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Abstract
Modern automotive systems with adaptive control features require rigorous analysis to guarantee correct operation. We report
our experience in modeling the automotive case study from the ABZ2020 conference using the ASMETA toolset, based on
the Abstract State Machine formal method. We adopted a seamless system engineering method: from an incremental formal
specification of high-level requirements to increasingly refined ASMETA models, to the C++ code generation from the
model. Along this process, different validation and verification activities were performed. We explored modeling styles and
idioms to face the modeling complexity and ensure that the ASMETA models can best capture and reflect specific behavioral
patterns. Through this realistic automotive case study, we evaluated the applicability and usability of our formal modeling
approach.

Keywords Automotive system modeling · Abstract state machines · ASMETA · Self-adaptation · Code generation

1 Introduction

Nowadays, automotive systems employed in modern cars
rely on adaptive software control features for providing more
safety and comfort. These software-intensive systems require
rigorous software engineering processes based on formal
methods to guarantee their correct operation, since malfunc-
tions may be harmful to humans and the environment.

In this paper, we report our experience in applying AS-
META [3, 15], a toolset based on the Abstract State Ma-
chine [26, 28] formal method (ASMs in brief), to the case
study [32] from the ABZ2020 conference, namely an au-

tomotive system with adaptive features composed of two
components, Adaptive Exterior Light (ELS) and Speed Con-
trol System (SCS). We used ASMETA for specifying, by a
refinement-based process, the component models, for simu-
lation and animation of the ASMETA models, for scenario-
based validation against the informal requirements, verifica-
tion of behavioral properties, and code generation to proto-
type the control light system on an Arduino board. ASMETA
employs several constructs in order to allow modularity, rule
styles, and idioms to model and best capture specific behav-
ioral patterns. For modeling the adaptive control features, i.e.,
the adaptive high beam headlights and the adaptive cruise
control, we adopted an MAPE-K (Monitor, Analyze, Plan,
Execute over a shared Knowledge) [33] feedback control loop
as mainstream for engineering self-adaptation by means of a
higher software layer (the adaptation layer) that operates on
top of the system to adapt it. In particular, we exploited the
concept of self-adaptive ASMs [9], which allows ASM-based
modeling of MAPE-K loops behavior.

The first version of our specification, validation, and ver-
ification of the case study appeared in our ABZ conference
paper [13]. Additional contributions of this paper with re-
spect to the previous version can be summarized as follows.
This work:
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- captures the version 1.171 of the requirements’ specifica-
tion document (in paper [13] we have used version 1.9)
and version 1.8 of validation sequences;

- details the requirement traceability method used through-
out the formal modeling process;

- shows how to generate, from the ASMETA model, an exe-
cutable C++ code that has been used for an Arduino board
implementation;

- provides a more detailed description of modeling styles
and idioms adopted (and available in ASMETA);

- presents a comparison with other case study solutions.

Paper structure Sect. 2 introduces the ASM formal
method, the ASMETA tools, the modeling process we
adopted and its distinctive features, the development team,
and some useful information for nonexperts. Section 3 de-
tails our modeling strategy, while Sect. 4 provides models
details, including modeling styles and idioms, model snip-
pets, time constraints modeling, and strategies for making
models readable/understandable for nonexperts. Section 5
presents the results and insights achieved from the validation
and verification activities. Section 6 presents the prototypical
implementation in Arduino. Section 7 discusses the ambigui-
ties we have been able to identify in the requirements, and the
model changes due to the various versions of the improved
requirements; it also underlines possible improvements at
the tools level to model system features arisen from the case
study. Section 8 compares our solution with those proposed
with other formal approaches and reports on other applica-
tion case studies and existing tools for the ASMs.. Finally,
Sect. 9 concludes the paper.

2 Methods and tools introduction

For our case study solution, we used the ASMETA toolset.
Since it is based on the ASM formal method, we premise the
presentation of ASMETA with a basic introduction of the
ASMs.

Abstract State Machines ASMs [26, 28] are a state-
based formal method. States are mathematical algebras; they
specify a system configuration by arbitrary complex data, i.e.,
domains of elements with functions (also boolean) defined on
them. State transitions are expressed by transition rules de-
scribing how the data (function values saved into locations)
change from one state to the next. Functions of the algebra
are distinguished between dynamic and static depending on
whether or not they are updated by rule transitions. Dynamic

1 https://abz2021.uni-ulm.de/resources/files/casestudyABZ2020v1.
17.pdf.

Code 1 Example of Asmeta specification

functions are then classified into monitored (read by the ma-
chine and modified by the environment), controlled (read
and written by the machine), shared (read and written by the
machine and its environment); and derived, namely those
defined in terms of other (dynamic) functions.

Transition rules have different constructors depending on
the update structure they express, e.g., guarded updates (if-
then, switch-case), simultaneous parallel updates (par), non-
determinism (choose), unrestricted synchronous parallelism
(for-all), abbreviation on terms of rules (let), etc. The update
rule is the basic unit of rules construction and it has the form
f (t1, . . . , tn) := v , being f an n-ary function, ti terms, and v

the value of f (t1, . . . , tn) in the next state.
An ASM run is a finite or infinite sequence S0, S1, . . ., Sn,

. . . of states: starting from an initial state S0, a run step from
Sn to Sn+1 consists in firing, in parallel, all enabled transition
rules and leading to simultaneous updates of a number of
locations. In case of an inconsistent update (i.e., the same
location is updated to two different values) or invariant vio-
lations, the model execution stops.

ASMETA Toolset ASMETA2 is a set of tools around the
ASM method for model editing, simulation, validation, ver-
ification, and code generation. It has been developed [3] by
exploiting the Model-Driven Engineering (MDE) approach
for software development starting from the definition of a
metamodel for an abstract notation able to capture the work-
ing definition (see [28, p. 32]) of an ASM. An ASMETA
model is fully compliant to such definition and it is com-
posed of (see Code 1):

2 https://asmeta.github.io/.
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Fig. 1 ASMETA-based development process

- The import section that allows including all or some of the
declarations and definitions given in another ASMETA
specification.

- The signature section where domains and functions are
declared.

- The definitions section where all transition rules and pos-
sible invariants, i.e., first-order formulas that must be true
in all states, are specified.

- The main rule which is the starting point of the computa-
tion at each state; it, in turn, calls all the other transition
rules (defined as macro call rules3). A run step of an AS-
META model is the parallel execution of all transition
rules, which are directly or indirectly called from the main
rule and are enabled to fire.

- The default init section where initial values for the con-
trolled functions are defined.

A model without the main rule is called module, which con-
sists of declaration and definitions of domains, functions,
invariants, and macro call rules, and it can be imported by
other models; the keywords asm and module are used to
specify a machine and a module, respectively.

ASMETA tools support the main activities of the software
development process from formal requirements’ specifica-
tion to code generation. Figure 1 shows the tools usage in the
various stages [15]. At design time, ASMETA provides tools
for model editing and visualization (the modeling language
AsmetaL4 and its editor and compiler, plus the model visu-
alizer AsmetaVis for graphical visualization of ASMETA
models), model validation (e.g., interactive or random sim-

3 Note that to define a macro call rule in the definition section we use
the syntax macro r_rule(params), while the macro rule is invoked from
another rule as r_rule[params].

4 It is a concrete notation for the abstract one defined by the metamodel
reflecting the working definition of an ASM.

ulation by the simulator AsmetaS,5 animation by the ani-
mator AsmetaA, scenario construction and validation by the
validator AsmetaV, and static analysis by the model reviewer
AsmetaMA), and verification (proof of temporal properties by
the model checker AsmetaSMV, and proof of correct model
refinement by AsmRefProver). During software develop-
ment, ASMETA supports automatic code and test case gen-
eration from models (the code generator Asmeta2C++, the
unit test generator ATGT, and the acceptance test generator
AsmetaBDD for complex system scenarios). If the system is
available, during its operation, ASMETA can be used for
runtime monitoring (by the tool CoMA) and runtime simula-
tion (by AsmetaS@run.time).

