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Abstract. We introduce a class of new one-dimensional linear Fokker–Planck type equa-
tions describing the evolution in time of the wealth in a multi-agent society. The equations
are obtained, via a standard limiting procedure, by introducing an economically relevant
variant to the kinetic model introduced in 2005 by Cordier, Pareschi and Toscani accord-
ing to previous studies by Bouchaud and Mézard. The steady state of wealth predicted by
these new Fokker–Planck equations remains unchanged with respect to the steady state of
the original Fokker–Planck equation. However, unlike the original equation, it is proven by
a new logarithmic Sobolev inequality with weight and classical entropy methods that the
solution converges exponentially fast to equilibrium.
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1. Introduction

In recent years, mathematical modeling of multi-agent systems became a challenging and
productive field of research involving both applied mathematicians and physicists. Among
other aspects, this research activity introduced new applications of statistical physics to in-
terdisciplinary fields ranging from the classical biological context [6, 12, 40, 45, 50, 64, 72], to
the new aspects of socio-economic dynamics [20, 18, 57, 60, 65].

A significant part of this activity was devoted to the study of classical problems in economy
[4, 5, 14, 21, 22, 23, 24, 26, 29, 30, 31, 44, 46, 54, 56, 66, 71], including the important aspect
of the justification of Pareto’s discovery of fat tails in wealth distribution of western societies
[61] Beside the kinetic models of Boltzmann type introduced in recent years to enlighten the
formation of an unequal distribution of wealth among trading agents [20, 60], a Fokker–Planck
type equation assumed a leading role. This equation, which describes the time-evolution of
the density f(t, w) of a system of agents with personal wealth w ≥ 0 at time t ≥ 0 reads

(1.1)
∂f(t, w)

∂t
= J(f)(t, w) =

σ

2

∂2

∂w2

(
w2f(t, w)

)
+ λ

∂

∂v
((w −m)f(t, w)) .

In (1.1), λ, σ and m denote positive constants related to essential properties of the trade rules
of the agents.

The Fokker–Planck equation (1.1) has been first obtained by Bouchaud and Mézard in
Ref. [16] through a mean field limit procedure applied to a stochastic dynamical equation
for the wealth density. The same equation was subsequently found in Ref. [27] by resorting
to an asymptotic procedure applied to a Boltzmann-type kinetic model for binary trading in
presence of risks.

The importance of equation (1.1) in the study of wealth distribution is related to the
economic relevance of its stationary solution density, given by the inverse Gamma density
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[16, 27]

(1.2) f∞(w) =
(µm)1+µ

Γ(1 + µ)

exp
(
−µm

w

)
w2+µ

.

In (1.2) µ denotes the positive constant

(1.3) µ = 2
λ

σ
.

This stationary distribution, as predicted by the analysis of the italian economist Vilfredo
Pareto [61], exhibits a power-law tail for large values of the wealth variable.

In addition to the references [16] and [27], the same equation with a modified drift term
appears when considering suitable asymptotics of Boltzmann-type equations for binary trading
in presence of taxation [13], in the case in which taxation is described by the redistribution
operator introduced in Ref. [14]. Systems of Fokker–Planck equations of type (1.1) have been
considered in Ref. [34] to model wealth distribution in different countries which are coupled
by mixed trading. Further, the operator J(f) in equation (1.1) and its equilibrium kernel
density have been considered in a non homogeneous setting to obtain Euler-type equations
describing the joint evolution of wealth and propensity to invest [33], to study the evolution
of wealth in a society with agents using personal knowledge to trade [59], and to observe the
consequences on the distribution of wealth by exercising a control at the level of microscopic
interactions [32]. Last, equation (1.1) has been studied with data in the whole real line (thus
allowing agents to have debts) in Ref. [69], by showing that the large-time behavior of the
solution remains unchanged if the quantity of debts does not destroy the positivity of the
mean wealth.

These results contributed to retain that this equation represents a quite satisfactory descrip-
tion of the time-evolution of wealth density towards a Pareto-type equilibrium in a trading
society.

However, as far as the large-time behavior is concerned, convergence to equilibrium results
for the solution to (1.1) are not fully satisfactory, since convergence in strong sense was proven
to hold or at a polynomial rate for general initial densities [68], or at exponential rate for a very
restricted class of initial densities, that need to be chosen very close to the equilibrium density
[38] This makes an essential difference between equation (1.1) and the standard Fokker–Planck
equation, where convergence to equilibrium has been proven to hold exponentially in time with
an explicit rate for all initial data satisfying natural and non restrictive physical conditions
[70] The physical way to study convergence is to resort to the decay of relative entropy, and to
logarithmic Sobolev inequalities [2, 58] Unlikely, as discussed in Ref. [55], and more recently
in Ref. [38] (cf. also Ref. [69]), this type of inequalities do not seem to be available in presence
of variable diffusion coefficients as they are those in (1.1).

As a matter of fact, the proof of exponential convergence to equilibrium is not only a pure
mathematical result. The (apparent) lack of exponential convergence to equilibrium for the
solution to equation (1.1) brings into question if the mathematical modeling leading to the
Fokker–Planck equation (1.1) takes into account in a right way all the principal aspects of the
agents trading. Indeed, like it happens for the solution to the famous Boltzmann equation
[73, 77], exponential convergence to equilibrium is the main motivation to justify why in the
real world we are always observing a wealth distribution with Pareto tails.

In this paper we identify one of the modeling points that should be improved in the choice
made at a kinetic level in Ref. [27], where the Boltzmann collision operator has been selected to
be of Maxwell type [15, 19]. In classical kinetic theory, Maxwellian pseudo-molecules describe
a gas in which the collision kernel does not depend on the relative velocity of the molecules.
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Analogously, in the economic context, the Maxwellian hypothesis corresponds to make the
strong assumption that the trading between agents does not depend on the amount of wealth
put into the trade. While this choice is easy to handle with from a mathematical point of
view, it naturally leads to eliminate a part of human behavior from the trading. Consequently,
this simplification could introduce some fault into the model, since, in contrast to classical
kinetic theory of rarefied gases, various aspects of human behavior play a substantial role into
the mathematical modeling of socio-economic phenomena [1, 7, 8, 9, 10, 11, 41].

With the aim of improving the model, we will introduce in the underlying kinetic equation of
Boltzmann type a variable collision kernel which is designed to exclude unphysical interactions
between agents. Within this choice, we will obtain in the limit a new class of Fokker–Planck
equations which contain equation (1.1) as a particular case. The new Fokker–Planck equations
read

(1.4)
∂f(t, w)

∂t
= Jδ(f)(t, w) =

σ

2

∂2

∂w2

(
w2+δf(t, w)

)
+ λ

∂

∂w

(
wδ(w −m)f(t, w)

)
.

In (1.4) δ is a positive constant, with 0 < δ ≤ 1. Equation (1.4) has a unique equilibrium
density of unit mass, given by the inverse Gamma function

(1.5) f δ∞(w) =
(µm)1+δ+µ

Γ(1 + δ + µ)

exp
(
−µm

w

)
w2+δ+µ

.

In (1.5) µ is the positive constant defined in (1.3). Hence, the presence of the constant δ is
such that the Pareto index in the equilibrium density of the target Fokker–Planck equation
is increased by the amount δ.

The main novelty related to the Fokker–Planck equation (1.4) we are going to prove (Theo-
rem 3) is that its solution can be shown to converge exponentially, at an explicit rate, towards
the equilibrium density (1.5). For this reason, we believe that equation (1.4) furnishes a bet-
ter description of the process of relaxation of the wealth distribution density in a multi-agent
society.

To end this introduction, we outline again the importance of taking into account typical
aspects of human behavior in the mathematical modeling of multi-agent systems. Following
this line of thought, a recent result on service times in a call-center [42], further generalized
to various skewed phenomena in Ref. [43], led to build, on the basis of the well consolidated
prospect theory of Kahneman and Twersky [48, 49], a Fokker–Planck equation with a lognor-
mal density as a steady state. While this equation is consistent with the huge amount of data
available for the phenomena under study, it has the further feature that the solution density
is exponentially convergent towards equilibrium.

It is noticeable that various and essential aspects related to human behavior of agent trading
have been fully considered in the binary interactions considered in Ref. [27] beyond the choice
of a constant collision kernel in the Boltzmann collision operator. Indeed, in addition to risk,
which is naturally part of the trading process, one of the fundamental assumptions there was
to take into account, according to the proposal of Chakrabarti and coworkers [21, 22, 23],
the agent’s tendency to save using only a small part of money in a single trade, the so-called
saving propensity.

Let us describe now the structure of the paper. In Section 2 we will illustrate the reasons
behind the modification made at the model considered in Ref. [27], which lead to introduce
a variable collision kernel. Then, in Section 3 we show how this choice modifies the explicit
stationary solution of the simple kinetic model known as pure gambling model. Section 4 deals
with the asymptotic procedure leading from the kinetic description of Boltzmann type to the
Fokker–Planck equation (1.4) in presence of a variable collision kernel and a linear interaction.
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Finally, in Section 5 we study the large-time behavior of the solution to the Fokker–Planck
equation, by showing exponential convergence towards the equilibrium density (1.5) in relative
entropy. The result is achieved owing to a new logarithmic Sobolev type inequality (Theorem
2) which relates Fisher information with weight with Shannon relative entropy. This inequality
is obtained along the lines of the proof of the pioneering paper by Otto and Villani [58]. In
addition, we will show that exponential convergence in L1-norm towards equilibrium holds
for a larger class of solutions departing from initial data satisfying suitable conditions at the
boundary.

Last, Section 6 will deal with purely nonlinear models, directly derived from the bilinear
kinetic equation of Boltzmann type introduced in Ref. [27], in presence of the non-Maxwellian
collision kernel considered in Section 4. The main achievement is that the presence of the
kernel is such that the limit Fokker–Planck equation, while preserving the mean wealth, has
the coefficients of diffusion and drift that depend from suitable moments of the solution itself,
thus introducing nonlinear effects into the evolution.

2. Kinetic modeling of trading activity

The description of the evolution of wealth in a multi-agent system has its roots in statistical
physics, and, in particular, on methods borrowed from kinetic theory of rarefied gases. These
methods have been successfully applied to construct master equations of Boltzmann type,
usually referred to as kinetic equations, describing the time-evolution of some characteristic
of the agents, like wealth, opinion, knowledge and others, and, in some cases, to recover the
emergence of universal behaviors through their equilibria [17, 20, 57, 60, 65].

The building block of kinetic modeling is represented by microscopic interactions, which,
similarly to binary interactions between velocities in the classical kinetic theory of rarefied
gases, are specialized to describe the variation law of some selected agent trait, like wealth
or opinion. Then, from the microscopic law of variation of the number density consequent to
the (fixed-in-time) way of interaction, one will construct a kinetic equation able to capture
both the time evolution and the steady profile of the phenomenon under study [57, 60].

