
Proceedings

2024 IEEE/ACM 19th Symposium on Software
Engineering for Adaptive and Self-Managing Systems

SEAMS 2024

15 – 16 April 2024
Lisbon, Portugal

 Proceedings

2024 IEEE/ACM 19th Symposium on Software
Engineering for Adaptive and Self-Managing Systems

SEAMS 2024

15 – 16 April 2024
Lisbon, Portugal

The Association for Computing Machinery
2 Penn Plaza, Suite 701

New York New York 10121-0701

ACM COPYRIGHT NOTICE. Copyright © 2024 by the Association for Computing Machinery,
Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom

use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc.,

fax +1 (212) 869-0481,
or permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted
provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222

Rosewood Drive, Danvers, MA 01923,
+1-978-750-8400, +1-978-750-4470 (fax).

Notice to Past Authors of ACM-Published Articles
ACM intends to create a complete electronic archive of all articles and/or other material previously

published by ACM. If you have written a work that was previously published by ACM in any journal or
conference proceedings prior to 1978, or any SIG Newsletter at any time, and you do NOT want this work
to appear in the ACM Digital Library, please inform permissions@acm.org, stating the title of the work,

the author(s), and where and when published.

ACM ISBN: 979-8-4007-0585-4

Editorial production by Lisa O’Conner
Cover art production by Annie Jiu

IEEE Computer Society
Conference Publishing Services (CPS)

http://www.computer.org/cps

2024 IEEE/ACM 19th
Symposium on Software
Engineering for Adaptive

and Self-Managing Systems
(SEAMS)

SEAMS 2024
 Table of Contents

Message from the SEAMS 2024 Chairs ix
Organizing Committee x
Program Committee xi

Session 1: Intro + Keynote 1

Keynote 1: Advances on Symbolic Machine Learning and Recent Applications to Software
Engineering 1
 Alessandra Russo (Imperial College London)

Session 2: Uncertainty

Formal Synthesis of Uncertainty Reduction Controllers 2
 Marc Carwehl (Humboldt-Universität zu Berlin, Germany), Calum Imrie
 (University of York, UK), Thomas Vogel (Humboldt-Universität zu
 Berlin, Germany), Genaina Rodrigues (University of Brasilia, Brasil),
 Radu Calinescu (University of York, UK), and Lars Grunske
 (Humboldt-Universität zu Berlin, Germany)

Automated Planning for Adaptive Cyber-Physical Systems under Uncertainty in Temporal
Availability Constraints 14
 Raquel Sánchez-Salas (ITIS Software, Universidad de Málaga), Javier
 Troya (ITIS Software, Universidad de Málaga), and Javier Cámara (ITIS
 Software, Universidad de Málaga)

Handling uncertainty in the specification of autonomous multi-robot systems through
mission adaptation 25
 Gianluca Filippone (University of L'Aquila), Juan Antonio Piñera
 García (Gran Sasso Science Institute), Marco Autili (University of
 L'Aquila), and Patrizio Pelliccione (Gran Sasso Science Institute)

v

Uncertainty Flow Diagrams: Towards a Systematic Representation of Uncertainty Propagation
and Interaction in Adaptive Systems 37
 Javier Cámara (ITIS Software, Universidad de Málaga), Sebastian Hahner
 (Karlsruhe Institute of Technology), Diego Perez-Palacin (Linnaeus
 University), Antonio Vallecillo (ITIS Software, Universidad de
 Málaga), Maribel Acosta (Technical University of Munich), Nelly
 Bencomo (Durham University), Radu Calinescu (University of York), and
 Simos Gerasimou (University of York)

Session 3: Unmanned Aerial Vehicles and LLMs

ADAM: Adaptive Monitoring of Runtime Anomalies in Small Uncrewed Aerial Systems 44
 Md Nafee Al Islam (University of Notre Dame, USA), Jane Cleland-Huang
 (University of Notre Dame, USA), and Michael Vierhauser (University of
 Innsbruck, Austria)

Towards Proactive Decentralized Adaptation of Unmanned Aerial Vehicles for Wildfire
Tracking 56
 Enrique Vilchez (ITIS Software, Universidad de Málaga), Javier Troya
 (ITIS Software, Universidad de Málaga), and Javier Cámara (ITIS
 software, Universidad de Málaga)

Wildfire-UAVSim: An Exemplar for Evaluation of Adaptive Cyber-Physical Systems in
Partially-Observable Environments 63
 Enrique Vilchez (ITIS Software, Universidad de Málaga), Javier Troya
 (ITIS Software, Universidad de Málaga), and Javier Cámara (ITIS
 Software, Universidad de Málaga)

Aloft: Self-Adaptive Drone Controller Testbed 70
 Calum Imrie (University of York), Rhys Howard (University of Oxford),
 Divya Thuremella (University of Oxford), Nawshin Mannan Proma
 (University of York), Tejas Pandey (University of York), Paulina
 Lewinska (University of York), Ricardo Cannizzaro (University of
 Oxford), Richard Hawkins (University of York), Colin Paterson
 (University of York), Lars Kunze (University of Oxford), and Victoria
 Hodge (University of York)

Exploring the Potential of Large Language Models in Self-adaptive Systems 77
 Jialong Li (Waseda University), Mingyue Zhang (Southwest University),
 Nianyu Li (ZGC National Laboratory), Danny Weyns (KU Leuven), Zhi Jin
 (Peking University), and Kenji Tei (Tokyo Institute of Technology)

Session 4: Testing and Community Debate

Automating Pipelines of A/B Tests with Population Split Using Self-Adaptation and Machine
Learning 84
 Federico Quin (KU Leuven, Belgium) and Danny Weyns (Linnaeus
 University, Sweden and KU Leuven, Belgium)

vi

Generating Executable Test Scenarios from Autonomous Vehicle Disengagements using Natural
Language Processing 98
 Qunying Song (Lund University, Sweden), Rune Anderberg (Lund
 University, Sweden), Henrik Olsson (Lund University, Sweden), and Per
 Runeson (Lund University, Sweden)

Swarm intelligence-based bio-inspired algorithms 105
 Darko Bozhinoski (IRIDIA, Université Libre de Bruxelles)

Bio-inspired computing systems: handle with care, discard if need it 107
 Rogério de Lemos (University of Kent)

Session 5: Awards + Keynote 2

Keynote 2: Towards Always Law-Abiding Self-Driving 109
 Sun Jun (Singapore Management University (SMU))

Session 6: Self-Recovery & Evaluation

Raft Protocol for Fault Tolerance and Self-Recovery in Federated Learning 110
 Rustem Dautov (SINTEF Digital) and Erik Johannes Husom (SINTEF
 Digital)

Integrating Graceful Degradation and Recovery through Requirement-driven Adaptation 122
 Simon Chu (Carnegie Mellon University), Justin Koe (The Cooper Union),
 David Garlan (Carnegie Mellon University), and Eunsuk Kang (Carnegie
 Mellon University)

Learning Recovery Strategies for Dynamic Self-healing in Reactive Systems 133
 Mateo Sanabria (Universidad de los Andes), Ivana Dusparic (Trinity
 College Dublin), and Nicolás Cardozo (Universidad de los Andes)