Modeling process ASMETA is based on the ASM the-
ory, therefore, as in ASMs, the ASMETA modeling process
is iterative and based on model refinement. Specifically, AS-
META is based on the use of stuttering refinement [7] which
is a limited form of the general ASM refinement [25].

This refinement-based process allows us to tackle the com-
plexity of the requirements and to bridge, in a seamless man-
ner, specification to code. Requirements modeling starts by
developing a high-level ASMETA model (similarly to the
ASM ground model[28]), which is specified by reasoning
on the informal requirements, usually given in natural lan-
guage. Model signature and rule naming are set by using
terms of the application domain and derived from textual
requirements; this facilitates the tracing from requirements
to model. This high level model (see model ASM0 in Fig. 1)
should be correct, i.e., reflect the intended requirements (at
a desired level of abstraction), and consistent, i.e., no ambi-
guities of initial requirements should be left. It does not need
to be complete, i.e., it may not specify some given require-
ments that are later captured during the refinement process.
Indeed, starting from the model ASM0, through a sequence
of refined models ASM1, ASM2,. . . , other functional re-
quirements are specified, till reaching a level in which the
final model ASMfinal captures all intended requirements at
the desired level of abstraction. Each refined model must be
proved to be a correct (stuttering) refinement of the previous
one and ASMETA supports the designer with a tool (Asm-
RefProver) for automatic checking of the correctness of
refinement steps [7].

At each refinement level, already at that of the model
ASM0, validation and verification (V&V) activities can be
performed to assure requirements’ satisfaction and prop-
erty validity by using the already mentioned ASMETA tools
available at the design stage.

Distinctive features of ASMETA approach Developing
our specification of the case study, we exploited a number of

5 The ASMETA model simulator implements the computational
paradigm of an ASM run as defined in the previous section.
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modeling features that the ASMETA approach inherits from
the ASM method and its extension for modeling self-adaptive
systems. They can be summarized as follows:

- Models can be specified at any desired level of abstraction,
so designers can decide the level of details they want to
achieve.

- Model refinement can be exploited to face with the com-
plexity of requirements’ specification, as we show in this
case study (see Sect. 4.2).

- Models are executable and this feature is fundamental to
reproduce requirements’ scenarios that are usually given,
as it was for the case study, as part of the initial informal
requirements; moreover, mainly at operation time, they can
be co-executed with system implementations [40].

- Model modularization facilitates model scalability and
separation of concerns, so tackling the complexity of large
requirements’ specification. We widely used modules in
modeling the case study, as better explained in Sect. 3.

- Adaptive features of the two automotive subsystems of
the case study have been modeled by exploiting the con-
cept of Self-adaptive Abstract State Machine [9] that uses
MAPE-K feedback control loops [33] (sequences of four
computations Monitor, Analyze, Plan, and Execute over
a shared Knowledge) to structure the adaptation logic of
self-adaptive software systems. The four MAPE compu-
tations to let the two automotive subsystems self-adapt in
certain circumstances have been formalized in terms of
transitions rules (see Sect. 4.2, CarSystem003).

Relevant information for a nonexpert Since ASMETA
models are just ASMs edited in a concrete (and machine-
handling) syntax, as ASM models they have a pseudocode
format, so they can be easily read by practitioners and non-
experts as high-level programs of virtual machines working
over abstract data structures. The only insight that needs to
be understood is that, at each machine computational step, all
possible locations updates are executed in parallel. Moreover,
thanks to the ASMETA modeling style that allows reflecting
the cause–effect description of the informal requirements in
the conditional rule structure, and to name rules and signa-
ture elements by terms belonging to the application domain,
a nonexpert reader can easily trace informal requirements
with their formalization in the model. An example of this
modeling style and rule/function naming is given in Code 2,
which is commented in Sect. 3.

Development team overview The development team
consists of the authors, who are experts of the method and
the tools, and one master student, less experienced in mod-
eling and analysis, who worked on the Arduino encoding
of the specified ASMETA solution of the case study. Each
activity was carried out by a subgroup of two people, so

two worked on modeling, two on V&V, and two on the
implementation. This separation of responsibilities reflects
the usual distribution of work among different teams in a
development process. They followed an iterative approach,
alternating modeling and V&V phases of the development
process, and used a private GitHub repository to share arti-
facts. Once modeling was complete and all necessary details
modeled, an implementation to the Arduino platform was de-
veloped by the student (supervised by one of the authors) by
exploiting the approach of automatic code generation from
models (see Sect. 6).

3 Requirements and modeling strategy

The system to model is composed by two subsystems, ELS
(Exterior Light System) and SCS (Speed Control System).
The ELS is responsible for managing lights of a car: direc-
tion indicators, low beam headlights, cornering lights, high
beam headlights, and emergency brake, while the SCS tries
to maintain or adjust speed of the vehicle according to ex-
ternal influences. The proposed ASMETA model is primar-
ily tailored to the formalization and analysis of functional
requirements of the ELS and SCS subsystems in order to
provide guarantees of their operational correctness. We here
describe how we derived the formal specification from the
informal requirements given in [32],6 the structure of the
models and the most important properties addressed, the
traceability between requirements and models, how we man-
aged the variability of the requirements, and the features we
did not model.

From requirements to specification From the textual
description of the system, we derived the transition rules in
the same incremental way in which functional requirements
are given in the requirements’ document [32]. Rules con-
struction reflects in a direct way the cause–effect description
of the requirements in the informal text. Meanwhile, domains
and functions occurring in the transition rules were defined
in the signature section of the model. To facilitate traceability
between informal requirements and models, when defining
and declaring signature terms, we used names and value
ranges as reported in tables at the end of the requirements’
document.

An example of requirements’ specification is shown in
Code 2 that reports part of the requirement ELS-18 and the
corresponding specification in the transition rule. If the light
rotary switch (used to set the lights in the following posi-
tions: Off, Auto, On) is in position Auto (lightRotarySwitch =

AUTO), the ignition is ON (engineOn(keyState) is a function

6 The case study description and the requirements are not reported
here, please refer to the original documentation [32].
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Code 2 Translating textual requirements into rules

Code 3 Modeling two requirements dependent on each other

that returns true if the ignition is on), the brightness measured
by the brightness sensor is lower than 200 lx (brightness-
Sensor < 200), and the low beam headlights are not acti-
vated (not lowBeamLightingOn), the low beam headlights
are turned on by calling the rule r_LowBeamTailLampOn-
Off.

After a first draft of the specification, model refactoring
led to a more concise rule organization due to the fact that,
sometimes, requirements are not independent of each other
and so they were captured by the same rule. This is the case,
for example, of requirements SCS 2 and 3 formalized by the
rule r_SCSLeverForward (see Code 3). If current vehicle
speed is lower than 20 km/h (SCS 3 – current_Speed <

200) and there is no previous speed to be used when cruise
control is active (desiredSpeed = 0), the cruise control is
not activated (setVehicleSpeed := 0). If the current vehicle
speed is higher than 20 km/h (SCS 2, the condition opposite
to that of requirement SCS 3), and there is no previous speed
to be used when cruise control is active (desiredSpeed =

0), the cruise control is activated (setVehicleSpeed := cur-
rentSpeed) with the desired speed being equal to the current
vehicle speed (desiredSpeed := currentSpeed). In case an

existing desired speed is already stored, it is used by the
cruise control as a target speed to be kept.

