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Abstract

Despite the increasing prevalence and substantial burden of heart failure with preserved ejection fraction (HFpEF), which con-
stitutes up to 50% of all heart failure cases, significant challenges persist in its diagnostic and therapeutic strategies. These
difficulties arise primarily from the heterogeneous nature of the condition, the presence of various comorbidities and a wide
range of phenotypic variations. Considering these challenges, current international guidelines endorse the utilization of inva-
sive haemodynamic assessments, including resting and exercise haemodynamics, as the gold standard for enhancing diagnos-
tic accuracy in cases where traditional diagnostic methods yield inconclusive results. These assessments are crucial not only for
confirming the diagnosis but also for delineating the complex underlying pathophysiology, enabling the development of per-
sonalized treatment strategies, and facilitating the precise classification of HFpEF phenotypes. In this review, we summarize
the haemodynamic changes observed in patients with HFpEF, comparing resting and exercise-induced parameters to those
of normal subjects. Additionally, we discuss the current role of invasive haemodynamics in HFpEF assessment and highlight
its utility beyond diagnosis, such as identifying HFpEF comorbidities, guiding phenotype-based personalized therapies and
characterizing prognostication. Finally, we address the challenges associated with utilizing invasive haemodynamics and pro-
pose future directions, focusing on integrating these assessments into routine HFpEF care.
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Introduction Despite extensive efforts to establish definitive diagnostic

criteria, diagnosing HFpEF is challenging, with a significant

Heart failure (HF) with preserved ejection fraction (HFpEF) is
increasingly recognized as a significant public health issue, ac-
counting for up to 50% of all HF cases.! In the United States,
projections indicate a 46% increase in HF prevalence from
2012 to 2030, with an anticipated 8.5 million Americans af-
fected by 2030, alongside a corresponding rise in healthcare
costs.” The growing prevalence of HFpEF is primarily driven
by an ageing population with an increasing burden of comor-
bidities such as hypertension, obesity and metabolic
syndrome.?

proportion of cases remaining inconclusive due to the com-
plex underlying pathophysiologic mechanisms.* Some pa-
tients may not display apparent HF symptoms or lack physical
signs of congestion. Up to 60% of patients with HFpEF con-
firmed by right heart catheterization (RHC) have normal natri-
uretic peptide levels.® Echocardiographic assessment is es-
sential for HFpEF evaluation. However, the presence of
grade 2 or 3 diastolic dysfunction [indicating elevated left
ventricular (LV) filling pressure] albeit specific for HFpEF, lacks
sensitivity.® Additionally, echocardiographic assessments of
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diastolic dysfunction are essential for HFpEF evaluation but
can be particularly challenging in patients with comorbid
atrial fibrillation (AF) and calcific valvular disease, which are
increasingly common in the ageing population and in those
with HFpEF.” Considering these diagnostic challenges, inva-
sive haemodynamic assessments remain the gold standard
for distinguishing HFpEF from other conditions.®

This review aims to summarize the haemodynamic alter-
ations and factors influencing haemodynamic changes in
HFpEF patients compared with normal individuals. Then, we
explore the utility of invasive haemodynamics in HFpEF diag-
nostic evaluation, phenotyping and prognostication. Finally,
we address the challenges of implementing invasive haemo-
dynamics in clinical practice and propose future directions
for integrating these assessments into routine HFpEF care.

Haemodynamic alterations in HFpEF

Historically, the haemodynamic disturbance in HFpEF was pri-
marily attributed to LV diastolic dysfunction, leading to ele-
vated LV end-diastolic pressure (LVEDP) and congestion, sim-
ilar to what is seen in HF with reduced ejection fraction.®
However, it is now recognized that this is only a part of the
explanation as shown in Figure 1. In HFpEF, haemodynamic
derangement is caused by a complex interplay not only of
LV diastolic dysfunction but also the involvement of subtle
LV systolic dysfunction, atrial abnormalities, preload reserve

failure and pulmonary vascular disorders, especially in the
late stages of the disease, with one of these mechanisms po-
tentially being more dominant in individual patients.® More-
over, non-cardiac factors, such as pre-existing comorbidities
including obesity, sleep apnoea, hypertension, heightened
systemic inflammatory responses leading to endothelial dys-
function and renal dysfunction, also significantly contribute
to worsening clinical course.’® In this section, we focus on
changes in pulmonary artery wedge pressure (PAWP) as a
surrogate for LVEDP during resting and exertional stages, as
the severity of HFpEF progresses.