The population of agents (the traders) is considered homogeneous with respect to the
personal wealth. In addition, it is assumed that agents are indistinguishable [60] This means
that an agent’s state at any instant of time t ≥ 0 is completely characterized by the amount
w ≥ 0 of their wealth. Consequently, the state of the agents system will be fully characterized
by the unknown density (or distribution function) f = f(t, w), of the wealth w ∈ R+ and the
time t ≥ 0. The time evolution of the density is described, as shown later on, by a kinetic
equation of Boltzmann type. The precise meaning of the density f is the following. Given the
system of traders, and given an interval or a more complex sub-domain D ⊆ R+, the integral∫

D
f(t, w) dw

represents the number of traders which are characterized by an amount of wealth w ∈ D at
time t ≥ 0. It is assumed that the density function is normalized to one, that is for all t ≥ 0∫

R+

f(t, w) dw = 1.

The change in time of the density is due to the fact that agents of the system are subject
to trades, and continuously upgrade their amounts of wealth w at each trade. To maintain
the connection with classical kinetic theory of rarefied gases, we will always refer to a single
upgrade of the quantity w as an interaction.



NON-MAXWELLIAN KINETIC EQUATIONS MODELING WEALTH DISTRIBUTION 5

In what follows, to avoid inessential complications, and to outline the main novelties of the
new approach, we will refer to a linear interaction, which takes into account all the trading
aspects of the original nonlinear model considered in Ref. [27]. According to the binary trade
introduced in Ref. [27] we assume that the elementary change of wealth w ∈ R+ of an agent
of the system trading with the market is the result of three different contributes

(2.6) w∗ = (1− λ)w + λv + η w.

In (2.6) λ is a positive constant, such that λ� 1. The first term in (2.6) measures the wealth
that remains in the hands of the trader who entered into the trading market with a (small)
percentage λw of his wealth. The constant λ quantifies the saving propensity of the agent,
namely the human perception that it results quite dangerous to trade the whole amount of
wealth in a single interaction. The second term represents the amount of wealth the trader
receives from the market as result of the trading activity. Here v ∈ R+ is sampled by a certain
distribution E which describes the situation of the market itself. Note that in principle the
constant in front of the wealth v could be different from λ, say χ. However, as we shall
see later on, the choice λ 6= χ will not introduce essential differences in the behavior of the
target model. Finally, the last term takes into account the risks of the market. In (2.6) η is
a centered random variable with finite variance σ � 1, which in general is assumed such that
η ≥ −1 + λ, to ensure that even in a risky trading market, the post trading wealth remains
non negative. We will further assume that the random variable η takes values on a bounded
set, that is −1 + λ ≤ η ≤ λ∗ < +∞. This condition is coherent with the trade modeling, and
corresponds to put a bound from above at the possible random gain that a trader can have
in a single interaction.

By classical methods of kinetic theory [60], and resorting to the derivation of the classical
linear Boltzmann equation of elastic rarefied gases [19], one can easily show that the time
variation of the wealth density is due to the balance between the post and pre-interaction
variations of wealth density due to the microscopic trades of type (2.6). Hence, the wealth
density f(t, w) of the agents system obeys, for all smooth functions ϕ(v) (the observable
quantities), to the integro-differential equation

(2.7)
d

dt

∫
R+

f(t, w)ϕ(w) dw =
〈∫

R+×R+

K(v, w) (ϕ(w∗)− ϕ(w)) f(t, w)E(v) dv dw
〉
.

In (2.7), the function E(v), v ∈ R+ is the distribution density of wealth of the market, while
the function K(v, w) denotes the collision kernel, which assigns to the interaction (v, w) a
certain probability to occur. In (2.7) the notation 〈·〉 denotes mathematical expectation, and
takes into account the presence of the random variable η in (2.6).

In kinetic theory of rarefied gases, where the pair v, w denotes the velocities of the particles
which enter a collision, the collisional kernel is assumed to be function of the relative velocity
|v − w|, as well as, in higher dimensions, of the deflection angle [19]. The most important
and used kernels describe hard (respectively weak) interactions and depend on a positive
(respectively negative) power |v − w|δ of the relative velocity. A great simplification then
occurs when considering Maxwellian pseudo-molecules, characterized by the value δ = 0. The
main consequences of this choice can be fully understood by looking at the exhaustive review
by Bobylev [15], who first discovered the possibility to resort to Fourier transform analysis in
the nonlinear Boltzmann equation for Maxwellian pseudo-molecules. The choice of a kernel
independent of the relative velocity is also at the basis of the famous one-dimensional kinetic
model known as Kac caricature of the Boltzmann equation, introduced by Kac in Ref. [47].

In the socio-economic context, the simplification of the Maxwell molecules, leading to a
constant interaction kernel, has been regularly assumed [38, 60]. This simplification, maybe
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not so well justified from a modeling point of view, led to the possibility, as in the Boltzmann
setting, to make use of the Fourier transformed version of the underlying kinetic equations
[4, 5, 30, 31, 56], and to extract from the Fourier version a number of properties about the
large-time behavior of the solution to equation (2.7) and the main features of its equilibrium
density, including the connections between the microscopic interactions and the corresponding
formation of Pareto tails. In fact, unlike the classical Bolzmann equation of rarefied gas
dynamics, where the Maxwellian equilibrium density is easy to find, in the economic context,
except in some simple cases [4, 5, 66], a precise analytic description of the emerging equilibria
in a kinetic model of the Boltzmann equation is very difficult to obtain.

Going back to the possible weakness of the Maxwellian assumption, a careful analysis of the
economic transaction (2.6) allows us to conclude that the choice of a constant collision kernel
leads to consider as possible also interactions which human agents would exclude a priori.
This is evident for interactions in which the wealth of the agent trading with the market is
equal to zero (or extremely small). In this case, the outcome of the trade results in a net
loss of money for the market, and it seems difficult to justify that an agent of the market
would accept to trade. Likewise, this is true if the agent that trades with a certain amount
of wealth, does not receive (excluding the risk) some wealth back from the market. In other
words, trades in which w or v are equal to zero or extremely small should be excluded by the
trading agents. On the contrary, the possibility to receive a consistent amount of wealth from
the market, or for a market agent the possibility to trade with agents that have a consistent
wealth needs to be considered more probable.

Hence, in the economic setting, it seems natural to consider collision kernels that select this
behavior. A simple but consistent assumption is to define

(2.8) K(v, w) = κ · (vw)δ ,

for some constants 0 < δ ≤ 1 and κ > 0. This kernel, which is clearly different from the
collision kernel of elastic particles, excludes the economic transactions in which one of the
agents has no wealth to put on the game, and enhances transactions in which the amount of
money of both agents is conspicuous.

By taking into account this new assumption, we consider in the following that the wealth
density satisfies the linear kinetic model

(2.9)
d

dt

∫
R+

f(t, w)ϕ(w) dw = κ
〈∫

R+×R+

(vw)δ (ϕ(w∗)− ϕ(w)) f(t, w)E(v) dv dw
〉
.

The model includes the standard Maxwellian linear kinetic model, which is obtained for δ = 0.
While the presence of the collision kernel is more realistic from a modeling point of view, it
introduces additional difficulties, not present in the original Maxwellian assumption. This is
evident for example when computing the evolution of moments, which, as it happens for the
classical Boltzmann equation, obey to equations which are not in close form.

Before studying on a general level the consequences of the introduction of the collision
kernel (2.8), we illustrate through the simple example of the pure gambling model [4], how the
equilibrium density is modified with respect to the one of the original kinetic equation with
a constant kernel. To achieve this result, we will take essential advantage from the fact that
the bilinear Boltzmann equation for the pure gambling model considered in Ref. [4] allows
for an explicit derivation of the steady state density in various situations.

Subsequently, we shall investigate the consequences of the presence of the interaction kernel
at the Fokker–Planck level. In fact, the Fokker–Planck description provides both further
insights into the large-time behavior of the solution to the kinetic equation (2.9), and a more
accessible description of the possible stationary states.
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3. The pure gambling with non Maxwellian collision kernel

The nonlinear kinetic equation of Boltzmann type which describes the evolution of wealth
in a pure gambling process was studied in Ref. [4]. In a pure gambling process [29], the entire
sum of wealths of two agents is up for gambling, and randomly shared between the agents.
In its original version, the randomness is introduced into the model through a parameter ω
which is a random number drawn from a probability distribution in (0, 1). In general it is
assumed that ε is independent of a pair of agents, so that a pair of agents do not share the
same fraction of wealth when they interact repeatedly. Moreover, it is usually assumed that
the game is fair, which can be obtained by taking the random variable ω symmetric with
respect to the value 1/2 (which implies that ω and 1 − ω are identically distributed). Let
(v, w) denote the amounts of wealth played by the agents, and (v∗, w∗) the post-trade wealths.
Then the pure gambling is described by the interaction

(3.10) v∗ = ω(v + w), w∗ = (1− ω)(v + w).

Interaction (3.10) is pointwise conservative, namely

v∗ + w∗ = v + w.

An interesting variant of the pure gambling model was introduced in Ref. [4]. To take
into account the role of an external entity (like a bank, or, more in general, the market
opportunities), both trading agents have the opportunity to gain (or to loose). This result is
achieved by considering a pair of independent and identically distributed random variables,
say ω1 and ω2, symmetric with respect to the value 1/2, and to use them to describe the
interaction. In this second case the result of the interaction is

(3.11) v∗ = ω1(v + w), w∗ = ω2(v + w).

Note that, unlike the interaction (3.10), (3.11) is conservative only in the mean. This means
that, while in general

v∗ + w∗ 6= v + w,

equality holds in mean sense
〈v∗ + w∗〉 = v + w.

For trading rules as in (3.10), and in presence of the interaction kernel (2.8) the wealth density
f(t, w) of the agents system, as shown in Ref. [4], satisfies a bilinear Boltzmann-like equation
that in weak form reads

(3.12)
d

dt

∫
R+

f(t, w)ϕ(w) dw = κ
〈∫

R+×R+

(vw)δ (ϕ(w∗)− ϕ(w)) f(t, w)f(t, v) dv dw
〉
.

Note that the equation considered in Ref. [4] was of the Maxwellian type, thus corresponding
to the choice δ = 0. It is a simple exercise to show that the solution to equation (3.12), for any
value of the constant δ, satisfies the conservation of mass and momentum. For the equation
with δ = 0 the analytical form of the steady states f∞ is found for various realizations of the
random fraction of the sum which is shared to the agents. Among others, Gibbs distribution
appears as a steady state in case of a uniformly distributed random fraction, while Gamma
distribution appears for a random fraction which is Beta distributed. It is immediate to verify
that, setting

g∞(w) = wδf∞(w)

g∞ solves

(3.13)
〈∫

R+×R+

(ϕ(w∗)− ϕ(w)) g∞(w)g∞(v) dv dw
〉

= 0.
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Therefore, for any given random variable ω, g∞ coincides with the stationary solution to the
pure gambling Maxwellian model studied in Ref. [4], corresponding to the same choice of ω.
Assume that the steady state is a probability density of unit mean. Hence, if ω is uniformly
distributed in (0, 1) [4], g∞ is shown to be exponentially (Gibbs) distributed with

g∞(w) = e−w.