SWITCH: An Exemplar for Evaluating Self-Adaptive ML-Enabled Systems 143
 Arya Marda (IIIT Hyderabad, India), Shubham Kulkarni (IIIT Hyderabad,
 India), and Karthik Vaidhyanathan (IIIT Hyderabad, India)

Session 7: SAS Applications

Patterns of Applied Control for Public Health Measures on Transportation Services under
Epidemic 150
 Kenneth Johnson (Auckland University of Technology), Samaneh Madanian
 (Auckland University of Technology), and Catia Trubiani (Gran Sasso
 Science Institute)

RAMSES: An Artifact Exemplar for Engineering Self-Adaptive Microservice Applications 161
 Vincenzo Riccio (Politecnico di Milano, Italy), Giancarlo Sorrentino
 (Politecnico di Milano, Italy), Ettore Zamponi (Politecnico di Milano,
 Italy), Matteo Camilli (Politecnico di Milano, Italy), Raffaela
 Mirandola (Karlsruhe Institute of Technology, Germany), and Patrizia
 Scandurra (University of Bergamo, Italy)

vii

Self-adaptive, Requirements-driven Autoscaling of Microservices 168
 João Paulo Karol Santos Nunes (IBM Brazil and University of São
 Paulo), Shiva Nejati (University of Ottawa), Mehrdad Sabetzadeh
 (University of Ottawa), and Elisa Yumi Nakagawa (University of São
 Paulo)

GreenhouseDT: An Exemplar for Digital Twins 175
 Eduard Kamburjan (University of Oslo, Norway), Riccardo Sieve
 (University of Oslo, Norway), Chinmayi Prabhu Baramashetru (University
 of Oslo, Norway), Marco Amato (University of Turin, Italy), Gianluca
 Barmina (University of Turin, Italy), Eduard Occhipinti (University of
 Turin, Italy), and Einar Broch Johnsen (University of Oslo)

Latency-aware RDMSim: Enabling the Investigation of Latency in Self-Adaptation for the
Case of Remote Data Mirroring 182
 Sebastian Götz (Technische Universität Dresden), Nelly Bencomo (Durham
 University), and Huma Samin (Durham University)

Session 8: Human Aspects

Explanation-driven Self-adaptation using Model-agnostic Interpretable Machine Learning 189
 Francesco Renato Negri (Politecnico di Milano), Niccolò Nicolosi
 (Politecnico di Milano), Matteo Camilli (Politecnico di Milano), and
 Raffaela Mirandola (Karlsruhe Institute of Technology)

Human empowerment in self-adaptive socio-technical systems 200
 Nicolas Boltz (Karlsruhe Institute of Technology, Germany), Sinem
 Getir Yaman (University of York, United Kingdom), Paola Inverardi
 (Gran Sasso Science Institute, Italy), Rogério de Lemos (University of
 Kent, United Kingdom), Dimitri Van Landuyt (KU Leuven, Belgium), and
 Andrea Zisman (The Open University, United Kingdom)

Towards Understanding Trust in Self-adaptive Systems 207
 Dimitri Van Landuyt (KU Leuven, Belgium), Dávid Halász (Masaryk
 University, Czech Republic), Stef Verreydt (KU Leuven, Belgium), and
 Danny Weyns (KU Leuven, Belgium/Linnaeus University, Sweden)

SafeDriveRL: Combining Non-cooperative Game Theory with Reinforcement Learning to Explore
and Mitigate Human-based Uncertainty for Autonomous Vehicles 214
 Kenneth H. Chan (Michigan State University), Sol Zilberman (Michigan
 State University), Nick Polanco (Michigan State University), Joshua E.
 Siegel (Michigan State University), and Betty H.C. Cheng (Michigan
 State University)

Author Index 221

viii

Message from the Chairs
SEAMS 2024

SEAMS aims to showcase and discuss cutting-edge research and advancements in the area of self-
adaptive systems. This includes software engineering methods, techniques, processes, and tools to
support the construction of safe, performant, and cost-effective self-adaptive and autonomous
systems that provide self-* properties like self-configuration, self-healing, self-optimization, and self-
protection. The objective of SEAMS is to bring together researchers and practitioners from academia,
industry, and government to investigate, discuss, examine, and advance the fundamental principles,
state-of-the-art, and solutions addressing critical challenges of engineering self-adaptive and self-
managing systems.

2024 is the 19th year of the SEAMS series. New to this year, we used the light double-blind submission
system. We maintained two submission rounds for the Research Track, with deadlines in October 2023
and December 2023, with the possibility of submitting a revised version from the first round to the
second one. Besides research and short papers, we also solicited community debate papers to discuss
the role of bio-inspired algorithms in the engineering of self-adaptive systems.

This year the track received 69 submissions to the research track, of which 11 full papers, 7 short
papers and 2 community debates were selected for presentation. We also received 8 submissions to
the artifact track, of which 6 artifacts were selected for presentation. We will be able to hear and
exchange ideas and views about techniques and artifacts to address uncertainties, test self-adaptive
systems, engineer recovery of self-adaptive systems, and tackle human aspects of self-adaptation.
Some papers and artifacts considered specific application domains, such as unmanned aerial vehicles,
transportation during an epidemic, micro-services, and digital twins. We will give an award to the best
paper and artifact and the most influential paper from those presented ten years ago. In addition,
authors of selected papers will be invited to submit a revised version of their paper to the special issue
of the ACM Transactions on Autonomous and Adaptive Systems.

We would like to warmly thank our programme committee members for their thorough and timely
reviews of the submissions. We also thank the members of the organizing committee for their tireless
support. It is because of all of them that the conference attendees and the readers of the proceedings
are able to enjoy a strong program!

We hope that these proceedings will serve as a valuable reference for software engineering
researchers and software users.

General Chair
Luciano Baresi, Politecnico di Milano, Italy

Program Co-Chairs
Xiaoxing Ma, Nanjing University, China
Liliana Pasquale, University College Dublin and Lero, Ireland

