
Citation: Mangini, F.; Vaccalluzzo, M.;

Bardoscia, E.; Bortoli, A.; Colombo, A.

An Automated Computational Fluid

Dynamics Workflow for Simulating the

Internal Flow of Race Car Radiators.

Appl. Sci. 2024, 14, 9930. https://

doi.org/10.3390/app14219930

Academic Editor: Wei Huang

Received: 21 September 2024

Revised: 21 October 2024

Accepted: 24 October 2024

Published: 30 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

An Automated Computational Fluid Dynamics Workflow for
Simulating the Internal Flow of Race Car Radiators
Francesco Mangini 1,∗,†, Matteo Vaccalluzzo 1,†, Eugenio Bardoscia 2,† and Andrea Bortoli 2,†

and Alessandro Colombo 1,∗,†

1 Department of Engineering and Applied Sciences, University of Bergamo, Via Einstein, 24044 Dalmine, Italy
2 Tatuus Racing S.p.a., Via Juan Manuel Fangio, 20045 Lainate, Italy; eugenio.bardoscia@tatuus.it (E.B.);

andrea.bortoli@tatuus.it (A.B.)
* Correspondence: francesco.mangini@unibg.it (F.M.); alessandro.colombo@unibg.it (A.C.)
† These authors contributed equally to this work.

Abstract: In this article, we present a software tool developed in Python, named T-WorkFlow. It has
been devised to meet some of the design needs of Tatuus Racing S.p.a., a leading company in the design
and production of racing cars for the FIA Formula 3 Regional and Formula 4 categories. The software
leverages the open-source tools OpenFOAM and FreeCAD to fully automate the fluid dynamics
simulation process within car radiators. The goal of T-WorkFlow is to provide designers with precise
and easily interpretable results that facilitate the identification of the geometry, ensuring optimal flow
distribution in the radiator channels. T-WorkFlow requires the radiator’s geometry files in .stp and
.stl formats, along with additional user inputs provided through a graphical interface. For mesh
generation, the software leverages the OpenFOAM tools blockMesh and snappyHexMesh. To ensure
uniform mesh quality across different configurations, and thus, comparable numerical results, various
pre-processing operations on the specific geometry files are needed. After generating the mesh, T-
WorkFlow automatically defines a control surface for each radiator channel to monitor the volumetric
flow rate distribution. This is achieved by combining the OpenFOAM command topoSet with specific
geometric information directly obtained from the radiator’s CAD through FreeCAD. During the
simulation, the software provides various outputs that automate the main post-processing operations,
enabling quick and easy identification of the configuration that ensures the desired performance.

Keywords: computational fluid dynamics; OpenFOAM; automated workflow; race car radiators

1. Introduction

Computational fluid dynamics (CFD) is an essential tool for the design of racing cars.
It is used for designing external aerodynamics but also for evaluating the performance of
internal components, such as radiators. The CFD design practice typically comprises four
phases: (i) geometry pre-processing; (ii) generation of the computational grid; (iii) numerical
simulation; (iv) results visualization and analysis, i.e., post-processing. This workflow often
relies on highly specialized commercial software, and each phase may require manual
intervention by the designer, consequently making the overall process costly in terms of
both time and computational resources. Finally, interpreting and synthesizing numerical
simulation results can be challenging and requires a deep understanding of fluid dynamic
processes to draw meaningful conclusions.

These considerations explain why some companies are interested in developing fully
customizable open-source tools to enable the complete automation of the entire numerical
simulation process with minimal effort from the user. These tools can also be designed to
produce output that is already interpreted and synthesized efficiently, allowing the designer
to make critical decisions quickly. As an example of this practice, the paper presents a
utility, named T-WorkFlow, that has been developed to meet some of the design needs of
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Tatuus Racing S.p.a. [1], a leading company in the design and production of racing vehicles
for the FIA Formula 4 [2] and Formula 3 Regional [3] categories. Similar tools may con-
tribute to both economic and time savings during the design phase by fully managing and
standardizing the tasks involved in the process. T-WorkFlow has been developed to fully
automate the internal fluid dynamics simulation of the radiators installed in Tatuus cars,
further expanding the original work proposed for the company in [4]. In fact, the present
effort focuses on streamlining the entire CFD process, intending to provide a customized,
automated tool for the company to be used during the early stages of design. The ultimate
objective is twofold: first, to minimize the time required for each numerical test by enabling
the assessment of more configurations throughout the project, and second, to decrease sig-
nificantly the chance of human error when performing repetitive tasks. Particular emphasis
is placed on developing an automated meshing strategy that ensures consistent grid quality
in different configurations. As is explained in Section 3, this requirement implies a number
of pre-processing operations on the specific geometry. The tool, through the automation
of the CFD analysis, allows the results to be standardized, making comparisons between
different configurations more reliable and facilitating the work of designers in identifying
the set-up that ensures the best flow distribution among the radiator channels, delivering
accurate and easily interpretable results.

T-WorkFlow takes advantage of the widely known open-source OpenFOAM [5] CFD
solver for the flow simulation. In the scientific literature, OpenFOAM [5] is widely em-
ployed in various applications, including external aerodynamics simulations [6–8], internal
flow simulations [9–11], and even in the medical field [12]. Although the capabilities offered
by open-source CFD solvers such as OpenFOAM [5] are undoubtedly significant and are
contributing strongly to the advancement of fluid dynamics simulation in academic and
industrial settings, the proper use of these tools often requires an experienced user. In this
regard, T-WorkFlow completely manages the interface with the CFD solver, requiring the
designer to input only a few simple parameters through a dedicated graphical interface.
This approach simplifies and streamlines the interaction with the mesh generator and CFD
solver, minimizing the manual intervention required from the designer. T-WorkFlow not
only automatically generates the computational grid and the set-up for the flow simulation
but also produces dedicated output to monitor, for example, the solution evolution at
run-time. In fact, the tool can “capture” a cross-sectional control surface for each radiant
channel, regardless of the CAD reference system, and monitor the volumetric flow rate
distribution in each of them, along with the corresponding standard deviation value. The
main post-processing operations are also fully automated, and the tool provides quantita-
tive results to help the designer identify the radiator configuration that meets the desired
performance. This includes achieving an almost uniform distribution of flow across chan-
nels for a given flow rate value at the inlet. This condition is of utmost importance as it
enhances the overall efficiency of the heat transfer.

The radiator case study presented in this paper mainly serves as an example of the
potential applications of similar automation tools in a real industrial design process. In
fact, the main goal of this work is to gain and share experience in developing a, possibly
open-source, complete CFD workflow that is as general as possible and that can be easily
“extended” to the simulation of other car details, e.g., external aerodynamics, in the near
future. It is important to note that this work focuses on process optimization; thus, assess-
ing the accuracy of the numerical results is not the primary objective, as the company has
previously established a correlation with the experimental data. This prior knowledge un-
doubtedly allowed for the confident selection of physical models and numerical strategies
used in this research. In developing T-WorkFlow, we intentionally limited the number of
user inputs as much as possible, e.g., by automating the choice of the parameters needed for
mesh generation, to make the tool more user-friendly and suitable for the “repetitive appli-
cation” in batch simulations and/or optimization cycles. Together with the few numerical
user inputs to be set through a graphical interface (cf. Section 3.1), T-WorkFlow requires the
CAD model of the radiator to be simulated in .stp format, along with the triangulations
of the inlet, outlet, and wall surfaces in .stl format, as shown in Figure 1. These files are
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essential for both mesh generation and automatically setting the boundary conditions in
the OpenFOAM [5] dictionaries.

