS the results produced by the previous runs;

2. it extracts the sample of IPUMS USA dataset to be anonymized from the archive and
copies it to the Spark Driver volume;

3. it runs the centralized and distributed version of the Mondrian algorithm (see below), and
measures the execution time and information loss, storing the results with the following
directory structure:
mondrian/

|-- percom artifact experiments/

|-- |-- results/

|-- |-- |-- runtime results <TIMESTAMP>/

|-- |-- |-- loss results <TIMESTAMP>/

115

https://ipums.org/
https://ipums.org/
https://usa.ipums.org/usa/
https://usa.ipums.org/usa/
https://github.com/mosaicrown/mondrian#usa-2018-dataset
https://github.com/mosaicrown/mondrian#usa-2018-dataset

Gianluca Oldani

4. it shuts down all the containers except the Spark History Server, which remains available
to keep track of the previous runs of the prototype.

Centralized version. The centralized version of Mondrian corresponds to the baseline of the
experimental results illustrated in Chapter 5. The execution of the algorithm can be monitored
through the messages showed on the terminal, which report:

1. the schema and the first few tuples of the input dataset;

2. each decision taken by Mondrian to cut the dataset;

3. the schema and the first few tuples of the anonymized dataset;

4. a summary of the information loss measures and the execution time of the algorithm.

The anonymized dataset is in folder local/anonymized.

Distributed version. Given a number n of workers available in the distributed system, the
prototype performs the following steps to execute the distributed version of the Mondrian
algorithm:

1. start all the Docker services, initialize HDFS, and submit to the Spark Driver Spark
Application implementing the distributed version of Mondrian;

2. recover the dataset from HDFS and show its structure;

3. retrieve the n-quantiles of the best-scoring attribute of the dataset, showing the score used
to decide the optimal cut and the size of the partitions;

4. show the first few tuples of the dataset, complemented with a new attribute containing the
id of the quantile to which each tuple belongs and hence the worker to which the tuple is
assigned;

5. anonymize the dataset;

6. show the first few tuples of the anonymized dataset, with a summary of the execution time.

The anonymized dataset is in folder distributed/anonymized.

116

C.5 Experimental results produced

Execution time. This experiment measured the execution time when computing a 3-anonymous
and 2-diverse version of a sample of the IPUMS USA dataset. The results of the experiments
are stored in folder runtime results <TIMESTAMP>. First, the implemented proto-
type runs the centralized version of the Mondrian algorithm. The results are saved in file
centralized results.csv. Then, the prototype runs the distributed (Spark-based) version of the
Mondrian algorithm, varying the number of workers from 2 to 20. The results are saved in
file spark based results.csv. Besides generating the .csv files with the execution time of the
centralized and distributed versions of the algorithm, the prototype plots these results generating
file comparison.pdf.

Information loss. This experiment measured the information loss when computing a 5-
anonymous and 2-diverse version of a sample of the IPUMS USA dataset. The results of the
experiments are stored in folderloss results <TIMESTAMP>. The prototype first runs the
centralized version of the Mondrian algorithm, storing the results in file centralized results.csv.
Then, it runs the distributed version (with 5, 10, and 20 workers), using a sample including
0.01% of the dataset to determine the most suitable attribute and compute the n-quantiles (with
n = 5, n = 10, and n = 20, respectively) for partitioning the dataset among the workers.
The results obtained from five runs of the distributed version of the algorithm are stored in
file spark based results.csv. The prototype also generates file loss table.csv, which reports the
average and the variance (in the form µ± σ) of the results in file spark based results.csv.

117

References

[1] Census regions and divisions of the united states, 2020.

[2] Cli options - wasmtime, 2023.

[3] wasmedgec aot compiler - wasmedge, 2023.

[4] A. Starovoitov. CAP BPF, 2020.

[5] M. Abbadini, M. Beretta, S. D. C. di Vimercati, D. Facchinetti, S. Foresti, G. Oldani,
S. Paraboschi, M. Rossi, and P. Samarati. Supporting data owner control in ipfs networks.

[6] M. Abbadini, M. Beretta, D. Facchinetti, G. Oldani, M. Rossi, and S. Paraboschi.
Lightweight cloud application sandboxing. In Proceedings of the 14th IEEE Interna-
tional Conference on Cloud Computing Technology and Science (IEEE CLOUDCOM
2023), 2023.