ix

Organizing CommiƩee

SEAMS 2024

General Chair

Luciano Baresi, Politecnico di Milano, Italy

Program Co-Chairs

Liliana Pasquale, University College Dublin & Lero, Ireland

Xiaoxing Ma, Nanjing University, China

MIP Award Chair

Amel Bennaceur, The Open University, United Kingdom

Proceedings Chair

Vivek Nallur, University College Dublin, Ireland

Community Debate Chair

Siobhán Clarke, Trinity College Dublin, Ireland

Web Chair

Giovanni QuaƩrocchi, Politecnico di Milano, Italy

Publicity Co-Chairs

Erik Fredericks, Grand Valley State University, United States

Sona Ghahremani, Hasso PlaƩner InsƟtute, University of Potsdam, Germany

Wenhua Yang, Nanjing University of AeronauƟcs and AstronauƟcs, China

ArƟfact EvaluaƟon Co-Chairs

Christos Tsigkanos, University of Athens, Greece

Shanshan Li, NaƟonal University of Defense Technology, China

Social Media Co-Chairs

Livia LesƟngi, DEIB, Politecnico di Milano, Italy

Yuan Yao, Nanjing University, China

x

Program Committee
Alessandro V. Papadopoulos, Mälardalen University, Sweden
Andrea Zisman, The Open University, UK
Antonio, Filieri, AWS and Imperial College London, UK
Bradley Schmerl, Carnegie Mellon University, USA
Catia Trubiani, Gran Sasso Science Institute, Italy
Claudia Raibulet, University of Milano-Bicocca, Italy
Dalal Alrajeh, Imperial College London, UK
Danny Weyns, KU Leuven, Belgium and Linnaeus University, Sweden
Dimitri Van Landuyt, KU Leuven, Belgium
Elisa Yumi Nakagawa, University of São Paulo, Brazil
Elisabetta Di Nitto, Politecnico di Milano, Italy
Enes Yigitbas, Paderborn University, Germany
Erick Fredericks, Grand Valley State University, USA
Eunsuk Kang, Carnegie Mellon University, USA
Fatemeh Golpayegani, University College Dublin, Ireland
Gabriel A. Moreno, SEI and Carnegie Mellon University, USA
Genaína Nunes Rodrigues, University of Brasília, Brazil
Giacomo Cabri, Università di Modena e Reggio Emilia, Italy
Giovanni Quattrocchi, Politecnico di Milano, Italy
Hausi Muller, University of Victoria, Canada
Henry Muccini, University of L'Aquila, Italy
Hiroyuki Nakagawa, Osaka University, Japan
Ilias Gerostathopoulos, Vrije Universiteit Amsterdam, Netherlands
Ivana Dusparic, Trinity College Dublin, Ireland
Javier Camara, University of Malaga, Spain
Jesper Andersson, Linnaeus University, Sweden
Karthik Vaidhyanathan, IIIT Hyderabad, India
Kenji Tei, Tokyo Institute of Technology, Japan
Marco Autili, University of L'Aquila, Italy
Marin Litoiu, York University, Canada
Michael Vierhauser, University of Innsbruck, Austria
Mingyue Zhang, Southwest University, China
Nelly Bencomo, Durham University, UK
Nicolas Cardozo, Universidad de los Andes, Colombia
Patrizia Scandurra, University of Bergamo, Italy
Radu Calinescu, University of York, UK
Raffaela Mirandola, Politecnico di Milano, Italy
Rami Bahsoon, University of Birmingham, UK
Ridwan Shariffdeen, National University of Singapore, Singapore
Rogerio de Lemos, University of Kent, UK
Sebastian Götz, Technische Universität Dresden, Germany
Shihong Huang, Carnegie Mellon University, USA
Shiva Nejati, University of Ottawa, Canada
Simos Gerasimou, University of York, UK

xi

Sinem Getir Yaman, University of York, UK
Siobhan Clarke, Trinity College Dublin, Ireland
Sona Ghahremani, Hasso Plattner Institute, Germany
Sophie Cerf, INRIA, France
Thomas Vogel, Humboldt-Universität zu Berlin, Germany
Thomas Welsh, University of Iceland, Iceland
Tianxiao Gu, Tiktok, China
Timo Kehrer, University of Bern, Switzerland
Wenhua Yang, Nanjing University of Aeronautics and Astronautics, China
Xiaoyu Sun, Australian National University, Australia
Xin Pen, Fudan University, China
Yi Qin, Nanjing University, China
Zhaoguo Wang, Shanghai Jiao Tong University, China
Zhi Jin, Peking University, China

External Reviewers
Huiyan Wang, Nanjing University, China
Jingwei Xu, Nanjing University, China
Kushal Ramkumar, University College Dublin and Lero, Ireland
Liang Wang, Nanjing University, China
Yuan Zhang, Nanjing University, China

xii

SEAMS 2024
Keynote 1

Alessandra Russo

Imperial College London

Alessandra Russo is a Professor on Applied ComputaƟonal Logic, at the Department of CompuƟng,
Imperial College London, Deputy director of the UKRI Centre for Doctoral Training in “Safe and Trusted AI”,
and promoter of the Imperial-X inter-disciplinary research iniƟaƟve “Intelligible AI” on explainable, safe
and trustworthy AI. She leads the “Structured and ProbabilisƟc Intelligent Knowledge Engineering (SPIKE)”
research group at the Department of CompuƟng. She has pioneered several state-of-the-art symbolic
machine learning systems, Including the recent state-of-the-art LAS (Learning from Answer Sets) system
for learning interpretable knowledge from labelled data. More recently she has explored novel
methodologies for neuro-symbolic learning that integrate machine learning and probabilisƟc inference
with symbolic learning to support generalisaƟon and transfer learning from mulƟmodal unstructured data.
She has published over 200 arƟcles in flagship conferences and high impact journals in ArƟficial
Intelligence and SoŌware Engineering, and led various projects funded by the EPSRC, the EU and Industry.

Keynote: Advances on Symbolic Machine Learning and Recent ApplicaƟons to SoŌware Engineering
Learning interpretable models from data is one of the main challenges of AI. Symbolic Machine Learning,
a field of Machine Learning, offers algorithms and systems for learning models that explain data in the
context of a given domain knowledge. In contrast to staƟsƟcal learning, models learned by Symbolic
Machine Learning are interpretable: they can be translated into natural language and understood by
humans. In this talk, I will overview our state-of-the-art symbolic machine learning system (ILASP) capable
of learning different classes of models, (e.g., non-monotonic, non-determinisƟc and preference-based) for
real-world problems, in a manner that is data efficient, scalable, and robust to noise. I will show how such
system can be integrated with staƟsƟcal and deep learning to provide neuro-symbolic AI soluƟons for
learning complex interpretable knowledge from unstructured data. I will then illustrate how these
advances can be applied to areas such agent learning, run-Ɵme adaptaƟon of security for unmanned arial
vehicles, and online learning of policies for explainable security.

1

2024 IEEE/ACM 19th Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)

SEAMS 2024
Keynote 2

Sun Jun

Singapore Management University

Sun Jun is currently a professor at Singapore Management University (SMU). He received Bachelor and
PhD degrees in compuƟng science from NaƟonal University of Singapore (NUS) in 2002 and 2006. He has
been a faculty member since 2010. He was a visiƟng scholar at MIT from 2011-2012. Jun’s research
interests include AI safety, formal methods, program analysis and cyber-security. He is the co-founder of
the PAT model checker. He has published many journal arƟcles or peer-reviewed conference papers, many
of which are published at top-Ɵer venues. He serves as the technical consultant for mulƟple companies.

Keynote: Towards Always Law-Abiding Self-Driving
How should an autonomous vehicle behave on the road besides causing no accidents and reaching the
desƟnaƟon? Fortunately, rich sets of criteria for how a vehicle should undertake a journey already exist:
the various naƟonal traffic laws. In addiƟon to avoiding collisions, an autonomous vehicle should saƟsfy
the traffic laws of the country it operates in. UnƟl we design new traffic laws specifically for autonomous
vehicles, exisƟng traffic laws remain the gold standard for ensuring road safety. The quesƟon is then: how
do we systemaƟcally make sure that an autonomous vehicle almost always abides the traffic laws? In this
work, I will introduce our recent effort on formalizing naƟonal traffic laws and use it to adapƟvely enforce
desirable self-driving automaƟcally.