Figure 1. Boundary surfaces for a generic radiator model.

In this paper, we evaluate the performance of T-WorkFlow by simulating two radia-
tor models. These are completely identical from the geometrical point of view, with the
exception of the junction area between the channels and the inlet and outlet tanks. Configu-
ration A exhibits radiant channels smoothly connected to the external surface of the tanks,
while Configuration B is characterized by channels “partially immersed” in the water tanks.
These differences are illustrated in Figure 2 through a cross-sectional detail near the tanks
of the flow domain. Actually, each radiator mounted on Tatuus cars has a tank-channel
junction similar to that of Configuration B. Configuration A, on the other hand, is a possible
geometric simplification that leads to a reduction in the number of mesh elements and
thus to computational savings; see Section 4. Therefore, the specific objective of the com-
parison presented in this paper is to understand whether the simplified Configuration A
can be effectively used to study the performance of this radiator model without deviat-
ing significantly from the numerical results obtainable from the “real” Configuration B.
Computational savings ensured by the use of Configuration A in place of Configuration B
represent an aspect of foremost importance considering the high number of simulations
and the tight deadlines characteristic of the design phase. To this purpose, in Section 4,
performance indicators for these two configurations are presented and compared.

(a) Section represented for Configura-
tion A highlighted in red

(b) Section represented for Configura-
tion B highlighted in red

(c) Configuration A

(d) Configuration B

Figure 2. Cross-sectional detail near the tanks of the flow domain.
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Let us finally mention that the CFD simulations carried out through T-WorkFlow in
this work focus on the hydraulic performance of the different radiator configurations and
not on their thermal exchange (“cold” simulations) as is usually implemented in the initial
design phase.

2. Tools of the Trade

T-WorkFlow is a tool written in Python3 [13] that takes advantage of the open-source
parametric 3D modeler FreeCAD (version 0.19 or later) [14] and the open-source CFD solver
OpenFOAM10 [5]. We opted for the Python programming language as it readily provides
access to many libraries. These are powerful and versatile tools that greatly accelerate
development, minimize code duplication, and provide numerous advanced features without
having to implement them from scratch. The main libraries employed by T-WorkFlow are
as follows: (i) tkinter [15], available through the PSF License and used for developing a
simple graphical interface for user interaction; (ii) numpy-stl [16], available through the
BSD License and used to handle the .stl files provided as input to the tool, especially
during the pre-processing phase; (iii) matplotlib [17], available through the Matplotlib
license agreement and used to produce the summary plots provided as output by the tools.

Once the execution of T-WorkFlow is started, the first operation performed is the
creation of a subdirectory within the working directory dedicated to the execution of
the OpenFOAM simulation, named by default Radiator_casenumber. The “casenumber”
token is simply an incremental index that starts at 0 and is updated each time the program
is run to prevent the unintentional overwriting of previously run simulations. Within the
case folder, the directory structure shown in Figure 3 is created, consisting of

Figure 3. Structure of the folders generated by T-WorkFlow.

• the subfolder log, where the log files generated during the simulation are saved;
• the subfolder run_sh, where the shell scripts (.sh) generated by the tool and needed

for its execution are saved;
• the subfolder InputLocation, where some text files needed for the workflow execution,

as shown in Section 3, are saved;
• the subfolder flowRateVisualization, where the plots showing the volumetric flow

rate distribution over the radiant channels at different iterations of the CFD solver are
stored as images in .png format;

• the basic folders for an OpenFOAM case, i.e.:
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– the subfolder 0, containing the initial and boundary conditions;
– the subfolder constant contains files related to the computational grid, physical

properties of the fluid (such as viscosity), and the turbulence model used for the
simulation;

– the subfolder system, where all the dictionary files needed for the CFD solver
set-up are saved.

In order to extract specific geometric information from the CAD model of the radiator,
cf. Section 3.1, which is essential to ensure the correct functionality and flexibility of the
workflow, we chose to use the FreeCAD modeler during the development of T-WorkFlow.

FreeCAD comes with its own Python console, allowing for some direct CAD operations
on the virtual model via the command line. The execution of a specific set of operations
can also be coded in Python language in dedicated files called macro. T-WorkFlow takes
advantage of this feature by generating the InputExtraction.FCMacro file, which contains
the instructions for extracting all the relevant geometric information from the model.
For this purpose, T-WorkFlow directly opens the FreeCAD graphical interface to load the
radiator .stp model and allow the user to execute the generated macro. The extracted
data, which are discussed in detail in Section 3.1, are then automatically saved in the
InputLocation folder.

The mesh can be either imported from external software, e.g., STAR-CCM+ [18],
ANSYS [19], or Gmsh [20] or it can be generated using OpenFOAM internal tolls like
blockMesh and snappyHexMesh. Although the first option may make it easier to obtain a
high-quality computational mesh, in order to achieve a fully automated process based on
open-source tools, the second approach was followed for meshing. The grid generation
strategy used in T-WorkFlow, which relies on a proper combination of blockMesh and
snappyHexMesh, is detailed in Section 3.3.

T-WorkFlow involves executing multiple OpenFOAM programs from a Linux terminal,
and each execution requires its own dictionary file that contains the desired specifications,
e.g, the refinement level of a particular region of the mesh in the snappyHexMeshDict. To
accomplish this, the tool first generates, for each command to be executed, its own dictio-
nary file within the system folder and a dedicated .sh file containing the command-line
instructions for its execution in the Linux terminal. The Python’s subprocess module then
schedules the execution of the command through the corresponding .sh file. Upon comple-
tion of each command, the corresponding .sh file is moved to the run_sh folder, while the
log file generated by that specific operation is moved to the homonymous folder. In this
way, the user can easily monitor the execution of each task by examining the log files. For
executing OpenFOAM, it is essential that both fvSchemes and fvSolution files are properly
set within the system directory, together with the other dictionary files. The fvSchemes and
fvSolution files include numerical details, such as the methods used to discretize the terms
of the governing equations and the algorithms used to solve the discrete system and ad-
vance the solution in time. Both these files are automatically generated by T-WorkFlow and
their set-up is based both on the authors’ experience in simulating similar flow problems
with OpenFOAM and on the original work presented in [4].

3. Workflow Description

This section describes the customized but rather general workflow developed in this
work for CFD simulations, with a special focus on user/software interaction. As discussed
in the previous section, the T-WorkFlow role is mainly concentrated in the early stages of
the project, when the designer needs to evaluate and select from various radiator models
or explore potential modifications before requesting their production. To streamline this
process, automation of the computational tool is mandatory, enabling the designer to
rapidly compare different configurations and identify the best solution within the tight
deadlines characteristic of the design phase. Once the model is selected, the company
can focus on more detailed flow and thermal analysis. For this reason, the tool has been
designed to require as little input as possible, only using the data immediately available to
the designer also for the automatic generation of the computational mesh.
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The first input required from the user is the radiator geometry, provided as (i) the
CAD file of the radiator in .stp format; (ii) the .stl files for the solid walls and the inlet
and outlet surfaces, as shown in Figure 1. The latter is essential for generating the mesh
and applying boundary conditions, while the .stp file is essential for identifying some
“critical” points of the model by using FreeCAD.