Resting haemodynamics

Patients with early stage of HFpEF are often asymptomatic or
experience minimal symptoms, with normal cardiac size or
only slight left atrial (LA) dilatation.** Resting haemodynamic
profiles may appear normal (i.e., PAWP < 15 mmHg), making
HFpEF diagnosis challenging without provocative testing, for
example, exercise. As the disease progresses, LV diastolic dys-
function worsens, leading to a significant increase in LVEDP.
This long-standing rise in LVEDP causes pathological remodel-
ling of the LA, resulting in elevated resting LA pressure due to
the LV’s reduced ability to function effectively as a
vacuum.*>*? LA failure, not infrequently associated with AF,
may ensue, elevating mean LA pressure above LVEDP.'* Con-
sequently, this leads to an increase in PAWP, which reflects
the haemodynamic load imposed by the left heart on the pul-

Figure 1 Pathophysiological changes during exercise: comparison between normal versus HFpEF patients. Abbreviations: CO, cardiac output; HFpEF,
heart failure with preserved ejection fraction; LV, left ventricle; LVEDP, left ventricular end-diastolic pressure.
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monary circulation.*>® Given that resting PAWP may be nor-
mal in early HFpEF, exercise testing plays a critical role in
uncovering early haemodynamic changes.

Exercise haemodynamics

Exercise intolerance is considered a characteristic feature of
HFpEF, often evident from the early stage due to reduced
physiological reserve across multiple organ systems.'”*® In
response to exercise, an increase in cardiac preload due to
blood volume recruitment from the legs and abdominal com-
partments can significantly enhance cardiac output (CO), as
described by the Frank—Starling relationship.® Under normal
conditions, CO augmentation during exercise does not result
in a substantial change in LVEDP. However, it is a hallmark in
patients with HFpEF that CO augmentation with increased
cardiac preload during exercise occurs at the expense of a
disproportionate rise in LVEDP despite having normal LVEDP
at rest, as demonstrated in Figure 2. The maladaptive
changes observed in HFpEF stem from LV diastolic dysfunc-
tion, compounded by chronotropic incompetence, subtle sys-
tolic dysfunction, LA dysfunction and other non-cardiac
factors.’>?2 High PAWP at peak exercise, when patients
reach exercise-limiting symptoms, is an essential diagnostic
marker for HFpEF, serving as a surrogate for LVEDP.'” PAWP
has also been found to correlate well with LVEDP at rest and
during exercise in populations suspected of HFpEF.*> Addi-
tionally, a steep increase in PAWP relative to the rise in CO
during exercise further supports the diagnosis of HFpEF.’

Invasive haemodynamic assessment
for HFpEF diagnosis

Guidelines on invasive haemodynamic
assessment for HFpEF

Current guidelines support the adoption of two distinct diag-
nostic scoring systems for HFpEF in clinical practice to guide
the use of invasive haemodynamic assessment: (1) H,FPEF
score, a composite system developed by the Mayo Clinic,
and (2) HFA-PEFF stepwise diagnostic algorithm, proposed
by the Heart Failure Association (HFA) of the European
Society of Cardiology (ESC).

The H,FPEF score is a weighted system developed and
validated using the gold-standard reference of invasive exer-
cise haemodynamic measurements.?® It is considered more
practical for clinicians as it is based on simple clinical vari-
ables, focusing on patient comorbidities and echocardio-
graphic parameters like pulmonary hypertension (PH) and
LV filling pressures (E/e’). In contrast, the HFA-PEFF algo-
rithm, derived from expert consensus, takes a stepwise ap-
proach, starting with a pretest clinical assessment and
progressing to a comprehensive resting echocardiogram
and natriuretic peptide measurements to calculate a likeli-
hood score.** Both systems classify the likelihood of HFpEF
as low, intermediate, or high. For patients with an interme-
diate likelihood (H,FPEF 2-5 or HFA-PEFF 2-4), additional
haemodynamic assessments, such as exercise stress echo-
cardiography or invasive haemodynamic assessment, are
recommended to further diagnose or rule out HFpEF®?*2°
as shown in Figure 3.