[7] M. Abbadini, M. Beretta, D. Facchinetti, G. Oldani, M. Rossi, and S. Paraboschi. Poster:
Leveraging ebpf to enhance sandboxing of webassembly runtimes. In Proceedings of the
2023 ACM Asia Conference on Computer and Communications Security, ASIA CCS ’23,
page 1028–1030, New York, NY, USA, 2023. Association for Computing Machinery.

[8] M. Abbadini, D. Facchinetti, G. Oldani, M. Rossi, and S. Paraboschi. Cage4deno: A fine-
grained sandbox for deno subprocesses. In Proceedings of the 2023 ACM Asia Conference
on Computer and Communications Security, ASIA CCS ’23, page 149–162, New York,
NY, USA, 2023. Association for Computing Machinery.

[9] M. Abbadini, D. Facchinetti, G. Oldani, M. Rossi, and S. Paraboschi. Natisand: Na-
tive code sandboxing for javascript runtimes. In Proceedings of the 26th International
Symposium on Research in Attacks, Intrusions and Defenses, 2023.

[10] Y. Agman and D. Hendler. Bpfroid: robust real time android malware detection frame-
work. arXiv preprint arXiv:2105.14344, 2021.

[11] M. M. Ahmadpanah, D. Hedin, M. Balliu, L. E. Olsson, and A. Sabelfeld. SandTrap:
Securing JavaScript-driven Trigger-Action platforms. In USENIX Security, 2021.

[12] B. Alliance. WAMR Runtime, 2023.

[13] B. Alliance. Wasmtime Runtime, 2023.

119

[14] W. Almesberger. Linux network traffic control – implementation overview, 1999.

[15] S. Antonatos, S. Braghin, N. Holohan, Y. Gkoufas, and P. Mac Aonghusa. Prima: an
end-to-end framework for privacy at scale. In Proc. of ICDE 2018, Paris, France, April
2018.

[16] Apache. JMeter, 2022.

[17] F. Ashkouti, K. Khamforoosh, and A. Sheikhahmadi. DI-Mondrian: Distributed im-
proved Mondrian for satisfaction of the ℓ-diversity privacy model using Apache Spark.
Information Sciences, 546:1–24, 2021.

[18] F. Ashkouti, K. Khamforoosh, A. Sheikhahmadi, and H. Khamfroush. DHkmeans-ℓ-
diversity: distributed hierarchical k-means for satisfaction of the ℓ-diversity privacy
model using Apache Spark. The Journal of Supercomputing, 78(6):2616–2650, 2021.

[19] J. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein. BLAKE2: simpler,
smaller, fast as MD5. In M. J. J. Jr., M. E. Locasto, P. Mohassel, and R. Safavi-Naini,
editors, Applied Cryptography and Network Security - 11th International Conference,
ACNS 2013, Banff, AB, Canada, June 25-28, 2013. Proceedings, volume 7954 of Lecture
Notes in Computer Science, pages 119–135. Springer, 2013.

[20] T. C. Authors. Cilium, 2023.

[21] T. F. Authors. Falco, 2022.

[22] E. Bacis, D. Facchinetti, M. Guarnieri, M. Rosa, M. Rossi, and S. Paraboschi. I told you
tomorrow: Practical time-locked secrets using smart contracts. In Proceedings of the
16th International Conference on Availability, Reliability and Security, ARES ’21, New
York, NY, USA, 2021. Association for Computing Machinery.

[23] D. Bakker. wasi-sockets, 2023.

[24] R. J. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In Proc.
of ICDE 2005, Tokoyo, Japan, April 2005.

[25] S. U. Bazai, J. Jang-Jaccard, and H. Alavizadeh. A novel hybrid approach for multi-
dimensional data anonymization for Apache Spark. ACM TOPS, 25(1):5:1–5:25, 2021.

[26] M. Bélair, S. Laniepce, and J. Menaud. Snappy: Programmable kernel-level policies for
containers. In SAC, 2021.

[27] A. Berman, V. Bourassa, and E. Selberg. Tron: Process-specific file protection for the
unix operating system. In USENIX ATC, 1995.

120

[28] E. W. Biederman. Multiple Instances of the Global Linux Namespaces. In Ottawa Linux
Symposium (OLS), 2006.

[29] J. Bosamiya, W. S. Lim, and B. Parno. Provably-Safe Multilingual Software Sandboxing
using WebAssembly. In USENIX Security, 2022.

