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Effective action, massive gravitons and the

Cosmological Constant

Remo Garattini

Abstract. The one loop effective action in a Schwarzschild background is here used to compute
the cosmological constant in presence of massive gravitons. It is shown that the expression of the
Zero Point Energy (ZPE) is equivalent to the one computed by means of a variational approach.
To handle with ZPE divergences, we use the zeta function regularization. The regularization
is closely related to the subtraction procedure appearing in the computation of Casimir energy
in a curved background. A renormalization procedure is introduced to remove the infinities
together with a renormalization group equation.
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Viale Marconi 5, 24044 Dalmine (Bergamo) ITALY.
INFN - sezione di Milano, Via Celoria 16, Milan, Italy

E-mail: remo.garattini@unibg.it

The path integral approach to quantum gravity

Z =
∫

D [gµν ] exp iSg [gµν ] (1)

is a powerful method to study the quantization of the gravitational field, especially in the context
of a WKB approximation on a given background. Indeed, if one considers a background ḡµν ,
the gravitational field splits into gµν = ḡµν + hµν , where hµν is a quantum fluctuation around
the background field and Eq. (1) becomes

∫
Dgµν exp iSg [gµν ] � exp iSg [ḡµν ]

∫
Dhµν exp iS(2)

g [hµν ] , (2)

where S
(2)
g [hµν ] is the action approximated to second order. Since the second order action is

quadratic in hµν , the integration in Eq.(2) is straightforward. In this context, one is able to
compute the averaged energy-momentum tensor

〈Tµν〉 = − 2√−g

δ lnZ

δgµν
, (3)

at least to one loop. The computation of the averaged energy-momentum tensor is particularly
interesting for the cosmological constant problem. Indeed, if ρ is the energy density, then we
can write Tµν = −〈ρ〉gµν and the classical cosmological constant Λc becomes Λeff = 8πGρeff =
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Λc + 8πG〈ρ〉 . In particular, we fix our attention on the gravitational field itself. In this way
Λc is computed by the quantum fluctuations of the gravitational field itself. With the help of
Eq.(3), the energy density becomes

〈ρ〉 = −i

∫
d4k

(2π)4
ln
(
λ2
)TT

, (4)

where λTT are the eigenvalues of the following second order differential operator

Oikjlhkl = −
(
λ2
)TT

hij (5)

and

Oikjl = �ikjl
L + 4Rijgkl +

1
N2

∂2

∂t2
gikgjl. (6)

N is the lapse function and �L is the Lichnerowicz operator. It is clear that the previous
expression is written in a 3 + 1 spacetime. Performing the Wick rotation and integrating over
the temporal component, finally we arrive to the following familiar expression

Λeff = 〈ρ〉 = ρ1 + ρ2 =
∫

d3k

(2π)3

[(
λ2

k,1

)TT
+
(
λ2

k,2

)TT
]
. (7)

If Λeff is considered as an eigenvalue of a Sturm-Liouville problem, we get the same expression[1].

The meaning of
(
λ2

k,i

)TT
i = 1, 2 will be clear in a due course. This expression is the core of our

evaluation of the cosmological constant and it represents the Zero Point Energy (ZPE) when
massive (massless) gravitons are taken under examination. A very crude estimate of Eq.(7)
with a cutoff at the Planck scale gives EZPE ≈ 1071GeV 4, while recent estimates on Λc give an
order of 10−47GeV 4, with a difference of about 118 orders[2]. Eq.(7) is valid even in presence of
massive gravitons provided that the Pauli-Fierz mass term[3]

SP.F. =
m2

g

8κ

∫
d4x
√
−g(4)

[
hµνhµν − h2

]
(8)

is modified in such a way that only three dimensional gravitons are massive, namely we add a
term of the type[4, 5]

Sm =
m2

g

8κ

∫
d4x
√−ĝ

[
hijhij

]
. (9)

Here mg is the graviton mass, κ = 8πG with G the Newton constant. The Pauli-Fierz mass
term breaks the gauge symmetry

hµν −→ hµν + 2∇(µ ξν), (10)

but does not introduce ghosts. On the other hand, Sm satisfies the symmetry (10). Boulware and
Deser tried to include a mass in the general framework and not simply in the linearized theory.
They discovered that the theory is unstable and produce ghosts[6]. Another problem appearing
when one consider a massive graviton in Minkowski space is the limit mg → 0: the analytic
expression in the massive and in the mass-less limit does not coincide. This is known as van
Dam-Veltman-Zakharov (vDVZ) discontinuity[7]. Other than the appearance of a discontinuity
in the mass-less limit, they showed that a comparison with experiment, led the graviton to be
rigorously mass-less. Actually, we know that there exist bounds on the graviton rest mass that
put the upper limit on a value less than 10−62 − 10−66g[8]. When graviton are massive, to
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compute Eq.(7) in practice, we refer to a Schwarzschild background. Using Regge-Wheeler[9],
the three-dimensional gravitational perturbation in its even-parity form becomes