Figure 2 Haemodynamic changes during exertion in HFpEF versus healthy individuals. Abbreviations: HFpEF, heart failure with preserved ejection frac-

tion; LV, Left ventricle; PAWP, pulmonary artery wedge pressure.
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Figure 3 Strategic workflow for HFpEF diagnosis: from risk stratification to targeted case selection for invasive haemodynamic assessment. Abbrevi-
ations: CO, cardiac output; HFpEF, heart failure with preserved ejection fraction; PAWP, pulmonary artery wedge pressure.
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It is important to note that there is ongoing debate about
which scoring system is most effective for diagnosing HFpEF,
as studies have shown conflicting results. Up to 40% of pa-
tients show discordant HFpEF probability estimates between
the H,FPEF and HFA-PEFF scores.?® While some data indicate
that the H,FPEF score has superior discriminative ability,
others suggest that the scores are comparable, with one study
even reporting a higher AUC for the HFA-PEFF score®® > when
validated against the gold-standard method of invasive hae-
modynamic assessment. These discrepancies likely arise from
methodological differences, sample size, lack of appropriate
control groups and variations in the criteria used to define
HFpEF.2® Given these limitations and the significant number
of individuals falling into the intermediate categories, further
testing, including invasive haemodynamics testing, is essen-
tial. Moreover, clinicians should use these scoring systems cau-
tiously and thoroughly understand their limitations.>®> The
choice of a scoring system should be guided by the specific
clinical context, recognizing that no single system is perfect.

For patients with high clinical suspicion for HFpEF, invasive
haemodynamic measurements might still be helpful for con-
firming the diagnosis, especially when the patient remains
unresponsive to initial medical therapy. Although patients
with advanced HFpEF might have overtly abnormal haemody-
namics at rest, it is crucial for clinicians performing invasive
haemodynamic assessment in patients with unexplained
exertional dyspnoea to be able to implement exercise-
provocative haemodynamic assessment in order to diagnose
HFpEF in the early stage.?>*°

Current practice of resting and exercise
haemodynamics

For a general overview of resting and exercise RHC, the
process begins with a resting RHC using a pulmonary artery
catheter (Swan-Ganz catheter), with the patient in a supine
position. The catheter is typically inserted through an
upper-body venous access point (e.g., internal jugular or
brachial vein), enabling cycle ergometer to test the lower
body.3! Considering respiratory variations, haemodynamics
measurements are typically obtained at end-expiration
and as mean values averaged over 5-10 s.>? Following
the resting RHC in supine position, the protocols vary
across institutes but can be largely grouped into the supine
or upright settings. In the supine protocol, passive leg raise
(PLR) is generally performed before exercise as a simple
way to augment cardiac preload and stress the LV.*
This approach is particularly beneficial in settings where
exercise testing equipment or expertise is unavailable. Data
show that the increase in PAWP after PLR is more
pronounced in patients with HFpEF compared with
controls. Furthermore, elevated PAWP during PLR is associ-
ated with a corresponding increase in PAWP during exer-
cise, which has prognostic relevance in HFpEF. While a
PAWP < 11 mmHg during PLR can help rule out HFpEF, a
PAWP > 19 mmHg strongly suggests the condition.?
However, this threshold is not definitive and has not
been endorsed as one of the diagnostic criteria in the
guidelines.
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The procedure then generally proceeds as these steps: (1)
escalating exercise workload in either the supine or upright
position; (2) simultaneous measurements of right atrial pres-
sure (RAP), pulmonary artery pressure (PAP), PAWP and CO
using either direct Fick method or thermodilution at each
stage; and (3) gas exchange measurement if available.3%3*
Maximal exercise intensity is typically determined by the pa-
tient’s level of exhaustion or respiratory exchange ratio if
metabolic gas analyser is used.

Haemodynamic criteria for HFpEF diagnosis

The pathological rise in left heart filling pressure during exer-
cise is a hallmark of HFpEF. While there is broad agreement
that a resting PAWP of >15 mmHg, measured at end-expira-
tion, indicates HFpEF,24 a universal consensus on exercise
haemodynamics criteria for diagnosing early HFpEF has not
yet been established. Currently, two distinct sets of exercise
haemodynamics criteria have been commonly used in clinical
practice and research as shown in Table 1.

Peak PAWP
The first criterion, endorsed by international guidelines, de-
fines HFpEF as a peak exercise PAWP > 25 mmHg during su-
pine position.?* This is based on a pivotal study by Borlaug
et al., which used a supine exercise protocol involving 55 pa-
tients with unexplained dyspnoea, normal ejection fraction,
normal BNP and normal resting haemodynamics in order to
define HFpEF.>®> The cutoff of >25 mmHg was established
from earlier studies showing that normal individuals typically
have peak PAWP values < 20-23 mmHg during supine
exercise.>® Subsequent data confirmed that elevated PAWP
during exercise, specifically the ratio of peak exercise PAWP
to body weight, is a significant predictor of long-term mortal-
ity among patients with early HFpEF.3”*% In the upright posi-
tion, a peak PAWP > 20 mmHg during exercise is considered a
pathological threshold for defining HFpEF.*>3° This accounts
for the physiological response where pulmonary pressures
decrease slightly in the upright position compared with su-
pine due to reduced venous return.

