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Abstract
Calibration of satellite observations is crucial for ensuring the quality of retrieved products 
essential for meteorological and climate applications. Calibration is obtained and moni-
tored through a cascade of stages, including postlaunch vicarious calibration/validation 
activities through comparison with independent reference measurements. Here, the vicari-
ous calibration method using radiative transfer simulations based on reference radiosondes 
is considered in the framework of the calibration/validation activities for the Microwave 
Imager (MWI) and the Ice Cloud Imager (ICI) to be launched with the Second Genera-
tion of the EUMETSAT Polar System. This paper presents an overview of the uncertainty 
characterizing the vicarious calibration of MWI and ICI using radiosondes as performed 
within the EUMETSAT-funded VICIRS study. The uncertainty characterization is pursued 
following a metrological approach, providing a preliminary estimation of all the identi-
fied sources. The same approach is used to develop a rigorous method for estimating the 
number of comparison pairs (i.e., observations vs. simulations) needed to reach a certain 
level of accuracy in bias determination.

Keywords  Satellite observations, microwave radiometry, vicarious calibration, 
radiosonde

1  Introduction

Radiometric observations from space are currently the backbone of satellite meteorology 
and climate monitoring. Radiometric sensors are particularly sensitive to calibration, due to 
the relatively weak signals they are intended to detect, and thus accurate methods are cru-
cial for ensuring the quality of retrieved products essential for meteorological and climate 
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applications. For this reason, calibration is obtained and monitored through a cascade of 
stages, including (i) preflight (laboratory tests on the ground prior to launch), (ii) in-flight 
(postlaunch aboard the spacecraft), and (iii) vicarious (postlaunch intercalibration/valida-
tion activities through comparisons with independent reference measurements). Although 
the preflight calibration completely characterizes the radiometric sensor, frequent checks 
should be performed to monitor the sensor calibration in flight, using onboard high emissiv-
ity targets and cold-space background. In addition, vicarious calibration methods are used to 
check the calibration status and monitor any postlaunch degradation, relying on independent 
reference measurements external to the satellite. Generally, vicarious calibration methods 
use three types of reference data sources: (i) radiative transfer (RT) simulations based on 
atmospheric profiles from radiosonde (RS) sensors (e.g., Moradi et al. 2013) or numeri-
cal weather prediction (NWP) data (Saunders et al. 2013; Duncan et al. 2024); (ii) similar 
instruments aboard aerial platforms (e.g. Wilheit 2013); and (iii) similar instruments aboard 
other spaceborne platforms (Moradi et al. 2015), also called intercalibration. In the case of 
new satellite sensors, some channels may be unprecedented aboard operating platforms and 
thus cannot be compared with reference observations from space. Thus, their data can be 
compared only with similar airborne observations (Fox et al. 2017, 2024), which are expen-
sive and seldom available, or with RT calculations from reference profiles, such as radio-
sonde and modeled profiles (forecast or reanalysis). To this end, the European Organisation 
for the Exploitation of Meteorological Satellites (EUMETSAT) promoted a study to charac-
terize the vicarious calibration of microwave (MW) radiometer imagers aboard the Second 
Generation of the EUMETSAT Polar System (EPS-SG), which is scheduled to be launched 
in 2025/2026. In particular, the EPS-SG satellite B will host the Microwave Imager (MWI) 
and the Ice Cloud Imager (ICI): MWI operates at 18 frequencies between 18 and 183 GHz, 
while ICI will be the first operational sensor covering the mm/submm wavelengths from 
183 to 664 GHz. The combined use of MWI and ICI radiometers will provide an unprec-
edented set of microwave passive measurements, from 18.7 GHz up to 664 GHz. This paper 
presents an overview of the uncertainty characterizing the vicarious calibration of MWI and 
ICI using radiosondes as performed within the EUMETSAT-funded VICIRS study (devel-
opment of VIcarious Calibration tools for MWI and ICI using RadioSoundings). Character-
izing uncertainty is a fundamental step to ensure that the comparison between observations 
and simulations is metrologically valid. The uncertainty characterization developed in the 
present study represents a building block of the tools that will be used for the calibration/
validation (cal/val) activities for the unprecedented observations provided by MWI and ICI 
after their lunch in 2025/2026.