3.1. User Input Through FreeCAD and Graphical Interface

To allow T-WorkFlow to handle any configuration of the radiator, geometrical informa-
tion related to the particular case under analysis is required before generating the mesh. To
monitor the flow rate distribution in the radiant ducts during the simulation, cf. Section 3.4,
it is necessary to generate a control surface for each duct cross-section, an operation that
can be accomplished using the OpenFOAM command topoSet. To achieve this, the corre-
sponding OpenFOAM dictionary file must specify a point on each control surface to be
generated, along with its normal vector. Therefore, it is at least necessary to know the
direction of the axis of the channels and the coordinates of two points corresponding to
the outermost channels. It is important to note that in this type of application, the radiator
geometry is typically provided according to the car’s reference system, as presented in
Figure 4. This prevents making any assumptions about its positioning and orientation in
space beforehand. Therefore, this information must be directly extracted from the CAD
model of the specific configuration being analyzed. This operation is performed using the
open-source FreeCAD [14] software, which is automatically launched when T-WorkFlow is
executed and after the generation of the InputExtraction.FCMacro file. This macro con-
tains all the Python commands necessary to extract and store the specific inputs required
by the workflow.

Figure 4. CAD model of a car from Tatuus Racing S.p.a.—Example of the radiator positioning within
the vehicle, colored in red. Images courtesy of Tatuus Racing S.p.a.
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The getSelectionEx() method [21] from the FreeCAD’s Selection module is here used to
extract the various geometric details from the surfaces interactively selected by the user
via the software graphical interface. Once the .stp file is loaded, the user only needs to
perform the following two operations before running the macro: (i) select a surface from
each of the outermost radiant channels; and (ii) one of the two surfaces at the base of all
channels, whose normal vector is aligned with the axis of the ducts. An example of this
operation is reported in Figure 5.

Figure 5. Surfaces to be selected in sequence using the FreeCAD graphical interface are highlighted
in green and red.

From selection (i), the software computes the barycenter coordinates of the two outer-
most radiant channels, while from selection (ii), it extracts the normal vector and barycenter
coordinates of the corresponding base surface. In addition, T-WorkFlow automatically
identifies two opposite vertices on the base surface of the radiant ducts as the pair of points
on the surface with the maximum Euclidean distance among all possible combinations of
points. These geometric details are also essential for the pre-processing operations related
to mesh generation, as is discussed later in Section 3.2. The last instructions within the
macro are dedicated to determining the number of channels of the radiator and calculating
the cross-sectional area of each radiant duct. These metrics are then used to (i) roughly
estimate the expected Reynolds number within the channels, thereby automating the defi-
nition of prism layer extension through simple fluid dynamics correlations, cf. Section 3.3.2;
(ii) compute the ratio between the channel cross-sectional area represented by the computa-
tional grid and the actual cross-sectional area defined in the CAD model to estimate the
discretization error; and (iii) define a “detection grid” to be used to establish the control
surfaces for monitoring the flow rate within the channels. For this purpose, a cutting plane
is automatically defined such that its normal is aligned with the axis of the ducts, and the
barycenters of the two outermost channels lie on it. The number of ducts in the radiator is
then determined by the number of distinct surfaces on this plane, and the cross-sectional
area of each of them is extracted using the getSelectionEx() [21] method.

Upon execution of the macro, the relevant geometrical information extracted from the
CAD model is saved in the InputLocation folder. The user can then exit the FreeCAD
interface and provide the additional inputs required by T-WorkFlow through a dedicated
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graphical interface, developed with Python’s tkinter library to facilitate the interaction
with the software. The following inputs are requested:

1. select the desired flow model between: (i) laminar; (ii) k-ϵ [22]; (iii) k-ω [23]; (iv) k-ω
SST [24];

2. select the .stl files for the radiator’s inlet, outlet, and walls, needed to set up the
fluid domain and define the boundary conditions;

3. specify the measurement unit used for the generation of the .stl files;
4. specify how often, in terms of iterations of the CFD solver, the user wants to visualize

the flow distribution within the radiant ducts;
5. specify the volumetric flow rate to be imposed at the radiator inlet;
6. specify the turbulence intensity (Tu%) to be imposed at the radiator inlet;
7. indicate whether the inlet and outlet surfaces should be extruded along their normal

direction (flow extension) to regularize the flow entering the radiator;
8. specify the number of processors to be used for parallel grid generation and parallel

CFD computation (partitions). Note that the number of processes used in the two
tasks may be different.

Some of the information obtained through the graphical interface is used to generate
the dictionary files in the system folder and to create the files in the 0 folder for imposing
the desired boundary conditions, as detailed in Section 3.5. Figure 6 visually summarizes
the operations performed by T-WorkFlow, with particular attention to the user’s input
phase. The software requires minimal inputs, streamlining the process while maintaining
flexibility to test the models under any desired conditions. T-WorkFlow has been developed
for technical office personnel, who should have no difficulty providing the small amount of
required information. During the input phase, the most common error users may encounter
is the incorrect selection of the surfaces highlighted in Figure 5 via the FreeCAD interface.
If this happens, when the InputExtraction.FCMacro file is executed, an error message
will appear on the FreeCAD GUI. The user will then need to reselect the three required
surfaces. The needed geometrical data will only be saved in the InputLocation folder once
the InputExtraction.FCMacro is executed successfully.

Figure 6. Summary of T-WorkFlow main operations and user interaction.