It is important to note a limitation of this criterion, as it is
based on a single pressure measurement and does not ac-
count for varying exercise workload levels.”® Additionally,

Table 1 Invasive haemodynamic criteria for diagnosing HFpEF.

At rest PAWP > 15 mmHg

During exercise 1. Peak exercise PAWP
* >25 mmHg during supine exercise ergometry
* >20 mmHg during upright exercise ergometry
2. PAWP/CO slope
* >2 mmHg/L/min regardless of body positioning

Abbreviations: CO, cardiac output; HFpEF, heart failure with pre-
served ejection fraction; PAWP, pulmonary artery wedge pressure.

emerging data suggest that even healthy individuals can ex-
ceed the PAWP threshold during exercise, and in physiologi-
cally advanced age, this parameter may also rise above the
threshold.>>*! This has led to the consideration of age-specific
peak exercise PAWP cutoffs and the need for criteria that ac-
counts for the workload achieved during exercise.

PAWP/CO slope

The second is a PAWP/CO slope > 2 mmHg/L/min, as defined
by Eisman et al. during upright cycle ergometry, with CO de-
rived using the direct Fick method.*? This approach addresses
the limitations of peak exercise PAWP measurement by con-
sidering the entire exercise workload, demonstrating superior
diagnostic sensitivity and specificity for HFpEF and improved
accuracy in risk prediction models.®*%%* The PAWP/CO
slope > 2 mmHg/L/min was determined from a cohort of
175 patients, including healthy controls, those with HFpEF
and elevated resting PAWP, and patients with unexplained
dyspnoea but normal resting PAWP. Regression analysis was
used to define the normative bounds and establish this cut-
off, which was found to be more strongly associated with ad-
verse cardiovascular outcomes in patients with early HFpEF
compared with healthy controls. Considering measurement
in supine position, the PAWP/CO slope > 2 mmHg/L/min re-
mains valid for diagnosing HFpEF, although the slope tends to
be slightly higher in HFpEF patients exercising in the supine
position compared with the upright position.** While clini-
cally useful, this diagnostic criterion has only been validated
with direct Fick method and still needs validation with
thermodilution CO measurement.>*

The diagnostic accuracy of exercise haemodynamic criteria
was evaluated in 57 patients with unexplained dyspnoea and
intermediate HFpEF risk.° Peak PAWP and PAWP/CO slope
agreed in 80% of cases, with the PAWP/CO slope more fre-
quently identifying HFpEF. The discrepancy may be attributed
to respiratory pressure variations during exertion, especially
in obese and COPD patients.** Consequently, the PAWP/CO
slope may be more reliable in patients prone to higher respi-
ratory pressure variations, as it reduces the impact of single
pressure measurements during exercise.

Supine versus upright positioning for exercise
haemodynamic assessment in HFpEF

To date, there is no universally standardized protocol for the
positioning for exercise haemodynamic assessment, with the
choice between supine and upright positioning largely de-
pending on the preference of the institution and operators.
In the supine position, the legs are typically elevated at
>30° angle from the bed to allow the use of a
table-mounted ergometer without needing to transfer the
patient from the catheterization table.*® In contrast, the up-
right position, where the patient is seated at a 90° angle, re-
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quires transferring the patient to a cycle ergometer. Due to
the positional changes and the need to transfer patients dur-
ing testing, especially in upright position exercise testing, cur-
rent guidelines emphasize the importance of zeroing the
pressure transducer at all positions to ensure that the
zero-reference line is set at the level of the left atrium.*®