2  Methodology

The availability of measurement and collocation uncertainties is fundamental for establish-
ing whether spaceborne observations and RT simulations agree within the uncertainty limits 
(Immler et al. 2010). Therefore, the analysis of the uncertainty sources is the first and most 
important step in making proper use of satellite observations.

1 3

    9   Page 2 of 15



Bulletin of Atmospheric Science and Technology…

2.1  Metrological approach

Although the terms “error” and “uncertainty” are often treated as synonymous, in metrol-
ogy they correspond to different definitions. According to the Vocabulaire International 
de Métrologie (VIM), published by the Joint Committee for Guides in Metrology (JCGM 
2012) of the International Bureau of Weights and Measures (BIPM), an error is defined as 
the measured value of a quantity minus the reference value of the same quantity. This error 
results from different contributions, as for instance instrumental and collocation errors, and 
can assume either positive or negative values. Conversely, uncertainty is defined as a non-
negative parameter quantifying the statistical properties of an ensemble of errors. In brief, 
the term error is used for the deviation between a single value and the corresponding refer-
ence, while the term uncertainty indicates the statistical properties of these errors. Any error 
can have two components: random and systematic. The bias is defined as the deviation of 
the measurements from the reference value arising from systematic errors (Immler et al. 
2010). Although corrections are often applied to compensate for the bias, the uncertainty 
associated to the correction is seldomly considered. Conversely, bias correction shall be 
accompanied with a robust analysis of the uncertainty associated with the correction (JCGM 
2008). Note that systematic errors are not necessarily fixed in time, as they may depend 
upon operating conditions and thus change on longer scale with respect to single measure-
ments. In such cases, the bias shall be monitored in time and bias correction and associated 
uncertainty be evaluated periodically. Assuming that bias correction is applied correctly, 
the expected value of the random error is zero. Thus, the measurement uncertainty can be 
expressed by a single value, the uncertainty u, which is the estimated standard deviation 
(std) of the random error (Immler et al. 2010). This uncertainty results from the contribution 
of all uncertainty sources evaluated through the rule of uncertainty propagation:

	
uy =

√
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where u2n = un,n  and un,m  (n �= m ) indicate respectively the variance and covariance of 
the input variables xn . Thus, a rigorous uncertainty budget requires the evaluation of cor-
relations between the different sources. In the simplest case of uncorrelated sources, the 
different uncertainty contributions can be summed quadratically, obtaining the combined 
standard uncertainty. Finally, once all the uncertainty sources have been identified and 
evaluated, two independent measurements can be cross-checked for consistency, which is 
validated if the measurements agree within the total uncertainty

2.2  Uncertainty model

The vicarious calibration aims to cross-check two independent measurements m1 and m2 
of the same measurand (e.g., the brightness temperature BT) with standard uncertainties 
u1 and u2, respectively. However, a trade-off is needed between the abundance of compari-
son pairs, on the one hand, and on the other hand, the uncertainty of the matchup, such as 
imperfect spatial and temporal collocation between satellite and radiosonde measurements 
(Ignaccolo et al., 2015, Fassò et al. 2014 ). Such uncertainty sources cannot be eliminated; 
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therefore, the uncertainty budget of the vicarious calibration must account for not only the 
measurement uncertainties but also for the uncertainties related to sampling and smoothing 
of the inhomogeneous and variable atmospheric fields (Verhoelst et al. 2015). Calling σ the 
intrinsic uncertainties of the comparison (e.g. the collocation uncertainty), and assuming 
that m1 and m2 have the same expected value with normally distributed uncertainties, the 
probability that:

	 |m1 −m2| < k
√

σ 2 + u21 + u22 � (2)

depends on the coverage factor k, which determines an interval about the mean value as a 
multiple of the standard uncertainty (Immler et al. 2010). If the results agree within k = 1, the 
data are “consistent”, while within k = 2, they are “in (statistical) agreement”. Conversely, if 
the results do not agree within k = 2, the data are considered “significantly different”, while 
they are considered “inconsistent” if the data do not agree within k = 3. In the latter cases, a 
bias is likely present; i.e., an unaccounted systematic effect needs to be removed.