[30] T. Bui, S. P. Rao, M. Antikainen, V. M. Bojan, and T. Aura. Man-in-the-Machine:
Exploiting Ill-Secured communication inside the computer. In Proceeding of the USENIX
Security Symposium (USENIX Security), 2018.

[31] A. Bulekov, R. Jahanshahi, and M. Egele. Saphire: Sandboxing PHP applications with tai-
lored system call allowlists. In Proceeding of the USENIX Security Symposium (USENIX
Security), 2021.

[32] C. Canella, M. Werner, D. Gruss, and M. Schwarz. Automating Seccomp Filter Generation
for Linux Applications. In CCSW, 2021.

[33] Canonical. AppArmor. https://apparmor.net, 2022.

[34] R. Cattral and F. Oppacher. Poker Hand Data Set, UCI machine learning repository, 2007.
https://archive.ics.uci.edu/ml/datasets/Poker+Hand.

[35] A. Chakravorty, T. W. Wlodarczyk, and C. Rong. A scalable k-anonymization solution
for preserving privacy in an aging-in-place welfare intercloud. In Proc. of IC2E 2014,
Boston, MA, USA, March 2014.

[36] G. Christou, G. Ntousakis, E. Lahtinen, S. Ioannidis, V. P. Kemerlis, and N. Vasilakis.
Binwrap: Hybrid protection against native node.js add-ons. In Proceedings of the 2023
ACM Asia Conference on Computer and Communications Security, ASIA CCS ’23, page
429–442, New York, NY, USA, 2023. Association for Computing Machinery.

[37] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati. k-Anonymity.
In T. Yu and S. Jajodia, editors, Secure Data Management in Decentralized Systems.
Springer-Verlag, 2007.

[38] CNCF. WasmEdge Runtime, 2023.

[39] B. Coenen. feat(wasi): add rename for a directory + fix remove dir, 2021.

[40] containers. Bubblewrap, 2022.

[41] J. Corbet. BPF: the universal in-kernel virtual machine, 2014.

[42] J. Corbet. KRSI, 2019.

121

https://apparmor.net

[43] T. coreutils Authors. uutils coreutils, 2023.

[44] G. Cormode, D. Srivastava, T. Yu, and Q. Zhang. Anonymizing bipartite graph data using
safe groupings. PVLDB, 1(1), Aug. 2008.

[45] CVE Mitre. Gitlab Exiftool vulnerability, 2021.

[46] E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati.
Balancing confidentiality and efficiency in untrusted relational DBMSs. In Proc. of ACM
CCS, Washington, DC, USA, Oct. 2003.

[47] P. David. hyperfine, 3 2023.

[48] S. De Capitani di Vimercati, D. Facchinetti, S. Foresti, G. Livraga, G. Oldani, S. Para-
boschi, M. Rossi, and P. Samarati. Scalable distributed data anonymization for large
datasets. volume 9, pages 818–831, 2023.

[49] S. De Capitani di Vimercati, D. Facchinetti, S. Foresti, G. Oldani, S. Paraboschi, M. Rossi,
and P. Samarati. Artifact: Scalable distributed data anonymization. In 2021 IEEE
International Conference on Pervasive Computing and Communications Workshops and
other Affiliated Events (PerCom Workshops), pages 450–451, 2021.

[50] S. De Capitani di Vimercati, D. Facchinetti, S. Foresti, G. Oldani, S. Paraboschi, M. Rossi,
and P. Samarati. Multi-dimensional indexes for point and range queries on outsourced
encrypted data. In 2021 IEEE Global Communications Conference (GLOBECOM), pages
1–6, 2021.

[51] S. De Capitani di Vimercati, D. Facchinetti, S. Foresti, G. Oldani, S. Paraboschi, M. Rossi,
and P. Samarati. Scalable distributed data anonymization. In Proc. of IEEE PerCom,
Mar. 2021.

[52] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.
Fragments and loose associations: Respecting privacy in data publishing. PVLDB, 3(1),
Sept. 2010.

[53] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters.
CACM, 51(1):107–113, 2008.

[54] A. Decan, T. Mens, and E. Constantinou. On the impact of security vulnerabilities in the
npm package dependency network. In MSR, 2018.

[55] N. DeMarinis, K. Williams-King, D. Jin, R. Fonseca, and V. P. Kemerlis. sysfilter: Au-
tomated system call filtering for commodity software. In Research in Attacks, Intrusions
and Defenses, 2020.