Consequently, the steady state solution of the non Maxwellian model (3.12) of unit mean, for
any given δ < 1, is given by the Gamma density

(3.14) f∞(w) =
(1− δ)1−δ

Γ(1− δ)
w−δ exp {−(1− δ)w} .

As discussed in Ref. [4], some insight on the consequences of the choice δ > 0 can be gained
by the simple computation of the variance of f∞. It holds

V ar(f∞) =

∫
R+

v2f∞(v)dv − 1 =
1

1− δ
.

Hence the variance (the spreading) increases as δ increases. In particular, measures of the
inequality of the wealth distribution, such as the Gini coefficient, increase for increasing δ ,
and tend to blow up as δ → 1.

This behavior is not unexpected. Indeed, in the original pure gambling model, correspond-
ing to δ = 0, also agents with no wealth can play, and gain wealth from the gambling, thus
moving away from their unlucky condition. Clearly, this is a purely abstract model. If we
want to adapt the model to the human behavior, we are forced to eliminate this non realistic
gambling. It is clear that agents with positive wealth would never accept to trade with agents
with no wealth (or an extremely small wealth), knowing in advance that the only possibility
for them is to be looser after gambling. This clearly implies that the percentage of agents
with wealth close to zero can only increase with δ increasing, since they are automatically
excluded from the game by the presence of the collision kernel K. The same consequences
are shown to hold for any other choice of the random variable ω considered in Ref. [4] and
leading to an explicit equilibrium density.

The situation described by an interaction of type (3.11) is different. As discussed in Ref.
[4], the case in which the gambling game is only conservative-in-the-mean was shown to lead
to an explicit heavy tailed inverse Gamma distribution. Following Ref. [4], let us consider
the pair of random variables ωi, i = 1, 2 given by

ωi =
1

4ϑi
, i = 1, 2,

where, for a given a > 1 the random variable ϑi, i = 1, 2 is a Beta(a+ 1/2, a− 1/2) random
variable. Then, the solution to equation (3.13) of unit mean is an inverse-Gamma distribution
of shape parameter a and scale parameter a− 1, that is

(3.15) g∞(w) =
(a− 1)a

Γ(a)

exp
{
−a−1

w

}
w1+a

,

which is peaked around the mean value 1 and has heavy tails, in that it decays at infinity like
wa+1. Consequently, in presence of the collision kernel K the steady state changes into

(3.16) f∞(w) =
(a+ δ − 1)a+δ

Γ(a+ δ)

exp
{
−a+δ−1

w

}
w1+a+δ

,
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It follows that f∞ has unit mean and, provided a+ δ > 2 its variance has the value

V ar(f∞) =
1

a+ δ − 2
.

Hence, in contrast with the result of the first gambling model, here the variance of the steady
state density is decreasing as δ increases, thus leading to a fairer society in presence of a larger
value of the parameter δ. To summarize, the addiction of a variable collision kernel of type
(2.8) in the pure gambling model, for which exact solutions are available, enlightens a marked
difference between the two interactions (3.10) and (3.11). In the first case, the presence of
the kernel leads to a variance that increases with δ. In this case, the presence of the kernel
enhances its effect by inducing a strong variation of the population with wealth close to zero.
In the second case, the presence of the kernel enhances its effects also on agents trading big
amounts of wealth, by inducing a reduction of the number of very rich agents, which leads to
a higher value of the Pareto index.

4. Fokker-Planck description of the non-Maxwellian model

In this Section, we illustrate the main steps leading from equation (2.9) to its Fokker–Planck
limit. The relationship between the kinetic equation (2.9) and its Fokker–Planck counterpart
is obtained by resorting to the well-known grazing asymptotic. As exhaustively explained
in Ref. [38], this asymptotic procedure is a well-consolidated technique which has been first
developed for the classical Boltzmann equation [74, 75, 76], where it is known under the name
of grazing collision limit. In the one-dimensional setting, this asymptotic procedure has been
fruitfully applied to the dissipative versions of Kac caricature of a Maxwell gas [37], introduced
in Ref. [63].

Since this procedure is fully described in details in Ref. [38], we give below details only
when there are marked differences with respect to the derivation for Maxwellian models. First
of all, to avoid inessential difficulties, we will assume that the market density E has a certain
number of moments bounded, more precisely

(4.17) Mα =

∫
R+

vαE(v) dv < +∞, 0 ≤ α ≤ 4.

Among observable quantities, by letting ϕ = 1 in (2.9) one shows that the mass is conserved.
Therefore, if the initial density is of unit mass, f(t, w) remains a probability density at each
subsequent time. Besides the mass, the first representative moments to be studied are the
mean value of the density f(t, w), as well as its variance. In what follows, let

(4.18) mα(t) =

∫
R+

wα f(t, w) dw, α > 0.

By choosing ϕ(w) = w in (2.9) and remarking that (2.6) implies

〈w∗ − w〉 = λ(v − w),

we obtain

(4.19)
d

dt
m1(t) = κ

∫
R+×R+

(vw)δλ(v − w) f(t, w)E(v) dv dw.

While the evolution of the mean value is not in closed form, it can be easily proven that the
mean value remains bounded in time if it is so initially. Indeed, the integral on the right-hand
side is uniformly bounded in time from above. This follows from the inequality

(4.20) (vw)δ(v − w) ≤ v1+2δ.
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Inequality (4.20) clearly holds if v = 0 or w = 0. If v > 0 and w > 0, (4.20) is equivalent to
the obvious inequality ( v

w

)1+δ
+ 1 ≥ v

w
.

Using (4.20) we obtain the upper bound∫
R+×R+

(vw)δ(v − w) f(t, w)E(v) dv dw ≤
∫
R+×R+

v1+2δ f(t, w)E(v) dv dw = M1+2δ,

which implies, for any t > 0

m1(t) ≤ m1(0) + κλM1+2δ t.

A better estimate can be obtained by resorting to Jensen’s inequality. Since∫
R+×R+

(vw)δ(v − w) f(t, w)E(v) dv dw = −
∫
R+

(
w1+δMδ − wδM1+δ

)
f(t, w) dw,

by using (∫
R+

w f(t, w) dw

)1+δ

≤
∫
R+

w1+δ f(t, w) dw,

and (∫
R+

wδ f(t, w) dw

)1/δ

≤
∫
R+

w f(t, w) dw,

we obtain

(4.21)
d

dt
m1(t) ≤ κλ

(
m1(t)

δM1+δ −m1(t)
1+δMδ

)
= κλm1(t)

δ (M1+δ −m1(t)Mδ) .

Clearly, (4.21) implies the bound

(4.22) m1(t) ≤ max

{
m1(0);

M1+δ

Mδ

}
,

namely the uniform boundedness of the mean value. Likewise, since

〈w∗2 − w2〉 = (σ + λ2 − 2λ)w2 + 2λ(1− λ)vw + λ2v2,

we obtain

(4.23)

d

dt
m2(t) =

κ

∫
R+×R+

(vw)δ
[
(σ + λ2 − 2λ)w2 + 2λ(1− λ)vw + λ2v2

]
f(t, w)E(v) dv dw.

Hence, if the constants σ and λ satisfy

(4.24) σ + λ2 < 2λ,

so that the coefficient of w2 into the integral in (4.23) is negative, proceeding as before with
Jensen’s inequality we conclude that the second moment remains bounded if it is so initially,
and its time derivative satisfies the inequality

(4.25)

d

dt
m2(t) ≤

κm2(t)
δ/2
(
−(2λ− σ − λ2)Mδm2(t) +M2+δ + 2λ(1− λ)M1+δm2(t)

1/2
)
.
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Since the right-hand side of inequality (4.25) is a second order equation in the unknown
m2(t)

1/2, and the coefficient of the square is negative, it follows that positivity of the right-
hand side holds if and only if m2(t) does not cross the bounded value

m̄2 =

{
λ(1− λ)M1+δ +

√
(λ(1− λ)M1+δ)2 +MδM2+δ(2λ− σ − λ2)
Mδ(2λ− σ − λ2)

}2

.

Finally, if condition (4.24) holds, we get

(4.26) m2(t) ≤ max {m2(0); m̄2} .

Note that the boundedness of the moments of the distribution E is enough to guarantee that
the moments at the first two orders of the solution to equation (2.7) remain bounded at any
time t > 0, provided that they are bounded initially.

The previous argument can be used to prove, at the price of an increasing number of
computations, that moments of order n ≥ 2 are bounded, provided that they are bounded
initially, any time the coefficient of the higher order term in the wealth variable w in the
expression 〈(w∗)n − wn〉 is negative. Since the coefficient is equal to

〈(1− λ+ η)n〉 − 1,

this condition establishes a relationship between λ and the moments of the random variable
η. In the rest of this Section, we choose λ and η in such a way that the coefficient is negative
for n = 3, which implies that the moments of the solution to the kinetic equation (2.9) are
uniformly bounded up to the order three.

Let us suppose now that the interaction (2.6) produces a very small mean change of the
wealth. This can be easily achieved by introducing the scaling

(4.27) λ→ ε λ, η →
√
ε η,

where ε is a small parameter, ε � 1. Note that the scaling has been chosen to maintain the
relationship between λ and σ as given by inequality (4.24). This scaling will produce a small
variation of the mean value (4.19)

d

dt
m1(t) = ε κ

∫
R+×R+

(vw)δλ(v − w) f(t, w)E(v) dv dw.

To observe an evolution of the mean value independent of ε,we resort to a scaling of time.
Letting t→ εt, the evolution of the average value satisfies

d

dt
m1(t) = κ

∫
R+×R+

(vw)δλ(v − w) f(t, w)E(v) dv dw

namely the same evolution law for the average value of f given by (4.19). Indeed, if we
assume that the interactions are scaled to produce a very small change of wealth, to observe
an evolution of the mean value independent of the smallness, we need to wait enough time to
restore the original evolution.

With this scaling, condition (4.24) becomes

(4.28) ε σ + ε2λ2 < 2ε λ.
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Hence, (4.23) takes the form

(4.29)

d

dt
m2(t)

= ε κ

∫
R+×R+

(vw)δ
[
(σ + ε λ2 − 2λ)w2 + 2λ(1− ελ)vw + ε λ2v2

]
f(t, w)E(v) dv dw

= ε κ

∫
R+×R+

(vw)δ
[
(σ − 2λ)w2 + 2λvw

]
f(t, w)E(v) dv dw +Rε(t).

