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Abstract
Introduction  Clinical gait analysis can be used to evaluate the recovery process of patients undergoing total hip arthroplasty 
(THA). The postoperative walking patterns of these patients can be significantly influenced by the choice of surgical approach, 
as each procedure alters distinct anatomical structures. The aim of this study is twofold. The first objective is to develop 
a gait model to describe the change in ambulation one week after THA. The secondary goal is to describe the differences 
associated with the surgical approach.
Materials and methods  Thirty-six patients undergoing THA with lateral (n = 9), anterior (n = 15), and posterior (n = 12) 
approaches were included in the study. Walking before and 7 days after surgery was recorded using a markerless motion 
capture system. Exploratory Factor Analysis (EFA), a data reduction technique, condensed 21 spatiotemporal gait parameters 
to a smaller set of dominant variables. The EFA-derived gait domains were utilized to study post-surgical gait variations and 
to compare the post-surgical gait among the three groups.
Results  Four distinct gait domains were identified. The most pronounced variation one week after surgery is in the Rhythm 
(gait cycle time: +32.9% ), followed by Postural control (step width: +27.0% ), Phases (stance time: +11.0% ), and Pace (stride 
length: − 9.3% ). In postsurgical walking, Phases is statistically significantly different in patients operated with the posterior 
approach compared to lateral (p-value = 0.017) and anterior (p-value = 0.002) approaches. Furthermore, stance time in the 
posterior approach group is significantly lower than in healthy individuals (p-value < 0.001).
Conclusions  This study identified a four-component gait model specific to THA patients. The results showed that patients 
after THA have longer stride time but shorter stride length, wider base of support, and longer stance time, although the pos-
terior group had a statistically significant shorter stance time than the others. The findings of this research have the potential 
to simplify the reporting of gait outcomes, reduce redundancy, and inform targeted interventions in regards to specific gait 
domains.
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Introduction

Total hip arthroplasty (THA) is the surgical procedure 
advised to treat end-stages osteoarthritis (OA). There are 
several surgical approaches for THA and these include, 
with some variations, the lateral, anterior and posterior 
approaches [1, 2]. An analysis of current practices based 
on national joint registries indicates that the majority of 
surgeons often chose the posterior approach, followed by 
the lateral and anterior one. The posterior approach pre-
serves the abductors and flexors, but the external rotators 
need to be detached to gain access to the hip joint and the 
sciatic nerve may be compromised. The lateral approach 
requires division of the anterior third of the gluteal mus-
cles and detachment of the proximal third of the vastus 
lateralis, with a constant risk of postoperative limping. The 
direct anterior approach is gaining popularity as a muscle 
sparing technique in which hip joint exposure is achieved 
following an inter-muscular plane between sartroius, rec-
tus femoris, iliopsoas and tensor fasciae latae [3–5]. Each 
surgical method presents advantages and limitations and 
the most effective approach remains controversial in terms 
of surgeons learning curve, intra and post-operative com-
plications, hospitalization time and patient subjective sat-
isfaction [6, 7]. The primary hypothesis of this study was 
that different surgical approach alters different anatomi-
cal structures and influence patients’ healing process and 
recovery, as suggested by Mantovani et al. [8].

Evaluation of clinical outcomes for THA as mitigation 
of pain, improved quality of life and restoration of hip 
function are based on surveys, such as WOMAC, Harris 
Hip Score, SF-36, PROM-10 and HOOS [9, 10]. Neverthe-
less, these surveys are subjective and may not be sensitive 
enough to detect minor changes [11, 12]. In recent dec-
ades, there has been an increasing interest in the relation-
ship between surgical approaches and gait biomechanics. 
A number of studies have assessed gait changes in patients 
after THA, with some suggesting the integration of clini-
cal gait analysis for recovery measurement [7, 13–15]. 
Gait analysis provides quantitative data, crucial for study-
ing the mechanisms of gait changes and evaluating the 
effectiveness of interventions, offering valuable insights 
into predicting hospital stay length and post-operative 
rehabilitation [14]. Most studies have focused on walking 
performance at 3, 6, and 12 months after surgery, provid-
ing limited information on the duration of hospitalization 
after surgery [17, 18]. However, gait analysis conducted 
seven days after THA can assist in developing timely 
rehabilitation strategies, which has become increasingly 
important in light of the reduced hospitalization period 
following surgery from weeks to days [19]. Shibuya et al. 
[16] attempted to address this need by investigating gait 