It is important to acknowledge the distinct advantages and
challenges associated with each positioning techniques as
shown in Figure 4. The supine position offers the convenience
of not requiring patient transfer, and some institutes may
consider this approach to be safer and more efficient
whereas upright positioning during exercise ergometry
closely mirrors real-life activities, where preload reduction
and changes in pulmonary haemodynamics occur while
standing.*” To explore this concept, volume redistribution,
stressed blood volume during exercise and the impact of po-
sitional changes must be considered.’®*® During exercise,
both active and passive recruitment of stressed blood volume
occur, leading to a rapid increase in CO driven by the expan-
sion of stressed blood volume, an increase in HR and en-
hanced cardiac contractility. Compared with the supine posi-
tion, the upright position results in lower venous return due
to gravitational pooling of blood in the lower extremities,
which reduces preload, stroke volume (SV) and, to a lesser

extent, PAWP.% In contrast, the supine positioning increases
venous return, raising preload and PAWP at baseline and dur-
ing exercise, which may hypothetically lead to overdiagnosis
of HFpEF. Although increase in both CO and PAWP with su-
pine positioning could render relatively similar PAWP/CO
slope in both supine and upright position, patients with
HFpEF demonstrated higher PAWP/CO slope in the supine
position compared with the upright position, a difference
not observed in control subjects.*® This suggests that while
the slope can help distinguish HFpEF from controls, caution
is necessary when comparing slopes between supine and up-
right positions, as they are not interchangeable.*®

Testing positions also play a crucial role in evaluating pre-
load failure, a condition linked to autonomic dysfunction that
often mimics the symptoms of HFpEF.>>*! In preload failure,
right-sided filling does not adequately increase in response to
exercise despite normal resting volumes. This leads to a
blunted CO and an inability to meet circulatory demands.>?
Although the exact mechanism is unknown, preload failure
is believed to be related to either dysregulation in autonomic
control of central venous volume recruitment or peripheral
muscle and venous insufficiency.”® Testing in the upright po-
sition can worsen right sided underfilling in preload failure
and this can be overlooked if exercise is performed only in

Figure 4 Difference between supine versus upright positioning during exercise RHC. Abbreviations: CO, cardiac output; HFpEF, heart failure with pre-
served ejection fraction; mPAP, mean pulmonary artery pressure; PAWP, pulmonary artery wedge pressure; RAP, right atrial pressure; RHC, right heart
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the supine position. Patients with preload failure physiology
can paradoxically present with a peak exercise PAWP exceed-
ing the threshold for HFpEF diagnosis in the supine
position..>® In such cases, HFpEF specific treatments such as
diuretics could be more harmful.

Because most institutes only perform exercise haemody-
namic assessment in one position, the data on head-to-head
comparison of haemodynamic measurements or diagnostic
accuracy between supine and upright positioning are some-
what limited. Kirupaharan et al. explored the impact of body
position (supine vs. upright) on invasive exercise haemody-
namic testing in 17 patients with exercise intolerance and un-
explained dyspnoea.>® Patients were randomized to exercise
either in the supine or upright position to a goal of 60 W
followed by maximal exercise in the alternate position. The
results showed that, in the upright position, RAP, mPAP and
PAWP were significantly lower while heart rate was higher.
However, the mPAP/CO and PAWP/CO slopes were not differ-
ent between testing positions. The impact of testing positions
on HFpEF diagnosis was not evaluated.

Invasive haemodynamic assessment in
HFpEF beyond diagnosis

The importance of invasive haemodynamic testing extends
beyond its pivotal role in HFpEF diagnosis, namely, in the
management of patients with confirmed HFpEF. This is espe-
cially pertinent given recent therapeutic advances in HFpEF,
where treatment strategies are increasingly tailored to spe-
cific phenotypes, enabling more targeted and personalized
interventions.

Identification of concomitant pulmonary vascular
disease

PH is commonly found in patients with HFpEF.>* PH may de-
velop either from the backward transmission of elevated LV
filling pressures into the pulmonary circulation, leading to
post-capillary PH [World Health Organization (WHQ) group
2], or through pulmonary vascular remodelling (venular and
arteriolar) as the disease progresses, resulting in increased
pulmonary vascular resistance (PVR) and the development
of pre-capillary PH.>® PVR at rest, together with other haemo-
dynamic markers of pulmonary vascular remodelling serve as
poor prognostic indicator for long-term cardiovascular
outcome.>® Moreover, recent studies have identified a dis-
tinct phenotype within HFpEF, known as HFpEF with latent
pulmonary vascular disease (PVD), which is characterized by
having a normal resting PVR of <2 Wood units (WU) and a
peak exercise PVR > 1.74 WU during invasive haemodynamic
testing.>” In a study involving 86 HFpEF patients, latent PVD

was identified in up to 21% of the cohort from supine exer-
cise RHC.%® These patients exhibited exercise limitations, im-
paired cardiac reserve and worse event-free survival com-
pared with the overall HFpEF group.