In (4.29) the remainder term is

(4.30) Rε(t) = ε2 κ

∫
R+×R+

(vw)δλ2(v − w)2 f(t, w)E(v) dv dw.

After the time scaling, the second order moments satisfies the equation
d

dt
m2(t) = κ

∫
R+×R+

(vw)δ
[
(σ − 2λ)w2 + 2λvw

]
f(t, w)E(v) dv dw +

1

ε
Rε(t).

Since the remainder vanishes at the order ε2 as ε→ 0, one obtains in the limit a closed form
for the evolution of the second moment.

The final step is to consider, under the simultaneous scaling of wealth (given by (4.27))
and time, the evolution of a general observable. Given a smooth function ϕ(w), let us expand
in Taylor series ϕ(w∗) around ϕ(w). It holds

〈w∗ − w〉 = ε λ(v − w); 〈(w∗ − w)2〉 = ε2 λ2(v − w)2 + εσw2.

Therefore, in terms of powers of ε, we easily obtain the expression

〈ϕ(w∗)− ϕ(w)〉 = ε

(
ϕ′(w)λ(v − w) +

1

2
ϕ′′(w)σw2

)
+Rε(v, w),

where the remainder term Rε vanishes at the order ε3/2 as ε→ 0 [38]
Substitution into equation (2.9) and scaling in time give

(4.31)

d

dt

∫
R+

f(t, w)ϕ(w) dw

= κ

∫
R+×R+

(vw)δ
(
ϕ′(w)λ(v − w) +

1

2
ϕ′′(w)σw2

)
f(t, w)E(v) dv dw

+
κ

ε

∫
R+×R+

(vw)δ Rε(v, w)f(t, w)E(v) dv dw.

Letting ε → 0, and evaluating the integrals with respect to the market density E(v), shows
that in consequence of the scaling (4.27) the weak form of the kinetic model (2.9) is well
approximated by the weak form of a linear Fokker–Planck equation (with variable coefficients)

(4.32)

d

dt

∫
R+

ϕ(w) f(t, w) dw =

κ

∫
R+

(
ϕ′(w)λwδ(M1+δ −Mδw) +

1

2
ϕ′′(w)σMδw

2+δ

)
f(t, w) dw.

By choosing ϕ(w) = 1 into (4.32) we show that the mass density is preserved in time, so that,
for any given time t > 0

(4.33)
∫
R+

f(t, w) dw =

∫
R+

f(t, w = 0) dw.
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Therefore, if the initial value is given by a probability density function, the (possible) solutions
of the Fokker–Planck equation (4.32) remain probability densities for all subsequent times.

If boundary conditions on w = 0 and w = +∞ are added, such that the boundary terms
produced by the integration by parts vanish, equation (4.32) coincides with the weak form of
the Fokker–Planck equation

(4.34)
∂f

∂t
= κMδ

[
σ

2

∂2

∂w2

(
w2+δf

)
+ λ

∂

∂w

(
wδ(w −M1+δ/Mδ)f

)]
.

Without loss of generality, we will simplify equation (4.34) by assuming

(4.35)
κσMδ

2
= 1,

M1+δ

Mδ
= m,

2λ

σ
= µ.

Thus, the resulting Fokker–Planck equation takes the form

(4.36)
∂f

∂t
=

∂2

∂w2

(
w2+δf

)
+ µ

∂

∂w

(
wδ(w −m)f

)
.

As exhaustively discussed in Ref. [38] (cf. also the analysis of Section 5), the right boundary
conditions that guarantee mass conservation are the so-called no–flux boundary conditions,
given by

(4.37)
∂

∂w

(
w2+δf(t, w)

)
+ µwδ(w −m)f(t, w)

∣∣∣∣
w=0,+∞

= 0, t > 0.

Remark 1. It is interesting to remark that the presence of the collision kernel in the Boltzmann
equation (2.9) results in a modification of both the diffusion and the drift terms in the Fokker–
Planck equation. These modifications cancel by choosing δ = 0, that corresponds to the
Maxwellian case studied in Ref. [27].

With respect to the Maxwellian case, the presence of δ > 0 in (4.36) does not modify
the shape of the equilibrium density, that can be easily recovered by solving the first-order
differential equation

(4.38)
∂

∂w

(
w2+δf

)
= −µ

(
wδ(w −m)f

)
.

Using g(w) = w2+δf(w) in (4.38) as unknown function, shows that the unique equilibrium
density of unit mass is the inverse Gamma function

(4.39) f δ∞(w) =
(µm)1+δ+µ

Γ(1 + δ + µ)

exp
(
−µm

w

)
w2+δ+µ

.

Hence, the presence of the collision kernel is such that the Pareto index in the equilibrium
density of the target Fokker–Planck equation is an inverse Gamma density with the tail
exponent increased by the amount δ. This difference is in agreement with the result found in
Section 3 for the pure gambling model with interactions of type (3.11) and a non-Maxwellian
collision kernel. By discarding economic interactions involving agents with very small wealth,
and enhancing interactions between very rich agents we surprisingly generate a less unequal
distribution of wealth in the society. Indeed, provided δ + µ > 1, the variance of the inverse
Gamma density (4.39) is equal to

V ar
(
f δ∞

)
=

(µm)2

(δ + µ)2(δ + µ− 1)
,

so that the variance decreases as δ increases.
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Remark 2. In the rest of the paper, we will always suppose that the value of the constant µ
appearing in front of the drift term in the Fokker–Planck equation (4.36) is bigger than one.
In this case, for all values of δ > 0, the variance of the stationary solution (4.39) is a bounded
quantity. In particular, since δ ≤ 1

lim
w→+∞

w2+δf δ∞(w) = 0.

The existence of the unique equilibrium density of unit mass, given by (4.39), allows us
to write the Fokker–Planck equation (4.36) in other equivalent formulations. Then, since f δ∞
solves (4.38), we can write

∂

∂w

(
w2+δf

)
+ µwδ(w −m) f = w2+δf

(
∂

∂w
log
(
w2+δf

)
+ µ

w −m
w2

)
=

w2+δf

(
∂

∂w
log
(
w2+δf

)
− ∂

∂w
log
(
w2+δf δ∞

))
=

w2+δf
∂

∂w
log

f

f δ∞
= w2+δf δ∞

∂

∂w

f

f δ∞
.

Hence, we can write the Fokker–Planck equation (4.36) in the equivalent form

(4.40)
∂f

∂t
=

∂

∂w

[
w2+δf

∂

∂w
log

f

f δ∞

]
,

which enlightens the role of the logarithm of the quotient f/f δ∞, or in the form

(4.41)
∂f

∂t
=

∂

∂w

[
w2+δf δ∞

∂

∂w

f

f δ∞

]
.

In particular, equation (4.41) allows us to obtain the evolution equation for the quotient
F = f/f δ∞. Indeed

∂f

∂t
= f δ∞

∂F

∂t
= w2+δf δ∞

∂2

∂w2

f

f δ∞
+

∂

∂w
(w2+δf δ∞)

∂

∂w

f

f δ∞
=

w2+δf δ∞
∂2F

∂w2
− µwδ(w −m)f δ∞

∂F

∂w
,

which shows that F = F (t, w) satisfies the equation

(4.42)
∂F

∂t
= w2+δ ∂

2F

∂w2
− µwδ(w −m)

∂F

∂w
.

Equation (4.42) is usually known as the adjoint of (4.36).
The boundary conditions of the adjoint form of the Fokker-Planck equation then follow

from (4.37) and read

(4.43) w2+δf δ∞(w)
∂

∂w

f(t, w)

f δ∞(w)

∣∣∣∣
w=0,+∞

= w2+δf δ∞(w)
∂F (t, w)

∂w

∣∣∣∣
w=0,+∞

= 0.

In consequence of the assumption made on µ (cf. Remark 2) the boundary conditions (4.43)
are satisfied provided the derivative ∂F (t,w)

∂w is bounded.
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5. Large-time behavior of the Fokker–Planck equation

In Section 4, we introduced the kinetic model (2.9) of Boltzmann type. While this model was
described at the microscopic level by the binary trading interactions among agents proposed
in Ref. [27], it was additionally coupled with a non Maxwellian kernel. In this way, the model
has the further property to select or discard interactions in accord with elementary economic
principles. Consequently, it is reasonable to assume that it provides a better approximation to
the relaxation process of the wealth distribution of a multi-agent society towards equilibrium.
Similarly to the situation studied in Ref. [27], the non-Maxwellian kernel of the Boltzmann
type kinetic model (2.9) leads, in the grazing collision limit, to a linear Fokker–Planck equation
(4.36). While maintaining the shape of the equilibrium density of the Maxwellian case, this
equation is characterized by the presence of a further power wδ, with δ > 0, in both the
diffusion and drift coefficients.

The main advantage of the Fokker–Planck description is related to the possibility to express
analytically the steady state, and to resort to various mathematical methods to analyze the
rate of convergence to equilibrium of its solution. In a related paper [38], we enlightened the
main difficulties encountered in order to study rates of convergence towards equilibrium of
the solution to Fokker–Planck type equations with variable coefficients of diffusion and linear
drift by using entropy methods. On the other hand, these methods appear very natural to
apply, since they allow for precise results if the classical Fokker–Planck equation with constant
coefficient of diffusion and linear drift is dealt with.

Among the various models considered in Ref. [38], equation (4.36) with δ = 0 was included
as a leading example. The presence of a diffusion term with variable diffusion coefficient led
to the conclusion that in general the entropy methods fail to give exhaustive results. Related
findings in this direction, directly connected to the differential inequalities which are classically
used to control convergence towards equilibrium, were obtained before in Ref. [55].

In this section, we will show that the modification produced in the Fokker–Planck equation
by the choice of a non-Maxwellian kernel, in agreement with the economic behavior of agents,
allows for a fundamental improvement in the large-time behavior of the solution, that can be
shown to converge exponentially fast towards equilibrium in relative entropy at explicit rate.

5.1. Existence results. Fokker-Planck equation (4.36) is included in the class of one-dimensional
Fokker–Planck equations that can be fruitfully written in divergence form as

(5.44)
∂f(t, x)

∂t
=

∂

∂x

[
∂

∂x
(a(x)f(t, x)) + b(x) f(t, x)

]
,

where x ≥ 0 and the diffusion coefficient a(x) is a nonnegative function, strictly positive on
the interior of the domain.

The initial-boundary value problem for equation (5.44) in R+ when a(x) = αx and b(x) =
−(βx + γ), with α, β and γ constants, has been first studied by Feller in Ref. [35] at the
beginning of the fifties of last century, resorting to the powerful tool of semigroup theory. In a
second seminal paper [36], written one year later, Feller extended his results to a larger class of
diffusion and drift coefficients. Equation (5.44) was complemented in Ref. [36] with different
types of boundary conditions, leading to different results of existence and uniqueness. The
analysis of Feller took into account both equation (5.44) and its adjoint equation

(5.45)
∂F (t, x)

∂t
= a(x)

∂2F (t, x)

∂x2
− b(x)

∂F (t, x)

∂x
.