at 5 days post-surgery. However, regarding spatiotemporal 
parameters, they only evaluated gait speed using a stop-
watch, neglecting other valuable variables obtainable with 
motion capture (mocap) systems [20]. In this context, the 
main aim of this paper is to fill this gap by developing 
spatiotemporal models of the short-term gait variation in 
patients undergoing THA. For this purpose, exploratory 
factor analysis (EFA) was performed on a dataset of gait 
spatiotemporal parameters acquired before and 7 days after 
surgery through a mocap system. The proposed model ena-
bles the identification of the gait domains affected by the 
surgery and measures the magnitude of change a week 
after surgery. The second aim is to describe the gait dif-
ferences associated with the three surgical approaches (lat-
eral, anterior, and posterior).

Methods

Experimental protocol

For this study, an ad-hoc protocol was created and approved 
by the institutional review board of Humanitas Gavazzeni 
(Bergamo, Italy). The protocol involved acquiring data from 
patients before and 7 days after surgery to assess short-term 
recovery. Gait data were collected using the Microsoft 
Kinect v2, a motion-sensing input device that combines a 
color camera and a depth camera to track and capture body 
movements [21]. Microsoft Kinect sensors have demon-
strated significant potential in orthopaedics, particularly 
for obtaining spatiotemporal parameters of gait [22, 23]. 
The accuracy of the sensors, in terms of measuring depth, 
is reported to be under 2 mm in the central viewing cone, 
which makes them suitable for the study [24]. Two devices 
were placed diagonally opposite to each other, about 6 m 
apart, in the rehabilitation gym of the clinic [25]. Patients 
were asked to walk along a straight path at a self-selected 
comfortable speed for three runs. Three recordings per 
patient session were performed, as Maynard et al. suggested 
that a minimum of three gait cycles should be averaged to 
overcome the effects of stride-to-stride variability [26]. All 
patients followed the same rehabilitation protocol. From 
the first post-operative day, permissive weight bearing was 
allowed. Passive and active range of motion of the operated 
joint was assisted by a therapist, as postural changes from 
lied or sitting posture to a standing position.

Patients’ enrollment

Patients who were admitted to the Orthopaedics and Trau-
matology wards of Humanitas Gavazzeni, and who under-
went THA consecutively, using any access approach were 
enrolled for the study. The recruitment period spanned from 



Archives of Orthopaedic and Trauma Surgery	

January 2019 to February 2020, at which point it was tem-
porarily halted due to the COVID-19 pandemic restrictions. 
The enrollment process resumed in May 2022 and continued 
until October 2022. All surgical procedures were carried 
out by senior consultant surgeons, who selected the most 
appropriate approach based on their expertise and experi-
ence. Therefore, the type of surgical approach (lateral, ante-
rior, and posterior) did not depend on the study design, but 
only on the clinical situation and the choice of the individual 
operator. Patients with neurological diseases and neuro-
motor disorders were excluded from the study. Bearers of 
contralateral hip replacement, ipsilateral and contralateral 
knee replacement or subjects who had previously undergone 
to prosthetic revision surgeries were excluded. Enrolled 
patients had to be able to walk with or without cane sup-
port. All patients were well-informed about the noninvasive 
protocol and signed informed consent.

