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Abstract
In this note we study estimates from below of the single radius spherical discrepancy in the
setting of compact two-point homogeneous spaces. Namely, given a d-dimensional manifold
M endowed with a distance ρ so that (M, ρ) is a two-point homogeneous space and with the
Riemannianmeasureμ, we provide conditions on r such that if Dr denotes the discrepancy of
the ball of radius r , then, for an absolute constant C > 0 and for every set of points {x j }Nj=1,

one has
∫
M |Dr (x)|2 dμ(x) � CN−1− 1

d . The conditions on r that we have depend on the
dimension d of the manifold and cannot be achieved when d ≡ 1 (mod 4). Nonetheless, we
prove a weaker estimate for such dimensions as well.
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Mathematics Subject Classification 11K38 · 43A85 · 33C45

1 Introduction

In thisworkwe provide some estimates frombelow for the single radius spherical discrepancy
in the setting of compact two-point homogeneous spaces. To provide some context, let us
start by recalling a result of Beck. In [1], but see also [2, Corollary 24c, pg.182], Beck proved
that it is not possible to distribute a finite sequence of points on the unit sphere Sd so that
such distribution of points is regular with respect to spherical caps. Namely, for x ∈ Sd and
h ∈ [−1, 1], let B(x, h) be the spherical cap defined as

B(x, h) = {
y ∈ Sd : x · y ≥ h

}
.
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Given a finite sequence of points {x j }Nj=1, let μ be the normalized surface measure of Sd and
let the discrepancy D(B(x, h)) of B(x, h) be defined as

D(B(x, h)) = 1

N

N∑

j=1

χB(x,h)(x j ) − μ(B(x, h)).

Then, one has the following result ([1]). There exists a constant c > 0 such that for any finite
sequence of point {x j }Nj=1 it holds

∫ 1

−1

∫

Sd
|D(B(x, h))|2 dμ(x)dh ≥ cN−1− 1

d . (1)

An important feature to point out in Beck’s estimate is that in the left-hand side of (1) one
averages over all the possible values of h. It is still unclear, and a matter of investigation, if
such averaging ploy is necessary or not to obtain large discrepancy estimates. In regard of
this matter, Montgomery [19, 20] proved, for instance, that in order to have large discrepancy
for discs in the two dimensional torus, it is enough to average on two discs only, one of
radius 1/2 and the other of radius 1/4. His strategy is based on an inequality on exponential
sums, now known as Cassels-Montgomery inequality [20, Theorem 5.12], which can be
naturally extended to higher dimensions, and has been proved to hold for eigenfunctions of
the Laplacian on compact Riemannian manifolds [8, 16]. This strategy has proven to be very
versatile, allowing to obtain several estimates from below of the discrepancy with respect to
different testing families such as rectangles or convex sets [7, 10–12], or in different ambient
spaces other than the d-dimensional torus, such as the sphere itself or compact two-point
homogeneous spaces [3, 9].

In particular, in [9] the first three authors of this paper proved a similar “two radius”
estimate for the discrepancy with respect to balls in the setting of compact two-point homo-
geneous spaces. However, before stating such result it is necessary to recall Skriganov’s
generalization of Beck’s result [26].

LetM be a compact d-dimensional Riemannian manifold endowed with metric ρ so that
(M, ρ) is a two-point homogeneous space (the definition of such spaces is recalled later). Let
μ be the normalized Riemannian measure on M and let Br (x) = {y ∈ M : ρ(x, y) < r}.
For a given finite sequence of points

{
x j

}N
j=1 ⊆ M and positive weights

{
a j

}N
j=1 such that

a1 + a2 + · · · + aN = 1 we define the discrepancy of the ball Br (x) by

Dr (x) =
N∑

j=1

a jχBr (x)(x j ) − μ(Br (x)). (2)

In the case of equal weights, it is proved in [26, Theorem 2.2] that if η is a positive, locally
integrable function on (0, π) which satisfies a suitable integrability condition, then there
exists c > 0 such that for every finite sequence of N points the estimate

∫ π

0

∫

M
|Dr (x)|2 dμ(x)η(r)dr ≥ cN−1− 1

d (3)

holds. Such estimate is known to be optimal. Indeed, the existence of distributions with
quadratic discrepancy bounded above by cN−1−1/d has been proved (with probabilistic
arguments) even in more general settings than compact two-point homogeneous spaces,
including all compact d-dimensional Riemannian manifolds. See for example [5, Corollary
8.2], [25, Theorem 1.1] or [27, Theorem 2.1]. In fact, in the case of compact two-point
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homogeneous spaces, Skriganov [26, Corollary 2.1] proved a deterministic result, showing
that for well-distributed optimal cubature formulas one has

∫ π

0

∫

M
|Dr (x)|2 dμ(x)η(r)dr ≤ cN−1− 1

d . (4)

The existence of such cubature formulas for the sphere has been proved by Bondarenko,
Radchenko and Vyazovska in [4], whereas for more general Riemannian manifolds it has
been proved in [13, 15].