One way to visualize the uncertainty contributions is to draw a metrological uncertainty 
model diagram. The uncertainty model diagram consists of a visual sketch of the process-
ing steps, describing the flow of the process, including references to calibration, uncer-
tainty sources, and linkages to reference standards. Adopting the formalism indicated by the 

Fig. 1  Top: Uncertainty model diagram for the vicarious calibration/validation using radiosoundings. Bot-
tom: Legends for the uncertainty model diagram blocks
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GAIA-CLIM project (GAIA-CLIM 2017), an uncertainty model diagram for the vicarious 
calibration of satellite radiometric observations was developed within the VICIRS study, 
as reported in Fig. 1. The identified uncertainty sources are reviewed in the next section, 
including the initial evaluation performed within the VICIRS study.

Note that Eq. (2) can be inverted to estimate the number of comparison pairs (N) needed 
to reach the uncertainty level we aim to achieve with vicarious calibration. In fact, calling b 
the expected value of the bias (i.e., b = E(m1)-E(m2)) and b̂  its estimate (b̂ = m1 −m2), the 
expected error for b (at the 95% confidence interval) is:

	

∣∣∣̂b− b
∣∣∣ ≤ 2

σ (m1 −m2)√
N

� (3)

where σ (m1 −m2) is the standard deviation of the comparison, which can be estimated as √
σ 2 + u21 + u22 . Therefore, assuming we want to estimate b with an uncertainty not larger 

than ub (at the 95% confidence interval), the number of comparison pairs must be:

	
N ≥

(
2
√

σ 2 + u21 + u22/ub

)2

� (4)

3  Results

The metrological approach and the uncertainty model outlined above have been used to list 
the uncertainty sources, to review their knowledge status, and to evaluate their contribution 
to the uncertainty of the vicarious calibration of MWI and ICI using radiosondes. Once the 
uncertainty sources have been identified as in Fig. 1, their quantification is likely the most 
difficult task. Several papers are available in the literature addressing different aspects of the 
problem, providing an estimate of the uncertainty, sometimes through a deep investigation, 
more often with just a crude guess. Thus, the relevant literature on uncertainty contributions 
has been reviewed within the VICIRS study. Published values were adopted for contribu-
tions already estimated and available in the open literature; for the remaining contributions, 
original methods are proposed to estimate their values.

3.1  Radiometer accuracy

The instruments of interest, i.e., ICI and MWI, were designed and built in response to the 
requirements set by the meteorological satellite user community, including radiometric 
accuracy (low bias) and precision (high repeatability). The instrument precision is char-
acterized by the noise equivalent delta temperature (NE∆T). The total accuracy of a single 
observation is defined in the EUMETSAT end-user requirement document as the sum in 
quadrature of the bias (i.e., systematic uncertainty) and the NE∆T. The accuracy is obtained 
and maintained through preflight and in-flight calibrations, which are linked to primary or 
secondary metrological standards. Specifications of on-ground and in-flight instrument cali-
brations are reported in EUMETSAT documents (such as the EPS-SG Programme Overall 
Calibration and Validation Plan and the ICI and MWI Calibration and Validation Plan) and 
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references therein. In-flight deep space calibration data from roll maneuvers are part of cal/
val activities and are used for determining important parameters for antenna pattern correc-
tion, such as spillover and near-sidelobe radiation. NE∆T depends on the channel, ranging 
from 0.7 to 1.3 K for MWI and from 0.8 to 2.0 K for ICI (Duncan et al. 2024).