Structure of the formal model Since our modeling ac-
tivity followed the organization of the requirements’ docu-
ment, the overall structure of our models reflects that of the
informal documentation; again, this favors the traceability
between requirements and models. First, we modeled the
two systems separately because they share some signals but
never update common parameters (e.g., the SCS updates the
speed, and the speed is only read by the ELS). For both sub-
system modeling, we went through a sequence of refinement
steps by adding details at each level, and then, when the two
subsystems needed to cooperate, we merged the two models
to obtain the complete system specification. Figure 2 shows
the model refinement chain and, for each model in the chain,
lists the requirements introduced in each model.7 The mod-
els are numbered from 1 to 9: models from CarSystem001
to CarSystem004 refer to the ELS, while the SCS is mod-
eled from CarSystem005 to CarSystem007. CarSystem008
merges the two systems, and CarSystem009 introduces the
faults handling and general properties.

In modeling the case study, we strongly used ASMETA
modules to facilitate reuse of signature terms and rules in
different parts of the models. Indeed, at each refinement step,
only some parts of the model were refined and most of the
model remained unchanged. The use of modules helped us
keep under control the refinement process by avoiding code
duplication and marking those parts of the model that were
involved in the refinement step. When a model was refined,
all those importing it were refined as well. For example,
Fig. 3 illustrates the ASMETA model structure in terms of
horizontal and vertical imports for the first three refined levels
of the CarSystem related to the SCS subsystem (in [13] we
presented, instead, the structure of the ELS subsystem).

Level 1 (top of the figure) consists of ASM CarSystem-
005main that imports module CarSystem005DesiredSpeed-
CruiseC that imports module CarSystem005Functions, till
the final module CarSystem005Domains is imported.8 At
this level, module relations are all horizontal imports. Sim-
ilarly, the model CarSystem006main imports (horizontally)
module CarSystem006SpeedLimitTrafficDet from the same
refinement level, which imports the module CarSystem-
006DesiredSpeedCruiseC from the same refinement level
obtained by refining the module CarSystem005Desired-
SpeedCruiseC. CarSystem006DesiredSpeedCruiseC im-
ports module CarSystem006Functions which (vertically) im-
ports CarSystem005Functions, since the former enlarges (as

7 Artifacts are available at https://github.com/fmselab/
ABZ2020CaseStudyInAsmeta.

8 Note that common functions and domains are declared and de-
fined into specific modules (CarSystem00XFunctions and CarSystem-
00XDomains) which are imported by others.
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Fig. 2 Chain of refined models
and captured requirements

Fig. 3 ASM structure of the
first three refinement levels of
SCS

Fig. 4 ASM structure of last
refinement level (merge of ELS
and SCS)

expected during refinement) the latter. CarSystem007 refine-
ment level imports (vertically) modules from CarSystem-
006 (CarSystem006SpeedLimitTrafficDet and CarSystem-
006Functions) and defines two new modules (CarSystem-
007AdaptiveCruiseC and CarSystem007EmergencyBrake-
Speed) to model new behaviors. Figure 4 focuses on the last
refinement level and illustrates the model CarSystem009main
that imports modules from previous refinements, both ELS

(CarSystem004) and SCS (CarSystem006 and CarSystem-
007) subsystems. Moreover, in this last refinement level,
the module CarSystem009EmergencyBrakeLights is refined
from CarSystem004EmergencyBrakeLights. Others depicted
import/refinement relations are self-explanatory. More de-
tails on the refinement levels and corresponding models are
given in Sect. 4. Table 1 shows the model dimensions in
terms of number of functions and rules.
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Table 1 Model dimensions

Functions Rules
monitored controlled derived static # rule declarations # rules

CarSystem001 4 12 6 1 14 103
CarSystem002 14 26 14 4 26 218
CarSystem003 18 31 24 5 33 244
CarSystem004 19 31 31 5 33 252
CarSystem005 8 4 1 10 78
CarSystem006 12 8 2 14 125
CarSystem007 21 17 6 24 183
CarSystem008 36 46 36 5 56 433
CarSystem009 36 46 37 5 56 433

Remark 1
Note that, according to the model chain shown in Fig. 2, the
model CarSystem008 merges the two models of the subsys-
tems SCS for the speed control and ELS for the light control.
This model is a multiagent ASMETA model with two types
of agents, one – the ESL – behaving as modeled by the rules
in the model CarSystem004, and the other – the SCS – be-
having as modeled by the rules in the model CarSystem007.
The main rule in the model CarSystem008 executes in par-
allel all rules of the two agents. Since in this case study we
do not have more than one agent of the same type, to speed
up the model checking verification, we simplify the usual
structure of an ASMETA multiagent model that would have
defined two subsets of Agent, one for agents of type ELS
and the other for agents of type SCS, associating to each the
relative agent’s program (i.e., the main rule of the model
CarSystem004 for the agents of type ELS, and the main rule
of the model CarSystem007 for the agents of type SCS), and
defining an execution schedule for the agents (in parallel for
the agents ELS and SCS). The simplification does not affect
the validation and verification results.

Traceability between formalization and requirements
As already explained, traceability between given require-
ments and models is facilitated by the style of the ASMETA
modeling: rule structure straightforwardly reflects the cause–
effect description of the informal requirements, and naming
rule and signature elements use terms which belong to the
application domain and are self-explanatory for the readers
familiar with the case study. However, in order to precisely
document traceability between requirements and formaliza-
tion, we introduced tables as shown in Tables 3 and 4, re-
ported in Appendix A and available online. In these tables,
for each requirement, we specify in which refinement step
it is introduced (bright green) and which rule formalizes
it. For example, the requirement ELS-1 is implemented in

the rules r_RunDirectionBlinking and r_CompleteFlashing-
Cycle in the module CarSystem001Blink. The availability of
such tables helped us a lot, especially when we found er-
rors during validation and verification activities because the
problem identification was more immediate knowing where
a specific requirement was exactly specified.

Variability of requirements The proposed automotive
system belongs to a family of systems that can be configured
on the basis of law restrictions or customers’ preferences. For
example, in the USA and Canada, the tail lights realize the
direction indicator lamps (ELS-23). This means that differ-
ent configurations lead to different behaviors of the system.
Therefore, when modeling the case study, we had to face with
this system configuration problem, capturing the fact that on
the base of the market and type of car, the system behaves
differently. To model the system configuration variability, we
have used flags as static functions which cannot be changed
during the execution. For example, the function marketCode
on domain MarketCode = {USA, CANADA, EU} is used to
denote the country where a given requirement formaliza-
tion should hold; it is used within the definition of other
functions (see, e.g., the definition of the function tailLamp-
AsIndicator in Code 7) to discriminate among countries. The
use of these flag functions, reduces, however, the readabil-
ity and maintainability of the models because, to simulate
different behaviors, we need to change them manually in the
model.

Most important properties addressed by the models
The ASMETA specification of the case study allowed us to
guarantee the correct operation of the ELS and SCS sub-
systems by proving a number of properties summarized as
follows (verification results are reported in Sect. 5.2):

- On the ELS subsystem: a) The priority of hazard warning
over blinking is guaranteed; b) Low beam headlights are
turned on and off as required; c) Priority of ELS-19 over
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other requirements has been addressed when the ambient
light is activated; d) High beam headlights are automati-
cally turned on/off when the light rotary switch is set to
Auto; e) When subvoltage/overvoltage occurs, the system
reacts as required.

- On the SCS subsystem: a) (Adaptive) cruise control de-
sired speed is set as required: the adaptive cruise control
automatically sets the speed to reach the target based on
factors like the current speed and the speed of the vehicle
ahead. b) Emergency brake intervenes to avoid collisions;
c) Speed limit and traffic sign detection set the threshold
speed when they are activated by the user.

Although we addressed all the previous properties, some
features are still not captured, as explained below.

Features not addressed In our models, we did not ex-
plicitly model the time because, although ASMETA supports
it in modeling and validation phases, as discussed in Sect. 7.2,
no verification tool deals with time. For this reason, we mod-
eled the time using the pattern explained in Sect. 4.1.