3.2. Geometry Processing

T-WorkFlow uses the blockMesh and snappyHexMesh tools part of the OpenFOAM suite
for the generation of the computational mesh, as detailed in Section 3.3. snappyHexMesh is
a fully parallel mesh generator that takes as input an existing (background) mesh, usually
generated by blockMesh, and automatically and recursively splits its hexahedra to capture
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the surface of the CAD model accurately. Before creating the mesh, some pre-processing
operations need to be performed on the .stl files provided as input. It is essential to scale
these files properly to ensure that their dimensions are expressed in meters, as OpenFOAM
assumes this unit of measurement for .stl files. Depending on the CAD export settings,
these data may, in fact, be in different units, usually millimeters. To perform this scaling
for the inlet, outlet, and wall surfaces, T-WorkFlow uses the OpenFOAM command sur-
faceMeshConvert. Our empirical evidence indicates that the position and orientation of the
CAD model in the frame of reference of the initial (background) Cartesian grid created by
blockMesh have a significant impact on the quality of the mesh produced by snappyHexMesh,
as well as the time it takes to generate the grid. In fact, the sides of the background grid
generated by blockMesh are aligned by design with the Cartesian directions. Therefore,
the .stl geometry files, which are typically provided in the vehicle reference system, cf.
Figure 4, need to be properly rotated to fit the domain. We achieved the best results by
applying two consecutive transformations: (i) align the ducts axis with a Cartesian direction
and (ii) align the vector connecting the barycenter of the outermost channels with a second
Cartesian direction. This process is schematically represented in Figure 7. These trans-
formations are performed using the OpenFOAM surfaceTransformPoints command, which
automatically defines the axis and angle of rotation based on the directions of a vector
before and after the transformation. Hence, to execute transformation (ii), it is necessary to
know the coordinates of the points extracted by using the FreeCAD macro, cf. Section 3.1,
after the first rotation (i). To this end, before applying any rotation, T-WorkFlow generates
the triangulation_not_rotated.stl file, containing the surface defined by the points
extracted by the FreeCAD macro, as represented in Figure 8. Rotation (i) is then applied to
both the .stl files related to the radiator surface and to triangulation_not_rotated.stl
using the OpenFOAM command surfaceTransformPoints. This leads to the creation of the
triangulation_1.stl file containing the coordinates of the points originally extracted
using the FreeCAD macro after the first rotation. By reading this file, it is therefore possible
to define the vector connecting the centroids of the two outermost channels, which is
then used to apply rotation (ii) to both the .stl files related to the radiator surface and to
triangulation_1.stl. In this way, in addition to obtaining what is schematically repre-
sented in Figure 7, the file triangulation.stl is generated, from which the coordinates of
points 1, 2, and 3, represented in Figure 8, are obtained as a result of the applied rotations.
T-WorkFlow then applies the same transformations to the gravitational acceleration vector
through appropriately defined rotation matrices. The impact of these operations on the
generation of the computational grid is shown in Figure 9 for a detail of the cross-section of
a channel.

The last pre-processing operation performed by T-WorkFlow involves splitting the
.stl file of the wall surface, see Figure 1, into two additional files: (i) channels.stl, which
represents only the surfaces of the radiating channels; (ii) walls.stl, which includes the
surfaces of the tanks as well as the inlet and outlet channels. This subdivision may already
be present in the original .stl file provided as input, depending on how it was exported
by the designer. If not, the software will automatically perform this operation. To this end,
T-WorkFlow defines a parallelepiped based on the information previously obtained through
the FreeCAD’s macro, ensuring that it encloses only the radiating channel region, thus
allowing for subdivision. This operation is crucial for refining the mesh only in areas where
it is necessary when using snappyHexMesh. A critical region that requires a large mesh
density is the tight radius of curvature at the ends of the channels, as shown in Figure 9.
By partitioning the wall region in this way, as discussed in Section 3.3.2, refinement can
be concentrated on this specific region. This avoids unnecessary refinements elsewhere,
limiting the overall number of mesh elements and computational cost.
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(a) after the first rotation (b) after the second rotation

Figure 7. T-WorkFlow—Effect of the two rotations on the radiator positioning.

Figure 8. Example of a radiator model before the rotations, with the surface triangulation_not_
rotated.stl highlighted in red.

These pre-processing operations are necessary to obtain a mesh, generated using the
OpenFOAM tools blockMesh and snappyHexMesh, that meets the requirements defined
by Tatuus Racing S.p.a., cf. Section 3.3. Automating these operations ensures significant
time savings within the overall simulation process while greatly reducing the chance of
human errors.
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(a) with .stl geometry files rotation

(b) without .stl geometry files rotation

Figure 9. Comparison between mesh given by the same snappyHexMeshDict in a cross-section of
the channels.

3.3. Mesh Generation

The most significant challenge encountered during the development of T-WorkFlow
was the automatic generation of the computational mesh, which posed two critical con-
straints. Firstly, to meet the specific requirements of Tatuus S.p.a. concerning available
computational resources and to minimize the time required for the overall CFD process,
the mesh should not exceed 8 × 106 cells. Secondly, to enable meaningful comparisons be-
tween CFD results of different radiator models, it is critical to ensure that the automatically
generated mesh has a consistent level of quality, regardless of the specific geometry. In this
regard, the pre-processing operations described in Section 3.2 were essential to achieve the
highest possible mesh quality while respecting these constraints.

In this work, the grid generation process is based on the blockMesh and snappyHexMesh
tools from the OpenFOAM suite, which require properly defined input files (dictionaries)
that are automatically generated by T-WorkFlow, as is discussed below.

3.3.1. Automated Configuration of the blockMeshDict

An underlying grid is required as input to use snappyHexMesh, which will then be
refined using an octree-based algorithm. The input mesh is here created by the OpenFOAM
utility blockMesh, which splits a bounding box of the fluid domain into a Cartesian grid.
The parameters for this utility are specified in the blockMeshDict file located in the system
directory. This configuration file defines the coordinates of the bounding box vertices
and the number of subdivisions along each edge. To automatically obtain the coordinates
of the box, T-WorkFlow uses the numpy-stl Python library [16]. This library extracts the
minimum and maximum values along each Cartesian axis from the provided .stl files.
The quality of the final mesh generated by snappyHexMesh is significantly influenced by
the “splitting strategy” used by blockMesh. A basic condition is to try to keep the aspect
ratio of the hexahedral cells as close to unity as possible; ideally, the grid should be made
of cubes. To achieve this, the length of each edge of the bounding box must be divisible by
a single factor, obtaining an integer result. For this purpose, the coordinates of the vertices
of the box are adjusted appropriately. In T-WorkFlow, this common divisor is set to 30%
of the inlet diameter, a value automatically captured from the inlet.stl files using the
numpy-stl library. Our numerical experiments have shown that this value balances the
computational efficiency of snappyHexMesh and the quality of the resulting mesh. This
methodology helped standardize the mesh generation process and ensure a consistent grid
quality across various geometries.