3.2  Radiosonde measurements

Radiosonde measurements are obtained by disposable temperature and humidity sensors, 
whose uncertainty is characterized by the manufacturer. However, common RS archives do 
not provide the associated uncertainty, which is the case, for example, for the comprehen-
sive Integrated Global Radiosonde Archive (IGRA, Durre et al., 2018). Conversely, uncer-
tainty is characterized for each RS flight of the Global Climate Observing System (GCOS) 
Reference Upper-Air Network (GRUAN) archive. GRUAN is a high-quality low-density 
network that provides reference upper-air data for other more comprehensive networks. 
The GRUAN RS uncertainty is characterized through laboratory and inflight tests, inde-
pendently of the manufacturer (Dirksen et al. 2014, 2020; Sommer et al. 2023). The result-
ing uncertainty is provided within the operational GRUAN standard radiosonde products. 
Building on the GRUAN expertise and radiosonde intercomparison experiments performed 
by the World Meteorological Organization (WMO), the RHARM (Radiosounding HAR-
Monization) archive was generated to provide adjusted RS observations of temperature, 
humidity and wind with estimated uncertainties at ~ 700 stations worldwide (Madonna 
et al., 2022). Thus, RHARM is a lower-quality but higher-density archive with respect to 
GRUAN, available from 1978 to present. The radiosonde uncertainty profiles, either from 
the GRUAN or RHARM dataset, are propagated through the GRUAN processor (Carminati 
et al. 2019) to compute the uncertainty associated with the simulated radiosonde BT. Note 
that the GRUAN processor propagates the RS uncertainties into the BT space via perturba-
tions in the temperature, humidity, and pressure profiles by summing and subtracting their 
total uncertainties, thus assuming complete correlation of the uncertainties at all levels (Car-
minati et al. 2019; Newman et al. 2020). This is a conservative assumption and the resulting 
uncertainty obtained in radiance space is therefore representative of the maximum uncer-
tainty of the GRUAN component. The true RS uncertainty in BT space should be smaller 
than that calculated as such, as only a fraction of the total RS uncertainty is really correlated 
across the entire profile.

3.3  Collocation

One of the dominant uncertainty contributions comes from spatial/temporal collocation 
between satellite observations and radiosonde measurements. In fact, radiosondes provide 
in situ measurement profiles during the time of flight, while each satellite observation is 
nearly instantaneous and corresponds to the area observed within the field of view (FOV). 
The radiosonde drift distance typically ranges from a few km in the low troposphere to 
approximately 50 km in the lower stratosphere depending on parameters such as wind speed 
and direction, height above the surface, latitude and season (Seidel et al. 2011). Therefore, 
the collocation uncertainty is evaluated following the target area (TA) approach (Buehler 
et al. 2004), where the TA is defined as the circular area of a 50-km radius centered at the 
radiosonde launch site. The satellite observations falling into the TA are considered for 
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comparison, allowing the user to select either all the FOVs (more comprehensive and thus 
conservative) or just the FOVs nearest to the radiosonde flight ground track (more stringent 
collocation). The collocation uncertainty is then evaluated as the std of the BT correspond-
ing to the selected FOV. Once the matchups have been identified, tests are applied to screen 
out cases affected by cloud contamination and radiosonde drifts larger than the TA radius.

