
1

24-0006

Future Directions in Software Engineering
for Autonomous Robots

Davide Brugali1, Ana Cavalcanti2, Nico Hochgeschwender3,
Patrizio Pelliccione4, Luciana Rebelo4

1 Università degli studi di Bergamo - Bergamo, Italy - davide.brugali@unibg.it
2 University of York - York, United Kingdom

3 Universität Bremen - Bremen, Germany
4 Gran Sasso Science Institute - L’Aquila, Italy

I. INTRODUCTION
Software Engineering for Autonomous Robots investigates

the synergetic interaction of computing and robotic
technologies; this synergy is both realistic and strategic. On
one hand, software engineering techniques and methods have
the potential to enhance the quality of the software that
controls autonomous robots and the effectiveness of software
development processes in the robotic industry. In addition,
they can provide evidence of that improved quality to foster
trustworthiness of the robot via advanced verification
techniques based on testing, simulation, or even mathematical
proof. On the other hand, autonomous robots represent a
significant benchmark for software engineering techniques
and approaches, and many technologies that have been
successfully applied in robotics (e.g. from control theory to
automated planning) are now a source of inspiration for
software engineers.

Starting from the pioneer works on robotic software
architectures at the end of the last century up to the wide and
pervasive adoption of ROS (Robot Operating System) in
today's development of robot control systems, there has been a
steady increase in the robotic practitioners' awareness of the
positive impact of software engineering methods in robotics.
This is witnessed by some milestones. In 2005 the IEEE RAS
Technical Committee on Software Engineering for Robotics
and Automation1 was established. In 2019 the euRobotics
initiatives established a topic group focused on Software
Engineering, Systems Integration and Systems Engineering2.
Software engineering keywords, such as verification,
validation, frameworks, and architectures, are now listed as
topics of several robotics journals.

However, robotics still faces many software engineering

2 Software Engineering, Systems Integration and Systems Engineering,
https://sparc-robotics-portal.eu/web/software-engineering/home, 2023 (last
accessed 01 June 2024).

1 TC on software engineering for robotics and automation,
https://www.ieee-ras.org/software-engineering-for-robotics-and-automation,
(last accessed 01 June 2024).

challenges related to the development, integration, validation,
verification, installation, and operation of robot control
systems due to their cyber-physical nature. Verification and
validation of robot behaviors are also concerned with
human-robot interaction, besides cyber-physical features. The
challenges are significant as trust is a concept that cannot be
easily measured, especially when the robot is equipped with
AI techniques that generate intelligent behavior.

We aim at raising awareness in software engineering for
robotics with the objective of building bridges between the
communities of software engineering and robotics.
Specifically, we suggest a range of possible directions with
new challenges for robot software engineering to be explored.
We are based on recent studies on the state of the practice in
software development for robotics, and on the discussion
between the participants of the IEEE ICRA-23 Workshop on
Robot Software Architectures (RSA23)3 organized by the RAS
Technical Committee on Software Engineering for Robotics
and Automation and attended by over 100 participants from
academia and industry. The following sections present four
research directions that we believe will advance the state of
the practice in software engineering for robotics and will
mitigate those challenges.

II. CAPTURING DOMAIN EXPERTISE WITH REFERENCE

ARCHITECTURES

During the last twenty years, several software frameworks
have been proposed by the research community to reduce the
complexity of developing software control systems for
autonomous robots, including SmartSoft, OROCOS, YARP,
and ROS. They promote a component-based software
development approach, in which two separate development
cycles interact: development of fine-grained components (e.g.
a motion planning package, a 3D perception package, etc.) and
development of a variety of composites (e.g. a control

3 ICRA 2023 RSA Workshop. https://roboticsa.github.io/RoboticSA2023/ (last
accessed 01 June 2024).

https://sparc-robotics-portal.eu/web/software-engineering/home
https://www.ieee-ras.org/software-engineering-for-robotics-and-automation
https://roboticsa.github.io/RoboticSA2023/


2

24-0006

application for hospital logistics).
When a component is used in a large number of systems by

different developers, the knowledge about the component
usage, robustness and efficiency is available in the user
community. So, component reuse promotes the development
of maintainable, trustworthy, and affordable software systems.
The weakness of component-oriented development is the lack
of support for system architecture reuse.