Going back to the issue of single radius estimates, notice that, similarly to Beck’s result,
also in the left-hand side of (3) one is averaging over all the possible radii. However, the
following two radii result is proved in [9]. If d �≡ 1(mod 4), for any 0 < r < π

2 , one has the
sharp estimate

∫

M

(|Dr (x)|2 + |D2r (x)|2
)
dμ(x) ≥ cN−1− 1

d .

If d ≡ 1(mod 4) the technique used in [9], which goes back toMontomery’s aforementioned
works, fails. It fails also if one is willing to average on any finite number of radii. At the
cost of losing the sharpness, a single radius estimate, which holds for any dimension, is also
proved in [9]. Namely, for every ε > 0 and for almost every 0 < r < π there exists a constant
c > 0 such that, for every finite sequence {x j }Nj=1 ⊆ M, one has

∫

M
|Dr (x)|2 dμ(x) ≥ cN−1− 3

d −ε. (5)

In a recentworkofBilyk,Mastrianni andSteinerberger a sharp single radius estimate is proved
for some suitable radii in the case ofM = Sd with d �≡ 1 (mod 4). Precisely, in [3, Theorem
5] it is proved that if M = Sd with d �≡ 1 (mod 4) and if cos r is (d + 1)/2−gegenbadly
approximable, then

∫

M
|Dr (x)|2dμ(x) ≥ cN−1− 1

d .

We recall that x ∈ (−1, 1) is λ-gegenbadly approximable, λ > 0, if there exists a constant
cx > 0 such that, for all m ∈ N,

|Pλ
m(x)| ≥ cxm

λ−1,

where Pλ
m denotes the Gegenbauer polynomial of degreem (see [3, Section 1]). In particular,

a necessary and sufficient condition to check if a number is λ-gegenbadly approximable or
not is also given in [3]. See also Corollary 3.6 here.

Our first result is in the same spirit as the one by Bilyk–Mastrianni–Steinerberger. How-
ever, before stating it, we need to precisely introduce the setting in which we are working.
A d-dimensional Riemannian manifold M with distance ρ is said to be a two-point homo-
geneous space if given four points x1, x2, y1, y2 ∈ M such that ρ(x1, y1) = ρ(x2, y2), then
there exists an isometry g of M such that gx1 = x2 and gy1 = y2. Compact connected
two-point homogeneous spaces have been completely characterized by Wang [30]. Namely,
it turns out that M is isometric to one of the following compact rank 1 symmetric spaces:

(i) the Euclidean sphere Sd = SO(d + 1)/SO(d) × {1}, d � 1;
(ii) the real projective space Pn(R) = O(n + 1)/O(n) × O(1), n � 2;
(iii) the complex projective space Pn(C) = U (n + 1)/U (n) ×U (1), n � 2;
(iv) the quaternionic projective space Pn(H) = Sp(n + 1)/Sp(n) × Sp(1), n � 2;

123



   52 Page 4 of 16 L. Brandolini et al.

(v) the octonionic projective plane P2(O).

From now on we will always assume thatM is one of the above symmetric spaces with a
metricρ normalized so that diam(M) = π and theRiemannianmeasureμ normalized so that
μ(M) = 1. If d denotes the real dimension of Pn(F), then d = nd0, where d0 = 1, 2, 4, 8
according to the real dimension of F = R, C, H and O respectively. In the case of Sd it will
be convenient to set d0 = d . See [14, pp. 176-178], see also [17], [26] and [31]. Recall that
Dr (x) denotes the discrepancy for balls defined as in (2). The following is our extension to
compact two point homogeneous spaces of the result in [3].

Theorem 1.1 Let p and q be coprime integers, 0 < p < q, such that

d + d0 + 2

4
p − d − 1

4
q /∈ Z. (6)

Then, there exists a constant C > 0 such that for every set of points
{
x j

}N
j=1 ⊆ M and

positive weights
{
a j

}N
j=1 satisfying a1 + a2 + · · · + aN = 1 we have

∫

M

∣
∣Dpπ/q(x)

∣
∣2 dμ(x) ≥ CN−1− 1

d .

We point out that condition (6) can always be achieved for particular choices of p and
q , except when M is the Euclidean sphere or the real projective space with dimension
d ≡ 1 (mod 4). Observe that in all the other spaces we are interested in, the dimension is
even, and therefore d �≡ 1 (mod 4). In this case, indeed, condition (6) is simply satisfied by
choosing, for example, p ∈ 4Z and q odd. Again this result is optimal in view of Corollary
8.2 in [5]. Moreover, with the same technique used by Skriganov to prove the estimate from
above for cubature formulas (4), it is possible to prove a uniform estimate in the radius r ,

∫

M
|Dr (x)|2 dμ(x) ≤ cN−1− 1

d ,

for suitable choices of weights {a j } and points {x j }. See [9, Theorem 15] for a precise
statement.