3.3.2. Automated Configuration of the snappyHexMeshDict

snappyHexMesh is one of the grid generators available in the OpenFOAM suite. Start-
ing from the .stl files of the fluid domain and the base grid created using blockMesh,
it is capable of systematically discretizing even complex geometries. The generation
of the snappyHexMeshDict is automated by T-WorkFlow, and this file is made by five
parts, which are briefly described below: (i) geometry; (ii) castellatedMeshControls;
(iii) snapControls; (iv) addLayersControls; (v) meshQualityControls. In the geometry
section, the entities that define the fluid domain are specified. This includes identifying the
names of the corresponding .stl files, which must be located in the constant/triSurface
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folder. Once these entities have been defined, the progressive refinement phase of the
underlying grid defined by blockMesh begins. This is carried out according to the infor-
mation provided in castellatedMeshControls and follows an octree-refinement-based
algorithm. The refinement levels selected for the different surfaces are fixed and have been
chosen to balance the quality of the resulting grid, the time required for its generation,
and the total number of cells, according to the specifications of Tatuus Racing S.p.a. In this
phase, particular attention is given to certain regions of the radiator that require a larger
mesh density to be properly represented. To this end, through the OpenFOAM command
surfaceFeatures, it is possible to extract from the .stl files indicated in the corresponding
dictionary some features of the surface where a higher mesh refinement is required. Par-
ticularly, this command generates the .eMesh files in constant/triSurface folder, which
can then be referenced in the feature section of castellatedMeshControls, along with
the corresponding refinement level. The maximum level of refinement is imposed on the
contour of the radiator channels to properly capture their very pronounced curvature (see
Figure 9a). Another region to be refined is the edge of the tanks to accurately discretize the
junction between the radiator channels and the tanks themselves, as shown in Figure 10.
To achieve this, the region of the radiator channels alone was included in a dedicated .stl
file during the pre-processing phase, cf. Section 3.2. In this way, through the OpenFOAM
command surfaceFeatures, it’s possible to generate the channel.eMesh file to which the
highest level of refinement is effectively applied. Once the surface refinement phase is
completed, snappyHexMesh removes the cells not contained in the fluid domain, i.e., all
but those cells included in the internal region of the input .stl files. The internal region is
identified by means of the coordinates of the point provided through the locationInMesh
keyword in castellatedMeshControls, and the software automates the writing of these
coordinates. This operation is based on the coordinates of Point 3, represented in Figure 8,
which corresponds to the barycenter of the “Base Surface”, shown in Figure 5. These co-
ordinates are known due to the information obtained through the FreeCAD macro, cf.
Section 3.1. Specifically, Point 3 of Figure 8 is translated in the direction opposite to the
normal of the surface on which it resides by a small fraction of the length of the vector
connecting it to one of the barycenter of the outermost channels. Following this approach
the coordinates of a point within one of the radiator tanks, which are subsequently as-
signed to the locationInMesh keyword within castellatedMeshControls, are obtained.
Upon completion of the refinement, the snapping phase begins. This process involves a
series of operations aimed at conforming the generated mesh to the reference geometry,
thereby enhancing its alignment with the computational domain boundaries defined by
the input .stl files. During this phase, the vertices of the existing mesh are translated
towards the target surface to align the hexahedral cells with the geometric interface. This
operation is guided by minimizing the distance between the mesh points and the surface,
with particular attention given to maintaining mesh quality by limiting cell distortion. This
process is iterative and continues until the mesh quality parameters satisfy those specified
in the meshQualityControls section. Both the snapControls and meshQualityControls
parameters are rather standard and are taken according to the guidelines provided in the
various OpenFOAM tutorials.

The final step in the grid generation process is the generation of a layer of prism
at the walls to solve the boundary layer region accurately. For the automatic generation
of this layer, T-WorkFlow, using the inputs from Section 3.1 and simple fluid dynamics
relationships, estimates the boundary layer thickness within the radiator channels and con-
sequently generates an appropriate clustering of the prisms layer by setting the parameters
firstLayerThickness and nSurfaceLayers within the addLayersControls section. The
thickness of the first layer of cells is given as a dimensional value obtained by means of
the simplified assumptions discussed below, thus allowing for the complete automation
of this process. To obtain a representative value of the fluid velocity in a radiator channel
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and, consequently, the “local” Reynolds number, it is assumed that the volumetric flow
rate at the inlet is uniformly distributed across the radiating ducts.

Qin =
N

∑
i=1

Qi = N Qi = N Ui Ai ⇐⇒ Ui =
Qin
NAi

; (1)

where Qin is the volumetric flow rate at the inlet, N is the number of radiator channels, Ui
is the velocity component in the direction of the channel axis, and Ai is the cross-sectional
area of a single duct. The cross-sectional area of the channels and their number have been
automatically provided by the FreeCAD macro execution, cf. Section 3.1, while the inlet
volumetric flow rate is given as input by the user, cf. Section 3.1. Once the velocity in the
single channel is estimated, it is possible to compute the “local” Reynolds number, as follows:

Re =
ρDUi

µ
, (2)

where D is the reference dimension of a single duct here, defined as D =
√

Ai, ρ is the fluid
density, and µ is the dynamic viscosity. Thus, following the correlation provided in [25] for
the turbulent flat plate, it is possible to estimate

C f =
[
2 log10(Re)− 0.65

]2.3, (3)

τw =
1
2

ρU2C f , (4)

uτ =

√
τw

ρ
, (5)

where C f is the skin friction coefficient, τw is the shear stress in the tangential direction to
the wall, and uτ is the friction velocity. The desired height of the first wall prism is usually
expressed in terms of wall units, y+ = yuτ/ν, depending on the turbulence model and the
possible use of wall functions, e.g., y+ ≈ 3 for k − ω following [26]. By imposing the y+

value it results in

yH = 2
y+µ

uτρ
, (6)

where yH is the dimensional height of the first prism, while
y+µ

uτρ
is the height of the wall

adjacent cell centroid. The boundary layer thickness is then estimated as a function of the
Reynolds number, following [27].

δ99 =


4.91D√

Re
if Re < 5 × 105

0.38D
Re1/5 if Re > 5 × 105

. (7)

At this point, to properly define the prism layer, it remains to determine their number in
order to ensure that their thickness is greater or equal to the boundary layer thickness
estimated through Equation (7). To this end, an expansion ratio, which is defined as the
ratio between the heights of two consecutive prism layers, is first set. In T-WorkFlow, this
parameter is fixed equal to r = 1.3, which is a suitable value for achieving homogeneous
prisms. The total height of the prisms yT resulting from the generation of M layers can
then be evaluated through the following geometric series

yT =
M−1

∑
k=0

yHrk, (8)
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where k = 0 indicates the prism layer adjacent to the wall. When yT is found to be greater
or equal to the estimated boundary layer thickness, the process of introducing prisms
is stopped, and the number of layers M is determined. This value is then assigned to
nSurfaceLayers in addLayerControls.

The final mesh in the radiator channel area, in the region of the junction between the
channels and tanks and for the inlet are presented in Figures 9a and 10. In these images, we
can appreciate the mesh refinement along the edges of these regions, achieved through the
specific generation of the .eMesh files using the OpenFOAM surfaceFeatures tool.

When performing internal fluid dynamics simulations, it is often advisable to extend
the inlet and outlet patches perpendicular to their surface by approximately six times
their diameter. This operation ensures a better interaction of the flow with the boundary
conditions and allows for the proper development of the incoming boundary layer. Often,
the inlet and outlet extrusions are already present in the input .stl files. If this is not the
case, the user can request for their generation in the graphical interface during the input
phase, as shown in Section 3.1, and, once the grid has been generated, T-WorkFlow will
extrude the inlet and outlet patches using the OpenFOAM extrudeMesh command.

(a) in red is shown the slice used for the mesh
detail of the tanks–channel junction

(b) surface mesh at the inlet

(c) tanks–channel junction for Configuration A

(d) tanks–channel junction for Configuration B

Figure 10. Surface mesh at the radiator inlet and cross-sectional detail of the volume mesh of the flow
domain near the tanks.

3.4. Automatic Detection of the Radiator Channels and Volumetric Flow Rate Monitoring

After generating the computational grid, the radiator ducts are automatically identified
to monitor the volumetric flow rate in each of them during the simulation. This operation is
performed by using the OpenFOAM command topoSet, through which T-WorkFlow defines
a control surface for each radiant channel. In the corresponding dictionary, it is necessary
to specify the coordinates of a point belonging to each control surface and its normal.
The latter is known due to information obtained via the FreeCAD macro, cf. Section 3.1.
To identify each channel, the software first creates a vector connecting the barycenter of the
two outermost ducts. Subsequently, along this vector, a number of evenly spaced points
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equal to 10 times the (known) number of radiant channels are defined. For each of these
points, a control surface faceZoneSet of OpenFOAM is created using the topoSet command.
If the point used to define the control surface is actually inside a channel, the corresponding
surface file consisting of adjacent mesh faces will be written. However, if the point provided
to faceZoneSet is in the region between two channels, the nearest enclosed surface to that
point will be considered to create the control surface. As this procedure will produce more
than a control surface for each radiant duct, the software compares the files related to these
surfaces in the constant/polyMesh/sets and retains only one copy for each group. This
results in a single file for each channel, ensuring that the corresponding control surfaces
can be effectively used to monitor the volumetric flow rate in the channels.