In Ref. [36], existence and uniqueness of the solution to equations (5.44), (5.45), were studied
by assuming that a(x), a′(x) and b(x) were continuous, but not necessarily bounded, in the
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interior of the domain, where a(x) > 0. Further, the boundaries of the domain were classified
by looking at the integrability properties of the function

(5.46) Ψ(x) = exp

{∫ x

x0

b(y)a−1(y) dy

}
,

where 0 < x0 < ∞. Feller’s analysis applies to the Fokker–Planck equation (4.36), where
a(x) = x2+δ, and b(x) = µxδ(x − m). Moreover, since the stationary solution (4.39) is
directly related to (5.46), and

f δ∞(x) = Ca−1(x)Ψ−1(x),

it is possible to conclude that, in the language of Ref. [36], x = 0 is an entrance boundary
for 0 < δ < 1 and a natural one for δ = 1, while x = +∞ is always an entrance boundary (cf.
the discussion of Sec. 23 of Ref. [36]).

In this situation, by applying the results of Ref. [36], we obtain the following existence and
uniqueness result.

Theorem 1 (Feller [36]). Let us consider the initial value problem

(5.47)


∂f

∂t
=

∂2

∂w2

(
w2+δf

)
+ µ

∂

∂w

(
wδ(w −m)f

)
, t > 0, w ∈ (0,+∞)

f(0, w) = f0(w)

where δ ∈ (0, 1], µ, m are positive constants, and f0 is a probability density in R+. Let
moreover f0 ∈ Σ, where

Σ =



φ ∈ C([0,+∞)) ∩ C2((0,+∞)) :

lim
w→0+

φ(w)

f δ∞(w)
∈ R+

lim
w→+∞

φ(w)

f δ∞(w)
∈ R+

lim
w→0+

(
∂

∂w

(
w2+δφ

)
+ µ

(
wδ(w −m)φ

))
= 0

lim
w→+∞

(
∂

∂w

(
w2+δφ

)
+ µ

(
wδ(w −m)φ

))
= 0



.

Then there exists a positive solution f(t, w) of problem (5.47), which is unique in C([0,+∞),Σ)∩
C1([0,+∞), L1(R+)). Moreover, f(t, w) remains a probability density for all t > 0.

Remark 3. Note that the no–flux boundary conditions are contained in the definition of the
space Σ itself.

Proof. We make use of the relationship between a solution f(t) of the Fokker–Planck equation
(4.36) and a solution F (t) of the adjoint equation (4.42). Let F0 = f0/f

δ
∞ the initial data

for the initial value problem for equation (4.42). Then, the assumptions on f0 translate into
assumptions on F0.

Hence, F0 ∈ Σ̃ where

Σ̃ =


ψ ∈ C([0,+∞)) ∩ C2((0,+∞)) :

lim
w→+∞

ψ(w) ∈ R+

lim
w→0+

(
w2+δf δ∞(w)

∂ψ(w)

∂w

)
= 0

lim
w→+∞

(
w2+δf δ∞(w)

∂ψ(w)

∂w

)
= 0


.



NON-MAXWELLIAN KINETIC EQUATIONS MODELING WEALTH DISTRIBUTION 17

Feller’s analysis shows that under these assumptions F0 belongs to the domain of the oper-
ator Ω = w2+δ d2

dw2 − µwδ(w − m) d
dw and Hille–Yosida theorem (cf. for example Ref. [62])

applies. The Cauchy problem for (4.42) with F0 as initial data possesses therefore a posi-
tive solution, unique in C([0,+∞), Σ̃) ∩ C1([0,+∞), Cb([0,+∞))). Consequently, f(t, w) =
F (t, w)f δ∞(w) is a positive solution of the problem (5.47). Since f0 belongs to the do-
main of the operator Ω? = d

dw

(
d
dw

(
w2+δ·

)
+ µwδ(w −m)·

)
, the solution f(t) is unique in

C([0,+∞),Σ) ∩ C1([0,+∞), L1(R+)). Feller further proved that the L1 norm is preserved,
but this can be easily shown directly from the equation and from the boundary conditions
contained in the definition of Σ̃. �

Remark 4. The solution f(t) obtained by Feller’s analysis is absolutely continuous with respect
to the steady state f δ∞ for all t ≥ 0.

Remark 5. The class of initial data in Theorem 1 is quite restricted with respect to the natural
one, which would contain all probability densities in R+. On the other hand, the properties
of the solution to (5.47) guaranteed by Theorem 1 allow us to investigate rigorously the large-
time behavior of the solution, and to obtain exponential convergence to equilibrium in relative
entropy at explicit rate. Consequently, the forthcoming analysis of the large-time behavior of
the solution will be restricted to initial data as in Theorem 1.

We remark that in Ref. [36] Feller proved that for all f0 ∈ L1(R+), the Cauchy problem
(5.47), posed in C([0,+∞), L1(R+))∩C1([0,+∞), L1(R+)) still has a solution defined through
the semigroup generated by the operator Ω?. However, unlike the case of initial values in Σ, it
is not proven that this solution still satisfies the boundary conditions for positive times. While
leaving to further research the possibility to extend the result of Theorem 1 to general initial
data in L1(R+), we will show in the last Section of the paper that convergence to equilibrium
at exponential rate follows also for a larger class of initial data by resorting to the result for
initial densities in Σ.

5.2. An equivalent Fokker–Planck equation. A further interesting remark made by Feller
in Ref. [36] was concerned with the possibility to introduce a transformation of variables to
reduce the coefficient a(x) in (5.44) and (5.45) to a constant value. If the Fokker–Planck
equation (4.42) is considered, the transformation considered in Ref. [36] can be expressed by

(5.48) F (t, x) = G(t, y), y = y(x) =
2

δ

1

xδ/2
.

Note that (5.48) implies

(5.49)
dy

dx
= − 1

x1+δ/2
,

so that

(5.50)
(
dy

dx

)2

=
1

x2+δ
.

The change of variable in (5.48) maps R+ into R+, and it is well-defined in the interior. Since

∂F (t, x)

∂x
=
∂G(t, y)

∂y

dy

dx

∂2F (t, x)

∂x2
=
∂2G(t, y)

∂y2

(
dy

dx

)2

+
∂G(t, y)

∂y

d2y

dx2
,
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equation (4.42) transforms into

(5.51)
∂G(t, y)

∂t
=
∂2G(t, y)

∂y2
− ∂G(t, y)

∂y

(
µm

(
δ

2

) 2
δ
−1
y

2
δ
−1 − 2

δ

(
1 + µ+

δ

2

)
1

y

)
,

which is such that the diffusion coefficient is equal to unity.
If we denote the drift term by

(5.52) W ′(y) = µm

(
δ

2

) 2
δ
−1
y

2
δ
−1 − 2

δ

(
1 + µ+

δ

2

)
1

y
,

equation (5.51) takes the form

(5.53)
∂G(t, y)

∂t
=
∂2G(t, y)

∂y2
−W ′(y)

∂G(t, y)

∂y
.

Equation (5.53) is the adjoint of the Fokker–Planck equation

(5.54)
∂g(t, y)

∂t
=
∂2g(t, y)

∂y2
+

∂

∂y

(
W ′(y)g(t, y)

)
,

still characterized by a diffusion coefficient equal to one. Equation (5.54) has a steady state
of the form

(5.55) g∞(y) = Ce−W (y)

where C > 0 and for y0 > 0

(5.56) W (y) =

∫ y

y0

W ′(z)dz, y > 0.

If we fix the mass of the steady state (5.55) equal to one, it is a simple exercise to reckon that
(5.55) is a generalized Gamma density. We recall that the generalized Gamma is a probability
density characterized in terms of a shape κ > 0, a scale parameter θ > 0, and an exponent
ν > 0, that reads [52, 67]

(5.57) h(y, κ, ν, θ) =
ν

θκΓ (κ/ν)
yκ−1 exp

{
−
(y
θ

)ν}
.

For the steady state of the Fokker–Planck (5.54) the parameters are given by

(5.58) ν =
2

δ
≥ 2, κ =

2

δ
(1 + δ + µ) > 2, θ =

2

δ (µm)δ/2

with µ as in (4.35). Equations (5.54) and (5.53) are subject to boundary conditions derived
from (4.37) and (4.43), suitably modified according to the change of variables, which guarantee
mass conservation.

Remark 6. We remark that the solutions f(t, x) and g(t, y) of equations (4.36) and (5.54) are
related by the change of variable (5.48) so that

(5.59) f(t, x) = g(t, y(x))

∣∣∣∣dydx
∣∣∣∣ .

In particular, the same relation holds true between the generalized Gamma density defined
in (5.57) and the inverse Gamma density (4.39), so that

(5.60) f δ∞(x) = g∞(y(x))

∣∣∣∣dydx
∣∣∣∣ .
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Moreover, since f(t) is absolutely continuous with respect to f δ∞ (see Remark (4)), it follows
that also g(t) is absolutely continuous with respect to g∞.

Remark 7. The case δ = 0 leads to a completely different behavior. In this case, the trans-
formation (5.48) becomes

(5.61) F (t, x) = G(t, y), y = y(x) = log x,

that implies

(5.62)
dy

dx
=

1

x
.

Therefore, the change of variable (5.61) maps R+ into R, and the new Fokker-Planck equation
with constant coefficient of diffusion is given by (5.54), where now

(5.63) W ′(y) = 1 + µ− µme−y, y ∈ R,

so that

(5.64) g∞(y) = C exp
{
−
(
(1 + µ)y + µme−y

)}
, y ∈ R.

In the same way as for the density (5.57), the value of the constant C that makes g∞ in
(5.64) a probability density on R follows from the change of variable (5.61) applied to the
equilibrium density (4.39), with δ = 0. One obtains

C =
(µm)1+µ

Γ(1 + µ)
.

Note that, in contrast to the case δ > 0, g∞ is defined on the whole line, and it exhibits
different decay rates at y → ±∞. We will be back to further consequences of this behavior
in the forthcoming Section.

5.3. Logarithmic Sobolev inequality and exponential decay of relative entropy.
The main result of Section 5.2 was to show that the Fokker–Planck type equation (4.36) and
its adjoint can be equivalently written as Fokker–Planck equations with constant coefficient
of diffusion and nonlinear coefficient of drift. This new Fokker–Planck equation is further
characterized by a steady state in the form of a generalized Gamma density.

Fokker–Planck equations of type (5.54) have been introduced and studied in Ref. [58] in
connection with the celebrated discovery by Bakry and Émery [3], as a useful mathematical
tool to obtain logarithmic Sobolev inequalities for probability densities different from the
standard Gaussian density. Given the equilibrium density g∞ of the Fokker–Planck equation
(5.54), let H(g|g∞) denote the Shannon entropy functional of a probability density g(y), with
y ∈ R+, relative to g∞, given by

(5.65) H(g|g∞) =

∫
R+

g(y) log
g(y)

g∞(y)
dy.