When d ≡ 1 (mod 4) the technique we use to prove Theorem 1.1 fails since the estimate
of Theorem 3.4 does not hold. In the case of the d-dimensional torus Td it is known that for
such values of d the discrepancy can actually be a bit smaller than the expected value N−1− 1

d .
See [22, Theorem 3.1]. See also [6], [18] and [21]. We remind that when d ≡ 1 (mod 4),M
can only be the Euclidean sphere or the real projective space. In this case we can prove the
following result (cf. with [9, Theorem 2]).

Theorem 1.2 Let d ≡ 1 (mod 4). Let {qn} be the sequence of primes in increasing order and
let {pn} be a sequence of positive integers such that for some δ > 0 and for every n we have
δ ≤ pn/qn ≤ 1 − δ. Then, for every N ≥ 3, for every choice of points {x j }Nj=1 and positive

weights {a j }Nj=1 with
∑N

j=1 a j = 1 there exists n ≤ c log N/ log log N such that
∫

M

∣
∣Dpnπ/qn (x)

∣
∣2 dμ(x) ≥ CN−1− 1

d
log log N

log4 N
.

In the next section we recall some preliminaries necessary to work in two-point homoge-
neous spaces, whereas in Section 3 we prove our main results.

With the notation A ≈ B, we mean the fact that there exist two constant c1 and c2
independent of the involved variables such that c1A ≤ B ≤ c2A.
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2 Harmonic analysis preliminaries in two-point homogeneous spaces

The preliminaries contained in this section are essentially taken from the literature and from
[9]. Hence, we omit most of the proofs and we invite the reader to refer to [9] and the
references therein.

In the following, to keep notation simple, we will use

a = d − 2

2
, b = d0 − 2

2
.

Recall that if M = Pn(F), then d = nd0, where d0 = 1, 2, 4, 8 according to the real
dimension of F = R,C,H and O respectively. Instead, if M = Sd it is convenient to set
d = d0.

If o is a fixed point in M, then M can be identified with the homogeneous space G/K ,
where G is the group of isometries of M and K is the stabilizer of o. We will also identify
functions F(x) on M with right K -invariant functions f (g) on G by setting f (g) = F(x)
when go = x . If μ is the Riemannian measure onM normalized so that μ(M) = 1, then μ

is invariant under the action of G, in other words, for every g ∈ G,
∫

M
F(gx)dμ(x) =

∫

M
F(x)dμ(x)

Definition 2.1 A function F onM is a zonal function (with respect to o) if for every x ∈ M
and every k ∈ K we have F(kx) = F(x). We will say that F is zonal with respect to y if
F(gx) is a zonal function (with respect to o) and y = go.

Lemma 2.2 Let F be a zonal function. Then F(x) depends only on ρ(x, o). Furthermore,
defining F0 so that F(x) = F0(ρ(x, o)) we have

∫

M
F(x)dμ(x) =

∫ π

0
F0(r)A(r)dr , (7)

where

A(r) = c(a, b)
(
sin

r

2

)2a+1 (
cos

r

2

)2b+1

and

c(a, b) =
(∫ π

0

(
sin

r

2

)2a+1 (
cos

r

2

)2b+1
dr

)−1

= 	(a + b + 2)

	(a + 1)	(b + 1)
.

Let 
 be the Laplace-Beltrami operator onM, let λ0, λ1, . . . , be the distinct eigenvalues
of −
 arranged in increasing order, letHm be the eigenspace associated with the eigenvalue
λm , and let dm its dimension. It is well known that

L2(M) =
+∞⊕

m=0

Hm . (8)

If F(x) = F0(ρ(x, o)) is a zonal function on M, then


F(x) = 1

A(t)

d

dt

(

A(t)
d

dt
F0(t)

)∣
∣
∣
∣
t=ρ(x,o)

(9)

(see (4.16) in [14]).
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Definition 2.3 The zonal spherical function of degree m ∈ N with pole x ∈ M is the unique
function Zm

x ∈ Hm , given by the Riesz representation theorem, such that for every Y ∈ Hm

Y (x) =
∫

M
Y (y)Zm

x (y)dμ(y).

The next lemma summarizes the main properties of zonal functions. The case M = Sd

is discussed in detail in [28], whereas we refer to [9, Lemma 6] for the general case.

Lemma 2.4 i) If Y 1
m, . . . , Ydm

m is an orthonormal basis of Hm ⊂ L2(M), then

Zm
x (y) =

dm∑

�=1

Y �
m(x)Y �

m(y).

ii) Zm
x is real valued and Zm

x (y) = Zm
y (x).

iii) If g ∈ G, then Zm
gx (gy) = Zm

x (y).

iv) ∀x ∈ M, ‖Zm
x ‖∞ = Zm

x (x) = ‖Zm
x ‖22 = dm .

v) Zm
o (x) is a zonal function and

Zm
o (x) = dm

Pa,b
m (1)

Pa,b
m (cos(ρ(x, o))) (10)

where Pa,b
m are the Jacobi polynomials.

vi)
{
d−1/2
m Zm

o

}+∞
m=0 is an orthonormal basis of the subspace of L

2(M) of zonal functions.
vii) Let Pm denote the orthogonal projection of L2(M) onto Hm. Then for every zonal

function f ,

Pm f (x) = d−1
m

∫

M
f (y)Zm

o (y)dμ(y)Zm
o (x).

viii) λm = m(m + a + b + 1).
ix) We have

dm = (2m + a + b + 1)
	(b + 1)

	(a + 1)	(a + b + 2)

	(m + a + b + 1)

	(m + b + 1)

	(m + a + 1)

	(m + 1)

≈ md−1.