Gait parameters

The study utilized raw depth maps obtained from Micro-
soft Kinect v2 to generate a virtual representation of the 
patient's gait using iPiSoft software. Spatiotemporal charac-
teristics of the gait pattern were then calculated, including 
conventional variables such as gait cycle duration, stance 
time, swing time, double support time, step length, stride 
length, step width, peak swing velocity, and average gait 
speed. The variables were normalized based on the patient's 
height and gait cycle duration. The parameters that were 
dependent on the limb side were divided into ipsilateral and 
contralateral legs. The study also evaluated gait asymmetries 
using the difference between the parameters of the affected 
side and the unaffected side. To mitigate the impact of noise, 
the mean feature value derived from the three recordings 
per session was utilized for the analysis, as suggested by 
Maynard et al. [26].

Statistical analysis

Gait analysis enables the collection of numerous variables, 
each providing valuable information. However, large dimen-
sionality presents analytical challenges. Interpretation com-
plexity can escalate, and there is an increased risk of Type I 
error (false positives) due to the higher likelihood of obtain-
ing statistically significant results by chance. To address 
these challenges, EFA is a valuable technique. EFA groups 
highly correlated variables into common factors, reducing 
the dataset's dimensionality to overcome the aforementioned 
challenges.

The statistical analysis comprised three phases: (1) data 
preprocessing and data quality assessment; (2) EFA for 
dimensionality reduction and identification of dominant var-
iables; (3) analysis of gait characteristics and gait changes. 

All computations were performed in Python with the fol-
lowing packages: numpy, pandas, scipy, and factor-analyzer.

Data preprocessing

To ensure proper input data quality for EFA, the collected 
data were preprocessed as follows. First, the dataset was 
normalized by dividing each variable by the maximum 
absolute value of the feature. This process maintained the 
sparsity of the data without shifting or centering it. Second, 
each parameter was individually tested for EFA eligibility 
through the Kaiser–Meyer–Olkin (KMO) test. Variables not 
deemed suitable for EFA (KMO < 0.5) were excluded. The 
suitability of the resulting dataset was then checked through 
two statistical tests: (a) Bartlett’s test of homoscedasticity 
with � ≤ 0.05 and (b) KMO test on the entire dataset with a 
minimum threshold of 0.5, as suggested by Hair et al. [27].

Exploratory factor analysis (EFA)

EFA is a statistical method employed in multivariate analy-
sis to examine the underlying structure of a set of observed 
variables and identify the latent factors that contribute to the 
observed patterns. In gait analysis, EFA reduces a large set 
of observed gait parameters into unobservable gait domains 
that explain the covariation among observed variables, 
revealing the underlying structure and inherent patterns 
within the gait data.

In this study, EFA with promax rotation was performed. 
The number of factors included in the model was determined 
based on Kaiser's criterion (eigenvalues > 1) [28]. Factor 
loadings ≥ 0.5 were considered to be relevant. The result-
ing model was named “Model A”. Initially, EFA was inde-
pendently applied to preoperative and postoperative data. 
However, as both analyses revealed a similar factor structure, 
the decision was made to formulate the final model using the 
entire dataset for improved interpretability.

Although latent factors are effective in representing the 
dataset's structure, interpreting their raw values can be chal-
lenging since they do not express directly observable quanti-
ties. To improve interpretability, each factor was reduced to 
its “dominant variable”, which is defined as the parameter 
with the highest absolute factor loading. This streamlined 
version was referred to as "Model B".

Gait characteristics analysis

After the development of gait models, a comprehensive 
statistical analysis was conducted to explore the extent to 
which gait characteristics are affected by THA surgery in 
the short-term. Cohen's d was used to quantify the difference 
between preoperative and postoperative measures of latent 
factors ("Model A"). This standardized effect size expresses 
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the variation between two means in standard deviation units. 
As it is dimensionless, it allows for the comparison of factors 
with diverse units of measurement. Following established 
guidelines, d values of 0.2 to 0.5 were considered as small, 
0.5 to 0.8 as medium, and greater than 0.8 as large [29]. To 
analyze the change in the dominant variables (“Model B”) 
the percentage of change was chosen for enhanced interpret-
ability. Uncertainty was expressed as standard error calcu-
lated by bootstrapping with 10,000 resamples. For postop-
erative gait characteristics, the assumptions of parametric 
tests were not met, therefore the Kruskall-Wallis test and 
the Wilcoxon signed-rank test with α = 0.05 were used to 
investigate differences between surgical approaches. Statisti-
cally significant differences were further examined using the 
post hoc Conover's test with Holm-Bonferroni adjustment.