(heven)i
j (r, ϑ, φ) = diag [H (r) , K (r) , L (r)] Ylm (ϑ, φ) (11)

and the spatial part of the operator (6) can be written as

−�S

(
hTT

)j

i
+

6
r2

(
1 − 2MG

r

)(
hTT

)j

i
+ 2

(
RhTT

)j

i
+
(
m2

gh
TT
)j

i
, (12)

where �S is the scalar curved Laplacian, whose form is

�S =
(

1 − 2MG

r

)
d2

dr2
+
(

2r − 3MG

r2

)
d

dr
− L2

r2
(13)

and Ra
j is the mixed Ricci tensor whose components are:

Ra
i =

{
−2MG

r3
,
MG

r3
,
MG

r3

}
. (14)

Thus
(
λ2

k,i

)TT
i = 1, 2 in Eq.(7) becomes (r ≡ r (x))



(
λ2

k,1

)TT
= k2 + m2

g + U1 (r) = k2 + m2
g + m2

1 (r, M) − m2
2 (r, M)

(
λ2

k,2

)TT
= k2 + m2

g + U2 (r) = k2 + m2
g + m2

1 (r, M) + m2
2 (r, M)

. (15)

m2
1 (r, M) → 0 when r → ∞ or r → 2MG and m2

2 (r, M) = 3MG/r3. Note that, while m2
2 (r)

is constant in sign, m2
1 (r) is not. Indeed, for the critical value r̄ = 5MG/2, m2

1 (r̄) = m2
g and

in the range (2MG, 5MG/2) for some values of m2
g, m2

1 (r̄) can be negative. It is interesting
therefore concentrate in this range, where m2

1 (r, M) vanishes when compared to m2
2 (r, M). So,

in a first approximation we can write




m2
1 (r) � m2

g − m2
2 (r0, M) = m2

g − m2
0 (M)

m2
2 (r) � m2

g + m2
2 (r0, M) = m2

g + m2
0 (M)

, (16)

where we have defined a parameter r0 > 2MG and m2
0 (M) = 3MG/r3

0. The main reason for
introducing a new parameter resides in the fluctuation of the horizon that forbids any kind
of approach. It is now possible to explicitly evaluate Eq.(7) in terms of the effective mass.
Including an additional 4π coming from the angular integration and introducing the zeta function
regularization, we get

Λ = ρ1 +ρ2 = − κ

16π2

2∑
i=1

∫ +∞

0
k2

i

√
k2

i + m2
i (r)dki, −→ 1

16π2
µ2ε

2∑
i=1

∫ +∞

0
dki

k2
i(

k2
i + m2

i (r)
)ε− 1

2

,

(17)
where we have introduced the additional mass parameter µ in order to restore the correct
dimension for the regularized quantities. Such an arbitrary mass scale emerges unavoidably in
any regularization scheme. Note that this procedure is completely equivalent to the subtraction
procedure of the Casimir energy computation where the zero point energy (ZPE) in different
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backgrounds with the same asymptotic properties is involved. The integration has to be meant
in the range where k2

i + m2
i (r) ≥ 0. One gets

ρi (ε) = κ
m2

i (r)
256π2

[
1
ε

+ ln

(
µ2

m2
i (r)

)
+ 2 ln 2 − 1

2

]
, (18)

i = 1, 2. To handle with the divergent energy density we extract the divergent part of Λ, in the
limit ε → 0 and we set

Λdiv =
G

32πε

(
m4

1 (r) + m4
2 (r)

)
. (19)

Thus, the renormalization is performed via the absorption of the divergent part into the re-
definition of the bare classical constant Λ

Λ → Λ0 + Λdiv. (20)

The remaining finite value for the cosmological constant reads

Λ0

8πG
=

1
256π2

{
m4

1 (r)

[
ln

(
µ2∣∣m2
1 (r)

∣∣
)

+ 2 ln 2 − 1
2

]

+m4
2 (r)

[
ln

(
µ2

m2
2 (r)

)
+ 2 ln 2 − 1

2

]}
= (ρ1 (µ) + ρ2 (µ)) = ρTT

eff (µ, r) . (21)

The quantity in Eq.(21) depends on the arbitrary mass scale µ. It is appropriate to use the
renormalization group equation to eliminate such a dependence. To this aim, we impose that[10]

1
8πG

µ
∂ΛTT

0 (µ)
∂µ

= µ
d

dµ
ρTT

eff (µ, r) . (22)

Solving it we find that the renormalized constant Λ0 should be treated as a running one in the
sense that it varies provided that the scale µ is changing

Λ0 (µ, r) = Λ0 (µ0, r) +
G

16π

(
m4

1 (r) + m4
2 (r)

)
ln

µ

µ0
. (23)

Substituting Eq.(23) into Eq.(21) we find

Λ0 (µ0, r)
8πG

= − 1
256π2



(
m2

g − m2
0 (M)