3 Proof of themain results

In this section we prove our main results. In order to do so we need some preliminary results
taken from [9]. In the following lemma we obtain an identity for the L2 discrepancy which
separates the contribution of the geometry of the balls Br (x) from the one of the sequence
{x j }Nj=1 and of the weights {a j }Nj=1.

Lemma 3.1 Let Dr (x) be as in (2). Then

∫

M
|Dr (x)|2 dμ(x) =

+∞∑

m=1

dm∑

�=1

∣
∣
∣
∣
∣
∣

N∑

j=1

a jY
�
m(x j )

∣
∣
∣
∣
∣
∣

2

d−2
m

∣
∣
∣
∣

∫

Br (o)
Zm
o (y)dμ(y)

∣
∣
∣
∣

2

.
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Proof By (8) we have

∫

M
|Dr (x)|2 dμ(x) =

+∞∑

m=0

∫

M
|PmDr (x)|2dμ(x)

Since o is arbitrary and χBr (x j ) is zonal with respect to x j , applying (vii) of Lemma 2.4 with
o substituted by x j , we have

Pm
(
χBr (·)(x j )

)
(x) = Pm

(
χBr (x j )

)
(x) = d−1

m

∫

M
χBr (x j )(y)Z

m
x j (y)dμ(y)Zm

x j (x).

Overall, applying (iii) of Lemma 2.4 we obtain

PmDr (x) =
N∑

j=1

a jd
−1
m

∫

Br (o)
Zm
o (y)dμ(y)Zm

x j (x) − δ0(m)μ(Br (o)),

where δ0(m) is the Kronecker delta. In particular P0Dr (x) = 0 and for m > 0

PmDr (x) = d−1
m

N∑

j=1

a j

∫

Br (o)
Zm
o (y)dμ(y)Zm

x j (x)

= d−1
m

dm∑

�=1

⎛

⎝
N∑

j=1

a jY �
m(x j )

⎞

⎠
∫

Br (o)
Zm
o (y)dμ(y)Y �

m(x).

Finally,

∫

M
|Dr (x)|2dμ(x) =

+∞∑

m=1

dm∑

�=1

∣
∣
∣
∣
∣
∣

N∑

j=1

a jY
�
m(x j )

∣
∣
∣
∣
∣
∣

2

d−2
m

∣
∣
∣
∣

∫

Br (o)
Zm
o (y)dμ(y)

∣
∣
∣
∣

2

.

�
It is clear from the above lemma that we now need to estimate the quantities

dm∑

�=1

∣
∣
∣
∣
∣
∣

N∑

j=1

a jY
�
m(x j )

∣
∣
∣
∣
∣
∣

2

and d−2
m

∣
∣
∣
∣

∫

Br (o)
Zm
o (y)dμ(y)

∣
∣
∣
∣

2

. (11)

The first of these quantities is controlled with a Cassels-Montgomery-type estimate in the
following proposition.

Proposition 3.2 There exist C0,C1 > 0 such that for every L ≥ M > 0 we have

L∑

m=M

dm∑

�=1

∣
∣
∣
∣
∣
∣

N∑

j=1

a jY
�
m(x j )

∣
∣
∣
∣
∣
∣

2

≥ C1

N∑

j=1

a2j L
d − C0M

d .

Proof By theCassels-Montgomery inequality formanifolds (seeTheorem1 in [8] orTheorem
9 in [16]) along with the fact that

L∑

m=0

dm ≈
L∑

m=0

md−1 ≈ Ld ,
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we have

L∑

m=0

dm∑

�=1

∣
∣
∣
∣
∣
∣

N∑

j=1

a jY
�
m(x j )

∣
∣
∣
∣
∣
∣

2

≥ C1

N∑

j=1

a2j L
d .

Since, by Lemma 2.4 (iv) Zm
x j (xk) ≤ dm ,

M−1∑

m=0

dm∑

�=1

∣
∣
∣
∣
∣
∣

N∑

j=1

a jY
�
m(x j )

∣
∣
∣
∣
∣
∣

2

=
M−1∑

m=0

N∑

j,k=1

a jak Z
m
x j (xk) ≤

M−1∑

m=0

dm ≤ C0M
d ,

and the proposition follows. �
Moving now to the second quantity in (11), in the next lemma we obtain an identity for

the integral of zonal spherical functions on a ball.