Another not addressed feature is the frequency of blinking.
Since the model does not support time, it is not possible
to set the direction lamps state (ON or OFF) every second
(the duration of a flashing cycle). Due to this limitation, we
introduced an enumerative indicating the current pulse ratio,
and we assumed that the Head-Unit sets the state of direction
lamp given the pulse ratio value.

Moreover, since ASMETA allows modeling discrete-
event systems and not continuous systems, we had to trans-
form some continuous functions into discrete ones suitable
for modeling and analysis purposes, as better explained in
Sect. 8.

4 Model details

The previous section provides insights into how we ap-
proached the formalization of the requirements and presents
the overall structure of the chain of refined models. We here
describe styles and idioms identifiable in our modeling and
present key snippets of our models. A final discussion on how
we improved model readability, by exploiting characteristics
of our approach, follows.

4.1 Modeling styles and idioms

We here describe some relevant modeling styles and idioms
used in developing our solution for the case study. These
are modeling patterns that can be used to solve recurrent
problems regarding how to specify computational or control
behaviors.

Parallel ASM In order to have a simpler and more manage-
able system model for analysis purposes, we abstract from the
control software components distribution on the hardware
nodes. So we simply exploited the notion of synchronous
parallel ASM [26, 28] to model the overall behavior result-
ing from the union of the behaviors of all distributed control
software running on ECUs (Electronic Control Units) [17].
Therefore, we modeled software running on ECUs as syn-
chronous parallel algorithms working in sequential global
time. Whenever necessary (as stated in the requirements’
document) and to avoid interference, the machine follows
only one or a restricted subset of all possible parallel exe-
cution paths by using the mutual exclusive guards pattern
at the level of rules, i.e., the simultaneous activation of cer-
tain rules is avoided by modeling them as conditional rules
with mutually exclusive guards. Moreover, in our model we
assume that the two main subsystems (ELS and SCS), coher-
ently with the description of the case study, run on the same
physical control unit, so we assume that the two subsystems
run synchronously.

Since we did not model the system as a distributed system
being composed of a collection of machines (agents), we did
not adopt the class of concurrent ASMs [27], which exploit
the intuitive understanding of concurrency dealing with com-
putations of multiple ASM agents running asynchronously,
each with its own clock, and interacting via reading/writing
values of designated locations. Such concurrency theory is
vital for modeling distributed systems but not yet completely
supported in ASMETA, which allows specifying indepen-
dent multiagent ASMs executing in parallel with explicit
scheduling provided at model level by the main rule.

ECA rule In the requirements’ document, most actions are
executed when an event occurs and a condition is satisfied.
To model this behavior, we have extensively used conditional
rules and often ECA (Event Condition Action) rules of the
form:

to differentiate external events (predicated over monitored
functions) from internal conditions (predicates over con-
trolled and derived functions), where actions correspond to
state updates. An example of an ECA rule is shown in Code 3,
where sCSLever = FORWARD_SCS is an external event
and currentSpeed < 200 is an internal condition.

MAPE-K loop To model the system adaptive features, we
adopted an MAPE-K feedback control loop, which is typi-
cally used in self-adaptive systems as self-adaptation mech-
anism. Conceptually, an MAPE-K loop is a sequence of four
computations: Monitor–Analyze–Plan–Execute (MAPE)
over a knowledge base (K). In self-adaptive ASMs [9], it
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Code 4 Value change detection

is realized by means of a schema of four rules, one per
MAPE computation, while the knowledge is modeled by
means of functions, since in ASMs system memory is rep-
resented in terms of functions. See, for example, the ELS
model CarSystem003 in Sect. 4.2.

Value change detection When modeling, we were faced
with the problem of formalizing function value change events
occurring when a value change of a function X from state
s − 1 to state s triggers an action from state s to state s + 1.
To specify this kind of change event, we have introduced
two functions: a monitored function X, yielding the value of
the function at the current state, and a controlled function
X_Previous which stores the value of the function at the
previous state. When a value change (i.e., X ! = X_Previous)
is detected, the system executes the specified actions.

An example are the functions to monitor the change of key
state. In the model, we introduced the monitored function
keyState and the controlled keyState_Previous (see Code 4
for their declaration). At each step, we assign to keyState_-
Previous the current value of keyState. When keyState ! =

keyState_Previous, the model detects that the key state has
changed.

Time pattern Often, informal requirements refer to some-
thing that has to occur on an expired time interval or at a
precise moment in time. Some of the requirements of the
case study have statements in this form. We abstract from the
use of timers, and we suppose that it is up to the environment
to notify when an interval of time is elapsed or a time mo-
ment is reached, and we use a boolean monitored function to
model such events. For example, requirement ELS-18 states
that low beam headlights remain active at least for 3 seconds.
As shown in Code 5, we introduced the monitored function
passed3Sec that notifies if 3 seconds had elapsed since the
low beam headlights received the command to be turned off.

Recently we have extended the time feature in ASMETA
with the introduction of the TimeLibrary (see paragraph
“Time modeling” in Sect. 7.2 for further details).

Code 5 Using boolean monitored functions as timers

Code 6 Hazard warning has priority over direction blinking

Code 7 Tail lamp for direction blinking and hazard warning

4.2 Models snippets

As explained in Sect. 3, we modeled the ELS and SCS sys-
tems separately, then we merged them together. We present
here some snippets of the models.

4.2.1 Adaptive exterior light system

We modeled the ELS subsystem in four refinement steps as
follows.
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CarSystem001 In the first step, we defined the model for
direction blinking (in Blink module) and hazard warning (in
HW module) functional requirements. Codes 6 and 7 show
the most critical features addressed, which are respectively
the priority of hazard warning over direction blinking (ELS-
13) and the use of tail lamp as indicator for a car sold in the
USA and Canada (ELS-6). In Code 6, in case hazard warning
is not running (line 5) and the hazard warning request arrives
(line 7), blinking is stopped (line 10) and hazard warning
starts (line 12). Possible active blinking request (line 13) or
future blinking requests are stored and restarted as soon as
hazard warning is deactivated (if pitman arm is still in the
blinking position). We defined three functions to manage the
pitman arm requests: pitmanArmUpDown for the incoming
request, pitmanArmUpDown_RunnReq for the running re-
quest, and pitmanArmUpDown_Buff to save the incoming
request if it cannot be satisfied in the current state. When the
running request has been processed, the request in the buffer
is executed unless a new one arrives. Functions and domains
are defined respectively in Functions and Domains modules.
The tail lamp status can be in two states, FIX or BLINK.
It blinks if blinking is required and the car is sold in US or
Canada (line 2).

CarSystem002 This step models the low beam headlights
and cornering light, emergency brake light, and reverse light
functions (from ELS-14 to ELS-29 and from ELS-39 to ELS-
41). We defined three different modules: LowBeam for the
low beam headlights behavior, Cornering to model corner-
ing lights and reverse light functions, and EmergencyBrake-
Lights for the emergency brake behavior. Common functions
and domains are extended starting from those defined in the
CarSystem001, while hazard warning and direction blinking
are unchanged. A peculiarity of this level is that require-
ment ELS-19 has the priority over ELS-15, ELS-16, and
ELS-17 if ambient light is activated. We modeled this sit-
uation by defining a guard called ambientLightingAvailable
which is true if ambient lighting is activated, the vehicle is
not armored and darkness mode is switched off. When mod-
eling low beam headlights, we applied one of the idioms
presented in Sect. 4.1 to detect a value change. An example
is the requirement ELS-15: when the ignition is in position
KeyInserted, if the light rotary switch is turned to the posi-
tion On, the low beam headlights are activated at 50%. We
captured the light rotary switch mutation by checking the
value of light_Rotary_Switch_Previous compared to light_-
Rotary_Switch as shown in Code 8.