After defining the surfaces through which the flow rate of each channel will be
evaluated, the method used by OpenFOAM to compute this quantity during the simulation
needs to be set. For this purpose, the surfaceFieldValue function from the OpenFOAM library
libfieldFunctionObjects is used. This function calculates the sum of the volume fluxes across
the faces of a specified mesh region. In particular, T-WorkFlow automatically appends the
following block of instructions at the end of the controlDict file for each captured control
surface, as well as for the inlet and outlet surfaces

flux_pipe_{i + 1}
{
type surfaceFieldValue;
libs ("/opt/openfoam10
/platforms/linux64GccDPInt32Opt/lib/libfieldFunctionObjects.so");
log true;
writeControl runTime;
writeInterval {delta};
writeFields true;
surfaceFormat none;
regionType faceZone;
name controlZone{faces[i]};
operation orientedSum;
fields (phi);
}

where flux_pipe_{i + 1} is the volumetric flow rate through the single duct; delta is
the interval, measured in solver iterations, between successive outputs of the flow rate,
as specified by the user (cf. Section 3.1); and controlZone{faces[i]} is the control surface
related to that specific channel.

3.5. Simulation Set-Up

Once the definition of the control surfaces for monitoring the volumetric flow rate
in each radiant channel has been completed, T-WorkFlow executes the CFD solver. In this
regard, the simpleFoam solver from OpenFOAM based on the SIMPLE algorithm [28] was
chosen, as it is suitable for steady-state incompressible flow simulations, also considering
the Reynolds-Averaged Navier–Stokes (RANS) simulations closed by different turbulence
models. In this regard, in the T-WorkFlow graphical interface, we limited the user selection
among the (i) k − ϵ [22]; (ii) k − ω [23]; (iii) k − ω SST [24] models (cf. Section 3.1).
The boundary conditions automatically imposed at the different surfaces of the radiator
are tabulated in Table 1, where the subscript “WF” stands for “Wall Function”, while the
subscript “ifd” stands for “internal field” and Ux; Uy; Uz are the velocity vector components
imposed as uniform at the inlet. These are derived from the volumetric flow rate at the
inlet specified by the user (cf. Section 3.1), assuming the velocity vector is parallel to the
normal of the inlet. The direction of the normal and the area of the inlet are automatically
captured due to the numpy-stl library.
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Table 1. Boundary conditions imposition.

Boundary p
ρ
[m2/s2] U [m/s] k [m2/s2] ϵ [m2/s3] ω [1/s]

Inlet Type: zeroGradient fixedValue fixedValue fixedValue inletOutlet
Value: / Ux; Uy; Uz ki f d ϵi f d ωi f d

Outlet Type: fixedValue zeroGradient inletOutlet inletOutlet inletOutlet
Value: uniform 0 / ki f d ϵi f d ωi f d

Walls Type: zeroGradient noSlip kqRWF epsilonWF omegaWF
Value: / / ki f d ϵi f d ωi f d

The turbulence model variables ki f d, ϵi f d, and ωi f d are imposed as uniform on the
different surfaces and they are evaluated following the indications in [29], as follows:

ki f d = 1.5 ∥Uin∥2 Tu2, ϵi f d = Cµ

k1.5
i f d

l
, ωi f d =

ϵi f d

Cµ ki f d
, (9)

where ∥Uin∥ is the magnitude of the inlet velocity vector, Tu is the turbulence intensity
as imposed by the user (cf. Section 3.1), Cµ = 0.09 is a model coefficient, and l = 0.1Din,
with Din being the inlet diameter, is a reference length.

3.6. Output Generated

The ultimate goal of T-WorkFlow is to provide the designer with a tool that can stream-
line and speed up the process of selection of the best configuration among those available.
In this regard, the designer needs specific outputs that help evaluate both qualitatively
and quantitatively the flow distribution within the radiant channels and the overall pres-
sure drop across the radiator. During the software development, we chose to monitor the
evolution of these two parameters throughout the simulation, as they are considered funda-
mental and representative of the radiator performance, especially in the initial design phase,
for which the use of T-WorkFlow is intended. Distributing the fluid uniformly within the
radiator channels ensures a more effective heat exchange, while minimizing pressure losses
allows for more power to the engine, which can be converted into “thrust”. In a design loop
where performance must be maximized, improvements related to these two parameters
enable the minimization of the heat exchange surface, allowing for the installation of a
smaller and lighter radiator. This, in turn, ensures a less bulky sidepod, leading to reduced
aerodynamic drag and, thus, more available power. Additionally, T-WorkFlow produces
the text file Area_ratio, which is intended to assist the designer in assessing the ability of
the computational grid, automatically generated, to accurately reproduce the actual area of
the radiant channels. Within this file, the following parameter is given as a percentage:

Art =
∑N

i=1 Am,i

Ae f f
, (10)

where N indicates the number of channels, Am is the area of the computational grid relative to
the control surface defined for the i-th channel, and Ae f f is the area of the cross-section of all
the radiant channels obtained from the CAD model via the FreeCAD macro. T-WorkFlow also
provides as output the following set of files to monitor during the simulation of the evolution
of pressure losses and fluid distribution in the radiator channels:

1. deltaP_inlet_outlet;
2. flowRate_Standard_Deviation;
3. charts update within flowRateVisualization.

These are updated during the simulation whenever the solver reaches an iteration
count that is a multiple of a user-defined value specified through the graphical interface
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(see Section 3.1). The first file contains the pressure drop ∆ p̂in−out = 2( p̄in − p̄out)/∥Uin∥2,
evaluated across the inlet and outlet surface and normalized by a dynamic pressure com-
puted with the magnitude of the velocity at the radiator inlet. p̄in and p̄out are, here, the
integral averages of the pressures evaluated on the inlet and outlet surfaces. Notice that
the incompressible solver simpleFoam solves for the p̄ = p/ρ variable, where ρ is the fluid
density. To readily have access to the ∆ p̂in−out parameter is essential for the designer,
as it facilitates the quick identification of the radiator model that ensures low pressure
losses. The FlowRate_Standard_Deviation file contains the value Qstd, which represents
the dimensionless standard deviation of the flow rate over the ducts

Qstd =

√√√√√∑N
k=1

(
Qk −

Qin
N

)2

N
1

Qin
, (11)

where Qk is the volumetric flow rate in the k-th channel, Qin is the volumetric flow rate at
the inlet, and N is the number of radiant channels. The mean value for the computation of
the standard deviation in Equation (11) has been set to Qin/N, i.e., an “ideal case” where
the flow is evenly distributed among all the channels. FlowRate_Standard_Deviation
therefore indicates, quantitatively and synthetically, how much the distribution of the
volumetric flow rate over the different channels deviates from the “ideal” case.