Lemma 3.3 For any 0 ≤ r ≤ π and for any m ≥ 1 we have
∫

Br (o)
Zm
o (x)dμ(x) = c(a, b)dm

mPa,b
m (1)

Pa+1,b+1
m−1 (cos r)

(
sin

r

2

)2a+2 (
cos

r

2

)2b+2
.

Proof By (7) and (10),
∫

Br (o)
Zm
o (x)dμ(x) = dm

Pa,b
m (1)

∫ r

0
Pa,b
m (cos t)A(t)dt

= c(a, b)dm

2a+b+1Pa,b
m (1)

∫ 1

cos r
Pa,b
m (x)(1 − x)a(1 + x)bdx,

and the thesis follows applying Rodrigues’ formula (see [29, (4.3.1)])

Pa,b
m (x)(1 − x)a(1 + x)b = − 1

2m

d

dx

(
Pa+1,b+1
m−1 (x)(1 − x)a+1(1 + x)b+1

)
.

�
By Lemma 3.1 we need to estimate

∣
∣
∣
∣

∫

Br (o)
Zm
o (y)dμ(y)

∣
∣
∣
∣

2

. (12)

However, it is clear from the previous lemma that this quantity vanishes when cos r is a zero
of the Jacobi polynomial Pa+1,b+1

m−1 . On the other hand, since (see [29, formula (4.3.3)])
∫ π

0
Pα,β
m (cos r)2

(
sin

r

2

)2α+1(
cos

r

2

)2β+1
dr

= 	(m + α + 1)	(m + β + 1)

(2m + α + β + 1)	(m + 1)	(m + α + β + 1)
≥ C

m
,

wewould expect that, on average, |Pα,β
m (cos r)| ≥ Cm−1/2. The following theorem identifies

the values of r for which this relation holds.

Theorem 3.4 Let α > −1 and β > −1, and call γ = (α + β + 1)/2 and δ = −(2α − 1)/4.
Let r ∈ R \ πZ. There exist positive constants C and m0 such that for m ≥ m0,

∣
∣Pα,β

m (cos r)
∣
∣ ≥ Cm− 1

2
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if and only if r/π = p/q ∈ Q \ Z, with p and q coprime, and

γ p + δq /∈ Z. (13)

Notice that if r ∈ πZ, then the situation is somewhat particular. More precisely
|Pα,β

m (cos r)| = |Pα,β
m (±1)| and this is |(m+α

m

)| ≈ mα or |(−1)m
(m+β

m

)| ≈ mβ .

Proof Remember that for r /∈ πZ (see [29, Theorem 8.21.8])

Pα,β
m (cos r)

= m− 1
2 π− 1

2

(
sin

r

2

)−α− 1
2

(
cos

r

2

)−β− 1
2 cos

((
m + α + β + 1

2

)
r − 2α + 1

4
π

)

+ O(m− 3
2 ).

We are now looking for values of r for which there exists η > 0 and m0 ≥ 1 such that
∣
∣
∣
∣cos

((
m + α + β + 1

2

)
r − 2α + 1

4
π

)∣
∣
∣
∣ ≥ η (14)

for all integer values of m ≥ m0. If r/π /∈ Q then {mr : m ≥ m0} is dense mod π in [0, π]
and condition (14) cannot be achieved. Assume now that r/π = p/q ∈ Q with p and q
coprime. Then condition (14) is equivalent to asking that, for all m = 1, . . . , q ,

(

m + α + β + 1

2

)
p

q
− 2α + 1

4
+ 1

2
/∈ Z,

(notice that the above condition is q-periodic in m) or equivalently

Q = pm + α + β + 1

2
p − 2α − 1

4
q = pm + γ p + δq is not a multiple of q. (15)

Also, (15) is equivalent to require that

H = γ p + δq /∈ Z.

Indeed, if H is not an integer, then Q is not an integer either and (15) holds. Conversely,
assume that H is an integer. Then, since p and q are coprime, the equation pm + q j = −H
has integer solutions, and (15) does not hold. �

According to the values of γ and δ, it may be the case that condition (13) holds for any
possible choice of coprime p and q , for particular values of p and q or for no values of p
and q . The following proposition shows all the possible different cases.

Proposition 3.5 Let p/q ∈ Q \ Z. Then we have the following.
(i) Suppose 1, γ, δ linearly independent overQ. Then (13) holds for any choice of coprime

p and q.
(ii) Suppose γ and δ irrational, there exist integers j1, j2 and j3 with no common divisors

such that j1 and j2 have a nontrivial common divisor, and j1γ + j2δ + j3 = 0. Then
(13) holds for any choice of coprime p and q.

(iii) Suppose γ and δ irrational, there exist integers j1, j2 and j3 such that j1 and j2 have
no nontrivial common divisors and j1γ + j2δ + j3 = 0. Then (13) holds for any choice
of coprime p and q, except for p/q = j1/ j2.

(iv) Suppose γ rational and δ irrational, or viceversa. Then (13) holds for any choice of
coprime p and q.