3.4  RT parameterization

At the core of the GRUAN processor are two products of the EUMETSAT’s Satellite Appli-
cations Facility for Numerical Weather Prediction (NWPSAF, https://nwp-saf.eumetsat.
int/), namely, the fast radiative transfer code RTTOV (Saunders et al. 2018) and the Radi-
ance Simulator (https://nwp-saf.eumetsat.int/site/software/radiance-simulator/). RTTOV is 
parameterized in the sense that the atmospheric optical depths are computed from the ther-
modynamics of each layer through regression. The regression is trained and tested against 
channel-integrated spectrally resolved line-by-line (LBL) reference calculations; thus, the 
regression uncertainty contributes to the total uncertainty. This uncertainty contribution is 
evaluated by the NWPSAF as part of the continuous development of RTTOV, and thus 
was evaluated also for the MWI and ICI channels in preparation for EPS-SG. The uncer-
tainty contribution of RT parameterization is evaluated as the std of the differences between 
RTTOV and LBL BT computed for a dataset of 83 diverse profiles and six zenith angles, 
assuming constant unit surface emissivity, top-hat passbands, and MW v13 predictor coef-
ficient files (NWPSAF 2023). The results show that the std is below 0.1 K for all the MWI 
and ICI channels.

3.5  LBL absorption model

The reference LBL absorption model is also affected by uncertainty, due to the computa-
tional or experimental uncertainty underlying the adopted values of spectroscopic parame-
ters. The evaluation of the absorption model uncertainty was first assessed for downwelling 
radiation (Cimini et al. 2018, 2019) and recently extended to upwelling radiation from cen-
timeter to submillimeter wavelengths (16 to 700 GHz, Gallucci et al. 2024).

The absorption model uncertainty was evaluated by propagating the covariance matrix 
of 135 identified dominant water vapor and oxygen spectroscopic parameters. While ozone 
also contributes to line absorption in this range, the uncertainty was found lower than 0.1 K 
for ICI/MWI channels and was thus deemed negligible. The simulated observation geom-
etry mimics the observations from MWI and ICI, i.e., downlooking from the top of the 
atmosphere at 53° incident angle. The emissivity of a sea background (covering 72% of 
the globe) is considered, assuming typical conditions (8 m/s wind speed; 290 K sea surface 
temperature; 35 PSU salinity). The uncertainty was evaluated for six typical climatology 
conditions (tropical, midlatitude summer, midlatitude winter, subarctic summer, subarctic 
winter, U.S. standard).

3.6  Spectral response function

The absorption model uncertainties were estimated at the MWI and ICI channels by con-
volving uncertainty spectra at 50 MHz spectral resolution within a first-order approximation 
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to the instrument bandpass filters (i.e., a rectangular box-average). Modeling the channel 
spectral response function (SRF) with idealized profiles, such as rectangular bandpasses, 
adds uncertainty to the simulated BT. Even when SRF profiles are measured, their discreti-
zation contributes to BT uncertainty. At the time of writing, RTTOV coefficients implement 
the measured SRF for ICI, but not for MWI. However, Buehler et al. (2004) evaluated the 
impact of SRF modeling, reporting that BT differences are well below 0.1 K for either rect-
angular or Gaussian bandpass shapes; thus, this uncertainty is deemed negligible.

3.7  Vertical discretization

In the RT computation, the naturally continuous atmospheric profiles are represented by 
discrete levels, which also generates uncertainty. As such, the uncertainty decreases as the 
profile vertical resolution increases. GRUAN radiosonde data are provided at the original 
high resolution, i.e., at thousands of levels from the surface to the balloon burst height (aim-
ing to reach pressure levels below 10 hPa). Conversely, RHARM data are available at much 
fewer pressure levels, providing far less detail than high resolution data. However, Buehler 
et al. (2004) reported that low-vertical-resolution data, as found in operational archives, are 
sufficient for accurately calculating satellite radiances, provided that low-resolution data 
are interpolated to a fine grid before calculating the radiative transfer. The 54 pressure lev-
els used within RTTOV are deemed sufficient for accurately calculating satellite radiances 
and other path-integrated quantities (e.g., integrated water vapor). The vertical interpolation 
uncertainty was evaluated for channels of the Advanced Technology Microwave Sounder 
(ATMS) at the EUMETSAT NWPSAF (Hocking 2014). These results were extended within 
the VICIRS study to MWI and ICI channels, most of which closely match to one correspon-
dent ATMS channel. For the remaining MWI and ICI channels, which do not closely match 
to one ATMS channel, the analysis extrapolated the vertical discretization uncertainty, 
assuming a linear relationship with atmospheric opacity. The relationship was estimated 
separately for the MWI and ICI channels, computing the atmospheric opacity from standard 
atmosphere profiles. It is recognized that this method likely overestimates the uncertainty of 
most opaque ICI channels and should be then further investigated.