Right HF and tricuspid regurgitation

HFpEF starts as a disease of the left heart but frequently ends
with right HF. Right HF has been generally interpreted as an
afterload-mediated event in HFpEF, secondary to severe PH
with increased PVR, portending poor prognosis.”® However,
in recent years, it has become clear that also preload-
mediated factors may contribute to right HF.>°

From a haemodynamic perspective, not only PAWP, but
also RAP is higher in HFpEF as compared with healthy controls
and individuals with non-cardiac dyspnoea and generally dou-
bles during exercise.*® Thus, even when RA pressure is normal
at rest, HFpEF patients may develop exercise-induced RA
hypertension.®® Exercise RA hypertension in HFpEF has been
linked both to obesity with pericardial restraint due to exces-
sive epicardial adipose tissue,® and to preload-related factors,
including RA volume, stressed blood volume and the presence
of severe TR.®°

The development of permanent AF, frequently complicat-
ing HFpEF, may predispose to the above-mentioned
alterations in preload. AF has been associated with volume
overload, bi-atrial dilation and development of tricuspid regur-
gitation (TR), together with deterioration of echocardio-
graphic metrics of RV function.®?3 The tricuspid annulus lacks
a strong fibrous support, thus facilitating its dilation in re-
sponse to AF-mediated RA dilation, with consequent leaflet
mal-coaptation and atrial-secondary TR.®* Other potential
mechanisms for TR development may include ventricular-
functional TR, when severe PH complicates HFpEF, and TR
secondary to leaflet interference due to cardiac implantable
electronic devices.®

When severe TR develops, HFpEF patients may present
with dysfunctional preload (higher stressed blood volume),®®
higher RA pressure at rest, higher ratio between RA pressure
and PAWP, lower SV, lower LV transmural pressure and
higher PVR, consistent with enhanced ventricular interdepen-
dence and pulmonary vascular and LV underfilling.®” During
supine exercise, they may display a steeper rise in RA pres-
sure than in PAWP, blunted SV response and higher PVR.%’
In other words, enhanced interventricular dependence with
low SV may impair LV filling in HFpEF, limiting the rate of in-
crease of PAWP and of LV transmural pressure. At the same
time, it may contribute to underfilling of the pulmonary vas-
cular bed with resulting high PVR and a latent PVD profile.>®
The dependency of CO on chronotropic competence in this
setting may suggest the opportunity of a less strict
rate-control in HFpEF patients with TR, in line with the poten-
tial detrimental effects of beta-blockers in HFpEF.®%%°
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HFpEF haemodynamic phenotype-tailored
therapy

Given the limited effectiveness of pharmacological therapies
in HFpEF, intervention-based therapies have emerged as a
promising adjunctive approach, targeting structural and neu-
rohormonal abnormalities that remain unaddressed by
medications.”%”* Therapeutic devices or interventions such
as interatrial shunting, greater splanchnic nerve ablation
and pulmonary artery denervation (PADN) require careful as-
sessment through exercise invasive haemodynamic testing as
shown in Figure 5. These novel strategies may improve out-
comes in select patients and provide alternative options for
better symptom control in those who refractory to medical
treatment. Currently, most of these interventions are under
clinical investigation and the invasive haemodynamic assess-
ment plays a critical role in assessing the candidacy for clini-
cal study participation.

Interatrial shunting devices

Several interatrial shunting devices, such as the Corvia shunt
(Corvia Medical, Inc.), V-wave shunt (V-Wave Ltd.) and the
no-implant shunt therapy (Alleviant Medical), have been de-
veloped to improve HF symptoms by offloading pressure

from LA, hence lower PAWP, through artificially created
left-to-right atrial shunt.”? However, this redistribution comes
with a trade-off of approximately a 25% increase in pulmo-
nary blood flow, which may raise the risk of worsening PH
and right-sided HF over time.”® Therefore, in addition to con-
firming HFpEF with exercise haemodynamics testing (peak
PAWP > 25 mmHg), it is also crucial to assess the presence
of a left-to-RAP gradient (exercise PAWP-RAP > 5 mmHg) to
ensure effective shunting while also minimizing the possibil-
ity of RV dysfunction or failure.