109

2024 IEEE/ACM 19th Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)

Author Index
Acosta, Maribel 37

Amato, Marco 175

Anderberg, Rune 98

Autili, Marco 25

Baramashetru, Chinmayi Prabhu 175

Barmina, Gianluca 175

Bencomo, Nelly 37, 182

Boltz, Nicolas 200

Bozhinoski, Darko 105

Calinescu, Radu 2, 37

Cámara, Javier 14, 37, 56, 63

Camilli, Matteo 161, 189

Cannizzaro, Ricardo 70

Cardozo, Nicolás 133

Carwehl, Marc 2

Chan, Kenneth H. 214

Cheng, Betty H.C. 214

Chu, Simon 122

Cleland-Huang, Jane 44

Dautov, Rustem 110

de Lemos, Rogério 107, 200

Dusparic, Ivana 133

Filippone, Gianluca 25

Garlan, David 122

Gerasimou, Simos 37

Getir Yaman, Sinem 200

Götz, Sebastian 182

Grunske, Lars 2

Hahner, Sebastian 37

Halász, Dávid 207

Hawkins, Richard 70

Hodge, Victoria 70

Howard, Rhys 70

Husom, Erik Johannes 110

Imrie, Calum 2, 70

Inverardi, Paola 200

Islam, Md Nafee Al 44

Jin, Zhi 77

Johnsen, Einar Broch 175

Johnson, Kenneth 150

Jun, Sun 109

Kamburjan, Eduard 175

Kang, Eunsuk 122

Karol Santos Nunes, João Paulo 168

Koe, Justin 122

Kulkarni, Shubham 143

Kunze, Lars 70

Lewinska, Paulina 70

Li, Jialong 77

Li, Nianyu 77

Madanian, Samaneh 150

Marda, Arya 143

Mirandola, Raffaela 161, 189

Negri, Francesco Renato 189

Nejati, Shiva 168

Nicolosi, Niccolò 189

Occhipinti, Eduard 175

Olsson, Henrik 98

Pandey, Tejas 70

Paterson, Colin 70

Pelliccione, Patrizio 25

Perez-Palacin, Diego 37

Piñera García, Juan Antonio 25

Polanco, Nick 214

Proma, Nawshin Mannan 70

Quin, Federico 84

Riccio, Vincenzo 161

Rodrigues, Genaina 2

Runeson, Per 98

Russo, Alessandra 1

Sabetzadeh, Mehrdad 168

Samin, Huma 182

Sanabria, Mateo 133

Sánchez-Salas, Raquel 14

221

Scandurra, Patrizia 161

Siegel, Joshua E. 214

Sieve, Riccardo 175

Song, Qunying 98

Sorrentino, Giancarlo 161

Tei, Kenji 77

Thuremella, Divya 70

Troya, Javier 14, 56, 63

Trubiani, Catia 150

Vaidhyanathan, Karthik 143

Vallecillo, Antonio 37

Van Landuyt, Dimitri 200, 207

Verreydt, Stef 207

Vierhauser, Michael 44

Vilchez, Enrique 56, 63

Vogel, Thomas 2

Weyns, Danny 77, 84, 207

Yumi Nakagawa, Elisa 168

Zamponi, Ettore 161

Zhang, Mingyue 77

Zilberman, Sol 214

Zisman, Andrea 200

222

RAMSES: an Artifact Exemplar for Engineering Self-Adaptive
Microservice Applications

Vincenzo Riccio
Giancarlo Sorrentino

Ettore Zamponi
Matteo Camilli

{first.last}@mail.polimi.it
matteo.camilli@polimi.it
Politecnico di Milano

Milano, Italy

Raffaela Mirandola
raffaela.mirandola@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Patrizia Scandurra
patrizia.scandurra@unibg.it

University of Bergamo
Bergamo, Italy

ABSTRACT

This paper introduces RAMSES, an exemplar tailored for both prac-
titioners and researchers working on self-adaptive microservice
applications. By emphasizing a clear separation of concerns be-
tween the application and its adaptation logic, RAMSES realizes a
reusable autonomic manager that implements a MAPE-K feedback
loop whose components are microservices themselves. Its primary
focus lies in addressing user-defined QoS attributes at runtime, like
availability and performance. To illustrate its usage, we provide a
practical example showing its mechanics in an e-food microservice
application. Initial experiments indicate the advantages of utilizing
RAMSES, as shown by a comparative analysis of the quality proper-
ties of a microservice application with and without self-adaptation.

CCS CONCEPTS

• Computer systems organization → Self-organizing autonomic
computing; Distributed architectures; • Software and its engineer-

ing → Software verification and validation; Extra-functional proper-
ties.

KEYWORDS

Microservice applications, self-adaptation, MAPE-K, exemplar
ACM Reference Format:

Vincenzo Riccio, Giancarlo Sorrentino, Ettore Zamponi, Matteo Camilli,
Raffaela Mirandola, and Patrizia Scandurra. 2024. RAMSES: an Artifact
Exemplar for Engineering Self-Adaptive Microservice Applications. In 19th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS ’24), April 15–16, 2024, Lisbon, AA, Portugal.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3643915.3644110

1 INTRODUCTION

Microservice architectures have gained widespread popularity due
to their scalability, flexibility, and ability to facilitate continuous
deployment. Existing development frameworks (like Spring, Flask
and GoKit, to name a few) and management infrastructures simplify

SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0585-4/24/04.
https://doi.org/10.1145/3643915.3644110

the whole development andmanagement process also offering some
forms of self-adaptation built-in mechanisms (such autoscaling
and circuit breaking for resilience)[6]. However, the dynamic and
heterogeneous nature of modern computing environments calls for
the capacity to employ self-adaptation strategies that extend beyond
these built-in capabilities and can achieve arbitrary adaptation.

As a step in addressing this challenge, this paper proposes the
exemplar RAMSES to facilitate practitioners and researchers in
engineering a self-adaptive microservice application by clearly sep-
arating the microservice application and self-adaptation concerns.
RAMSES provides a reusable autonomic manager (a managing sub-
system) conforming to the well-known feedback control loop model
MAPE-K [4] (Monitor-Analyse-Plan-Execute over a Knowledge
base) to make a microservice application self-adaptive. Adaptation
concerns are mainly aimed at satisfying user-defined QoS attributes
(e.g., availability and response time) and self-* autonomic properties
(self-configuring, self-healing, and self-optimizing) of a microser-
vice application at runtime. RAMSES’s control loop components
themselves are microservices. RAMSES is designed to ease its reuse
across microservice applications through an API-led integration
that exploits a Contract-First approach to specify probing/actuating
RESTful APIs for connecting the RAMSES autonomic manager to
any managed microservice application. RAMSES was implemented
using the Java-based Spring Boot and Spring Cloud frameworks1.

To illustrate RAMSES, as part of this exemplar, an e-food mi-
croservice application has been developed and released to be used
as target managed system. This paper concretely reports some
preliminary evaluation results about the capability of RAMSES to
make such a microservice application self-adaptive by enforcing
the adaptation goals at runtime.