(v) Suppose γ and δ are integers. Then (13) does not hold for any choice of coprime p and
q.
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(vi) Suppose that both γ and δ are rational, but at least one of them is not integer. Then
there exist coprime p and q such that (13) is achieved.

Proof If 1, γ, δ are linearly independent over the rationals, then γ p + δq is not an integer
and therefore condition (13) is achieved for any choice of p/q .

Let us now study the case 1, γ, δ linearly dependent over the rationals. In particular, there
exist three integers j1, j2, j3, not all equal to 0, such that

j1γ + j2δ + j3 = 0.

Assume without loss of generality that j1, j2 and j3 do not have a nontrivial common divisor.
Suppose first that both γ and δ are irrational. Then j1 �= 0 and j2 �= 0, and

δ = − j1
j2

γ − j3
j2

so that

γ p + δq = γ p +
(

− j1
j2

γ − j3
j2

)

q =
(
p

q
− j1

j2

)

qγ − j3
j2
q.

If p/q �= j1/ j2, then γ p + δq is not rational and (13) is achieved.
Assume now p/q = j1/ j2.
Suppose first that j1 and j2 are coprime. Then q = ± j2 and since

γ p + δq = − j3
j2
q = ± j3,

it follows that (13) is not achieved.
Suppose now that j1 = hp and j2 = hq for some integer h �= ±1. Of course h does not

divide j3. Then

γ p + δq = − j3
j2
q = − j3

h
/∈ Z,

and (13) is achieved.
Suppose now γ irrational and δ rational. Since p �= 0, then γ p + δq is not rational and

condition (13) is achieved.
Similarly, if δ is irrational and γ is rational, since q �= 0, then γ p+ δq is not rational and

condition (13) is achieved.
If γ, δ ∈ Z, then (13) is not achieved for any value of p and q .
Finally, if γ and δ are both rational, but, say, δ is not integer, then it suffices to let p be

any integer such that γ p ∈ Z, and q any integer prime with p such that δq /∈ Z. �
Since the Gegenbauer polynomials are particular cases of the Jacobi polynomials,

Pλ
m(x) = 	

(
λ + 1

2

)
	(m + 2λ)

	(2λ)	
(
m + λ + 1

2

) P
λ− 1

2 ,λ− 1
2

m (x)

(λ > −1/2), we can recover the result in [3] on λ-gegenbadly approximable numbers.

Corollary 3.6 Let λ > −1/2. Let r ∈ R \ πZ. There exist positive constants C and m0 such
that for m ≥ m0,

∣
∣Pλ

m(cos r)
∣
∣ ≥ Cmλ−1
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if and only if r/π = p/q ∈ Q \ Z, with p and q coprime, and

λp − λ − 1

2
q /∈ Z. (16)

In particular, the following three cases are quickly treated.

(i) Suppose λ is irrational. Then (16) holds for any choice of coprime p and q, except for
p/q = 1/2.

(ii) Suppose λ is an odd integer. Then (16) does not hold for any choice of coprime p and
q.

(iii) Suppose that λ ∈ Q, but λ is not an odd integer. Then there exist coprime p and q such
that (16) is achieved.

Proof It suffices to apply Theorem 3.4 and Proposition 3.5, and notice that the cases (i), (ii)
and (iv) of Proposition 3.5 do not occur. �

We are now ready to apply Theorem 3.4 and Proposition 3.5 to estimate (12) from below.

Lemma 3.7 Let 0 < r < π . There exist positive constants C and m0 such that for m ≥ m0,
∣
∣
∣
∣

∫

Br (o)
Zm
o (x)dμ(x)

∣
∣
∣
∣ ≥ Cdmm

−a−3/2

if and only if r/π = p/q, where p and q are coprime and

d + d0 + 2

4
p − d − 1

4
q /∈ Z.

In particular, in this case, d �≡ 1 (mod 4).

Observe that the above condition can easily be satisfied, for example take p ∈ 4Z and q odd.

Proof By Lemma 3.3, for any 0 ≤ r ≤ π and for any m ≥ 1 we have
∫

Br (o)
Zm
o (x)dμ(x) = c(a, b)dm

mPa,b
m (1)

Pa+1,b+1
m−1 (cos r)

(
sin

r

2

)2a+2 (
cos

r

2

)2b+2
.