CarSystem003 This refinement step introduces the con-
trol features for the manual and adaptive high beam head-
lights (ELS-30 to ELS-38). Due to some incompleteness of
the requirements in manual mode, we had to make the follow-
ing assumptions: (i) a maximum illumination area of 360 m

Code 8 Value change detection in Carsystem002LowBeam

and 100% of luminous strength in the flasher mode; (ii) the
key is inserted or the engine is on to activate high beam in
a fixed way. Instead, considering the adaptive behavior, we
have modeled it in terms of an MAPE-K feedback control
loop that starts with the rule r_MAPE_HBH (see Code 9). The
MAPE loop consists of the following rules invoked in a wa-
terfall manner within one single machine step (see Code 9):
rule r_Monitor_Analyze_HBH monitors and analyzes com-
putations; rules r_IncreasingPlan_HBH and r_Decreasing-
Plan_HBH plan the adaptation if necessary: light illumina-
tion distance (computed by the function lightIlluminationDis-
tance(calculateSpeed)) and luminous strength (computed
by the function luminousStrenght(calculateSpeed)) are in-
creased or decreased according to the vehicle speed; rule
r_Execute_HBH sets the values as planned: highBeamOn
to activate/deactivate the high beam, highBeamRange and
highBeamMotor for the high beam luminous strength and
illumination distance.

CarSystem004 In this model, we introduce fault manage-
ment in case of overvoltage or subvoltage. In case of sub-
voltage (voltage lower than 8.5 V), ELS functionalities like
cornering light and parking light are disabled (see Code 10).

If the system is in overvoltage (i.e., the voltage is more than
14.5 V), the function setOvervoltageValueLight computes
the maximum value of lights: it returns the minimum between
current light value and the value calculated by overVoltage-
MaxValueLight function. In this refinement step, we have
refined the modules whose behavior is affected by the voltage
value (see Code 119): Blink, Cornering, EmergencyBrake-
Lights, HighBeam, HW, and LowBeam.

4.2.2 Speed control system

The Speed Control System was modeled in three steps of
refinement, as explained in the following.

CarSystem005 This model implements the functions to
set and modify the desired speed when cruise control is active

9 Note that the ASMETA syntax for expressing a conditional term and
a conditional rule might appear the same since they use the same key-
words; however, a conditional term (as that used to define the function
setOverVoltageValueLight) is evaluated in the current state to provide
the value of the conditional term, while a conditional rule (as the rule
r_CorneringLights in Code 10), if invoked, induces function updates in
the next state.
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Code 9 MAPE loop to start and stop the adaptive high beam headlight

(from SCS-1 to SCS-17). The behavior is implemented in the
module CarSystem005DesiredSpeedCruiseC and a snippet
is shown in Code 12. When the driver moves the cruise
control lever to position two (sCSLever = UPWARD5_SCS)
or three (sCSLever = DOWNWARD5_SCS) the speed is

Code 10 Subvoltage handling

Code 11 Overvoltage handling

Code 12 Set desired speed when cruise control is active

increased or decreased accordingly by 1 km/h in the range
1–200 km/h.10

CarSystem006 This refinement step introduces the traffic
sign detection functionalities. Code 13 shows the modeling of
requirements SCS-36, SCS-37, SCS-38, and SCS-39. When
the adaptive cruise control is active (cruiseControlMode =

CCM2), the traffic sign detection is activated by the user
(trafficSignDetectionOn) and the user is not braking (brake-
Pedal!=0); if a traffic sign is detected (detectedTrafficSign
= SIGNDETECTED) the vehicleSpeed is set to the detected

10 Speed range is 0–5000 in the models as written in the requirements
to allow speed resolution of 0.1 km/h without the use of real numbers.
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Code 13 Traffic sign detection

value (speedLimitDetected), if the detected value is UNLIM-
ITED the speed is set accordingly to ELS-39.

CarSystem007 This step of refinement introduces the
adaptive cruise control and distance warning from the vehi-
cle ahead (from SCS-18 to SCS-26), and the brake assistant
(from SCS-27 to SCS-28) to initiate braking in critical sit-
uations. We have modeled the adaptive behavior using the
MAPE-K feedback control loop, as done in module CarSys-
tem003HighBeam. The cruise control monitors the distance
from the vehicle ahead, and plans and executes accelera-
tion/deceleration automatically, including braking until a full
standstill and starting from a standstill.

4.2.3 Merging ELS and SCS models

After having developed the ELS and SCS separately, we
merged them to obtain a model that includes both systems.
Thanks to the use of modules in the previous steps of refine-
ment, this phase turned out to be easy.

CarSystem008 In this refinement step, we defined the
main module (CarSystem008main) and then we simply im-
ported the modules previously developed. When merging the
two subsystems, we did not found inconsistent updates be-
cause the systems are independent of each other, and they
have only common inputs.

CarSystem009 In the last refinement step, we introduced
the requirements from SCS-40 to SCS-43. The dangerous
situations in SCS-40, SCS-41, and SCS-42 are already man-
aged by the model due to the modeling strategy adopted. The
requirement SCS-43 was integrated by refining the module
CarSystem004EmergencyBrakeLights: the brake lights are
activated either by the brake pedal pressed by the user or by
the emergency brake automatically activated by the system.

4.3 Readability and understandability of models

To make the models more readable for nonexperts, first, we
applied modularization, which is a known good practice in
code development, as it allows producing code with higher
cohesion and lower coupling [42]. As a by-product of modu-
larization, the code is more readable, because each software
module focuses on a specific task, so readers of the code can
focus on understanding each functionality of the code at a
time, instead of trying to understand all the functionalities at
once. We believe that the advantages of modularization also
apply to models, and so we used it in our modeling.

Then, we have defined domains and functions using a do-
main specific terminology that can be understood by the
stakeholders as used in the requirements’ document. For
example, the status of engine function is called engineOn
which is true if the engine is on, false otherwise. Moreover,
the rule’s name exemplifies the content of the rule. For ex-
ample, the rule that turns on or off the lights for direction
blinking right is called r_BlinkRight, and the rules that im-
plement the MAPE-K control loop include the phase of the
computation computed by the rule (e.g., r_IncreasingPlan_-
HBH models the planning phase). In addition, we included
requirements’ numbers as comments in the models to iden-
tify where each requirement is modeled (and supported the
user with the traceability table as explained in Sect. 1).

5 Validation and verification

The ASMETA provides different tools to perform valida-
tion and verification. We here describe the applied tools and
report interesting findings. Moreover, we explain how we
changed the models according to the analysis results.

5.1 Strategies and tools for validation

Model validation is applied to gain confidence that the speci-
fication reflects the intended requirements; since it is usually
applied from the early stages of model development, it allows
detecting faults and inconsistencies with limited effort. The
ASMETA toolset supports validation by means of different
tools; we describe their application to the case study in the
following.

The writing of the models was supported by the animator
AsmetaA, which allows performing a lightweight validation
of the model under development. Indeed, AsmetaA provides
information of the model states and their evolution by means
of an intuitive tabular notation, as shown in Fig. 5. By using
AsmetaA, we conducted interactive animation: we provided
inputs (i.e., values of monitored functions) to the machine,
and observed the computed state in order to check whether
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Fig. 5 AsmetaA running the
ELS subsystem

it is as expected. Moreover, AsmetaA, at each step, also per-
forms consistent updates checking, i.e., it checks that all the
updates are consistent (see Sect. 2); as an additional feature,
if invariants are specified in the model, AsmetaA checks them
at each step.