Results

Patients’ characteristics

Forty-eight patients who underwent THA at the Orthopae-
dics and Traumatology unit of Humanitas Gavazzeni Hospi-
tal were enrolled in this study. The flow of subjects through 
the study is shown in the CONSORT diagram in Fig. 1.

Patients had a mean age of 67.9 years (range: 45–81). 
Sixteen patients were women and the remaining twenty 
patients were men (Table 1). All patients had monolateral 
(22 right, 14 left) hip OA grade II or III according to the 
Tonnis classification. Age and height were not significantly 
different between the groups (one-way ANOVA), nor were 
sex and side affected (G-test for independence). Surgeons 
determined the approach based solely on patient conditions, 
rather than study goals, resulting in varying group sizes.

Feature selection

The analysis started with 21 gait spatiotemporal parameters 
reported in Table 2. The KMO test showed that 6 features 
were not suitable for EFA, thus they were removed (Fig. 2). 
The final dataset consisted of 15 variables and was deemed 
suitable for factor analysis, as indicated by a KMO test 
score of 0.729 and a p-value of < 0.001 in Barlett's test of 
sphericity.

Gait models

The 15 selected spatiotemporal parameters were included in 
“Model A”. EFA yielded four orthogonal factors account-
ing for 80.5% of the total variance. Factor loadings, which 
indicate the degree of association between the observed 
variables and the latent factors, are presented in Fig. 3. In 
light of them, factors were labeled as Pace (32.5% of total 
variance), Phases (22.2%), Rhythm (15.1%), and Postural 
control (10.7%), adhering to the gait domains classification 
of Gouelle et al. [30]. The factor loadings obtained solely 
from preoperative and postoperative data exhibited a consist-
ent structure (see Supplementary Material—S1). Notably, no 
cross-loadings were observed, ensuring a clear delineation 

Assessed for Eligibility 
(n=48)

Lateral Approach
(n=9)

Anterior Approach
(n=15)

Posterior Approach
(n=12)

Excluded 
• Not mee�ng inclusion 

criteria (n=3)

Pre-opera�ve gait 
acquisi�on

(n=45)

Excluded
• Loss to follow-up (n=6)
• Post-opera�ve 

complica�ons (n=1)
• Technical problems (n=2)

Post-opera�ve gait 
acquisi�on

(n=36)

Fig. 1   CONSORT diagram representing the flow of patients through 
the study. Forty-eight patients were assessed for eligibility. Three 
patients were excluded due to a contralateral hip prosthesis. Hence, 
forty-five patients were acquired by motion capture before the sur-
gery. Six of these patients were lost in the follow-up, one had post-
operative complications and two were excluded due to technical prob-
lems. Hence, thirty-six subjects performed the post-operative gait 
analysis

Table 1   Demographic 
characteristics of subjects

Mean and range are given where relevant. P-values of one-way ANOVA analysis for numerical variables 
and G-test of independence for categorical variables are shown

Lateral approach Anterior approach Posterior approach p-value

Age (years) 70.4 [56–79] 68.9 [51–81] 64.2 [45–81] 0.269
Sex (F/M) 5/4 7/8 4/8 0.579
Height (cm) 169.4 [155–185] 168.1 [155–185] 168.0 [159–185] 0.932
Side affected (R/L) 5/4 10/5 8/4 0.837
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of the latent factors identified. The dominant variables for 
each factor were all related to the affected side, specifically 
stride length (representative of Pace), stance time (Phases), 
gait cycle time (Rhythm), and step width (Postural control). 
These variables compose the simplified “Model B”, effec-
tively reducing the number of gait variables to collect from 
fifteen to the four most relevant and representative.