Concerning the timeliness of the problem addressed by the pro-
posed artifact and the overall discussion and considerations in [7]
regarding generality ("ability to support a variety of architectural
models and adaptation mechanisms") and reusability ("ability to
be reused without requiring substantial effort from software devel-
oper") in self-adaptive microservices, RAMSES has been conceived
with a focus on decoupling managed and managing systems. This is
achieved by defining RESTful probing and actuating APIs, providing
a means for managing systems to interact with managed systems
that expose the same interfaces, thereby facilitating reusability and
reuse by-design. At the same time, to better handle and speed up the

1https://spring.io/microservices

This work licensed under Creative Commons Attribution International 4.0 License.

161

2024 IEEE/ACM 19th Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)

https://doi.org/10.1145/3643915.3644110
https://doi.org/10.1145/3643915.3644110
https://spring.io/microservices
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643915.3644110&domain=pdf&date_stamp=2024-06-07

SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal Vincenzo Riccio, Giancarlo Sorrentino, Ettore Zamponi, Matteo Camilli, Raffaela Mirandola, and Patrizia Scandurra

implementation of various self-adaptation strategies, the managing
system in RAMSES has been developed leveraging microservices
principles and mainstreammicroservice frameworks and infrastruc-
ture platforms. In-house mechanisms have also been implemented
to enhance its autonomy from the management infrastructure it-
self. This situates RAMSES at the Cross-Layer level in the MAPE
integration patterns as defined in [7].

The main contributions of this artifact paper for the community
of Software Engineering for Adaptive and Self-Managing Systems are:
(i) a non-simulated exemplar of self-adaptive microservice applica-
tion; (ii) a standalone autonomic manager for microservices charac-
terised by a Contract-First and API-led approaches for reusability
across other microservice applications; (iii) an in-house developed
managed microservice application that can be also reused in a
standalone manner as a use case for other benchmarks. Section 5
concludes the paper.

2 RELATEDWORK

Exemplars development is an active line of research in the self-
adaptive community 2. We report here the exemplars most related
to our work. Hogna [1] is a platform for deploying self-managing
web applications on the cloud and automating a set of operations,
such as the booting of the instances and their setup. Moreover,
it enables the continuous monitoring of the health status of the
applications. It provides a modular managing system, which is
however specifically focused on the deployment and configuration
of cloud applications on platforms such as Amazon EC2. Another
well-known exemplar is TAS [13]. It provides a useful (simulated)
service-based system to be used as a managed subsystem. Moreover,
it defines a set of generic adaptation scenarios applicable to service-
based systems, to deal with uncertainties of the system itself and
of the environment it is set in, which inspired the one proposed
in Table 1. Another related exemplar is SEAByTE which proposes
an experimental framework for testing novel self-adaptation so-
lutions to enhance the automation of continuous A/B testing of
a micro-service-based system [10]. SEAByTE represents a ready-
to-use framework, implemented using a well-known technology
stack (microservices, Spring, Docker, REST/JSON). However, its
application is limited to the specific domain of A/B testing.

Other exemplars (e.g., SWIM [9], RDMSim [12] and EWS [2])
implement specific managed subsystems that can be reused by re-
searchers to evaluate and compare different adaptation logic). In
different contexts, [3] proposes a framework that implements auto-
matic container sizing and self-healing features for a microservice-
based application deployed in Docker containers by exploiting
MAPE-K loops. In [14], an extension of Kubernetes has been de-
veloped to monitor microservices data and manage aspects of scal-
ability. When compared to RAMSES, the key differences are non-
simulated managed and managing systems, the adoption of ap-
proaches of Contract-First and API-led for reusability across mul-
tiple platforms. This last aspect is also facilitated by our design
choice of not depending to much on the self-adaptation capabilities
supported by some service management infrastructures natively
(such us Kubernetes autoscaling), to avoid conflicts/interferences
with the adaptation decisions of our autonomic manager.

2www.hpi.uni-potsdam.de/giese/public/selfadapt/category/exemplar/

Figure 1: RAMSES architecture overview

3 EXEMPLAR DESCRIPTION

RAMSES is about an autonomic manager (or managing system) for
making microservice applications self-adaptive. Once connected to
a target microservice application (the managed subsystem) through
probing/actuating APIs, the overall self-adaptive microservice ap-
plication (see Figure 1) is a two-layer architecture that, according to
the principles of architecture-based self-adaptation [5], decouples
the managed microservice application from its control loop layer.
RAMSES control loop components are microservices themselves
that execute the monitoring and adaptation activities conforming
to the well-known MAPE-K feedback loop model [4]. The goal
of RAMSES is to enforce the satisfaction of user-defined QoS at-
tributes (e.g., availability and response time) and self-* properties
at run-time, without human oversight. RAMSES is designed to ease
its reuse across microservice applications thanks to an API-led inte-
gration with the managed microservices. An additional dashboard
for configuring admin preferences and inspecting the managed
microservices at run-time is also supported. RAMSES has been
implemented using the Java-based frameworks Spring Boot and
Spring Cloud 3 for developing microservice applications. The ex-
emplar is publicly available (See Section 6), including all software
artifacts for injecting and simulating fictional service failures or
slowdowns for test scenarios.

3.1 Adaptation concerns and strategies

RAMSES is primarily tailored to automate typical service main-
tenance tasks. The main adaptation concerns are summarized in
the Table 1, together with the adaptation goals that the system
adaptations should achieve, and related strategies. These last could
be the result of a combined application of single adaptation actions.
The current prototype supports the following adaptation actions:
addInstance, removeInstance, changeConfiguration (e.g., for tuning
the service weights of the load balancing, or changing the circuit
breaker’s parameters and timeout thresholds), and selectNewImple-
mentation(to replace all instances of a given service type with the
spawned instances of another implementation of the same service).

3https://spring.io/microservices

162

www.hpi.uni-potsdam.de/giese/public/selfadapt/category/exemplar/
https://spring.io/microservices

RAMSES: an Artifact Exemplar for Engineering Self-Adaptive Microservice Applications SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal

Table 1: Adaptation concerns, goals, and strategies in RAMSES

Concern Goal Strategies (examples)

C1: Individual service failure Recover from a silent or crashed service (self-healing) Start a new service instance
C2: Search for better service imple-
mentations

Select a better service implementation (self-
optimizing)

Change the current service implementation

C3: Workload distribution upon a ser-
vice instance activation/deactivation

Configure load balancing (self-configuring) Change service configuration for load balancing weights

C4: Violation of QoS requirements Maintain QoSs (availability and response time) Add service instance(s) and/or change weights for load balancing (e.g., to lighten
or even shutdown an instance with low performance)

3.2 Probing and actuating APIs

The probing/actuating interfaces have been defined using aContract-
First approach to promote reusability and then implemented as a
RESTful API. Such APIs are consumed by the managing layer and
provided by the managed microservice application.

Figure 2: Actuating REST/JSON API

Figure 2 shows the actuating API of RAMSES using the Plan-
tUML class diagram as generated from the API description in the
standard format OpenAPI. The actuating API exposes low-level
operations to be applied to the managed microservices. Below we
provide a description of the main operations exposed by the APIs.

• POST /rest/addInstances: allocates and starts a number
of new instances of a given service implementation, and
returns the details on each new instance (such as its address
and port).