Finally, T-WorkFlow populates the FlowRateVisualization folder with a series of
graphical outputs in .png format, generated at runtime. These images provide the designer
with a simple visual representation of the actual flow distribution over the channels; see
Figure 11. These plots are created by using the well-known Python library matplotlib [17]
and accessing at runtime the volumetric flow rate values of each control surface. In
particular, Figure 11 shows the dimensionless volumetric flow rate Q̂k = Qk/Qin as a
percentage relative to the total inlet flow rate to the radiator.

Figure 11. Example of a plot generated at run-time by the software containing the volumetric flow
rate distribution as percentage values in the different channels.

It is worth noting that these operations, while they might appear trivial, allow for the
full automation of the main post-processing tasks necessary for the designer to identify
the best configuration among those tested. T-WorkFlow was developed to automatically
manage all interactions with OpenFOAM, dramatically simplifying the set-up of the case
and specific numerical configurations. This enables even non-expert users of this open-
source CFD tool to efficiently produce accurate results and make informed decisions within
the tight deadlines typical of this type of car design.
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4. Numerical Results

In this paragraph, examples of the results provided by T-WorkFlow for the analysis of
the flow within a radiator are reported. For this purpose, the two radiator configurations
shown in Figure 2 were given as input to the tool. All the results shown in this section
are obtained using the k − ω [23] as turbulence model. The simulation ends when the
steady-state condition, identified by the values of some norm of the residuals of the spatial
discretization, is reached. Notice that the dimensional value of the inlet flow rate is not
provided for confidentiality reasons. However, the exact value is not essential for the purposes
of this paper, as our focus is on demonstrating the capabilities of T-WorkFlow in handling
the entire CFD workflow through comparative simulations of two configurations. For this
reason, the analysis emphasizes the relative performance of the configurations rather than
absolute values. In particular, as mentioned in Section 1, the goal of the present comparison
is to assess if Configuration A, which represents a possible geometrical simplification of the
“real” Configuration B, can be effectively used to provide computational savings without
compromising the validity of the numerical results. Ideally, these two configurations should
have the same performance. The fluid considered for all the simulations is water at ambient
conditions, as Formula 3 [3] and Formula 4 [2] regulations prescribe using “simple” fluids
to keep costs down and not dangerous to humans and the environment since they can be
dispersed in the event of an accident.

Regarding the automated mesh generation with the snappyHexMesh utility, the main
results from the OpenFOAM checkMesh command for the mesh diagnostic are provided in
Table 2 for the analyzed configurations.

Table 2. Main information from the OpenFOAM checkMesh diagnostic tool for meshes for the two
configurations.

Parameter Configuration A Configuration B

Number of cells 6,666,090 7,655,500
Max cell openness 8.09 × 10−16 7.12 × 10−16

Max aspect ratio 31.14 25.26
Minimum face area [m2] 1.02 × 10−9 1.25 × 10−9

Maximum face area [m2] 1.67 × 10−5 1.65 × 10−5

Min volume [m3] 5.26 × 10−13 1.22 × 10−13

Max volume [m3] 6.68 × 10−8 6.58 × 10−8

Mesh non-orthogonality
Max [◦] 69.96 69.70

Mesh non-orthogonality
Average [◦] 10.84 11.08

Max skewness 3.94 3.90

As clearly evidenced by Table 2, mesh quality is comparable between the two configu-
rations. As expected, the mesh of Configuration A is characterized by fewer cells than those
of Configuration B, i.e., about 13% fewer elements. This is the key factor suggesting that
using the geometry of Configuration A instead of Configuration B could result in significant
computational savings. This difference in the number of cells is due to the different ways in
which the channels are connected to the water tanks in the two configurations, see Figure 2.
The more complex junction characterizing Configuration B leads to the extraction of a
greater number of features through the surfaceFeatures command, resulting in a higher level
of refinement on a greater number of cells than in Configuration A, as clearly evidenced in
Figure 10. Moreover, due to the postProcess option of simpleFoam, it is possible to obtain the
average value at of y+ related to the generated mesh. For the converged solution of Config-
uration A, this parameter is found to be y+A = 0.57, while for Configuration B, y+B = 0.53.
These results support the validity of the methodology used for the automatic generation
of prism layers with snappyHexMesh, cf. Section 3.3.2. Another parameter related to mesh
quality is Art, computed according to Equation (10). For both the generated meshes, this
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parameter turns out to be Art ≈ 99.2%, indicating an excellent ability of the automatically
generated computational grid to accurately copy the CAD geometry of the radiating ducts.

To effectively determine whether Configuration A can be used in place of Configu-
ration B to conduct numerical investigations of radiator operation, we now present the
leading performance indicators, i.e., pressure losses and flow distribution within the radia-
tor channels, obtained using T-WorkFlow for both geometries. Figure 12, generated through
the open-source ParaView software [30,31], shows the pressure distribution on the plane
longitudinally intersecting the channels and passing through the barycenter of a tank.

(a) Configuration A

(b) Configuration B

Figure 12. Pressure distribution on a plane parallel to the Cartesian yz-plane, passing through the
barycenter of a tank.

The pressure contours in Figure 12 suggest that pressure losses across the radia-
tors are larger for Configuration B. The ∆ p̂in−out values, defined in Section 3.6, confirm
this observation, but the difference between ∆ p̂in−out,A = 1.686 and ∆ p̂in−out,B = 1.709
is actually minimal, i.e., ≈ 1%. Regarding the flow rate distribution within the radia-
tor channels, the plot provided by T-WorkFlow for the converged solution for both ra-
diator configurations is shown in Figure 13. The analysis of this figure reveals a sim-
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ilar flow rate distribution between the two configurations. This is confirmed by the
FlowRate_Standard_Deviation value, automatically evaluated by T-WorkFlow according
to Equation (11), i.e., Qstd,A = 4.0 × 10−3 and Qstd,B = 4.2 × 10−3.

(a) Configuration A (b) Configuration B

Figure 13. Flow rate distribution across the radiant ducts.

The trend observed in Figure 13 is further corroborated by the distribution of the
velocity component associated with mass transport, as shown in Figure 14. This distribution
is shown on a plane normal to the axial direction of the ducts, passing through their
barycenters. From the analysis of Figure 14, it is clear that the two configurations show an
almost identical behavior.

(a) Configuration A

(b) Configuration B

Figure 14. Distribution of the velocity component related to mass transport in the channels on a plane
with normal parallel to their axis direction and that passes through their barycenters.

Details of the numerical solution in the region of the inlet and outlet tanks are pre-
sented hereafter to highlight the different flow behavior where the differences between
the geometries occur, see Figure 2. In Figures 15 and 16, the distribution of the velocity
vector magnitude is presented, composed solely of the velocity components lying on the
yz-plane for both the tanks. As expected, by comparing Figure 15 with Figure 16, the main
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differences between the two configurations lie in the pronounced recirculation regions at
the radiant duct connection with the outlet tank of Configuration B, rather than in the
inlet region.

(a) Configuration A

(b) Configuration B

Figure 15. Distribution in the inlet tank of the velocity vector module, composed solely of the
velocity components lying on the plane parallel to the Cartesian yz-plane and that passes through the
barycenter of this tank.