Short‑term gait performance after THA

The gait domain that exhibited the most pronounced varia-
tion was Rhythm ( d = 1.34 ± 0.17 ) (Fig. 4). Postural Control 
followed, but still with a large effect size ( d = 0.90 ± 0.23 ), 
while Pace showed a negative effect size ( d = −0.65 ± 0.14 ), 
indicating a reduction in walking speed post-surgery. Phases 
demonstrated a only small effect size ( d = 0.42 ± 0.15) . In 
light of 'Model B', it can be stated that the major gait changes 
found 7 days after THA are:

•	 Longer time to complete strides (AS gait cycle time: 
+32.9% ± 6.7)

•	 Wider base of support (AS step width: +27.0% ± 6.3)
•	 Longer foot contact to the ground (AS stance time: 

+11.0% ± 4.6)
•	 Shorter stride length (AS stride length: −9.3% ± 3.1)

While the observed pattern of variation in gait characteris-
tics remains consistent across all surgical approaches, signif-
icance is identified when analyzing post-surgical walking in 
both “Model A” (p-value = 0.004, Kruskal–Wallis test) and 
“Model B” (p-value = 0.007). Specifically, relative stance 
time was found to be lower with the posterior approach 
( 47.8%GC ± 2.3 ) compared to the lateral ( 59.3%GC ± 4.6 ) 
and anterior ( 63.2%GC ± 4.3 ) approaches. Notably, stance 
time for the posterior approach group is also significantly 
different from the golden ratio, a value associated with the 
walking of healthy individuals (p-value < 0.001, Wilcoxon 
test). In contrast, patients operated with lateral and anterior 
approaches exhibit a stance time compatible with the refer-
ence value [31]. However, it should be noted that no firm 
conclusions should be drawn due to limited statistical power.

Discussion

This study investigated the gait characteristics of patients 
who underwent THA one week after surgery, using EFA. 
Due to the increasing number of THA cases and escalat-
ing healthcare expenses, there is a pressing need to effi-
ciently manage the process to enhance patient recovery, 
reduce complications, and shorten hospital stays [32]. In 

Table 2   Changes of gait 
characteristics before (PRE) 
and 7 days after THA surgery 
(POST)

Mean values and standard error (in parenthesis) are reported. Parameters are grouped based on the affected 
and unaffected sides. Effect sizes are represented as Cohen’s d. %h percent of height, %GC percent of gait 
cycle

Variable PRE POST Effect size

Affected side (AS) Gait cycle time (s) 1.309 (0.031) 1.715 (0.079) 1.131 (0.175)
Stance time (%GC) 0.523 (0.019) 0.571 (0.025) 0.367 (0.157)
Swing time (%GC) 0.478 (0.018) 0.450 (0.020) − 0.247 (0.139)
Double support time (%GC) 0.259 (0.020) 0.311 (0.027) 0.367 (0.113)
Step length (%h) 0.293 (0.011) 0.275 (0.011) − 0.283 (0.132)
Stride length (%h) 0.604 (0.021) 0.540 (0.021) − 0.519 (0.147)
Step width (%h) 0.079 (0.003) 0.096 (0.004) 0.852 (0.196)
Peak swing velocity (%h/s) 1.462 (0.046) 1.207 (0.059) − 0.803 (0.156)

Unaffected side (US) Gait cycle time (s) 1.277 (0.028) 1.736 (0.075) 1.358 (0.176)
Stance time (%GC) 0.531 (0.019) 0.597 (0.024) 0.518 (0.166)
Swing time (%GC) 0.474 (0.019) 0.417 (0.021) − 0.473 (0.151)
Double support time (%GC) 0.263 (0.021) 0.306 (0.026) 0.299 (0.100)
Step length (%h) 0.279 (0.011) 0.246 (0.013) − 0.472 (0.144)
Stride length (%h) 0.594 (0.018) 0.545 (0.021) − 0.425 (0.139)
Step width (%h) 0.078 (0.004) 0.096 (0.003) 0.853 (0.293)
Peak swing velocity (%h/s) 1.477 (0.042) 1.236 (0.056) − 0.813 (0.175)