• POST /rest/removeInstance: stops and deallocates an in-
stance which is currently running.

• POST /rest/changeLBWeights: updates the load balancer
weights of the instances of a given service.

• POST /rest/changeProperty: updates the value of a global
property or of a property for a certain service (includes the
addition/removal of the property)

The probing API for RAMSES has been defined as well. They
are responsible for collecting metrics from all the service instances
as a collection of objects Instance Metrics Snapshot (or simply
snapshot). Each service snapshot includes a timestamp, the status
of the instance, metrics related to resource usage (e.g., CPU usage),
metrics related to HTTP requests (e.g., number of server errors),
and circuit breakers. In the current prototype of RAMSES only

availability and average response time are concretely used to extract
QoS indicators for adaptations.

3.3 Managing subsystem

This section details the behavior of the MAPE-K microservices of
RAMSES. The Knowledge microservice maintains an up-to-date
data structure with all relevant information about the managed mi-
croservices as collected byMonitor component through the probing
API. These include data about service implementations and their
associated operational profile, current values for service configu-
ration parameters (e.g., for load balancing and circuit breaking),
running service instances and their snapshots series with the col-
lected metrics (CPU usage, HTTP requests stats, etc.) useful for
calculating QoS indicators. Other useful information computed by
the MAPE components for coordinating the loop execution itself is
also stored in the knowledge.

Through the probing API, the Monitor microservice periodically
collects snapshots of all running service instances and their associ-
ated quality metrics, and stores them in the knowledge. TheMonitor
executes asynchronously w.r.t. the rest of the control loop and its
sampling period can be dynamically configured via a REST API
exposed by the Monitor microservice itself or the admin dashboard.
Once a control loop execution terminates, the Executor microser-
vice notifies theMonitor so that theMonitor can invoke and request
the Analyze microservice to start a new asynchronous adaptation
loop with an up-to-date data collection for service snapshots.

The Analyze microservice exploits the updated metrics stored in
the knowledge for the QoS values computations (e.g., availability
and response time) adopting a sliding window approach, with con-
figurable window dimensions. Data are collected in the last window
of observation and a weighted average of the value of interest is
then computed. The weights are values in [0, 1] dynamically as-
signed to microservice instances by a load balancer. If the evaluated
QoS is below the user-defined reference threshold, then a set of
adaptation actions with different priority levels are selected and
stored in the knowledge and the Plan microservice is triggered.

The Plan microservice compares the proposed adaptation ac-
tions and selects the one that best fits the user requirements. The
benefit is calculated depending on the adaptation strategy and by
estimating the QoS values obtained after applying the correspond-
ing adaptation actions. For example, if the availability of a service
does not satisfy the requirement, an addInstance adaptation action
can be undertaken followed by a changeConfiguration action with
the computation of the new weighted average availability of the
current instances using the new weights. In each case, the best
adaptation strategy is selected using, for example, the option with
the associated highest estimated utility or the one that maximizes

163

SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal Vincenzo Riccio, Giancarlo Sorrentino, Ettore Zamponi, Matteo Camilli, Raffaela Mirandola, and Patrizia Scandurra

Figure 3: Managed e-food microservice application

multiple objectives. The selected strategy becomes the adaptation
plan in the knowledge and then the Executemicroservice is invoked.

The Execute microservice retrieves the adaptation plan from the
knowledge, if any. Then, for each adaptation action of the plan, it
invokes the actuating API as exposed by the managed microser-
vice application. All processed adaptations are persisted into the
knowledge. Once the Execute microservice terminates, it notifies
the completion of the current loop iteration to the Monitor.

3.4 Managed microservice application

Our use case is an e-food microservice application (see Figure 3) for
ordering food from an online restaurant. It is made of a small set of
microservices running in Docker containers, an API gateway that
acts as a single entry point, infrastructure means for service man-
agement – Netflix Eureka for service discovery, and a configuration
server for storing and serving hot configurations to microservices
–, and service circuit breakers as supported by Spring Cloud in a
native way. A load balancer (not shown in Figure 3) is also used to
allocate requests to service instances according to a roulette wheel
selection policy [8]. Such a module has been developed in-house to
better oversight its internal behavior in a white box, thus avoiding
external and not so transparent load balancing mechanisms as of-
fered by management infrastructure solutions (e.g., Kubernetes) of
containerized applications. To be fully working, some services (e.g.,
Restaurant service and Ordering Service) require some data to be
persisted. To this end, a database-per-service pattern is applied [11],
and independent MySQL databases are added. Finally, to make the
managed microservice application also usable and inspectable by
humans at the edge of the microservices, a reusable web application
(also developed as a Spring Boot application) is provided. It serves
as the front end of the managed microservice application and acts
as a REST client that communicates with the API gateway.

3.5 HMI-dashboard

Once the managed application has been connected (via appropri-
ate configuration property files) to the end-points of the prob-
ing/actuating APIs of RAMSES, a web-based HMI dashboard (devel-
oped using Spring Boot and the frontend engine Thymeleaf) allows
an administrator for configuring (see the screenshot in Figure 4)
and inspecting the control loop and the managed microservices at
runtime (see the screenshot in Figure 5).

Figure 4a shows the control variables settable from the dash-
board for the running managed microservices, including current

58 3| Our Proposal

(a) RAMSES Dashboard – Homepage

(b) RAMSES Dashboard – Service Detail

Figure 3.11: RAMSES Dashboard

(a) Home

(b) Parameter Configuration

Figure 4: HMI dashboard

implementations, active service instances and their quality values
and QoS requirements. Configuration parameters of the control
loop (see Figure 4b) are also visible and settable: the current state of
the loop (running or not running), the monitor sampling period, and
specific parameters for the analysis. These latter include the metric
window size, i.e. the number of metric collected and buffered before
triggering the analysis; the analysis window size, i.e. the number of
metric values used to estimate the QoS level of each microservice
instance; and the shutdown threshold, i.e. the minimum amount of
requests that each microservice instance must be able to process to
stay alive. The dashboard also allows us to control the execution
of the MAPE-K loop, for example, to stop the autonomic manager
and simply monitor the managed microservice application.

4 EXEMPLAR EVALUATION

This section describes preliminary results about the efficacy of the
RAMSES autonomic manager. We refer the reader to our publicly
available package for a comprehensive guideline on utilizing the
artifact and conducting independent experimental campaigns with
RAMSES (see Section 6).

4.1 Setup of the testbed infrastructure

The experiments have been executed on two physical machines: a
driver node 𝑁1 and a subject node 𝑁2 equipped with an Apple M1

164

RAMSES: an Artifact Exemplar for Engineering Self-Adaptive Microservice Applications SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal

Figure 5: Screenshot of the dashboard showing QoS data of the managed microservices at runtime.

(8-core) processor, 16GB RAM LPDDR4, and 256GB NVMe SSD.
To run our experiments, we used the swarm mode of Docker to
manage a cluster of twoDocker daemons: DockerManager deployed
onto 𝑁1, and a DockerWorker deployed onto 𝑁2. The RAMSES
managing subsystem and a software module ScenarioRunner for
conducting experiments have been deployed into the driver node
𝑁1. The DockerManager and DockerWorker are in charge of the
deployment/undeployment of the containerized microservices of
the managed subsystem onto the subject node 𝑁2.