(a) Configuration A

(b) Configuration B

Figure 16. Distribution in the outlet tank of the velocity vector module, composed solely of the
velocity components lying on the plane parallel to the Cartesian yz-plane and that passes through the
barycenter of this tank.
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Streamlines colored with the magnitude of the velocity vector are displayed in
Figures 17 and 18 for both configurations, focusing on the region of the tanks. In the
outlet reservoir of Configuration B, the flow recirculation at the connection between the
radiating ducts and the tank is clearly evident. This distinct flow behavior with respect to
Configuration A results from the geometric differences between the two models. However,
based on the performance indices, it does not lead to significant differences in the overall
hydraulic performance of the two configurations. For this reason, Configuration A can be
effectively used in production runs to guarantee computational savings without signifi-
cantly compromising the accuracy of the numerical results. In fact, it is worth mentioning
that the numerical simulation performed for Configuration A converged in ≈ 370 iterations,
while that of Configuration B reached a steady-state condition after ≈ 450 iterations. This
18% reduction in the number of iterations demonstrates the computational savings that can
be obtained by using the simplified geometry.

(a) Complete geometry

(b) inlet tank

(c) outlet tank

Figure 17. Streamlines colored with the velocity vector magnitude for Configuration A.

(a) Complete geometry

(b) inlet tank

(c) outlet tank

Figure 18. Streamlines colored with the velocity vector magnitude for Configuration B.

5. Conclusions

This paper presents a software tool designed to fully automate and manage the
workflow for CFD simulations of radiators mounted in race cars. Software tools like the one
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proposed here could provide significant value to automotive companies. In fact, companies
can lower costs by using open-source software and reduce the time needed for designers to
obtain reliable and standardized CFD results through the customization and streamlining of
the process. In this specific case, the tool has been designed in the most general way possible
so that any radiator geometry the company wants to analyze can be used as input. Great
care was taken to develop a procedure ensuring the generation of computational meshes
of comparable quality regardless of the specific radiator configuration. This allows for
consistent comparison between numerical results from different geometries, thus enabling
even non-expert users to make informed decisions within the tight deadlines typical
of the race car design. For this purpose, during the development, it was necessary to
compare various pre-processing operations to enhance the quality of the computational grid
while reducing its generation time using snappyHexMesh. T-WorkFlow fully manages the
interaction with OpenFOAM, automates post-processing, and provides real-time outputs to
quickly identify the most effective configuration in evenly distributing the flow across the
radiating ducts. The paper also provides a practical example by applying the software to
two different radiator configurations and includes a comparative analysis of their hydraulic
performance. In particular, it was successfully demonstrated that a possible geometrical
simplification in the tank–channel junction can lead to important computational savings
without significantly affecting the accuracy of the numerical results.

In future work, several improvements could be implemented in T-WorkFlow, some
simple and immediate and others more complex, to increase the impact of the tool on the
design practice of the company. The potential new features include but are not limited to
(i) allowing users to select different levels of mesh refinement, with the tool automatically
adjusting the snappyHexMeshDict; (ii) automatically scheduling multiple simulations for
a parametric study involving various geometries or operating conditions; (iii) applying
the existing workflow to simulate other components, such as intercoolers. More ambitious
goals involve integrating the T-WorkFlow into a complete shape optimization process
by utilizing open-source tools like Dakota [32], as shown in [33]. Lastly, a particularly
intriguing possibility lies in integrating machine learning methods to support the numerical
simulation practice for ground vehicles, as explored, for example, in [34].
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CT, USA, 2003; pp. 625–632.

25. Schlichting, H.; Gersten, K. Boundary-Layer Theory; McGraw-Hill Book Company: New York, NY, USA, 1979.
26. Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [CrossRef]
27. Cengel, Y.; Cimbala, J. Fluid Mechanics: Fundamentals and Applications; McGraw-Hill Education: New York, NY, USA, 2006.
28. Patankar, S.V.; Spalding, D.B. Numerical calculation of fluid flow. Comput. Fluids 1972, 1, 1–26.
29. NASA Langley Research Center. Turbulence Modeling Resource. 2024. Available online: https://turbmodels.larc.nasa.gov/

(accessed on 24 August 2024).
30. Ahrens, J.; Geveci, B.; Law, C. ParaView: An End-User Tool for Large Data Visualization. In Visualization Handbook; Elesvier:

Amsterdam, The Netherlands, 2005; ISBN 978-0123875822.
31. Kitware, Inc. ParaView. Available online: https://www.paraview.org (accessed on 27 August 2024).
32. Adams, B.; Bohnhoff, W.; Dalbey, K.; Ebeida, M.; Eddy, J.; Eldred, M.; Hooper, R.; Hough, P.; Hu, K.; Jakeman, J.; et al. A

Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity
Analysis: Version 6.15 User’s Manual; Sandia Technical Report SAND2020-12495; Sandia National Laboratories: Albuquerque, NM,
Mexico, 2021.

33. De Donno, R.; Ghidoni, A.; Noventa, G.; Rebay, S. Shape optimization of the ERCOFTAC centrifugal pump impeller using
open-source software. Optim. Eng. 2019, 20, 929–953. [CrossRef]

34. Eiximeno, B.; Miró, A.; Rodríguez, I.; Lehmkuhl, O. Toward the Usage of Deep Learning Surrogate Models in Ground Vehicle
Aerodynamics. Mathematics 2024, 12, 998. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://amslaurea.unibo.it/id/eprint/16520
http://doi.org/10.1063/1.168744
http://dx.doi.org/10.3390/app12083763
http://dx.doi.org/10.1016/j.jweia.2023.105635
http://dx.doi.org/10.3390/app10228211
http://dx.doi.org/10.1016/j.ijhydene.2021.10.093
http://dx.doi.org/10.1016/j.compfluid.2018.11.017
http://dx.doi.org/10.32604/cmes.2024.048877
http://dx.doi.org/10.3390/pharmaceutics16091119
http://www.ncbi.nlm.nih.gov/pubmed/39339157
https://www.freecadweb.org
https://github.com/WoLpH/numpy-stl
http://dx.doi.org/10.1109/MCSE.2007.55
https://www.plm.automation.siemens.com/global/en/products/simcenter/STAR-CCM.html
https://www.plm.automation.siemens.com/global/en/products/simcenter/STAR-CCM.html
https://www.ansys.com/products/fluids/ansys-fluent
http://dx.doi.org/10.1002/nme.2579
https://wiki.freecad.org/Selection_API
http://dx.doi.org/10.1016/0045-7825(74)90029-2
http://dx.doi.org/10.2514/3.12149
https://turbmodels.larc.nasa.gov/
https://www.paraview.org
http://dx.doi.org/10.1007/s11081-019-09428-3
http://dx.doi.org/10.3390/math12070998

	Introduction
	Tools of the Trade
	Workflow Description
	User Input Through FreeCAD and Graphical Interface
	Geometry Processing
	Mesh Generation
	Automated Configuration of the blockMeshDict 
	Automated Configuration of the snappyHexMeshDict 

	Automatic Detection of the Radiator Channels and Volumetric Flow Rate Monitoring
	Simulation Set-Up 
	Output Generated

	Numerical Results
	Conclusions
	References
	References 