We can now apply Theorem 3.4 with α = a + 1 = d/2 and β = b + 1 = d0/2, so that
γ = (α + β + 1)/2 = (d + d0 + 2)/4 and δ = −(2α − 1)/4 = −(d − 1)/4. The result now
follows immediately, recalling that Pa,b

m (1) = (m+a
m

) ≈ ma . �
We can now prove Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1 Let m0 as in Lemma 3.7 and let L ≥ m0. Then by Lemma 3.1, Propo-
sition 3.2 and Lemma 3.7, we have
∥
∥Dpπ/q

∥
∥2
2

=
+∞∑

m=1

d−2
m

∣
∣
∣
∣
∣

∫

Bpπ/q (o)
Zm
o (x)dμ(x)

∣
∣
∣
∣
∣

2 dm∑

�=1

∣
∣
∣
∣
∣
∣

N∑

j=1

a jY
�
m(x j )

∣
∣
∣
∣
∣
∣

2

≥ min
m0≤m≤L

⎛

⎝d−2
m

∣
∣
∣
∣
∣

∫

Bpπ/q (o)
Zm
o (x)dμ(x)

∣
∣
∣
∣
∣

2
⎞

⎠
L∑

m=m0

dm∑

�=1

∣
∣
∣
∣
∣
∣

N∑

j=1

a jY
�
m(x j )

∣
∣
∣
∣
∣
∣

2

≥ C

(

min
m0≤m≤L

m−2a−3
)

⎛

⎝C1L
d

N∑

j=1

a2j − C0m
d
0

⎞

⎠ ≥ CL−2a−3

⎛

⎝C1L
d

N∑

j=1

a2j − C0m
d
0

⎞

⎠ .
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Applying the Cauchy-Schwarz inequality to
∑N

j=1 a j = 1 gives

N∑

j=1

a2j ≥ 1

N
.

Let N ≥ N0 = C1/(2C0). Then, setting L = �m0(2C0C
−1
1 N )1/d� + 1, we have L ≥ m0,

C1L
d

N∑

j=1

a2j − C0m
d
0 ≥ C1

Ld

2N

and ∥
∥Dpπ/q

∥
∥2
2 ≥ CN−1− 1

d . (17)

Let now N < N0 and let us consider the points and weights

x̃ j =
{
x j 1 ≤ j ≤ N − 1,

xN N ≤ j ≤ N0,
ã j =

⎧
⎨

⎩

a j 1 ≤ j ≤ N − 1,
aN

N0 − N + 1
N ≤ j ≤ N0.

Since the discrepancy D̃r of the points {̃x j }N0
j=1 and weights {̃a j }N0

j=1 coincides with the

discrepancy Dr of the points {x j }Nj=1 and weights {a j }Nj=1, applying (17) to D̃r gives

∥
∥Dpπ/q

∥
∥2
2 ≥ CN

−1− 1
d

0 ≥ CN
−1− 1

d
0 N−1− 1

d

also when 1 ≤ N < N0. �
Proof of Theorem 1.2 Let H and L be positive integers that will be fixed later. By Lemma
3.1,

H∑

n=1

1

H

∥
∥Dpnπ/qn

∥
∥2
2 =

+∞∑

m=1

dm∑

�=1

∣
∣
∣
∣
∣
∣

N∑

j=1

a jY
�
m(x j )

∣
∣
∣
∣
∣
∣

2
H∑

n=1

1

H

∣
∣
∣
∣
∣

∫

Bpnπ/qn (o)
d−1
m Zm

o (y)dμ(y)

∣
∣
∣
∣
∣

2

≥
L∑

m=1

dm∑

�=1

∣
∣
∣
∣
∣
∣

N∑

j=1

a jY
�
m(x j )

∣
∣
∣
∣
∣
∣

2
H∑

n=1

1

H

∣
∣
∣
∣
∣

∫

Bpnπ/qn (o)
d−1
m Zm

o (y)dμ(y)

∣
∣
∣
∣
∣

2

.

By Lemma 3.3 and [29, Theorem 8.21.8], uniformly in ε ≤ r ≤ π − ε,
∫

Br (o)
d−1
m Zm

o (x)dμ(x) = c(a, b)

mPa,b
m (1)

Pa+1,b+1
m−1 (cos r)

(
sin

r

2

)2a+2 (
cos

r

2

)2b+2

= c(a, b)π− 1
2

m
3
2 Pa,b

m (1)

(
sin

r

2

)a+ 1
2
(
cos

r

2

)b+ 1
2
cos

((
m + a + b + 1

2

)
r −

(
a + 3

2

)π

2

)

+ O(m−a− 5
2 ).

Since d = 4S + 1 for some positive integer S, then M is either Sd or Pd(R) and therefore
d0 = d or d0 = 1. Also a = (d − 2)/2 and b = (d0 − 2)/2. Hence, wheneverm + S+ (d0 −
1)/4 /∈ qnZ, since qn ≤ 2n log(n + 1) (see [24, formula (3.13)]), we have
∣
∣
∣
∣cos

((
m + d + d0 − 2

4

) pn
qn

π − d + 1

4
π

)∣
∣
∣
∣ =

∣
∣
∣
∣cos

((
m + 4S + d0 − 1

4

) pn
qn

π − 4S + 2

4
π

)∣
∣
∣
∣

=
∣
∣
∣
∣sin

((
m + S + d0 − 1

4

) pn
qn

π

)∣
∣
∣
∣ ≥

∣
∣
∣
∣sin

(
π

qn

)∣
∣
∣
∣ ≥ 2

qn
≥ 1

n log(n + 1)
.
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Now, for each m such that

m + S + d0 − 1

4
< q1 · · · qH ,

there exists 1 ≤ n ≤ H such that m + S + (d0 − 1)/4 /∈ qnZ. Hence, if

L < q1 · · · qH − S − d0 − 1

4
,

then, for m ≤ L ,

H∑

n=1

1

H

∣
∣
∣
∣
∣

∫

Bpnπ/qn (o)
d−1
m Zm

o (y)dμ(y)