For the sake of simplicity, the artifact comes with instructions to
set up and run RAMSES as well as a set of pre-configured scenar-
ios in a single machine. To promote portability and usability, our
package includes also instructions for other mainstream platforms
other than MacOS (i.e., Windows, and Linux).

The ScenarioRunner software module runs as a stand-alone
microservice and has been developed to facilitate and automate
the setup of the experimental campaign. It takes as input the spec-
ification of the experiments in terms of all configurable factors
required to create and reproduce a certain test scenario: the num-
ber of instances per microservice and boot time, the observation
period 𝑇 of the experimental campaign, workload (service requests
per second to issue to the managed subsystem), synthetic delays
in given time intervals (following a given Normal distribution),
failures (synthetic exceptions to generate in a given time interval
according to a certain failure rate), and network issues (i.e., time
intervals of service unreachability) to inject. The specification is
provided to ScenarioRunner through a configuration file where
the user specifies the aforementioned factors through pre-defined
variables as follows:

FAILURE_INJECTION = Y
FAILURE_INJECTION_1_START = 180
ID_OF_INSTANCE_TO_FAIL = restaurant :58085

In this example, the option failure injection is set to “Yes”. Thus, a
failure is injected at time 180s targeting the microservice instance
with ID restaurant :58085.

Given the specification, ScenarioRunner runs all the experi-
ments following a simple pipeline for each one of them. Such a
pipeline is made of three subsequent phases: setup, execution &
monitoring, and teardown. During the setup phase the RAMSES
autonomic manager and the managed microservice application are
deployed following the given configuration. The database images
are then loaded onto the managed microservices, and the control
loop’s knowledge is reset to its initial state to make sure that the
adaptation decisions undertaken are not influenced by prior knowl-
edge collected from past experiments. During the execution phase,
the ScenarioRunner replicates the desired operating conditions in
𝑁2 by generating a workload for the managed microservices and
by injecting specific issues/failures, as specified in the experimental
campaign. After a ramp-up period, the monitoring sub-phase starts
and the ScenarioRunner computes the metrics of interest to quan-
tify the effectiveness of RAMSES in achieving the adaptation goals.
When the observation period𝑇 ends, the teardown phase terminates
and undeploys the managing and the managed subsystems.

In our preliminary experiments, the effects of adaptations ap-
plied by the autonomic manager have been measured over the
observation period of 𝑇 = 20 minutes for all experiments. Con-
cerning the other configuration parameters of the managing layer,
we adopted the following default values (see Figure 4b): metric
and analysis window size equal to 5, shutdown threshold 40%, and
monitor scheduling period of 5 seconds.

4.2 Preliminary results

We here focus on the concern 𝐶4 of Table 1 about achieving QoS
requirements, and report some outcomes of the comparative analy-
sis of the capability of the system to maintain QoS properties with
and without adaptation (see Figure 6 and Figure 7).

To evaluate the system degradation, we introduce the quantita-
tive metric termed the QoS Degradation Area (QoSDA). The QoSDA
is calculated by measuring the area between the QoS threshold and

165

SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal Vincenzo Riccio, Giancarlo Sorrentino, Ettore Zamponi, Matteo Camilli, Raffaela Mirandola, and Patrizia Scandurra

108 A| Appendix A - Experimental results

A.1.2. E2 - Adaptation benefits

Without adaptation

RESTAURANT-SERVICE

0 2 4 6 8 10 12 14 16 18

0.7

0.75

0.8

0.85

0.9

t[min]

Figure A.9: S1E2 – Restaurant Service availability – without adaptation

0 2 4 6 8 10 12 14 16 18

70

80

90

100

110

t[min]

Figure A.10: S1E2 – Restaurant Service average response time – without adaptation

(a) Without adaptation
72 4| Evaluation

0 2 4 6 8 10 12 14 16 18 20

0.7

0.8

0.9

1

t[min]

Figure 4.7: S1E3 – Restaurant Service availability

Concerning the Restaurant Service, as shown in Figure 4.7, at the beginning of this ex-
periment the Restaurant Service availability is below the specified threshold, resulting in
the execution of two Change Load Balancer Weights options, respectively at t ⇡ 1 and
t ⇡ 2.
As in the reference experiment, the first time the option is applied, all the three instances
are kept alive, distributing most of the load (specifically, about the 75% of the total load)
to the only nominal instance. Instead, the second time the load is redirected entirely to
the nominal instance, shutting down the other two.
From that moment on, no more adaptation is performed, since the Restaurant Service
availability becomes steady and satisfies the corresponding QoS specifications.
Compared to the reference experiment, in this experiment the Managing System requires
less time to propose an adaptation option. Indeed, the time required to determine whether
a service requires adaptation is strictly related to the size of its Metrics Window: the
smaller the Metrics Window, the less Metric Snapshots are required by the Analyse com-
ponent to generate a new latest value for each QoS indicator.
This results in a QoSDA availability value of 2.42·102, which is 50% smaller than the avail-
ability QoSDA of the Restaurant Service in the reference experiment, equal to 4.28 · 102.
However, this positive result comes along with a higher cost in terms of number of adapta-
tions. Indeed, at t ⇡ 10 the Restaurant Service is adapted again, after the network failure
injection event. As a reminder, during this and all the other experiments of this scenario,
two Metrics Snapshots of the Restaurant Service are manipulated by the Probe compo-
nent, simulating a network failure by considering the remaining instance UNREACHABLE
(see Figure 4.2 for reference). As a consequence, since the rate of UNREACHABLE Met-

(b) With adaptation

Figure 6: Restaurant service availability

the actual QoS during specific time intervals within the observa-
tion period 𝑇 . These intervals correspond to instances where the
operational state is degraded, indicating that the actual QoS falls
below the prescribed QoS requirement, such as a target availability
level. In essence, the adaptation actions performed by RAMSES aim
to minimize the QoSDA. Smaller QoSDA indicates a more effective
mitigation of degradation.

Figure 6 shows the results of the Restaurant service availability
by running the e-food application without and with the RAMSES
autonomic manager under a uniform workload intensity of 100
requests per second generated by 50 concurrent users. The applica-
tion itself is not able to meet the QoS requirement availability > 0.9
as illustrated in Figure 6a, with a QoSDA equal to 3.65 × 103 (red
area). With the introduction of the autonomic manager, RAMSES
plans and then actuates two adaptations to satisfy the QoS require-
ment (adaptation points corresponding to 𝑡 = 2 and 𝑡 = 3). The
first action corresponds to the change of the weights of the load
balancer to penalize the bad-performing instances. This improves
the availability up to ∼0.8 at time 𝑡 = 3, but the requirement is still
not satisfied. Another adaptation action is then performed: two in-
stances out of three are shut down, due to their poor performances.
The microservice finally achieves a stable and desired QoS value
from 𝑡 = 4 on. The QoSDA is 4.28 × 102 (red area) in Figure 6b. The
adaptation options reduce the QoSDA by 88%.