Moreover, let I(g|g∞) denote the Fisher information of the probability density g relative to
g∞, defined as

(5.66) I(g|g∞) =

∫
R+

(
d

dy
log

g(y)

g∞(y)

)2

g(y) dy.

Provided that the potential W defined in (5.56) is uniformly convex, so that

(5.67) W ′′(y) ≥ ρ > 0,
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Bakry and Émery [3] proved that the probability measure g∞ satisfies a logarithmic Sobolev
inequality with constant ρ. This corresponds to say that, for all probability measures g
absolutely continuous with respect to g∞, it holds

(5.68) H(g|g∞) ≤ 1

2ρ
I(g|g∞).

Inequality (5.68) was obtained in Ref. [58] by studying the evolution in time of the relative
Shannon entropy H(g(t)|g∞), where g(t) is the solution to the Fokker–Planck equation (5.54).

In presence of boundary conditions that guarantee that the contribution on the boundary
vanishes, it is immediate to verify that, at any given time t > 0, the relative Fisher information
I(g(t)|g∞) coincides with the entropy production at time t. In this case

(5.69)
d

dt
H(g(t)|g∞) = −I(g(t)|g∞).

As a consequence, if inequality (5.68) holds and since g(t) is absolutely continuous with respect
to g∞ (see Remark (6)), one easily concludes with the exponential convergence of the relative
Shannon entropy to zero at the explicit rate 2ρ.

Remark 8. We note once again that, starting from initial data as in Theorem 1, the properties
of the solution to the Fokker–Planck equation (5.47), and in particular its behavior on the
boundaries fully justify the computations on the solution to the new Fokker–Planck equation
(5.54), leading to (5.69).

To verify the uniform convexity of W (y), let us estimate W ′′(y). The computations are
immediate if δ = 1. Indeed, if we set δ = 1 in expression (5.52) we obtain

W ′(y) =
mµ

2
y −

(
3

2
+ µ

)
2

y
,

that differentiating gives

(5.70) W ′′(y) =
mµ

2
+

(
3

2
+ µ

)
2

y2
≥ mµ

2
:= ρ(1).

When 0 < δ < 1 simple but tedious computations give the bound

(5.71) W ′′(y) ≥ δ

2
(mµ)δ

(
1 +

δ

2
+ µ

)1−δ (2− δ)δ

(1− δ)1−δ
δ−2δ := ρ(δ).

Note that, as δ → 1, one correctly obtains

δ

2
(mµ)δ

(
1 +

δ

2
+ µ

)1−δ (2− δ)δ

(1− δ)1−δ
δ−2δ → mµ

2
.

Finally, for any given value 0 < δ ≤ 1, it follows that the generalized Gamma density (5.57)
with parameters given by (5.58), satisfies the logarithmic Sobolev inequality (5.68) with ρ =
ρ(δ) > 0 with ρ(δ) as in (5.70) and (5.71). More explicitly, for any g absolutely continuous
with respect to g∞(y) = Ce−W (y) with W as in (5.56) and (5.52), we have obtained

(5.72)
∫
R+

g(y) log
g(y)

g∞(y)
dy ≤ 1

2ρ(δ)

∫
R+

(
d

dy
log

g(y)

g∞(y)

)2

g(y) dy.

Hence, one can conclude that the solution to the Fokker–Planck equation (5.54) converges
exponentially fast towards the equilibrium density (5.57) in relative entropy, at the explicit
rate 2ρ(δ).
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Remark 9. The original Bakry–Émery theorem was restricted to potentialsW satisfyingW ∈
L∞([0,+∞))∩C2([0,+∞)), and it is not directly applicable in our case, due to the behavior
of W near 0 and near +∞. However, inequality (5.68) can be still proven when W is derived
from (5.52), by resorting to an approximation argument, similar to the one considered for
example in Ref. [39].

Remark 10. The constant ρ in (5.71) can be alternatively written in terms of the parameters
κ > 2, θ and ν > 2 characterizing the generalized Gamma density (5.57). In this case we
obtain

(5.73) ρ = ρ(κ, θ, ν) =
1

θ2
(κ− 1)1−2/ν

ν

ν − 2

(
ν(ν − 1)(ν − 2)

2

)2/ν

.

5.4. Logarithmic Sobolev inequality with weight and exponential decay of relative
entropy. The results of Section 5.3 can be easily translated to the original Fokker–Planck
equation (4.36).

In this way, we obtain a new logarithmic Sobolev type inequality satisfied by the inverse
Gamma densities f δ∞. To this end, let us introduce the weighted Fisher information Iδ of a
probability density f relative to f δ∞ as follows

(5.74) Iδ(f |f δ∞) =

∫
R+

x2+δ
(
d

dx
log

f(x)

f δ∞(x)

)2

f(x) dx.

We prove the following

Theorem 2. Let δ ∈ (0, 1] and f δ∞ the inverse Gamma density defined in (1.5). For any
probability density f ∈ L1(R+) absolutely continuous with respect to f δ∞ it holds

(5.75) H(f, f δ∞) ≤ 1

2ρ(δ)
Iδ(f, f

δ
∞).

The positive constant ρ(δ) > 0 is given in (5.70) and (5.71) .

Proof. We begin by considering the logarithmic Sobolev inequality (5.72) satisfied by the
generalized Gamma density. By the change of variable y = 2/δ x−δ/2 as in (5.48), inequality
(5.72) becomes ∫

R+

g(y(x)) log
g(y(x))

∣∣∣ dydx ∣∣∣
g∞(y(x))

∣∣∣ dydx ∣∣∣
∣∣∣∣dydx

∣∣∣∣ dx
≤ 1

2ρ(δ)

∫
R+

 d

dx
log

g(y(x))
∣∣∣ dydx ∣∣∣

g∞(y(x))
∣∣∣ dydx ∣∣∣

∣∣∣∣dxdy
∣∣∣∣
2

g(y(x))

∣∣∣∣dydx
∣∣∣∣ dx.

Now, recalling the relation (5.60) between g∞ and f δ∞ and observing that g is absolutely
continuous with respect to g∞ if and only if f(x) = g(y(x))

∣∣∣ dydx ∣∣∣ is absolutely continuous with

respect to f δ∞, we get for all f absolutely continuous with respect to f δ∞∫
R+

f(x) log
f(x)

f δ∞(x)
dx ≤ 1

2ρ(δ)

∫
R+

x2+δ
(
d

dx
log

f(x)

f δ∞(x)

)2

f(x) dx.

�
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It is still true [38] that if f(t) is a solution of the Fokker–Planck equation (4.36), then at
any given time t > 0, the relative weighted Fisher information Iδ(f(t)|f δ∞) coincides with the
entropy production at time t, namely

d

dt
H(f(t)|f δ∞) = −Iδ(f(t)|f δ∞).

The absolute continuity of the solution f(t) with respect to the steady state f δ∞ (see Remark
(4)) and inequality (5.75) then imply exponential convergence of the solution to the Fokker–
Planck equation (4.36) towards the equilibrium density (4.39) at the explicit rate 2ρ(δ). The
result can be summarized in the following

Theorem 3. Let 0 < δ ≤ 1, and let f(t) be the (unique) solution to the Fokker–Planck
equation (4.36), corresponding to an initial value f0 satisfying the conditions of Theorem 1.
Then, f(t) converges exponentially fast in time towards equilibrium in relative entropy, and

(5.76) H(f(t)|f δ∞) ≤ H(f0|f δ∞)e−2ρ(δ) t.

In particular, the Csiszar-Kullback inequality [25, 51], implies exponential convergence in the
L1(R+) sense at the explicit rate ρ(δ).

Remark 11. If the initial value f0 satisfies the assumptions of Theorem 1, then the ratio f0/f δ∞
is nonnegative and bounded. Hence the Shannon entropy of f0 relative to the equilibrium
density f δ∞ is bounded.

Remark 12. As δ → 0, the positive constant ρ(δ) vanishes, and the uniform convexity of
the potential W (y) is lost. This unpleasant result can be obtained looking directly to the
expression of the potential (5.63) defined in Remark 7. Indeed, in this case it holds

W ′′(y) = µme−y ≥ 0.

Hence, the original Fokker–Planck equation introduced in Ref. [16] by Bouchaud and Mézard,
and subsequently considered in Ref. [27] as the grazing limit of a kinetic model of Boltzmann
type, is equivalent to a Fokker–Planck equation with constant coefficient of diffusion and drift
given by a potential that it is not uniformly convex. Hence, for this Fokker–Planck equation
exponential convergence towards equilibrium in relative entropy does not follows directly from
a logarithmic Sobolev inequality.

5.5. Exponential decay for general L1-data. As pointed out in Remark 5, in Ref. [36]
Feller proved that for any probability density f0 ∈ L1(R+), the Cauchy problem (5.47), posed
in C([0,+∞), L1(R+)) ∩ C1([0,+∞), L1(R+)) has a solution defined through the semigroup
generated by the operator Ω? recalled in the proof of Theorem 1. Moreover, this semigroup
is a contraction in L1(R+). Therefore, given two initial densities f0 and g0, for any time
t > 0 the solutions f(t) and g(t) to the the Cauchy problem (5.47) with initial data f0 and
g0 respectively satisfy

(5.77) ‖f(t)− g(t)‖L1(R+) ≤ ‖f0 − g0‖L1(R+).

If the solution g(t) converges exponentially fast to equilibrium, and f0 and g0 are close enough,
it is reasonable to guess that the solution f(t) does the same. This is indeed what we are
going to prove, provided that the entropy of the initial density f0 relative to the equilibrium
is assumed to be bounded.
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Theorem 4. Let 0 < δ ≤ 1, and let f(t) be the solution to the Fokker–Planck equation (4.36)
corresponding to a probability density f0 ∈ L1(R+) defined through the semigroup generated
by Ω∗. Suppose moreover that the density f0 satisfies the following conditions

∫ +∞

1
f0(w)wαdw < +∞(5.78) ∫ 1

0

f0(w)

w
dw < +∞(5.79) ∫

R+

f0(w) log+ f0(w)dw < +∞(5.80)

for a constant α ∈ (0, 1]. Then, f(t) converges exponentially fast in time towards equilibrium
in L1(R+), and there exists a positive constant K = K(f0) such that

(5.81) ‖f(t)− f δ∞‖L1(R+) ≤ 2K1/2e−ρ(δ) t

where ρ(δ) is the positive constant rate appearing in formulas (5.70) and (5.71).