Although AsmetaA is useful to get an early validation
of the model, its interactive nature does not allow consis-
tently applying it to large models having long simulation
sequences. Therefore, with the increasing complexity of the
ELS and SCS system models, we applied AsmetaV, a tool
of the ASMETA toolset for scenario-based validation, an
automated validation approach. Specifically, AsmetaV al-
lows designing scenarios of possible model evolutions and
to specify the expected system behavior; these scenarios are
then automatically run by AsmetaV.

In order to write a scenario, a designer can use the textual
notation Avalla, which has constructs to express execution
scenarios as interaction sequences consisting of actions com-
mitted by the user to set the environment (i.e., the values of
monitored/shared functions), to check whether the machine
state satisfies some assertions, to ask for the execution of
certain transition rules, and to enforce the machine itself to
make one step as reaction of the user actions. AsmetaV takes
as input a scenario and automatically interacts with the sim-
ulator AsmetaS to execute it; during simulation, AsmetaV
captures any violation of the assertions and, if none occurs,
it returns a PASS verdict.

AsmetaV allowed us to specify all the validation se-
quences provided with the case study.11 We report all the
specified scenarios in our online repository. In [13], we re-
ported the second scenario of the validation sequences for the
exterior light provided with the case study, and here we report
snippets of the scenario specifying the behavior of the fourth

11 See https://abz2020.uni-ulm.de/resources/files/
ValidationSequences_v1.8.xlsx.

Code 14 Scenario for normal light, daytime light, ambient light, night

validation sequence for the exterior light (see Code 14) and
the corresponding output of AsmetaV execution where all
the assertions have been successfully checked (see Code 15).

AsmetaV allows checking the coverage of the models,
i.e., which rules are executed during a scenario execution.
We computed the cumulative coverage of the scenarios de-
rived from the validation sequences. We notice that not all
the rules are covered by the scenarios, meaning that not all
the requirements are considered in the validation sequences;
for example, the activation of cornering lights (ELS-24), re-
quirements ELS-42 to ELS-49 regarding fault handling of
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Code 15 AsmetaV output for the scenario for normal light, daytime
light, ambient light, night

ELS subsystem, and SCS-40 to SCS-43 regarding fault han-
dling and general properties of SCS system are not covered
by any scenario. Having such coverage information is very
important, as it can guide in the specification of new scenar-
ios for covering the uncovered rules.

Interactive and scenario-based simulations, as provided
by AsmetaA and AsmetaV, allow checking a specific subset
of behaviors of the model, but they do not allow performing
an exhaustive check. To this aim, we performed model re-
view using the AsmetaMA tool [2], an exhaustive validation
technique that can check specific types of properties. It is a
form of static analysis that determines whether a model has
specific quality attributes, such as minimality, completeness,
and consistency; for example, the tool checks whether the
model execution can lead to inconsistent updates (an incon-
sistency problem); it checks whether some function is neither
read nor updated (a minimality problem); please refer to [2]
for the complete description of all the properties checked.
Although the technique is not able to detect violations of
the requirements, it can find different problems related to
implementation errors.

Insights obtained from validation Among all the vali-
dation activities, scenario-based validation with theAsmetaV
tool turned out to be the most useful one. Indeed, it allowed
us to specify all the scenarios provided with the case study
and repeatedly run them over the models under development.
In this way, the development is similar to Test Driven De-
velopment: (i) an initial model is developed; (ii) scenarios
are run over the model; (iii) if any assertion in the scenarios
is violated, the model is fixed by the developer accordingly.
The development continues from point (ii) until all scenarios
pass.

Several problems were detected in this way. For example,
we understood that desiredSpeed and targetSpeed are two
different concepts that can have different values, and that they
are updated with two different policies; by only reading the

requirements, we assumed that the user could modify them
only together.

In some cases, we found inconsistencies between the sce-
narios and the requirements. For some of such inconsisten-
cies, we realized that the scenario description was more trust-
worthy, and it was the one to consider in the development. For
example, the requirements’ document uses the terms desired,
target, and set speed, in an improper way, sometimes inter-
changeably; instead, the description of the scenarios clearly
distinguishes them and shows their different roles in the sys-
tem.

For other inconsistencies, instead, we were not sure which
document to trust. For example, regarding the traffic sign
detection, the requirements’ document states that only the
target speed is modified when the sign is recognized; how-
ever, in the sixth scenario of Validation Sequences Speed,
the car modifies both the desired and target speed when it
detects the sign. In this case, we still decided to rely on
the scenario description, as we believe that stakeholders can
properly specify concrete behaviors of a system (as in a sce-
nario), but they may be ambiguous when specifying general
requirements (as in the requirements’ document).

5.2 Verification approach

In the ASMETA toolset, formal verification is supported
by the tool AsmetaSMV [1]. It allows for the verification
of both Linear Temporal Logic (LTL) and Computation Tree
Logic (CTL). LTL and CTL properties can be specified using
the ASMETA signature directly in the ASMETA model.
AsmetaSMV translates the ASMETA model into a model for
the model checker NuSMV (which is used as a back-end
tool), runs the verification with NuSMV, and parses and
pretty-prints the verification results. In this way, the model
checker is transparent to the final user, who must only be
able to specify properties in LTL and CTL.

We derived different properties from the requirements.
In the requirements’ document, a typical requirement looks
like this: “when/if . . . then . . . ”. It tells that when something
happens (a given external input received, a given state condi-
tion, etc.), some actions must be taken. These requirements
have been captured as one of the following two LTL temporal
properties (in the AsmetaL notation):12

g(φ implies x(ψ))g(φ implies f(ψ)) (1)

depending on whether the requirement specifies that ψ must
happen “immediately” when φ happens (first property), or ψ
must “eventually” happen (second property). For example,

12 Here g stands for the always operator, x for the next operator, and f
for the eventually operator.
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Code 16 Traffic sign detection

we specified the following property for capturing require-
ment ELS-18:

It is easy to see that the types of property reported in
Eq. (1) (especially the first one) are reflected in the structure
of ASMETA rules that have been derived from the require-
ments that are specified as conditional rules (possibly ECA
rules). So temporal properties act as redundant specifications
that enforce the model and make it robust against possible
wrong future modifications (as in regression testing).

In addition to these redundant specifications, we also spec-
ified other properties that do not capture a specific require-
ment, but more general properties that should be guaranteed
by the system. For example, we specified the following three
properties:

- the direction indicators blink simultaneously only when
the car is in hazard warning:

- if tail lamps are blinking, the car is not European:

- the market code of a car must always remain the same:

All of the properties listed here (and also others) have been
successfully verified by the verification tool AsmetaSMV,
which output is shown in Code 16.

5.3 Model changes upon validation and
verification

As described in Sect. 5.1, scenario-based validation with
the validator AsmetaV was used to guide the development,
and so constantly lead to adjustments of the developed mod-
els. However, also the other V&V approaches allowed us
to discover errors for which we had to change our mod-
els.

For example, in the model CarSystem003, the rule r_-
Low_Beam_Head_lights decides when to switch the park-
ing lights on (parkingLightON := true) based on some con-
ditions. When modeling requirement ELS-46 in CarSystem-
004 to switching off of the parking lights in case of sub-
voltage (parkingLightON := false), we generated a conflict
(i.e., updating parkingLightON simultaneously to two dif-
ferent values) in particular cases (called inconsistent update
in the ASM theory [26]). Such inconsistency was found by
the model reviewer AsmetaMA (see Sect. 5.1) that gave, as a
counterexample, the simulation sequence leading to such in-
consistency. We then modified CarSystem004 by introducing
a guard that avoids the conflict. Note that all the scenarios
were executed correctly on the first version of CarSystem-
004, showing that a single validation technique is usually not
sufficient, and different complementary techniques should be
used.