3.8  Geolocation

The uncertainty in geolocating the instantaneous FOV also contributes to the uncertainty 
of the observed BT. The geolocation requirement for MWI and ICI sets in the EUMET-
SAT user requirements document is 2.5 km. However, the geolocation uncertainty of an 
operating MW conical scanner (the Special Sensor Microwave Imager/Sounder, SSMIS) 
was evaluated in a previous EUMETSAT-funded project (Papa et al. 2021), which reported 
average geolocation errors between 5.4 and 6.2 km, as estimated by looking at the bound-
aries of ice shelves, mountainous lakes, and sea bays. To be conservative, we assumed an 
average geolocation uncertainty of 6 km. The corresponding BT uncertainty was evaluated 
for each MWI and ICI channel using simulated test data provided by EUMETSAT, as the 
BT variability (std) over a 3-by-5 box (3 along-track, 5 across-track). Since the along-track 
and cross-track distances are ~ 9 and ~ 2 km, respectively, such a box corresponds to an area 
of 144 km2, which is larger than the circle corresponding to a 6 km geolocation uncertainty 
(~ 113 km2). The BT uncertainty was evaluated for each MWI and ICI channel as the aver-
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age of the standard deviation across more than three million 3-by-5 boxes extracted from 
one entire orbit of test data (from 2007/09/12 08:43:21 to 2007/09/12 10:22:24, processed 
on 2022/06/13 10:44:00), as shown in Fig. 2. The estimated uncertainty depends on the 
channel frequency and polarization, ranging from ~ 0.1 to 0.9 K for MWI and from ~ 0.1 to 
0.6 K for ICI. The values are greater for H-pol than for the corresponding V-pol channels. 
However, it must be noted that the simulated test data were produced using NWP model 
reanalysis and thus likely represent lower spatial resolution than real MWI and ICI data. 
This contribution will be refined once real MWI and ICI observations become available.

3.9  Surface emissivity

Surface emissivity affects the outgoing radiation from the Earth’s surface and thus modu-
lates the background radiation traveling through the atmosphere and reaching the space-

Fig. 3  Uncertainty of simulated BT for MWI (left) and ICI (right) channels due to uncertainties in sea 
surface emissivity estimated from Kilic et al. (2023). The bars indicate the difference between two spectra 
(control and control perturbed with 1-std uncertainty). Downlooking view from the top of the atmosphere 
at 53° incident angle. The colored bars indicate the six typical climatological conditions considered (tropi-
cal, midlatitude summer, midlatitude winter, subarctic summer, subarctic winter, U.S. standard)

 