In the pivotal REDUCE LAP-HF Il trial (A Study to Evaluate
the Corvia Medical Inc. IASD System Il to Reduce Elevated
Left Atrial Pressure in Patients with Heart Failure), implanta-
tion of the Corvia shunting device in HF patients with
EF > 40% did not significantly impact the primary composite
endpoint, which included cardiovascular death, stroke, HF
events, and health status.”* However, post-hoc analyses have
revealed that HFpEF patients with latent PVD respond less
favourably to atrial shunting therapy, experiencing worse out-
comes such as increased HF event rates and poorer health
status. In contrast, those without latent PVD demonstrated
potential clinical benefits. This disparity may be due to a re-
duced left-to-RAP gradient or, in extreme circumstances, a re-
versal to right-to-left shunting in patients with latent PVD,

Figure 5 Phenotypic classification in HFpEF for clinical trial participation. RESPONDER-HF requires patients to have peak exercise PAWP > 25 mmHg
and exercise PVR < 1.75 WU, while ALLAY-HF requires patients to have peak exercise LAP > 25 mmHg and exercise PVR < 1.8 WU. Abbreviations: BMI,
body mass index; GDMT, guideline directed medical therapy; HF, heart failure; HFmREF, heart failure with mildly reduced ejection fraction; HFpEF,
heart failure with preserved ejection fraction; LAP, left atrial pressure; mPAP, mean pulmonary artery pressure; PA, pulmonary artery; PAWP, pulmo-
nary artery wedge pressure; PLR, passive leg raising; PVR, pulmonary vascular resistance; RAP, right atrial pressure; WU, Wood unit.
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Invasive haemodynamics in HFpEF

resulting in less or non-effective shunting. These findings
highlight the importance of exercise haemodynamic testing
to phenotype those who benefit from advanced device-based
therapy for HFpEF.

To address the challenge of latent PVD discovered in the
REDUCE LAP-HF I trial, the ongoing RESPONDER-HF (Re-
Evaluation of the Corvia Atrial Shunt Device in a Precision
Medicine Trial to Determine Efficacy in Mildly Reduced or
Preserved Ejection Fraction Heart Failure; NCT05425459)
and ALLAY-HF (Safety and Efficacy of the Alleviant System
for No-Implant Interatrial Shunt Creation in Patients with
Chronic Heart Failure; NCT05685303) trials have been specif-
ically designed.”’® Both trials employ exercise haemody-
namic testing to exclude HF patients with latent PVD, thus
representing a critical step forward in refining the use of
atrial shunt therapies.

Greater splanchnic nerve ablation

Greater splanchnic nerve ablation for volume management
(SAVM) (Satera System, Axon Therapies) is based on the con-
cept that exercise intolerance in HFpEF may partly result from
inappropriate control of blood volume distribution.”” Patho-
logic blood volume shifts into and out of the splanchnic vas-
cular compartment can significantly alter cardiac haemody-
namics and lead to sudden rises in LV filling pressures
during exercise in those with HFpEF. By interrupting neural
traffic through the right-sided greater splanchnic nerve, sym-
pathetic activity to the splanchnic bed is reduced. This reduc-
tion may increase vascular compliance during exercise, lower
pulmonary and cardiac filling pressures and improve exercise
capacity. The REBALANCE-HF (Endovascular Ablation of the
Right Greater Splanchnic Nerve in Subjects Having Heart Fail-
ure with Preserved Ejection Fraction: Feasibility Study;
NCT04592445) is a phase 2, prospective, multicentre, ran-
domized, double-blind, sham-controlled feasibility trial evalu-
ating SAVM in patients with HFpEF who have peak exercise
PAWP > 25 mmHg.”® The study demonstrated the safety of
the SAVM, with a high likelihood of procedural success; how-
ever, no difference in the primary efficacy endpoint (reduc-
tion in legs-up and exercise PAWP at 1 month) between
SAVM and sham group was observed. The exploratory re-
sponder analysis identified 47 of 90 randomized patients to
be in the responder cohort. Interestingly, the responders
tended to have lower E/A ratio (indicating less severe LV dia-
stolic function), lower orthostatic pulse pressure change and
greater ability to augment CO with exercise. Although partic-
ipants in the responder group had no difference in PAWP
change from baseline to 1 month between SAVM and sham,
treatment with SAVM resulted in greater health status and
exercise function at 12 months. Using haemodynamic profiles
to identify responders for SAVM is critical for design and con-
duct of the confirmatory trial of SAVM in this population. It is
also worth noting that that responsiveness to SAVM is closely
tied to the capacity to maintain or increase CO during exer-

cise or upon transitioning from supine to standing positions,
evident through lower orthostatic pulse pressure change.
This might suggest the importance of considering not only su-
pine but also upright exercise haemodynamic data in the as-
sessment of patient eligibility and treatment response.