Unrelated to side Gait speed (%h/s) 0.456 (0.023) 0.325 (0.021) − 1.002 (0.201)
Gait cycle time asymmetry (s) 0.032 (0.014) − 0.021 (0.034) − 0.336 (0.177)
Swing time asymmetry (%GC) 0.005 (0.009) 0.033 (0.014) 0.397 (0.202)
Stance time asymmetry (%GC) − 0.007 (0.009) − 0.025 (0.015) − 0.245 (0.198)
Step length asymmetry (%h) 0.014 (0.008) 0.029 (0.010) 0.273 (0.180)
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this context, clinical gait analysis can play a crucial role in 
identifying suitable candidates for early discharge and ensur-
ing the quality of the recovery process. In literature, there are 
many studies investigating THA effectiveness in the mid and 
long term (3–12 months) [17, 18]. However, to the best of 
the author’s knowledge, this is the first attempt to investigate 
gait characteristics one week after THA.

A novel aspect of this work is the application of EFA 
to model the gait of THA patients. While motion capture 
systems allow for the measurement of numerous walking 
features during gait analysis, conducting statistical tests on 
all gait parameters poses a notable risk of false positives. 
To mitigate this, data reduction techniques, such as EFA, 
are employed to minimize information loss by reducing 
the number of features. This approach allows for a focused 
examination of the most pertinent factors. These reduction 
strategies have been applied to evaluate gait dysfunctions 
related to neurological disorders, including multiple sclero-
sis [33], Parkinson’s disease [20], and post-stroke hemiple-
gia [14, 34, 35]. Boekestein et al. [12] have also employed 

EFA to investigate the gait patterns of individuals with hip 
and knee OA and found that the factors loaded on cadence 
and stride length showed the greatest difference compared 
to the control group.

In the present research, EFA reduced the measured 21 
variables to four factors, that can be reconducted to well-
known gait domains [30]. “Model A” is composed of four 
latent factors: Pace, Phase, Rhythm, and Postural Control, 
which explain 80.5% of the total variance. The first fac-
tor, labeled Pace, represents the overall performance of 
walking and it is loaded on gait speed, peak swing veloc-
ity, step length and stride length of both affected and unaf-
fected limbs [30]. Maximal gait speed can be a predictor of 
functional recovery after THA, with mid-long term studies 
showing improved speed; however, deficits were still pre-
sent, when compared with healthy controls [17, 18]. The 
study revealed a post-surgery decline in mean gait speed 
( d = −1.00 ± 0.20 ) and a reduction in stride length, identi-
fied as a dominant variable ( d = −0.52 ± 0.15 ). They both 
are linked to insufficient torque generation from the lower 

Fig. 2   Flowchart of the devel-
opment process of the two 
short-term gait change models. 
Abbreviations: affected side 
(AS), unaffected side (US), %h 
percent of height, %GC percent 
of gait cycle, Kaiser–Meyer–
Olkin (KMO)

Affected side (AS):
• AS gait cycle �me (s)
• AS stance � me (%GC)
• AS swing �me (%GC)
• AS double support � me (%GC)
• AS step length (%h)
• AS stride length (%h)
• AS step width (%h)
• AS peak swing velocity (%h/s)

Pre-selected gait variables (n=21)

Unaffected side (US):
• US gait cycle �me (s)
• US stance � me (%GC)
• US swing �me (%GC)
• US double support � me (%GC)
• US step length (%h)
• US stride length (%h)
• US step width (%h)
• US peak swing velocity (%h/s)

Unrelated to side:
• Gait speed (%h/s)
• Step length asymmetry (s)
• Swing asymmetry (%GC)
• Stance asymmetry (%GC)
• Step �me asymmetry (%h)