122

[56] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis, and M. Garofalakis.
Practical private range search revisited. In Proc. of ACM SIGMOD, San Francisco, CA,
USA, June–July 2016.

[57] Deno Land. Deno Permission Model, 2022.

[58] Deno Land. Deno standard library for testing, 2022.

[59] Deno Land. Deno Subprocess, 2022.

[60] Deno Land. Deno Workers, 2022.

[61] Deno Land. Node compatibility mode. https://deno.land/manual/node/

compatibility_mode, 2022.

[62] Deno Land. Deno Permission Model, 2023.

[63] Docs.rs. Tokio, 2022.

[64] J. Domingo-Ferrer and V. Torra. Ordinal, continuous and heterogeneous k-anonymity
through microaggregation. Data Mining and Knowledge Discovery, 11(2):195–212, 2005.

[65] J. Domingo-Ferrer and V. Torra. A critique of k-anonymity and some of its enhancements.
In Proc. of ARES 2008, Barcelona, Spain, March 2008.

[66] dsherret. dax. https://github.com/dsherret/dax, 2022.

[67] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltaformaggio, and W. Lee. Towards
Measuring Supply Chain Attacks on Package Managers for Interpreted Languages. In
NDSS, 2021.

[68] C. Dwork. Differential privacy. In Proc. of ICALP 2006, Venice, Italy, July 2006.

[69] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foundations
and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

[70] J. Edge. Seccomp and deep argument inspection, 2020.

[71] Emscripten Contributors. Emscripten toolchain, 2023.

[72] A. Ene, M. Kolny, and A. Brown. wasi-threads, 2023.

[73] G. Ferreira, L. Jia, J. Sunshine, and C. Kästner. Containing malicious package updates in
npm with a lightweight permission system. In Proceedings of the International Conference
on Software Engineering (ICSE), 2021.

123

https://deno.land/manual/node/compatibility_mode
https://deno.land/manual/node/compatibility_mode
https://github.com/dsherret/dax

[74] W. Findlay, D. Barrera, and A. Somayaji. Bpfcontain: Fixing the soft underbelly of
container security. arXiv, 2021.

[75] W. Findlay, A. Somayaji, and D. Barrera. bpfbox: Simple precise process confinement
with ebpf. In Cloud Computing Security Workshop, 2020.

[76] B. Fung, K. Wang, and P. Yu. Top-down specialization for information and privacy
preservation. In Proc. of ICDE 2005, March, Tokyo, Japan 2005.

[77] P. K. Gadepalli, S. McBride, G. Peach, L. Cherkasova, and G. Parmer. Sledge: A
serverless-first, light-weight wasm runtime for the edge. In International Middleware
Conference, 2020.

[78] X. Gao, Z. Gu, Z. Li, H. Jamjoom, and C. Wang. Houdini’s escape: Breaking the resource
rein of linux control groups. In CCS, 2019.

[79] A. Ghosn, M. Kogias, M. Payer, J. R. Larus, and E. Bugnion. Enclosure: Language-based
restriction of untrusted libraries. In ASPLOS, 2021.

[80] Google. Minijail, 2022.

[81] Google. Sandbox2, 2022.

[82] Google. zx. https://github.com/google/zx, 2022.

[83] B. Gregg. BPF internals. 2021. USENIX LISA.

[84] H. Tao. BPF: Introduce ternary search tree for string key. https://lore.kernel.
org/bpf/20220331122822.14283-1-houtao1@huawei.com, 2022.

[85] H. Tao. BPF: Support for string key in hash-table, 2022.

[86] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wagner,
A. Zakai, and J. Bastien. Bringing the web up to speed with webassembly. In Programming
Language Design and Implementation, 2017.

[87] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in the
database-service-provider model. In Proc. of ACM SIGMOD, Madison, WI, USA, June
2002.

[88] hackerone. External SSRF and Local File Read due to vulnerable FFmpeg, 2021.

[89] M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L. Scott, K. Shen, and M. Marty.
Hodor: Intra-Process isolation for High-Throughput data plane libraries. In USENIX
ATC, 2019.

124

https://github.com/google/zx
 https://lore.kernel.org/bpf/20220331122822.14283-1-houtao1@huawei.com
 https://lore.kernel.org/bpf/20220331122822.14283-1-houtao1@huawei.com

[90] B. Hore, R. C. Jammalamadaka, and S. Mehrotra. Flexible anonymization for privacy
preserving data publishing: A systematic search based approach. In Proc. of SIAM SDM
2007, Minneapolis, MN, USA, April 2007.