∣
∣
∣
∣
∣

2

≥ 1

H

(
1

H2 log2 H

c1
m2a+3 − c2

m2a+5

)

,

and, for m ≥ c3H log H with c3 a suitable constant (say, c3 = (2c2/c1)1/2),

H∑

n=1

1

H

∣
∣
∣
∣
∣

∫

Bpnπ/qn (o)
d−1
m Zm

o (y)dμ(y)

∣
∣
∣
∣
∣

2

≥ 1

H3 log2 H

c1
2m2a+3 .

Therefore,

H∑

n=1

1

H

∥
∥Dpnπ/qn

∥
∥2
2 ≥

L∑

m=1

dm∑

�=1

∣
∣
∣
∣
∣
∣

N∑

j=1

a jY
�
m(x j )

∣
∣
∣
∣
∣
∣

2
H∑

n=1

1

H

∣
∣
∣
∣
∣

∫

Bpnπ/qn (o)
d−1
m Zm

o (y)dμ(y)

∣
∣
∣
∣
∣

2

≥
L∑

m=c3H log H

dm∑

�=1

∣
∣
∣
∣
∣
∣

N∑

j=1

a jY
�
m(x j )

∣
∣
∣
∣
∣
∣

2
1

H3 log2 H

c1
2m2a+3 .

By Proposition 3.2,

H∑

n=1

1

H

∥
∥Dpnπ/qn

∥
∥2
2 ≥ 1

H3 log2 H

c1
2L2a+3

L∑

m=c3H log H

dm∑

�=1

∣
∣
∣
∣
∣
∣

N∑

j=1

a jY
�
m(x j )

∣
∣
∣
∣
∣
∣

2

≥ 1

H3 log2 H

c1
2Ld+1

(

C1
Ld

N
− C0c

d
3H

d logd H

)

.

If H ≥ 13, by [23, Theorem 4], then q1 · · · qH > eH log H . Since we need L < q1 · · · qH −
S − (d0 − 1)/4, it suffices to have S + (d0 − 1)/4 ≤ L ≤ eH log H/2. Let us choose

L =LN := κN 1/d log N ,

H =HL := τ
log(2L)

log log(2L)
= τ

1
d log N + log(2κ) + log log N

log( 1d log N + log(2κ) + log log N )
,

for some κ, τ ≥ 1 to be fixed later. Then

eH log H = e
τ log(2L)
log log(2L)

log
(

τ log(2L)
log log(2L)

)

= e
τ log(2L)

(
1+ log τ

log log(2L)
− log log log(2L)

log log(2L)

)

≥ 2L
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for all L > e/2 if τ is large enough (say, τ ≥ 2). Also, if N ≥ e and 2L ≥ ee,

C0c
d
3H

d logd H = C0c
d
3

(

τ
log(2L)

log log(2L)
log

(

τ
log(2L)

log log(2L)

))d

= C0c
d
3

(

τ log(2L)

(
log τ

log log(2L)
+ 1 − log log log(2L)

log log(2L)

))d

≤ C0c
d
3τ

d
(

log(2κ) + log log N + 1

d
log N

)d

(log τ + 1)d

≤ C0c
d
3τ

d(log τ + 1)d
(

log(2κ) + 1 + 1

d

)d

logd N

≤ C1

2
κd logd N = C1

2

Ld

N
,

if

C1/d
0 c3τ(log τ + 1)

(

log(2κ) + 1 + 1

d

)

≤
(
C1

2

) 1
d

κ.

If 2κ ≥ e2, then

log(2κ) + 1 + 1

d
≤ 2 log(2κ),

so that we need

κ

2 log(2κ)
≥ (2C0)

1/dc3τ(log τ + 1)

C1/d
1

=: γ.

Assuming, as we may, γ ≥ e/4, it suffices

κ ≥ 4γ log(4γ ).

Hence, if τ = 13 and κ ≥ max{S + (d0 − 1)/4, ee/2, 4γ log(4γ )}, then for all N ≥ 3,

H∑

n=1

1

H

∥
∥Dpnπ/qn

∥
∥2
2 ≥ C1c1

1

H3 log2 H

1

L

1

4N
≥ CN−1−1/d log log N

log4 N
.

Since the function x �→ x/ log(x) is increasing in x ≥ e, it follows that

HL ≤ τ
(2 + log(2κ)) log N

log ((2 + log(2κ) log N )
≤ τ(2 + log(2κ))

log N

log (log N )
.

Thus, in the statement of the theorem, we can say that for all N ≥ 3,

n ≤ τ(2 + log(2κ))
log N

log (log N )
.
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