Remark 13. Conditions (5.78) and (5.80) imply f0 log f0 ∈ L1(R+). Indeed, let 0 < ε <
α
α+1 < 1. Then for some positive constant C = C(ε) we get

∫
R+

f0(w) log− f0(w)dw =

∫
R+

f0(w)(− log f0(w))χ{f0(w)≤1}dw

≤ C
∫
R+

f0(w)
1

(f0(w))ε
χ{f0(w)≤1}dw

= C

∫ 1

0
(f0(w))1−εχ{f0(w)≤1}dw + C

∫ +∞

1
(f0(w))1−εχ{f0(w)≤1}dw

≤ C + C

∫ +∞

1

1

wα(1−ε)
(f0(w))1−εwα(1−ε)dw

≤ C + C

(∫ +∞

1

1

w
α(1−ε)

ε

dw

)ε(∫ +∞

1
f0(w) wα dw

)1−ε
< +∞.

In the last line we applied Hölder inequality. The integrals are bounded since the exponent
α(1−ε)

ε > 1, and (5.78) holds true.

Remark 14. The assumptions made on f0 imply the boundedness of the relative entropy
H(f0|f δ∞). Since

∫
R+

f0(w) log
f0(w)

f δ∞(w)
dw =

∫
R+

f0(w) log f0(w)dw −
∫
R+

f0(w) log f δ∞(w)dw,
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and the Shannon entropy of the initial value is bounded, the boundedness of the relative
entropy follows by the boundedness of the second term. One has

(5.82)

∫
R+

f0(w) log f δ∞(w)dw =

∫
R+

f0(w) log

(
(µm)1+δ+µ

Γ(1 + δ + µ)

exp
(
−µm

w

)
w2+δ+µ

)
dw

= log

(
(µm)1+δ+µ

Γ(1 + δ + µ)

)∫
R+

f0(w) dw−

(2 + δ + µ)

∫
R+

f0(w) logw dw − µm
∫
R+

f0(w)
1

w
dw

= C1

∫
R+

f0(w)dw + C2

∫
R+

f0(w) logw dw + C3

∫
R+

f0(w)
1

w
dw,

for some real constants C1, C2 and C3. Therefore

(5.83)
∣∣∣∣∫

R+

f0(w) log f δ∞(w)dw

∣∣∣∣ ≤ D1

∫
R+

f0(w)dw+D2

∫
R+

wαf0(w) dw+D3

∫
R+

f0(w)

w
dw,

for some positive constants D1, D2 and D3. Indeed,∣∣∣∣∫
R+

f0(w) logw dw

∣∣∣∣ ≤ ∫ 1

0

f0(w)

w
dw +

1

α

∫ +∞

1
wαf0(w) dw.

This shows a deep analogy with the assumptions which imply convergence to equilibrium
for the classical Boltzmann equation [73, 77] In that case, in dimension n ≥ 1, the equilibrium

is the Mawellian density M(w) = 1
(2π)n/2

e−
|w|2
2 , and the assumption∫

Rn
(1 + |w|2 + | log f0(w)|)f0(w)dw = C < +∞

guarantees both the boundedness of the entropy of the initial datum f0 relative to the
Maxwellian ∫

Rn
f0(w) log

f0(w)

M(w)
dw < +∞,

and the convergence to equilibrium in L1(Rn).

Proof. Let us consider an initial density f0 satisfying assumptions (5.78), (5.79) and (5.80).
Since the space Σ is dense in L1(R+), for any given ε � 1 we can find a probability density
gε ∈ Σ such that its relative entropy with respect to the steady state f δ∞ (which is a positive
quantity due to the bound x log x − x + 1 ≥ 0 for any x > 0) is bounded by a constant
depending only on f0

(5.84) H(gε|f δ∞) ≤ K(f0),

and at the same time

(5.85) ‖f0 − gε‖L1(R+) ≤ ε.

To this aim, for a given ε > 0, let us define

f̃ε(w) :=
f0(w)χ{ε<w< 1

ε
}

‖f0χ{ε<w< 1
ε
}‖L1(R+)

.
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Then, f̃ε is a probability density for all ε > 0. Further, let us introduce a function φ ∈ C∞(R+)
satisfying 0 ≤ φ(w) ≤ 1 for all w ∈ R+,

∫
R+
φ(w)dw = 1, supp φ ⊂

[
1
2 , 2
]
, φ(w) = 1 on

[
1, 32
]
.

Let
φε(w) =

1

ε
φ
(w
ε

)
.

denote a dilation of Φ, which is such that
∫
R+
φε(w)dw = 1 and supp φε ⊂

[
1
2ε, 2ε

]
for all

ε > 0. Finally, let us introduce the function

(5.86) gε(w) := εf δ∞(w) + (1− ε)f̃ε ∗ φε(w).

In definition (5.86) ∗ denotes the convolution operation in R+, classically defined on two
functions f and g as

(5.87) f ∗ g(w) =

∫ w

0
f(w − v)g(v)dv.

It is straightforward to verify that gε is a probability density for all ε > 0. By construction,
we can easily prove that gε ∈ Σ. Indeed, since the convolution term is smooth, the function
gε has the same regularity as the steady state f δ∞. Let us now estimate the support of the
convolution term

f̃ε ∗ φε(w) =

∫ w

0
f̃ε(w − v)φe(v)dv.

Since supp φε ⊂
[
1
2ε, 2ε

]
and supp f̃ε ⊂

[
ε, 1ε
]
then supp f̃ε ∗ φε ⊂

[
ε+ 1

2ε,
1
ε + 2ε

]
. In

particular, gε coincides with εf δ∞ in a neighborhood of 0+ and of +∞ and satisfies the no–flux
boundary conditions.

In addition, gε converges to f0 in L1(R+) for ε→ 0. In fact

‖gε − f0‖L1(R+) = ‖εf δ∞ + (1− ε)f̃ε ∗ φε − f0‖L1(R+)

≤ ε‖f δ∞‖L1(R+) + ‖(1− ε)f̃ε ∗ φε − f0‖L1(R+).

The first term of course vanishes for ε→ 0. The second term satisfies the inequality

‖(1− ε)f̃ε ∗ φε − f0‖L1(R+) ≤ ‖(1− ε)(f̃ε ∗ φε − f0)‖L1(R+) + ε‖f0‖L1(R+).

The last term vanishes for ε→ 0. The remaining term satisfies

(5.88)
(1− ε)‖f̃ε ∗ φε − f0‖L1(R+) ≤

(1− ε)‖(f̃ε − f0) ∗ φε‖L1(R+) + (1− ε)‖f0 ∗ φε − f0‖L1(R+).

The last term in (5.88) vanishes in reason of the fact that φε is an approximation of the
identity in L1(R+) (see e.g. Ref. [28], Lemma 3 p. 481). The first term (f̃ε − f0) ∗ φε in
(5.88) converges to 0, as ε tends to 0, thanks to Fubini and Lebesgue dominated convergence
Theorems. Hence, we can conclude that gε → f0 in L1(R+) as ε→ 0.

Let us now prove that we can find a positive constant K(f0) > 0 such that, for small ε > 0

(5.89) H(gε|f δ∞) ≤ K(f0).

(In the rest of the proof the constant K could vary from one line to another). To this extent,
let us estimate separately the two terms

(5.90) H(gε) =

∫
R+

gε(w) log gε(w)dw

(the Shannon entropy of gε) and

(5.91) A(gε) =

∫
R+

gε(w) log f δ∞(w)dw.
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If both are bounded, then we have H(gε|f δ∞) = H(gε) − A(gε). Let us begin by estimating
H(gε). We remark that H(gε) is not necessarily positive. Since gε → f0 in L1, by the lower
semi-continuity of the Shannon entropy, we obtain, for all ε small enough, the lower bound

(5.92) H(gε) ≥ H(f0)− 1.

Moreover, since gε is a convex combination of two terms and the Shannon entropy H is a
convex functional, then

H(gε) ≤ εH(f δ∞) + (1− ε)H(f̃ε ∗ φε).

Further, proceeding as in Ref. [53] we get the bound

H(f̃ε ∗ φε) ≤ H(f̃ε) =
1

‖f0χ{ε<w< 1
ε
}‖L1

∫
R+

f0(w) log f0(w)χ{ε<w< 1
ε
}dw.

Since f0 log f0 ∈ L1(R+) (see Remark 13), we conclude by the Lebesgue dominated conver-
gence that H(f̃ε)→ H(f0) for ε→ 0. So, we get for small ε

H(gε) ≤ H(f0) + 1

and exploiting (5.92) we can obtain

(5.93) |H(gε)| ≤ |H(f0)|+ 1.

Let us come to the term

(5.94) A(gε) = ε

∫
R+

f δ∞(w) log f δ∞(w)dw + (1− ε)
∫
R+

f̃ε ∗ φε(w) log f δ∞(w)dw.

The first term is bounded. For the second one, we obtain as in (5.82)∫
R+

f̃ε ∗ φε(w) log f δ∞(w)dw

=

∫
R+

f̃ε ∗ φε(w) log

(
(µm)1+δ+µ

Γ(1 + δ + µ)

exp
(
−µm

w

)
w2+δ+µ

)
dw

= C1

∫
R+

f̃ε ∗ φε(w) dw + C2

∫
R+

f̃ε ∗ φε(w) logw dw + C3

∫
R+

f̃ε ∗ φε(w)
1

w
dw(5.95)

for C1, C2 and C3 explicit constants in R. Since f̃ε ∗ φε is a probability density,

(5.96) ‖f̃ε ∗ φε‖L1(R+) = 1.

Then we split the second integral into∫
R+

f̃ε ∗ φε(w) logw dw =

∫ 1

0
f̃ε ∗ φε(w) logw dw +

∫ +∞

1
f̃ε ∗ φε(w) logw dw

= A1 +A2.

We have

(5.97) 0 ≤ −A1 ≤
∫ 1

0
f̃ε ∗ φε(w)

1

w
dw = B1

and

(5.98) 0 ≤ A2 ≤
∫ +∞

1
f̃ε ∗ φε(w) wα dw = B2.
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Now, since 0 ≤ v ≤ w implies 1
w ≤

1
v we get

B1 =

∫ 1

0

∫ w

0
f̃ε(v)φε(w − v)

1

w
dvdw ≤

∫ 1

0

∫ w

0

f̃ε(v)

v
φε(w − v)dvdw

≤

∥∥∥∥∥ f̃ε(w)

w
∗ φε(w)

∥∥∥∥∥
L1(R+)

.

Since by assumption (5.79) f̃ε(w)/w → f0(w)/w in L1(R+), proceeding as in estimate (5.88)
we prove that (f̃ε(w)/w) ∗φε(w)→ f0(w)/w in L1(R+). Hence there is a positive constant K
such that

(5.99) B1 ≤ K
∥∥∥∥f0(w)

w

∥∥∥∥
L1(R+)

.