Variables removed (n=6)

• AS double support � me (%GC)
• US double support �me (%GC)
• Step length asymmetry (s)
• Swing asymmetry (%GC)
• Stance asymmetry (%GC)
• Step �me asymmetry (%h)

(Model A) Latent Factors

• Pace
• Phases
• Rhythm
• Postural control

(Model B) Dominant Variables

• AS stride length (%GC)
• AS stance � me (%h)
• AS gait cycle �me (s)
• AS step width (%h)

Suitability for factor analysis
KMO test

(≥ 0.5)
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Fig. 3   Model of the gait in 
patients one week after THA 
surgical intervention. Factor 
analysis of the selected 19 spa-
tiotemporal parameters resulted 
in four orthogonal gait domains. 
Factor loadings considered 
relevant (≥ 0.5) are shown in 
black. The dominant variables 
of each latent factor are bolded. 
The values in the circles repre-
sent the proportion of total vari-
ance explained by each domain. 
Affected side (AS), unaffected 
side (US), %h percent of height, 
%GC percent of gait cycle Gait

80.5%

Pace
32.5%

Phases
22.2%

Rhythm
15.1%

Postural 
control
10.7%

AS step length (%h)
US step length (%h)
AS stride length (%h)
US stride length (%h)
AS peak swing velocity (%h/s)
US peak swing velocity (%h/s)
Gait speed (%h/s)

AS stance � me (%GC)
US stance � me (%GC)
AS swing �me (%GC)
US swing � me (%GC)

AS gait cycle � me (s)
US gait cycle � me (s)

AS step width (%h)
US step width (%h)

Pace RhythmPhases Postural 
control

1.016
0.726

-0.058
-0.112
0.018
0.030
0.083
0.007
0.041

-0.024
-0.077
-0.004
-0.013

0.045
0.063

0.708
0.749
1.027
1.040
0.692
0.713
0.770

0.114
-0.174
-0.109
0.162

0.122
0.033

0.058
-0.056

0.979
0.802
-0.963
-0.804

-0.271
-0.181
0.018
0.052
0.091
0.123
0.086

0.121
0.082

0.001
-0.050

0.955
0.928

0.191
0.184
0.128
0.103
-0.417
-0.306
-0.306

0.081
0.134
-0.010
-0.039

0.010
0.086

Fig. 4   Plots illustrating gait traits at 7  days after THA surgery and 
the variation with preoperative conditions. The results are presented 
across the gait domains (Model A) and through the change in the 
respective dominant variables (Model B). The marked dots represent 
the mean value, the shaded dots the individual patient values, and the 
error bars represent the standard error estimated by bootstrapping 

with 10,000 resamples. In the postoperative walk, statistically sig-
nificant differences were detected across approaches in the latent fac-
tor "Phases" and in the corresponding dominant variable "AS stance 
time." Horizontal black bars show the p-values of the post hoc study. 
Abbreviations: affected side (AS), percent of height (%h), percentage 
of gait cycle (%GC)
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extremities, which could lead to dynamic instability, poten-
tially increasing the risk of falling [36]. These findings are 
reflected by the medium variation of this domain after sur-
gery ( d = −0.65 ± 0.14 ). The second factor is named Phases 
and describes the different moments of walking, including 
stance and swing time. Gait showed a small variation in this 
domain ( d = 0.42 ± 0.15) . For this factor, the stance phase 
was selected as dominant variable. In healthy subjects, the 
ratio between the stance time and the gait cycle is equal to 
the inverse of the golden ratio �−1 ≅ 61.8% [31], which is an 
irrational number with specific harmonic iterative properties 
also found in other biological fields. This proportion can 
be disrupted by walking disorders [37]. The third factor is 
called Rhythm and reflects the patients' gait cycle, which is 
even the dominant variable. In this study, this domain is the 
most affected by THA in the short-term ( d = 1.34 ± 0.17) , 
possibly due to the (a) pain associated with the procedure 
and (b) muscle and soft tissue damage caused by the surgi-
cal procedure [6, 38]. The fourth factor, Postural control, is 
related to the step width, which is the dominant variable. In 
the present study, step width increased on both the affected 
and unaffected sides after surgery. This domain experienced 
a large variation ( d = 0.90 ± 0.23) in the immediate postop-
erative, a behavior typically linked to compensatory patterns 
adopted to maintain balance and that is influenced by pain.