5.4 How verification capabilities influenced
modeling

Verification solvers, such as model checkers or SMT solvers,
usually do not support all the constructs/features pro-
vided by expressive modeling languages such as ASMs;
for example, the model checker NuSMV, that is used as
back-end tool of AsmetaSMV (see Sect. 5.2), only sup-
ports finite domains. Knowing these limits, one may up-
front limit themselves only to the supported constructs/fea-
tures, in order to be able to directly use such solvers.
We believe that this approach, although sound, does not
allow exploiting all the benefits that come from model-
ing (that are not only related to verification, but also to
documentation, system understanding, requirements tracing,
etc.).

Therefore, when writing the models, we did not consider
the limitations coming from verification solvers, and we im-
plemented the models in the most natural way, so to also
guarantee qualitative properties such as the readability of
the model [12]. Only when we had to perform model check-
ing, we modified the models to remove unsupported features.
The modification is performed in two phases. In the first
phase, we apply the flattener [11] of the ASMETA toolset
that automatically performs some transformations; specifi-
cally, it transforms all the transition rules (of any type) in
the parallel execution of a set of suitable conditional rules;
moreover, for each function location, all its possible eval-
uations are represented explicitly in the flattened model,
by nesting them in proper conditional rules (refer to [11]
for more details); note that these transformations have been
proved to be sound, and so can always be applied automat-
ically. In the second step, instead, we must manually apply
other transformations, guaranteeing that they are sound. For
example, we must transform the infinite domains in finite
ones.
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6 ELS system implementation

The ASMETA toolset supports the generation of executable
C++ code by means of the tool Asmeta2C++ [23]. For this
project, we have extended the translator to support all the
characteristics of the CarSystem specification. As the target
platform, we have identified Arduino, a simple microcon-
troller which provides all the necessary features and is widely
available.

Modularity in ASMETA is translated in C++ into multiple
inheritance. In this way, a class will inherit all the functions
defined in the imported modules. For instance, CarSystem-
003HighBeam which imports both CarSystem003Domains
and CarSystem002Functions is translated into the following
code:

Inputs and outputs are translated to electronic compo-
nents in the implementation: the lights are simulated by
LED lights, while monitored functions are implemented by
switches and potentiometers (like the steeringAngle). The
mapping from functions to hardware components is given
in a json file and the necessary code is automatically gener-
ated.

At the time of developing the case study, Time was not
explicitly treated in ASMETA, so we needed to implement
a link between the time of the microcontroller (given by the
function millis()) and all the monitored and controlled
quantities that depend on time. The translator transforms
each monitored boolean function passedXSec to a boo-
lean variable, and introduces in Arduino a new long variable
last_XSec and the code that:

resets the timer by setting the value of last_XSec to the
current time;

checks the actual passed time and, if necessary, sets
passedXSec to true.

For example, the passed_3sec is translated to

A similar approach is taken for lights blinking, which has
been modeled by different values of the function blinkX-
PulseRatio defined on an enumerative set {NOPULSE,
PULSE11, PULSE12}. The actual blinking is implemented
by hand directly in the code that checks the value of blinkX-

PulseRatio and the current time and controls the lights by
letting them blinking if necessary.

We were able to build a working Arduino prototype.
A video of the implementation13 is available. Although it
is very simple and its main aim is the demonstration of a
working system, its code could be used in a real implemen-
tation.

7 Other observations

We here provide a more detailed discussion on model
changes due to requirements improvement between the ver-
sion available at the conference time and the last version of
the requirements documentation. We also underline possible
tools improvement to deal with needs arisen from our ex-
perience in modeling and analyzing the case study. Finally,
we add some observations on derivation of implementation
from models.

7.1 Requirements ambiguities and model
improvements

Modeling and validation activities revealed some state-
ments where the requirements were wrong or ambiguous
(these have been discussed in [13]). We had the possi-
bility to check our doubts with the chairs (acting as do-
main experts) and we got corrected versions of the require-
ments.

The solution in [13] captures the version 1.9 of the re-
quirements’ specification document. We later updated our
models to the last version 1.17 of the documentation, and
the model updating was relative simple owing to the use
of modules. For example, in version 1.11 the require-
ment ELS-40 specifies that “if the brake pedal is deflected
more than 40.0°, all brake lamps flash” (in the previous
versions it was required that only the third brake lamp
flashed). To satisfy the new requirement, we have updated
the rule r_EmergencyBrakeLights in module CarSystem-
002EmergencyBrakeLights as shown in Code 17. Further
improvements of the requirements have been addressed sim-
ilarly.

Most of the requirements updates have clarified the
doubts, but in some cases they have created ambiguity, like,
for example, the clarification of requirement ELS-48 in ver-
sion 1.10 which created a conflict with requirement ELS-47.
In this case, we kept the old version, which appeared more
correct to us.

13 https://foselab.unibg.it/asmeta/videos/carsystem_arduino.mp4.
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Code 17 Update of requirement ELS-40

7.2 Method and tools improvements

Requirements coverage As explained in Sect. 5.1, sce-
narios derived from the validation sequences turned out to be
extremely useful, and we used them to guide the modeling.
In order to check whether all the requirements are covered by
the scenarios, we had to extend the validator AsmetaV with
the ability to compute coverage at the level of the single rule;
indeed, the original tool was able to report only coverage at
the level of macro rule, but this is not sufficient to check if
requirements are covered, as multiple requirements can be
implemented in a given macro rule.

Scenario derivation and animation We have exten-
sively used two model validation techniques, namely ani-
mation and scenario-based validation, which are supported
by two nonintegrated tools. To save animation sessions in
terms of scenarios, and also to animate existing scenarios,
we have extended the animator [22] which now permits
exporting animated sequences into Avalla scripts. These
can be re-executed to validate the model when changing
it (in a kind of regression testing using “record and re-
play”).

Models for formal verification As described in Sect. 5.3,
doing formal verification requires the user to manually adapt
the models to remove unsupported features, such as infi-
nite domains. As future work, we plan to make this ap-
proach semiautomatic, by suggesting to the user possible
sound transformations. A different approach would to use,
as back-end solvers, infinite state model checkers such as
nuXmv14 that accepts infinite domains. However, that would
come at the cost of the class of properties that we can ver-
ify.

14 https://nuxmv.fbk.eu/.

Time modeling The case study presented in this paper re-
lies on time constraints, as well as many real systems. In this
specification (see “Time pattern” in Sect. 4.1), we dealt with
the time in terms of suitable monitored functions capturing
the time elapsed, as is usual in many ASM specifications
[26, 28]. Afterwards, we have worked on the introduction of
time in ASMETA models. We have implemented the library
TimeLibrary that introduces time as a special monitor func-
tion to manage the time. Moreover, the user can define his
timers and the library provides functions and rules to operate
on timers, like to check if a desired amount of time is passed,
to reset and start a timer, and to set the timer duration and
time unit. More details about the use of TimeLibrary can be
found in [21].

7.3 Derivation or verification of software
implementation

Sect. 6 presents how we are able to translate the ASMETA
specification into executable C++ code for Arduino by using
the Asmeta2C++ tool [23]. With minimal adjustments for
the links with HW sensors and actuators, this code could be
deployed on the real microcontroller with the assurance that
its behavior conforms to the specification and all the safety
properties are preserved. This is a typical Model Driven En-
gineering (MDE) approach that aims at exploiting models
also during the implementation phase, through a set of suit-
able transformations like ours.

8 Other case study solutions and related
work

In this section, we compare the presented solution of the
case study with others proposed in the literature, and we
list other case studies where ASMETA has been applied.
Moreover, we recall other currently supported tools of the
ASM method.

Comparison with other case study solutions We here
describe other existing formal specification and analysis so-
lutions for the same case study. Table 2 summarizes the main
approaches, including our solution, and compares them ac-
cording to the following characteristics:

- Adopted modeling formalisms and analysis tools;
- Target control features/subsystems;
- Model scope or purpose (V&V, implementation/prototyp-

ing, etc.);
- Distinctive modeling and analysis strategy.