Fig. 2  One full orbit of simulated ICI test data at 664 GHz (from 2007/09/12 08:43:21 to 2007/09/12 
10:22:24) and magnification of one 3-by-5 box used to estimate the contribution of geolocation uncertainty
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borne radiometers. To our knowledge, the contribution of surface emissivity uncertainty 
to the uncertainty of brightness temperature simulations has not been quantified before. 
Quantification of the uncertainty affecting surface emissivity modeling is available at some 
channels and under certain conditions, while uncertainty propagation to BT simulations is 
currently lacking. Therefore, a dedicated analysis was performed within the VICIRS study. 
Surface emissivity models, such as TELSEM2 (Wang et al. 2017) and SURFEM (Kilic 
et al. 2023), are distributed with RTTOV and thus are considered here. While SURFEM 
provides parameterized sea surface emissivity, TELSEM2 provides parameterized surface 
emissivity for land, snow and sea ice. These models are commonly used for MWI and ICI 
simulations, albeit with some limitations (e.g., no frequency dependence of sea-ice emissiv-
ity above 183 GHz due to the lack of available information). TELSEM2 emissivity has been 
validated up to 325 GHz against airborne observations from the International Submillimeter 
Airborne Radiometer (ISMAR) and the Microwave Airborne Radiometer Scanning System 
(MARSS), reporting consistent estimates in spatially homogeneous regions, especially at 89 
and 157 GHz (Wang et al. 2017). The reported biases and standard deviations for the mod-
eled vs. retrieved emissivity are on the order of 0.01 and 0.04, respectively. Thus, a conser-
vative value of 0.05 uncertainty was assumed for land surface emissivity. Similarly, a 0.018 
uncertainty for sea surface emissivity is assumed here, as derived from the data reported by 
Kilic et al. (2023). Thus, the uncertainty in the surface emissivity has been propagated to 
simulated BT considering the six climatological conditions introduced above to quantify the 
BT uncertainty due to surface emissivity. The results are reported in Fig. 3 for both MWI 
and ICI, obtained as the difference between two spectra (control and control perturbed by 
one std uncertainty). As one may expect, the surface emissivity uncertainty leads to a large 
BT uncertainty at most transparent lower-frequency channels. Note that the impact of sur-
face emissivity does depend on the atmospheric conditions affecting atmospheric opacity. 
The most evident case is at 243 GHz (ICI channel 4), for which the contribution of surface 
emissivity uncertainty is negligible (< 0.1 K) under warm and humid conditions (tropical 
and midlatitude summer) but becomes substantial (0.5–1.5 K) under cold and dry conditions 
(e.g., midlatitude and subarctic winters).

3.10  Total uncertainty

The uncertainty contributions evaluated above are then combined following Eq. (1), con-
sidering no correlation between them, to provide an estimate of the total uncertainty of the 
vicarious calibration of MWI and ICI using radiosondes. The expected total uncertainty is 
reported in Fig. 4 for both MWI and ICI channels; results show that the total uncertainty for 
the vicarious calibration is below 1 K for most of the MWI and ICI channels, but for MWI 
most transparent channels (e.g., 1–4), heavily impacted by surface emissivity, and ICI most 
opaque channels (e.g., 9–11). Note that these values are preliminary and will be re-evaluated 
after further investigations. For example, the uncertainty at most opaque ICI channels (e.g., 
9 and 10) is likely overestimated due to the assumption of linear relationship with atmo-
spheric opacity, as discussed in the vertical discretization section. In addition, the review of 
uncertainty sources indicated remaining knowledge gaps; suggestions for their future evalu-
ation are given in the next section. However, the estimated values in Fig. 4 are already useful 
for an initial planning of the MWI and ICI cal/val campaign that will follow their launch. In 
fact, one important aspect for planning the cal/val activities is how many comparison pairs 
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are needed for a robust estimation of the bias. This can be evaluated rigorously through 
Eq. (4) by considering the desired uncertainty for bias determination (ub) and replacing with 
the estimated total uncertainty. Since the estimated total uncertainty depends on the instru-
ment, channel, and climatology, the resulting N would as well. Considering an objective 
uncertainty ub =0.2 K for the bias and typical uncertainties as in Fig. 1, the resulting N is 
≤100 for channels with total uncertainty ≤1 K, while N > 2000 for uncertainty ≥4.5 K. The 
resulting N would increase (decrease) as more (less) stringent requirements are set for ub.