Let us now evaluate the B2 term. By the classical inequality (x+ y)α ≤ xα + yα, which holds
for positive x, y and 0 < α ≤ 1, we get

B2 =

∫ +∞

1

∫ w

0
f̃ε(w − v)φε(v)wα dvdw

≤
∫ +∞

1

∫ w

0
(w − v)αf̃ε(w − v)φε(v) dvdw +

∫ +∞

1

∫ w

0
f̃ε(w − v)vαφε(v) dvdw

≤
∫ +∞

1

(
wαf̃ε(w)

)
∗ φε(w) dw + εα

∫ +∞

1
f̃ε(w) ∗ ψε(w) dw

≤
∥∥∥(wαf̃ε(w)

)
∗ φε(w)

∥∥∥
L1(R+)

+ εα
∥∥∥f̃ε(w) ∗ ψε(w)

∥∥∥
L1(R+)

where
ψε(w) =

1

ε

(w
ε

)α
φ(
w

ε
).

By assumption (5.78) we have wαf̃ε(w)→ wαf0(w) in L1(R+), therefore
(
wαf̃ε(w)

)
∗ φε(w)

converges to wαf0(w) in L1(R+). Thus we conclude that there is K > 0 such that

(5.100)
∥∥∥(wαf̃ε(w)

)
∗ φε(w)

∥∥∥
L1(R+)

≤ K ‖wαf0‖L1(R+) .

Moreover

(5.101) εα
∥∥∥f̃ε(w) ∗ ψε(w)

∥∥∥
L1(R+)

≤ εα‖f0‖L1(R+)‖ψ‖L1(R+) → 0, ε→ 0.

Hence by (5.100) and (5.101), there exists K > 0 such that for small ε

(5.102) B2 ≤ K ‖wαf0‖L1(R+) .

In view of (5.97), (5.98), (5.99) and (5.102) we finally get

(5.103)
∣∣∣∣∫

R+

f̃ε ∗ φε(w) logw dw

∣∣∣∣ ≤ K
(∥∥∥∥f0(w)

w

∥∥∥∥
L1(R+)

+ ‖wαf0‖L1(R+)

)
.

The last integral term in (5.95) can be bounded as follows∫
R+

f̃ε ∗ φε(w)
1

w
dw =

∫ 1

0
f̃ε ∗ φε(w)

1

w
dw +

∫ +∞

1
f̃ε ∗ φε(w)

1

w
dw

≤ B1 + ‖f̃ε ∗ φε‖L1(R+).
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Hence, by (5.99) there exists K > 0 such that

(5.104)
∫
R+

f̃ε ∗ φε(w)
1

w
dw ≤ K

(∥∥∥∥f0(w)

w

∥∥∥∥
L1(R+)

+ ‖f0‖L1(R+)

)
.

Collecting inequalities (5.96), (5.103) and (5.104) we obtain that the term A(gε) defined in
(5.91) can be bounded as follows

|A(ge)| ≤ K

(
|H(f δ∞)|+ ‖f0‖L1(R+) +

∥∥∥∥f0(w)

w

∥∥∥∥
L1(R+)

+ ‖wαf0‖L1(R+)

)
.

Recalling inequality (5.93), we have that, for some K > 0 and for all ε > 0 small enough,

H(gε|f δ∞) ≤ |H(gε)|+ |A(gε)|

≤ K

(
|H(f0)|+ 1 + |H(f δ∞)|+ ‖f0‖L1(R+) +

∥∥∥∥f0(w)

w

∥∥∥∥
L1(R+)

+ ‖wαf0‖L1(R+)

)
:= K(f0).

For any given time t > 0, let us fix

(5.105) ε ≤ K(f0)
1/2e−ρ(δ) t.

By means of inequality (5.77),

(5.106)
‖f(t)− f δ∞‖L1(R+) ≤ ‖f(t)− g(t)‖L1(R+) + ‖g(t)− f δ∞‖L1(R+)

≤ ‖f0 − gε‖L1(R+) + ‖g(t)− f δ∞‖L1(R+).

Since g(t) is solution to the Fokker–Planck equation (4.36), corresponding to an initial value
gε satisfying the conditions of Theorem 1, thanks to Theorem 3 and condition (5.84)

H(g(t)|f δ∞) ≤ H(gε|f δ∞)e−2ρ(δ) t ≤ K(f0)e
−2ρ(δ) t.

Hence, by Csiszar–Kullbach inequality [25, 51], we obtain

(5.107) ‖g(t)− f δ∞‖L1(R+) ≤ K(f0)
1/2e−ρ(δ) t,

and (5.106) implies

(5.108) ‖f(t)− f δ∞‖L1(R+) ≤ ε+K(f0)
1/2e−ρ(δ) t.

Therefore, thanks to condition (5.105), for any given t > 0 it holds

(5.109) ‖f(t)− f δ∞‖L1(R+) ≤ 2K(f0)
1/2e−ρ(δ) t.

This concludes the proof. �

Remark 15. Note that, unlike the result of Theorem 3, we do not know if the solution to the
Fokker–Planck equation with initial density in L1(R+) is exponentially convergent towards
equilibrium in relative entropy. However, it is enough to choose an initial density close to
equilibrium in the sense of relative entropy, to have exponential convergence in L1(R+) at
explicit rate.
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6. Nonlinear models

The modeling assumptions of Section 2, leading to the Boltzmann-type equation (2.9)
with the non-Maxwellian kernel (2.8), and subsequently, via the grazing limit, to the linear
Fokker–Planck equation (4.36), can be easily extended to cover binary trading. Binary trading
between agents, with saving propensity and risk, has been considered in Ref. [27]. Similarly
to (2.6), when two agents with wealths v and w interact, the post trade wealths change into

(6.110) v∗ =
(

1− λ+ η1

)
v + λw, w∗ =

(
1− λ+ η2

)
w + λv,

where 0 < λ < 1 is the parameter which identifies the saving propensity of agents. The
coefficients η1, η2 are random parameters, which are independent of v and w, and distributed
so that always v∗, w∗ ≥ 0, i.e. η1, η2 ≥ λ− 1. Unless these random variables are centered, i.e.
〈η1〉 = 〈η2〉 = 0, it is immediately seen that the mean wealth is not preserved, but it increases
or decreases exponentially (see the computations in Ref. [27]). For centered ηi,

(6.111) 〈v∗ + w∗〉 = (1 + 〈η1〉)v + (1 + 〈η2〉)w = v + w,

implying conservation of the average wealth. If we introduce the kernel (2.8) as in equation
(2.9), the wealth density satisfies the bilinear kinetic model

(6.112)
d

dt

∫
R+

f(t, w)ϕ(w) dw = κ
〈∫

R+×R+

(vw)δ (ϕ(w∗)− ϕ(w)) f(t, v)f(t, w) dv dw
〉
.

The model includes the standard Maxwellian model considered in Ref. [27], which is obtained
for δ = 0.

Note that, in consequence of (6.111), the solution to equation (6.112) is such that both
mass and mean wealth are preserved in time. Therefore, if the initial value is a probability
density of mean value m, we get for all t > 0

(6.113)
∫
R+

f(t, w) dw = 1,

∫
R+

w f(t, w) dw = m.

As discussed in Section 3, the steady state f∞ of the kinetic model (6.112) is related to the
steady state g∞ of the Maxwellian model, that solves equation (3.13) with w∗ now given as
in (6.110), by the relation

g∞(w) = wδf∞(w).

In this case no explicit equilibria are available. Nevertheless, the analysis of Ref. [56] shows
that the microscopic interaction (6.110) is such that the steady state of the Maxwellian model
is able to describe all interesting behaviors of wealth distribution and the results relative to
g∞ easily translate to f∞.

In more details, precise results have been obtained in Ref. [56] if the random variables
ηi, i = 1, 2 assume only two values, that is ηi = ±r, where each sign occurs with probability
1/2. The factor r ∈ (0, λ) quantifies the risk of the market. Within this choice, the numerical
evaluation shows that the increasing of the risk parameter determines the tails of the equilib-
rium density, passing from slim tails for low values to Pareto tails for large values. As in the
pure gambling case, the relationship between equilibria implies that in the non-Maxwellian
model the Pareto index of the steady state increases of an exponent δ with respect to the
Maxwellian one.

By following step-by-step the procedure of Section 4, one realizes that, by applying the
scaling of time t → εt and (4.27) the weak form of the kinetic model (6.112) is well approx-
imated by the weak form of a nonlinear Fokker–Planck equation (with variable coefficients),
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given by

(6.114)

d

dt

∫
R+

ϕ(w) f(t, w) dw =

κ

∫
R+

(
ϕ′(w)λwδ(m1+δ(t)−mδ(t)w) +

1

2
ϕ′′(w)σmδ(t)w

2+δ

)
f(t, w) dw.

In equation (6.114) mα(t) defines the moment of order α > 0 of the solution. By choosing
ϕ(w) = 1, w in (6.114), one shows that both the mass density and the mean wealth are
preserved in time, so that (6.113) hold.

If boundary conditions on w = 0 and w = +∞ are added, such that the boundary terms
produced by the integration by parts vanish, equation (4.32) coincides again with the weak
form of the (nonlinear) Fokker–Planck equation

(6.115)
∂f

∂t
= κmδ(t)

σ

2

∂2

∂w2

(
w2+δf

)
+ λ

∂

∂w

(
wδ(mδ(t)w −m1+δ(t))f

)
.

It is clear that the presence of unknown time-dependent coefficients makes the qualitative
study of equation (6.115) a challenging problem. In particular, it would be interesting to
know if the large-time behavior of the solution to (6.115) is exponentially convergent towards
equilibrium.

7. Conclusions

In this paper, we introduced and studied kinetic models of Boltzmann type, describing
the evolution of wealth distribution in a multi-agent society, previously studied with the
Maxwellian kernel approximation [27, 56, 60] The main novelty of the present approach was
to introduce a non-Maxwellian kernel in the collision integral, suitable to exclude economically
irrelevant interactions. In the linear case, the resulting Fokker–Planck description possesses
a steady state distribution of shape identical to that resulting from the Maxwellian one.
However its solution, in contrast with the Maxwellian description [68, 69], has been shown to
converge exponentially fast in relative Shannon entropy towards equilibrium with an explicit
rate for a class of regular initial data, and to converge exponentially in L1(R+) at explicit
rate for all initial densities that have bounded relative entropy with respect to the equilibrium
density.

It is worth noticing that the right large-time behavior of the wealth distribution depends
upon an economic improvement of the original model, obtained in terms of a collision kernel
in the Boltzmann equation. Resorting to an interaction kernel is clearly a possibility easily
included in a Boltzmann-type description. Indeed, in the classical picture of collisions between
molecules, the collision kernel is an essential ingredient that classifies the type of interaction.

We are confident that this idea could be used in a profitable way in other socio-economic
applications of kinetic theory, in order to respect at best the agent’s behavior and to obtain
at the same time marked improvements of the underlying mathematical models.
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