[91] J. Edge. A seccomp overview, 2015.

[92] J. Jia, Y. Zhu, D. Williams, A. Arcangeli, C. Canella, H. Franke, T. F. ldman Fitzthum,
D. Skarlatos, D. Gruss, and T. Xu. Programmable system call security with ebpf. arXiv,
2023.

[93] E. Johnson, E. Laufer, Z. Zhao, D. Gohman, S. Narayan, S. Savage, D. Stefan, and
F. Brown. Wave: A verifiably secure webassembly sandboxing runtime. In IEEE Security
and Privacy, 2022.

[94] Z. Junyuan and R. Guo. Phantom attack: Evading system call monitoring. 2021.
DEFCON.

[95] J. Karásek, R. Burget, and O. Morský. Towards an automatic design of non-cryptographic
hash function. In TSP, 2011.

[96] M. Kehoe. eBPF: The next power tool of SREs. USENIX Association, 2022.

[97] T. Kim and N. Zeldovich. Practical and effective sandboxing for non-root users. In
USENIX ATC, 2013.

[98] P. Kirth, M. Dickerson, S. Crane, P. Larsen, A. Dabrowski, D. Gens, Y. Na, S. Volckaert,
and M. Franz. Pkru-safe: automatically locking down the heap between safe and unsafe
languages. In EuroSys, 2022.

[99] D. Land. Deno 1.24 release notes – improved ffi call performance, 2022.

[100] D. Land. Deno 1.25 Release Notes – FFI API improvements, 2022.

[101] D. Land. Deno: JavaScript runtime, 2022.

[102] D. Land. sqlite3 bindings for Deno, 2023.

[103] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Incognito: Efficient full-domain k-
anonymity. In Proc. of SIGMOD 2005, Baltimore, MA, USA, June 2005.

[104] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Mondrian multidimensional k-anonymity.
In Proc. of ICDE 2006, Atlanta, GA, USA, April 2006.

[105] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Mondrian multidimensional k-anonymity.
In Proc. of ICDE, Atlanta, GA, USA, Apr. 2006.

125

[106] D. Lehmann, J. Kinder, and M. Pradel. Everything old is new again: Binary security of
webassembly. In USENIX Security, 2020.

[107] X. Li, Y. Chen, Z. Lin, X. Wang, and J. H. Chen. Automatic policy generation for
Inter-Service access control of microservices. In USENIX Security, 2021.

[108] Y. Li, B. Dolan-Gavitt, S. Weber, and J. Cappos. Lock-in-Pop: Securing privileged
operating system kernels by keeping on the beaten path. In USENIX ATC, 2017.

[109] libbpf. libbpf, 2022.

[110] Linux manual. accept, 2023.

[111] Linux manual. listen, 2023.

[112] Linux manual. pipe, 2023.

[113] Linux manual. socketpair, 2023.

[114] M. K. Lau. BPF map-in-map support, 2017.

[115] M. S. Miller. Draft proposal for ses (secure ecmascript), 2022.

[116] A. Machanavajjhala, J. Gehrke, and D. Kifer. ℓ-diversity: Privacy beyond k-anonymity.
In Proc. of ICDE 2006, Atlanta, GA, USA, April 2006.

[117] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. ℓ-diversity:
Privacy beyond k-anonymity. ACM TKDD, 1(1):3:1–3:52, 2007.

[118] L. Mastrangelo, L. Ponzanelli, A. Mocci, M. Lanza, M. Hauswirth, and N. Nystrom. Use
at your own risk: The java unsafe api in the wild. SIGPLAN, 2015.

[119] M. McCaskey. Order of preopened directories matters, 2019.

[120] M. McCaskey. Prevent parent directory from being opened without being preopened
wasi, 2019.

[121] W. McKinney. Data structures for statistical computing in Python. In Proc. of SciPy
2010, Austin, TX, USA, July 2010.

[122] Mickaël Salaün. Landlock: unprivileged access control, 2022.

[123] Microsoft. ebpf for windows, 2023.

[124] MUSEC. libpreopen, 2023.

[125] A. Nakryiko. BPF CO-RE, 2021.

126

[126] S. Narayan, C. Disselkoen, T. Garfinkel, N. Froyd, E. Rahm, S. Lerner, H. Shacham, and
D. Stefan. Retrofitting fine grain isolation in the firefox renderer. In USENIX Security,
2020.