4  Summary and outlook

The VICIRS study has identified various sources of uncertainty that impact the vicarious 
calibration of satellite radiometric MW observations using radiosondes. It also provided 
an initial quantification of the overall uncertainty for MWI and ICI vicarious calibration, 
which is useful for planning their postlaunch cal/val activities. While some of these sources 
have been evaluated within the VICIRS study, others remain uncharacterized, indicating 
knowledge gaps. For these remaining sources, suggestions for future analysis are given 
hereafter. One such uncharacterized source of uncertainty arises from the spatial and tem-
poral representativeness of radiosonde data within the adopted collocation criteria, that is, 
how well the radiosonde profiles represent the atmospheric spatial and temporal variability 
within the selected target area and time window. The radiosonde temporal representative-
ness could be characterized by analyzing the typical temporal variability within different 
time windows mapped into clear-sky simulated BTs, i.e., computing simulated clear-sky 
BTs from a dataset of realistic atmospheric profiles (e.g., high resolution reanalysis) for the 
same site but within time windows of different amplitudes (e.g., +/-1 h to +/-3 h), and then 
evaluating how the difference changes with temporal distance. This likely depends upon 
meteorological conditions, and could be characterized through proxies, such as total column 
water vapor, instability indices, convective available potential energy, or wind speed/direc-

Fig. 4  Typical values of total uncertainty for the MWI (left) and ICI (right) channels estimated as de-
scribed within the main text. The colored bars indicate the six typical climatological conditions con-
sidered (tropical, midlatitude summer, midlatitude winter, subarctic summer, subarctic winter, U.S. 
standard). Note that the results are preliminary and will be re-evaluated after further investigations, as 
detailed in the main text. The uncertainty values at ICI channels 9 and 10 are likely overestimated (see 
the section on vertical discretization)
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tion. The radiosonde spatial representativeness could be evaluated following the analysis 
outlined in Calbet et al. (2018, 2022), who derived the spatial structure functions (closely 
related to autocorrelation) of atmospheric water vapor and temperature from sequential 
radiosonde launches. Considering that water vapor and temperature are the main drivers 
of MWI/ICI simulated observations, their structure functions could be used as proxies for 
computing the BT autocovariance function. Other approaches may also be considered, e.g., 
exploiting (i) available NWP data to evaluate the variability of BT for the set of NWP pro-
files falling within the considered target area, or (ii) available airborne observations (e.g., 
Fox et al. 2024) to compute the BT autocorrelation function for each channel. Another 
unaccounted uncertainty contribution is the contamination of undetected clouds within the 
field of view, i.e., relatively thin clouds with small water amounts that are not detected by 
the applied cloud tests. These clouds cause a residual signal that is not modeled by clear-
sky RT calculations. Brogniez et al. (2016) evaluated the uncertainty related to undetected 
clouds for 183 GHz channels by comparing observations detected as clear-sky with simula-
tions from ECMWF profiles in either clear-sky or all-sky computations, showing that the 
all-sky calculations lead to smaller biases in the lower peaking channels (e.g. by 0.4  K 
in the 183 ± 7 GHz channel). A similar approach may be extended to other MWI and ICI 
channels. Another contribution that has not been considered explicitly is the uncertainty 
related to the surface parameters not directly measured by the radiosonde, e.g., the skin tem-
perature (English 2008). If NWP surface data are used to cover this measurement gap, their 
uncertainty shall be propagated into the radiative transfer to evaluate the contribution to BT 
simulations. Finally, the vertical correlation of radiosonde uncertainty between levels has 
not yet been considered, although it is recognized to potentially have a substantial impact 
on the estimated BT uncertainty from radiosondes, as indicated by Calbet et al. (2017) 
for infrared hyperspectral observations. To this end, a working group has been established 
within GRUAN to exploit the available information about radiosonde uncertainty vertical 
correlation in radiative transfer calculations. The results are expected to be reported at the 
next GRUAN coordination and implementation meeting (ICM-16, scheduled for fall 2025). 
Finally, although full metrological closure is unlikely to be achieved, future work will be 
dedicated to advancing the awareness and quantification of the missing uncertainty contri-
butions and in their implementation within the EUMETSAT postlaunch cal/val procedures 
for MWI and ICI.
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