Similar results can be observed in Figure 7 considering the
Ordering service response time. In this case, the QoS requirement
is response time < 800 milliseconds, which is not fulfilled without
introducing the managing layer for adaptation. Figure 7a shows
a QoSDA of 8.22 × 103. The results of the introduction of the au-
tonomic manager are shown in Figure 7b, where the addition of a
new instance and the change of the weights of the load balancer

A| Appendix A - Experimental results 109

ORDERING-SERVICE

0 2 4 6 8 10 12 14 16 18 20

0.8

0.82

0.84

0.86

0.88

t[min]

Figure A.11: S1E2 – Ordering Service availability – without adaptation

0 2 4 6 8 10 12 14 16 18 20

1,000

1,500

2,000

t[min]

Figure A.12: S1E2 – Ordering Service average response time – without adaptation(a) Without adaptation

4| Evaluation 73

rics Snapshot in the Metrics Window is above the corresponding threshold, the running
instance is shut down and a new instance is started.
By comparing this event with the results obtained in E2, we can see how the last adap-
tation option was actually not necessary, as shown in Figure 4.5.

The size of the Metrics Window impacts on the decision of shutting down the instances
that are UNREACHABLE or FAILED : while a smaller size could lead to unnecessary
adaptations, a larger size could lead to postpone adaptation or ignore such events if they
happen rarely.

0 2 4 6 8 10 12 14 16 18 20
0

1,000

2,000

3,000

4,000

t[min]

Figure 4.8: S1E3 – Ordering Service average response time

Concerning the Ordering Service, as shown in Figure 4.8, at the beginning of the exper-
iment the average response time of the Ordering Service is above the threshold defined
by the QoS specification. However, as in the reference experiment, the Managing Sys-
tem does not adapt the Ordering Service until its dependencies satisfy their constraints.
Indeed, the Ordering Service depends on the Restaurant Service, which, according to
Figure 4.7, does not satisfy all of its QoS specifications before t ⇡ 2. Thus, all the QoS
Histories of the Ordering Service are invalidated when an adaptation option is applied
to the Restaurant Service, and while the adaptation process is still in progress. These
events are highlighted by the black marks on the graph that are not in correspondence of
an adaptation point.
When the dependencies do not require adaptation anymore, the Ordering Service is
adapted, by applying a Change Load Balancer Weights option when t ⇡ 4.
The Ordering Service is adapted again at t ⇡ 14, t ⇡ 15 and t ⇡ 16, during the second

(b) With adaptation

Figure 7: Ordering service response time

yield QoS requirement satisfaction. QoSDA in this last plot is equal
to 6.39 × 103 which leads to a 22% reduction.

5 CONCLUSION AND FUTURE DIRECTIONS

This work describes RAMSES a microservice-based autonomic man-
ager tailored to microservice applications. RAMSES is reusable
given that the managed system implements the probing/actuating
APIs and the provided load-balancing mechanism. The e-food mi-
croservice application developed as the managed application is
itself reusable by other applications to experiment with different
kinds of adaptation means.

In future work, RAMSES may be extended with: more metrics
(e.g., resource usage and circuit breakers metrics) for a more in-
depth evaluation; more adaptation actions and scenarios to deal
with additional quality like security and with more complex sit-
uations; more complex decision-making approaches taking into
account also the costs and the risks derived from the application of
an adaptation option.

6 ARTIFACT AVAILABILITY

The package of RAMSES, including the sources and the instructions
to set up and run it is publicly available at https://zenodo.org/doi/
10.5281/zenodo.10400820. We refer the reader to the README file
included in the package for further details.

ACKNOWLEDGMENTS

This work has been partially founded from the topic Engineering
Secure Systems of the Helmholtz Association (HGF) and by KASTEL
Security Research Labs.

166

https://zenodo.org/doi/10.5281/zenodo.10400820
https://zenodo.org/doi/10.5281/zenodo.10400820

RAMSES: an Artifact Exemplar for Engineering Self-Adaptive Microservice Applications SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal

REFERENCES

[1] C. Barna, H. Ghanbari, M. Litoiu, and M. Shtern. 2015. Hogna: A Platform for
Self-Adaptive Applications in Cloud Environments. In SEAMS. 83–87.

[2] R. R. Filho, E. Alberts, I. Gerostathopoulos, B. Porter, and F. M. Costa. 2022.
EmergentWeb Server: An Exemplar to Explore Online Learning in Compositional
Self-Adaptive Systems. In SEAMS. 36–42.

[3] Luca Florio and Elisabetta Di Nitto. 2016. Gru: An Approach to Introduce De-
centralized Autonomic Behavior in Microservices Architectures. In IEEE ICAC.
357–362.

[4] JeffreyO. Kephart andDavidM. Chess. 2003. The Vision of Autonomic Computing.
IEEE Computer 36, 1 (Jan. 2003).

[5] Sara Mahdavi-Hezavehi, Vinicius H.S. Durelli, Danny Weyns, and Paris Avgeriou.
2017. A systematic literature review on methods that handle multiple quality
attributes in architecture-based self-adaptive systems. Information and Software
Technology 90 (2017), 1–26. https://doi.org/10.1016/j.infsof.2017.03.013

[6] N. C. Mendonca, P. Jamshidi, D. Garlan, and C. Pahl. 2021. Developing Self-
Adaptive Microservice Systems: Challenges and Directions. IEEE Software 38, 2
(2021), 70–79.

[7] Nabor C. Mendonça, David Garlan, Bradley Schmerl, and Javier Cámara. 2018.
Generality vs. Reusability in Architecture-Based Self-Adaptation: The Case for

Self-Adaptive Microservices. In Proceedings of the 12th European Conference on
Software Architecture: Companion Proceedings (Madrid, Spain) (ECSA ’18). Associ-
ation for Computing Machinery, New York, NY, USA, Article 18, 6 pages.

[8] M. Mitchell. 1999. An Introduction to Genetic Algorithms. The MIT Press, 124–125.
[9] G. A.Moreno, B. Schmerl, andD. Garlan. 2018. SWIM: An Exemplar for Evaluation

and Comparison of Self-Adaptation Approaches for Web Applications (SEAMS
’18). ACM, 137–143.

[10] F. Quin and D. Weyns. 2022. SEAByTE: A Self-adaptive Micro-service System
Artifact for Automating A/B Testing. In SEAMS. 77–83.

[11] C. Richardson. 2022. Pattern: Microservice Architecture. https://microservices.
io/patterns/microservices.html

[12] H. Samin, L. H. G. Paucar, N. Bencomo, C. M. C. Hurtado, and E. M. Fredericks.
2021. RDMSim: An Exemplar for Evaluation and Comparison of Decision-Making
Techniques for Self-Adaptation. In SEAMS. 238–244.

[13] D. Weyns and R. Calinescu. 2015. Tele Assistance: A Self-Adaptive Service-Based
System Exemplar. In SEAMS. 88–92.

[14] Shuai Zhang, Mingjiang Zhang, Lin Ni, and Peini Liu. 2019. A Multi-Level Self-
Adaptation Approach For Microservice Systems. In 2019 IEEE 4th International
Conference on Cloud Computing and Big Data Analysis (ICCCBDA). 498–502.

167

https://doi.org/10.1016/j.infsof.2017.03.013
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html