)2


ln



∣∣∣m2

g − m2
0 (M)

∣∣∣
µ2

0


− 2 ln 2 +

1
2




+
(
m2

g + m2
0 (M)

)2
[
ln

(
m2

g + m2
0 (M)

µ2
0

)
− 2 ln 2 +

1
2

]}
. (24)

We can now discuss three cases: 1) m2
g � m2

0 (M), 2) m2
g = m2

0 (M), 3) m2
g  m2

0 (M) .In case
1), we can rearrange Eq.(24) to obtain

Λ0 (µ0, r)
8πG

� − m4
g

128π2

[
ln

(
m2

g

4µ2
M

)
+

1
2

]
, (25)

where we have introduced an intermediate scale defined by

µ2
M = µ2

0 exp

(
−3m4

0 (M)
2m4

g

)
. (26)
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With the help of Eq.(26), the computation of the minimum of Λ0 is more simple. Indeed, if we
define

x =
m2

g

4µ2
M

=⇒ Λ0,M (µ0, x) = −Gµ4
M

π
x2
[
ln (x) +

1
2

]
. (27)

As a function of x, Λ0,M (µ0, x) vanishes for x = 0 and x = exp
(
−1

2

)
and when x ∈[

0, exp
(
−1

2

)]
, Λ0,M (µ0, x) ≥ 0. It has a maximum for

x̄ =
1
e

⇐⇒ m2
g =

4µ2
M

e
=

4µ2
0

e
exp

(
−3m4

0 (M)
2m4

g

)
(28)

and its value is

Λ0,M (µ0, x̄) =
Gµ4

M

2πe2
=

Gµ4
0

2πe2
exp

(
−3m4

0 (M)
m4

g

)
(29)

or

Λ0,M (µ0, x̄) =
G

32π
m4

g exp

(
3m4

0 (M)
m4

g

)
. (30)

In case 2), Eq.(24) becomes

Λ0 (µ0, r)
8πG

� Λ0 (µ0)
8πG

= − m4
g

128π2

[
ln

(
m2

g

4µ2
0

)
+

1
2

]
(31)

or
Λ0 (µ0)
8πG

= −m4
0 (M)

128π2

[
ln

(
m2

0 (M)
4µ2

0

)
+

1
2

]
. (32)

Again we define a dimensionless variable

x =
m2

g

4µ2
0

=⇒ Λ0,0 (µ0, x)
8πG

= −Gµ4
0

π
x2
[
ln (x) +

1
2

]
. (33)

The formal expression of Eq.(33) is very close to Eq.(27) and indeed the extrema are in the same
position of the scale variable x, even if the meaning of the scale is here different. Λ0,0 (µ0, x)
vanishes for x = 0 and x = 4 exp

(
−1

2

)
. In this range, Λ0,0 (µ0, x) ≥ 0 and it has a minimum

located in

x̄ =
1
e

=⇒ m2
g =

4µ2
0

e
(34)

and

Λ0,0 (µ0, x̄) =
Gµ4

0

2πe2
(35)

or
Λ0,0 (µ0, x̄) =

G

32π
m4

g =
G

32π
m4

0 (M) . (36)

Finally the case 3 ) leads to

Λ0 (µ0, r)
8πG

� −m4
0 (M)

128π2

[
ln

(
m2

0 (M)
4µ2

m

)
+

1
2

]
, (37)

where we have introduced another intermediate scale

µ2
m = µ2

0 exp

(
− 3m4

g

2m4
0 (M)

)
. (38)
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By repeating the same procedure of previous cases, we define

x =
m2

0 (M)
4µ2

m

=⇒ Λ0,m (µ0, x) = −Gµ4
m

π
x2
[
ln (x) +

1
2

]
. (39)

Also this case has a maximum for

x̄ =
1
e

=⇒ m2
0 (M) =

4µ2
m

e
=

4µ2
0

e
exp

(
− 3m4

g

2m4
0 (M)

)
. (40)

and

Λ0,m (µ0, x̄) =
Gµ4

m

2πe2
=

Gµ4
0

2πe2
exp

(
− 3m4

g

m4
0 (M)

)
(41)

or

Λ0,M (µ0, x̄) =
G

32π
m4

0 (M) exp

(
3m4

g

m4
0 (M)

)
. (42)

Remark Note that in any case, the maximum of Λ corresponds to the minimum of the
energy density.

A quite curious thing comes on the estimate on the “square graviton mass”, which in this
context is closely related to the cosmological constant. Indeed, from Eq.(34) applied on the
square mass, we get

m2
g ∝ µ2

0 � 1032GeV 2 = 1050eV 2, (43)

while the experimental upper bound is of the order
(
m2

g

)
exp

∝ 10−48 − 10−58eV 2, (44)

which gives a difference of about 1098 − 10108 orders. This discrepancy strongly recall the
difference of the cosmological constant estimated at the Planck scale with that measured in the
space where we live.
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