The investigation detected significant changes in gait 
characteristics seven days after surgery. This model allows 
an in-depth analysis of significant factors influencing gait 
patterns, facilitating the development of recovery methods 
that are more targeted. A comparative examination of the 
gait domains chosen sheds light on the differences between 
the three surgical approaches.The influence of the surgical 
approach on the surgery outcome is widely studied. Man-
tovani et al. have claimed that the choice of the surgical 
approach may influence postoperative gait [8]. However, 
there is much debate about which is the most effective solu-
tion [6]. The anterior approach has increased in popularity 
among surgeons and patients because it seems to offer better 
early outcomes in terms of pain, rehabilitation, and length of 
stay [39]. However, as of today, no clear evidence emerged 
to support the superiority of any approach in the mid to long 
term [40]. The results of this study evidence statistically 
significant differences in Phases domain between the pos-
terior approach group and both the lateral (p-value = 0.017) 
and anterior (p-value = 0.002) approach groups. This find-
ing suggests that the surgical approach used may have an 
impact on gait within the first week after surgery. Patients 
who underwent the posterior approach exhibited a signifi-
cant deviation from the golden ratio in their gait cycle to 
stance time ratio ( 47.8% ± 2.3 , p-value < 0.001), while 
no significance was found with the lateral and anterior 
approaches. This result is supported by “Model B”, where 
there are statistically significant differences in stance time 

between the posterior approach group and both the lateral 
(p-value = 0.026) and anterior (p-value = 0.005) approach 
groups. This impairment could be the result of the damage 
of the hip-abductor muscle, which plays a significant role 
during stance, and is more likely to occur in the posterior 
approach [41]. Based on the results of this study, it appears 
that the surgical approach may affect the short-term recovery 
of THA patients in terms of gait patterns. By incorporating 
these findings into the decision-making process, clinicians 
will have the opportunity to make more informed decisions, 
potentially resulting in improved outcomes for patient recov-
ery and hospital stays.

This work has some limitations. First, this is a single-
center study that involved only European patients. Therefore, 
the findings may lack external validity in other regions and 
contexts. Second, the sample size is limited, thereby limit-
ing the statistical power of some tests. However, the data-
set's suitability for EFA was demonstrated to be acceptable. 
Moreover, the gait analysis was performed using marker-
less mocap devices, which may produce inaccurate meas-
urements under certain circumstances, although technical 
precautions were made to limit this risk. Finally, patients' 
gait was recorded in the presence of researchers and physi-
cians, a condition that may have led them to consciously or 
subconsciously modify their spontaneous gait pattern [42]. 
This could potentially affect ecological validity, although 
participants underwent familiarization sessions to mitigate 
context-induced alterations.

Conclusions

This study presented a four-component gait model tailored 
to individuals undergoing THA. It allows for condensing a 
large set of spatiotemporal gait parameters into a smaller 
number of variables. By focusing solely on these four domi-
nant variables, the most important gait characteristics can 
be captured with minimal information loss. This reduces 
the burden of gait acquisition and computation, making gait 
analysis in clinical settings more accessible.

The model identified the major changes in gait character-
istics experienced at 7 days postoperatively: longer time to 
stride but shorter stride length, wider support base, and pro-
longed ground contact. The posterior approach group had a 
significantly shorter stance time compared to both the other 
approaches and the optimal reference value. This suggests 
that the posterior approach may impair gait Phases shortly 
after surgery. Additional studies are needed to confirm this 
claim.
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