Pulmonary artery denervation

PADN is being explored as a novel treatment for HF with
combined pre- and post-capillary PH. In this population, in-
creased LV filling pressure impairs the baroreflex mechanisms
in the pulmonary arteries. This impaired baroreceptor reflex
leads to pathological sympathetic stimulation, causing vaso-
constriction and worsening PH. By reducing sympathetic ac-
tivity, PADN aims to interrupt this reflex, decrease vasocon-
striction and improve haemodynamics.”® ! PreVail-PH2 trial
[Pulmonary Artery DenerVation Clinical Study Using the Gra-
dient Denervation System (Gradient Denervation Technolo-
gies) in Heart Failure Patients with Pulmonary Hypertension
Group 2; NCT06052072] is a prospective, single-arm, multi-
centre study evaluating PADN in patients with EF > 40%.%%
Participants must have a mean PAP > 20 mmHg, PVR > 3
WU at rest and PAWP > 15 mmHg at rest or >18 mmHg with
PLR. The trial aims to assess changes in PVR and evaluate the
safety outcome of the procedure.

Haemodynamic monitoring in HFpEF

Remote PA monitoring plays a crucial role in the early detec-
tion of subclinical congestion, characterized by elevated LV
filling pressures that occur weeks in advance before the onset
of symptomatic decompensation.®® This approach provides
more sensitive indicators for predicting HF decompensation
and guides decongestion therapy, which is particularly helpful
for individuals with recurrent hospitalizations and those who
experience fluctuations in volume status.

CardioMEMS HF System (Abbott) is an approved remote
PAP monitoring device featuring an implanted wireless pres-
sure sensor placed in the left pulmonary artery. It continu-
ously measures systolic, diastolic and mean PAPs, as well as
heart rate. Patients use a specialized pillow to remotely col-
lect and automatically transmit these data to a secure data-
base for review. This enables physicians to monitor PAP
and, in turn, estimates cardiac filling pressures in real time,
allowing for timely adjustments in HF treatment. The pivotal
CHAMPION trial (CardioMEMS Heart Sensor Allows Monitor-
ing of Pressure to Improve Outcomes in New York Heart As-
sociation Class Ill Heart Failure Patients) was a prospective,
randomized, multicentre, single-blind study involving 550 HF
patients with New York Heart Association class Ill across LVEF
spectrum.®* All participants had experienced HF hospitaliza-
tion (HFH) within the previous year. The study found that
HF management guided by the CardioMEMS system signifi-
cantly reduced HFH at 6 months compared with the control
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group, with a hazard ratio (HR) of 0.72 [95% confidence inter-
val (Cl) 0.60-0.85; P = 0.002]. In a prespecified subgroup of
patients with LVEF greater than 50% (HFpEF), the reduction
in HFH was more pronounced, with HR of 0.30 (95% CI
0.18-0.48; P < 0.001) over a 17.6 month follow-up.®®> Addi-
tionally, a meta-analysis of the three major RCTs comparing
CardioMEMS versus control group confirmed a significant
reduction in the combined endpoint of all-cause mortality,
HF admissions and urgent HF events in patients with
LVEF > 40%.%°

Current challenges and future
considerations

Despite the recognized benefits of invasive exercise haemo-
dynamic assessment in managing HFpEF, it is being used in
routine clinical practice in a few specialized centres. This is
primarily due to the need for specialized equipment, exper-
tise and facilities capable of performing invasive exercise test-
ing. These requirements impact the reproducibility of the test
and highlight the necessity for well-developed infrastructure
and expertise. Additionally, procedural approaches vary
across institutions, including methods for obtaining PAWP
readings, body positioning and diagnostic criteria. For exam-
ple, while most centres measure PAWP at end-expiration,
others average values over several respiratory cycles. Body
positioning (supine vs. upright) also significantly affects car-
diac preload, influencing resting and exercise haemodynam-
ics, which may impact the accuracy of the diagnostic criteria
and may not be used interchangeably.**>* Similarly, CO mea-
surements validated using the Fick method as part of the cur-
rent PAWP/CO criteria for HFpEF exercise haemodynamics
may not be reliable when using thermodilution, as there is
currently no supporting data for this comparison.>' Addition-
ally, preload failure, which mimics HFpEF and leads to
exercise intolerance, can only be detected through upright
exercise haemodynamic testing.'® All of these factors affect
the accuracy and generalizability of test results, emphasizing
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