The approach by Cunha et al. [29] adopts variants in
Electrum, a lightweight formal specification language that
extends Alloy with mutable relations and temporal logic to
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Table 2 A comparison with other case study solutions

Approach Formalisms & techniques/tools Target control
features/subsys-
tems

Model purpose Distinctive strategy

Cunha et al. [29] • Electrum
• variants, mutable relations
and linear temporal logic

ELS subsystem
with multiple
variants

• V&V of functional requirements of
system model variants
• scenario animation

feature-oriented design

Leuschel et al. [35] • Classical B for modeling
• Event-B in Rodin for proof
• VISB for graphical model
visualization

subsets of ELS
and SCS
subsystems

• verification of functional requirements
• visual model animation

compositional and
modular system
modeling via machine
inclusion and operation
calls

Mammar et al. [38] • Event-B
• stepwise refinement with
RODIN provers

ELS subsystem • modeling and verification of functional
requirements
• validation by scenarios
• model refinement

Proof reuse

Mammar et al. [37] • Event-B
• stepwise refinement with
RODIN provers

SCS subsystem • modeling and verification of functional
requirements
• validation by scenarios
• model refinement

Proof reuse

Krings et al. [34] • low-level implementation with
MISRA C
• CBMC model checker

ELS and SCS
state machines

Verified low-level implementation in C test-driven
development and
mocking of test objects

(this work) • ASMs
• ASMETA tools for
specification, analysis and
prototyping

• ELS
subsystem
• SCS
subsystem

• V&V of functional requirements
• scenario-based animation
• (correct-by-construction) prototyping
in the Arduino board

Modular and
idioms-based design

model the ELS subsystem. They explored different strategies
to address variability, using pure Electrum and also an an-
notative language extension. Their model abstracts real-time
aspects and the integer nature of the signals, and no particular
duration is imposed to states.

Leuschel et al. [35] modeled and verified parts of the
automotive case study using the classical B in the early
phases of software modeling, while for proving the system
is safe and functionally correct they have used Event-B for
proof as supported by the platform Rodin. They adopted
the classical B’s machine inclusion mechanism along with
operation calls for applying a compositional and modular
modeling strategy. A recent graphical model visualization
engine, called VISB, is also used to have a lightweight vi-
sualization with off-the-shelf images enriched with formal
model expressions updated according to the current state
of the formal model. They have modeled time as a dis-
crete integer variable representing elapsed time in millisec-
onds.

Mammar et al. [38] provided an Event-B model of the
ELS subsystem via stepwise refinement. The model has been
validated using PROB by scenarios, and all proof obliga-
tions have been discharged using the RODIN provers. To
speed up the proof phase, they have included in the guards
of the model some properties tagged as theorems in order
to prove them only once and reuse them in all the proofs.

A discrete integer variable is used to model the time pro-
gression together with event progress. Some of the same
authors also modeled the SCS subsystem using a similar
stepwise refinement approach with Event-B and the Rodin
provers [37].

Rather than adopting a (correct-by-construction) specifi-
cation approach with a formal method, Krings et al. [34]
used MISRA C, a language used in the automotive indus-
try, for providing directly a low-level implementation for the
case study. They used a test-driven development for vali-
dation by setting up the validation sequences as unit tests
first, and only at the end applied model checking using
CBMC for verifying different properties directly on the C
code. Their verification approach has a very limited support
for temporal properties, and they do not verify time prop-
erties aside from simulating an external clock in the test
cases.

The aforementioned approaches are tailored to model,
validate, verify, and coding components/subsystems of the
case study using different state-based formalisms, methods,
and strategies. They, somehow, complement each other and
could be seamlessly integrated along a formal development
process. Unfortunately, the abstracted time model adopted
by most of the solutions limits reasoning about real-time
requirements. Moreover, such state-based formal methods
are able to model discrete-event systems and not continu-
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ous systems. So they provide limited support for modeling
real-world dynamic systems where continuously changing
state variables of a system are typically modeled by differen-
tial equations. Related to ASMs, the concept of Continuous
ASM was introduced in [16] for the controller synthesis prob-
lem, but this theory is not supported yet by ASMETA. For
the purpose of the case study, however, some form of dis-
cretization was adopted, such as the formulas provided in
the requirement document for the characteristic curves of
the high beam headlight illumination distance and strength
depending on the vehicle speed as shown in Code 9. Both
functions are computed using the value returned by the dis-
cretized function percentageHBM, modeled as ASMETA
static function.

Other related work ASMETA is an active open-source
academic project. Over the years, it has been improved
with techniques and tools to face the challenges of mod-
ern systems. Details on latest advancements can be found
in [15].

Other case studies to which ASMETA has been ap-
plied, include systems in the context of medical de-
vices (PillBox [18], hemodialysis device [10], ambly-
opia diagnosis [4], PHD Protocol [19], Mechanical Ven-
tilator Milano [20]), software control systems (Landing
Gear System [5], Hybrid European Rail Traffic Man-
agement System [31]), cloud- [8] and service-based sys-
tems [39, 40], self-adaptive systems [9, 14, 24]. Ap-
plication domains under current investigations are those
of IoT security, autonomous and evolutionary systems,
cyber-physical systems, and medical software certifica-
tion.

Besides ASMETA tools, there are others that have been
developed over the years around the ASMs. Among those,
CoreASM [30] and CASM [36] are currently actively sup-
ported, while others, as the AsmGofer [41], are dead projects.
CoreASM was designed and developed at the same time
when the ASMETA project started and shares with AS-
META the same overall goals of being a toolset for ASM
editing, simulation, and verification. Although the design
choices of the two toolsets are different (ASMETA has been
developed by exploiting the Model-driven Software Engi-
neering (MDE) approach stating from developing a meta-
model for the abstract syntax of an ASM model, while
CoreASM was developed as extension plugins around a
core kernel of the language), the similarities between AS-
META and CoreASM models are so close that a tentative
was done in the past to define a unique syntax for both
environments [6]. CASM arrived later, due to its authors’
intention to provide the ASMs with faster and better per-
forming tool support, which could be more adequate to han-
dle industry-size applications. The CASM language was in-
spired by the CoreASM language, but it is a static strong

inferred typed language. The application of CASM to aca-
demic or industrial case studies is still very limited and it is
not possible to evaluate the reals advantages it offers with
respect to ASMETA. Our choice to use ASMETA for the
specification of the case study is mainly due to the fact
that it is an in-house toolset developed by the authors of
the paper, and because of the variety of tools provided for
different phases (design, development, and operation) and
that allowed us the possibility to develop a prototype in Ar-
duino.

9 Conclusions

We presented our experience in applying a formal engineer-
ing method based on ASMs and the toolset ASMETA for
the specification, validation & verification, and prototyping
in Arduino of an automotive system with adaptive control
features for exterior lights and speed of modern cars. We
discussed our modeling approach and underlying strategies,
and analysis techniques to face system complexity and pe-
culiarities. We also provided strengths and weaknesses of
our approach throughout the paper, and compared it with
other related case study solutions according to specific cri-
teria.

This case study provided us a further opportunity to test
our approach in terms of robustness, scalability with the
increasing complexity of the models and validation sce-
narios, and usability of ASMETA tools for complex sys-
tems. Further details about our efforts in addressing us-
ability in the ASMETA toolset, a critical review of what
has been more successful and what less based on our pre-
vious developed case studies (but still valid for that pro-
posed here), and other directions that could further in-
crease the adoption of the proposed method can be found
in [12].

Appendix A: Traceability tables

In this appendix, we report the traceability tables used during
models implementation, to map requirements with models
and rules.
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Table 3 Traceability table
between requirements and
rules/functions of ELS
subsystem
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Table 4 Traceability table
between requirements and
rules/functions of SCS
subsystem
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