[127] netblue30. Firejail, 2022.

[128] Npm. fluent-ffmpeg. https://www.npmjs.com/package/fluent-ffmpeg,
2022.

[129] Npm. gm. https://www.npmjs.com/package/gm, 2022.

[130] Npm. sane. https://www.npmjs.com/package/sane, 2022.

[131] npm. bcrypt, 2023.

[132] npm. sharp, 2023.

[133] G. Ntousakis, S. Ioannidis, and N. Vasilakis. Detecting third-party library problems with
combined program analysis. In CCS, 2021.

[134] OpenJS Foundation. Worker threads, 2022.

[135] OpenJS Foundation. Node Permissions, 2023.

[136] P. Simek. Proposal for VM2: Advanced vm/sandbox for Node.js, 2022.

[137] T. Park, K. Dhondt, D. Gens, Y. Na, S. Volckaert, and M. Franz. Nojitsu: Locking down
javascript engines. In NDSS, 2020.

[138] G. Peach, R. Pan, Z. Wu, G. Parmer, C. Haster, and L. Cherkasova. ewasm: Practical
software fault isolation for reliable embedded devices. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2020.

[139] G. Poh, J. Chin, W. Yau, K. Choo, and M. Mohamad. Searchable symmetric encryption:
Designs and challenges. ACM CSUR, 50(3), May 2017.

[140] R. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB: Protecting confi-
dentiality with encrypted query processing. In Proc. of SOSP, Cascais, Portugal, Oct.
2011.

[141] K. Quest. Slimtoolkit, 2022.

[142] R. Dahl. 10 Things I Regret About Node.js. 2018. JSConf EU.

[143] J. Reback et al. pandas-dev/pandas: Pandas, February 2020.
https://doi.org/10.5281/zenodo.3509134.

127

https://www.npmjs.com/package/fluent-ffmpeg
https://www.npmjs.com/package/gm
https://www.npmjs.com/package/sane

[144] E. Rivera, S. Mergendahl, H. Shrobe, H. Okhravi, and N. Burow. Keeping safe rust safe
with galeed. In ACSAC, 2021.

[145] M. Rossi, D. Facchinetti, E. Bacis, M. Rosa, and S. Paraboschi. SEApp: Bringing
Mandatory Access Control to Android Apps. In USENIX Security, 2021.

[146] S. Ruggles, S. Flood, R. Goeken, J. Grover, E. Meyer, J. Pacas, and M. Sobek. IPUMS
USA: Version 10.0 [dataset], 2020. https://doi.org/10.18128/D010.V10.0.

[147] S. Ruggles, S. Flood, R. Goeken, J. Grover, E. Meyer, J. Pacas, and M. Sobek. IPUMS
USA: Version 10.0 [dataset], 2020. https://doi.org/10.18128/D010.V10.0.

[148] M. Salaün. Landlock, 2022.

[149] P. Samarati. Protecting respondents’ identities in microdata release. IEEE TKDE,
13(6):1010–1027, November/December 2001.

[150] P. Samarati and L. Sweeney. Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. 1998.

[151] D. Schrammel, S. Weiser, R. Sadek, and S. Mangard. Jenny: Securing syscalls for
PKU-based memory isolation systems. In USENIX Security, 2022.

[152] F. Schwarz and C. Rossow. SENG, the SGX-Enforcing network gateway: Authorizing
communication from shielded clients. In Proceeding of the USENIX Security Symposium
(USENIX Security), 2020.

[153] Y. Shao, J. Ott, Y. J. Jia, Z. Qian, and Z. M. Mao. The misuse of android unix domain
sockets and security implications. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, 2016.

[154] F. Shaon, M. Kantarcioglu, Z. Lin, and L. Khan. SGX-BigMatrix: A practical encrypted
data analytic framework with trusted processors. In Proc. of ACM CCS, Dallas, TX, USA,
Oct./Nov. 2017.

[155] V. Shymanskyy. Overlapping preopens, 2020.

[156] S. Smalley, C. Vance, and W. Salamon. Implementing selinux as a linux security module.
NAI Labs Report, 2001.

[157] Snyk. State of Open Source Security 2022. https://snyk.io/reports/open-
source-security/, 2022.

[158] Snyk. Zip slip vulnerability, 2022.

128

https://snyk.io/reports/open-source-security/
https://snyk.io/reports/open-source-security/

[159] U. Sopaoglu and O. Abul. A top-down k-anonymization implementation for Apache
Spark. In Proc. of IEEE Big Data 2017, Boston, MA, USA, December 2017.

[160] Stack Overflow Insights. Annual survey of the Stack Overflow community, 2022.

[161] C. Staicu, M. Pradel, and B. Livshits. Synode: Understanding and automatically prevent-
ing injection attacks on node.js. In NDSS, 2018.

[162] C. Staicu, S. Rahaman, Á. Kiss, and M. Backes. Bilingual problems: Studying the
security risks incurred by native extensions in scripting languages. USENIX Security,
2023.

[163] L. Sweeney. k-anonymity: A model for protecting privacy. International journal of
uncertainty, fuzziness and knowledge-based systems, 10(05):557–570, 2002.

[164] J. Terrace, S. R. Beard, and N. P. K. Katta. JavaScript in JavaScript(js.js): Sandboxing
Third-Party Scripts. In WebApps, 2012.

[165] tesseract-ocr. Tesseract, 2023.

[166] The kernel development community. LSM eBPF Programs, 2023.

[167] TryGhost. Asynchronous, non-blocking SQLite3 bindings for Node.js, 2023.

[168] V8 project. Unsafe fast JS calls, 2020.

[169] V8 project. What is v8?, 2022.

[170] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler, P. Druschel, and
D. Garg. ERIM: Secure, efficient in-process isolation with protection keys (MPK). In
USENIX Security, 2019.

[171] J. Vaidya and C. Clifton. Privacy preserving association rule mining in vertically parti-
tioned data. In Proc. of ACM KDD 2002, Edmonton, Alberta, Canada, July 2002.

[172] H. Van Tran, T. Allard, L. d’Orazio, and A. El Abbadi. FRESQUE: A scalable ingestion
framework for secure range query processing on clouds. In Proc. of EDBT, Nicosia,
Cyprus, Mar. 2021.

[173] N. Vasilakis, B. Karel, N. Roessler, N. Dautenhahn, A. DeHon, and J. M. Smith. Breakapp:
Automated, flexible application compartmentalization. In NDSS, 2018.

[174] N. Vasilakis, C. Staicu, G. Ntousakis, K. Kallas, B. Karel, A. DeHon, and M. Pradel.
Preventing dynamic library compromise on node.js via rwx-based privilege reduction. In
CCS, 2021.

129

[175] A. Voulimeneas, J. Vinck, R. Mechelinck, and S. Volckaert. You shall not (by)pass!
practical, secure, and fast pku-based sandboxing. In EuroSys, 2022.

[176] W. W. Reading directory permissions, 2019.

[177] Z. Wan, D. Lo, X. Xia, L. Cai, and S. Li. Mining sandboxes for linux containers. In ICST,
2017.

[178] B. Wang, Y. Hou, M. Li, H. Wang, and H. Li. Maple: Scalable multi-dimensional range
search over encrypted cloud data with tree-based index. In Proc. of ACM ASIACCS,
Kyoto, Japan, June 2014.

[179] H. Wang and L. Lakshmanan. Efficient secure query evaluation over encrypted XML
databases. In Proc. of VLDB, Seoul, Korea, Sept. 2006.

[180] I. Wasmer. Wasmer Runtime, 2023.

[181] WebAssembly. WASI Libc, 2023.

[182] WebAssembly. Wasi SDK, 2023.

[183] WebAssembly. The webassembly system interface, 2023.

[184] E. Wyss, A. Wittman, D. Davidson, and L. De Carli. Wolf at the Door: Preventing
Install-Time Attacks in npm with Latch. In ASIACCS, 2022.

[185] X. Xiao and Y. Tao. Anatomy: Simple and effective privacy preservation. In Proc. of
VLDB, Seoul, Korea, Sept. 2006.

[186] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A.-C. Fu. Utility-based anonymization for
privacy preservation with less information loss. ACM SIGKDD Explorations Newsletter,
8(2):21–30, 2006.

[187] W. Zhang, P. Liu, and T. Jaeger. Analyzing the overhead of file protection by linux
security modules. In ASIACCS, 2021.

[188] X. Zhang, C. Leckie, W. Dou, J. Chen, R. Kotagiri, and Z. Salcic. Scalable local-recoding
anonymization using locality sensitive hashing for big data privacy preservation. In Proc.
of CIKM 2016, Indianapolis, IN, USA, October 2016.

[189] X. Zhang, L. Qi, W. Dou, Q. He, C. Leckie, R. Kotagiri, and Z. Salcic. MRMondrian:
Scalable multidimensional anonymisation for big data privacy preservation. IEEE TBD,
8(1):125–139, 2022.

130

[190] X. Zhang, L. T. Yang, C. Liu, and J. Chen. A scalable two-phase top-down specialization
approach for data anonymization using MapReduce on cloud. IEEE TPDS, 25(2):363–
373, 2013.

[191] M. Zimmermann, C. Staicu, C. Tenny, and M. Pradel. Smallworld with high risks: A
study of security threats in the npm ecosystem. In USENIX Security, 2019.

List of figures

2.1 High level view of the Deno architecture 11
2.2 Creation and inheritance of a Landlock sandbox 12
2.3 Overview of the BPF architecture 13
2.4 Overview of Cage4Deno implementation 16
2.5 Deterioration of overhead varying the policy size 29

3.1 Current implementation of WASI by WASM runtimes 36
3.2 Proposal workflow 39

4.1 Integration of NatiSand in JavaScript runtimes 49
4.2 Average latency and throughput for microservices that execute subprocesses 61
4.3 Average latency and throughput for microservices that execute native functions 63

5.1 Generalization hierarchy for attribute Country 67
5.2 Dataset, partitioning and anonymization examples 68
5.3 Overall view of the distributed anonymization process 69
5.4 Quantile-based partitioning 72
5.5 Multi-dimensional partitioning 73
5.6 Partitioning strategies: Quantile-based partitioning 75
5.7 Partitioning strategies: Multi-dimensional partitioning 76
5.8 Partitioning strategies: Parallelized multi-dimensional partitioning 76
5.9 Anonymization algorithm for a fragment F 78
5.10 Spark-based distributed anonymization system 81
5.11 Container deployment in a cloud environment 83
5.12 Execution times for the Poker Hand dataset 86
5.13 Execution times for the ACS PUMS USA 2019 dataset 87
5.14 DP and NCP information loss for the Poker Hand dataset 88
5.15 DP and NCP information loss for the ACM PUMS USA 2019 dataset 89

6.1 Examples of relation, partitioning, ciphertext and local maps 93

131

6.2 Query execution process 98
6.3 Query overhead for point and range queries 101
6.4 Absolute and relative size of the maps 102

List of tables

2.1 Deny prefix tree and BPF Mappolicy 21
2.2 Hooks and tracepoints monitored by Cage4Deno 23
2.3 Sample of CVEs mitigated by Cage4Deno 26
2.4 Preliminary execution times measured for utilities in Table 2.3 27

3.1 Average execution time in ms of the coreutils 41

4.1 Hooks and tracepoints monitored by NatiSand 50
4.2 LSMs used by NatiSand to restrict Linux IPC 52
4.3 Sample of CVEs mitigated by NatiSand 59
4.4 Average execution time for common Linux utilities 60
4.5 Average execution time for common native libraries 62

A.1 Mappolicy with separate hash chaining 108

	Introduction
	Presentation
	Document Structure
	Publications

	Protect Deno subprocesses through LSMs
	Introduction
	Background
	Cage4Deno
	Design and Implementation
	Policy generation
	Experiments
	Related Work
	Conclusions

	Hardening WASI using eBPF programs
	Introduction
	Background
	Motivation and threat model
	Architecture
	Experiments
	Related Work
	Conclusions

	Extend the protection of Deno native code
	Introduction
	Background
	Security motivation
	Design and implementation
	Policy
	Case Study: Deno runtime
	Experiments
	Related Work
	Conclusions

	Data Anonymization for Large Datasets
	Introduction
	Basic concepts
	Distributed anonymization
	Data pre-processing
	Data anonymization
	Wrap up and information loss assessment
	Implementation
	Experimental results
	Related work
	Conclusions

	Enabling queries on encrypted data
	Introduction
	Basic concepts
	Multi-dimensional tuple partitioning
	Index construction
	Client-side maps
	Query translation and execution
	Implementation and experiments
	Related work
	Conclusions

	Conclusions
	Future Work

	Cage4Deno BPF implementation details
	Hashing & collision handling
	Map types
	Stack limitation

	Policy files samples
	GNU Tar policy file
	curl policy

	Distributed Mondrian experiments
	Introduction
	Hardware and software requirements
	Deployment of the prototype
	Use of the prototype
	Experimental results produced

	References
	List of figures
	List of tables