Recent study reveals that the main reason (78.2%) among
the survey respondents to not reuse existing software packages
related to architectural problems (e.g., component’s
granularity does not fit, missing functionality, incompatible
interfaces). As a consequence, to ensure the interoperability
among heterogeneous or incompatible system components,
practitioners tend to rely on ad hoc practices instead of
principled engineering approaches.

Some research projects, such as EU FP7 BRICS and
EU2020 RobMosys have addressed these issues by developing
guidelines and recommendations emerging from successful
reuse and integration of robotic software in a variety of
research and industrial scenarios. Similarly, the ROS Wiki
now hosts two new sections on “ROS Best Practices” and
“ROS Use Patterns In robotics”4.

A possible further step forward could be the definition,
documentation, and systematic reuse of architectural solutions
to recurrent design problems emerging from the robotic
domain. While best practice recommendations and use
patterns may be considered just cookbook recipes, a software
architecture for a family of products (e.g., service robots) has
the ability to capture the structural and behavioral
commonalities in the overall design of similar systems (e.g.,
the navigation framework). This is commonly called a
reference architecture and defines not only how components
interact by means of communication and synchronization
mechanisms (e.g., topic-based or service-based), but also the
principles and policies that must be enforced by the set of
interacting components.

Defining reference architectures for autonomous robots is
challenging, because software development for robotics is
characterized by the high variability in application
requirements. The different hardware configurations, the
dynamic operational environment, the variety of tasks are
drivers of variability for software that implements robot
functionalities. A promising approach, exemplified by the
ROS 2 Navigation stack, consists in defining reference
architectures for specific system abilities as defined in the
EU2020 Multi Annual Roadmap, e.g., Manipulation,
Perception, Navigation, Decisional Autonomy, etc.

III. VALIDATION AND VERIFICATION: NEED FOR HETEROGENEOUS

AND COMPOSITIONAL REASONING

4 [http://wiki.ros.org/BestPractices] (last accessed 01 June 2024).

The properties of a cyber-physical system, such as a robot,
often depend on the behavior of its specialized hardware and
environment. For autonomous service robotics we also need
to deal with socio-technical concerns related to human
stakeholders to validate and verify properties. In this context,
traditional reasoning techniques for testing, simulation, and
proof for software systems are relevant, but not enough.
We have two significant challenges when it comes to

reasoning. The first is the presence of heterogeneous
components, whose modeling and design are very different.
Even development of simulations imposes a challenge when
there are proprietary components involved. Testing becomes
more difficult as an oracle needs to determine whether
measurements of continuous data are good enough. Proof
requires richer theories dealing with continuous time, data,
and probabilities.
The second significant problem is scalability. Here,

compositional reasoning is key. We need to take advantage of
the many advances on architectures and variability to
understand how component-level results are useful for
system-level reasoning.
We ought to consider several forms of reasoning for

validation and verification. Simulation is popular, but
hampered by low-level, tool-dependent coding. So, behaviors
observed in simulation may be a consequence of coding
errors, rather than inadequate designs. Bringing heterogeneous
simulation models together is also a problem. Possible
solutions are automatic code generation and co-simulation.
Testing is a widely used form of reasoning. Tests generated

and executed manually, however, have limited reasoning
power. Model-based testing can decrease costs by automating
the test-generation process, but, even more importantly, it is
accompanied by a fault-detection guarantee and support for
reproducing experiments.
Finally, the strongest form of reasoning is based on proof. It

can use finite abstractions and automatic approaches, but
scalability issues are exacerbated by continuous or hybrid
models. More promising is the combination of model checking
and theorem proving, which can deal with large or infinite
models. Semantic integration is key, and automation is
possible, but a challenge.

IV. FROM PROTOTYPES TO PRODUCTS

Robots are not yet ubiquitous in our daily life, and
impressive and capable robot prototypes often remain in
laboratory environments. One reason for this is that little is
known and publicly reported about successful robot
deployment. How should the robot software be designed?
How should the robot software be tested? There is not such a
thing as a publicly available repository which helps to answer
these questions and which harmonizes robot software
engineering related best practices and insights. Although few
robotic standards exist that consolidate software engineering
practices by recommending design and implementation
patterns to avoid common failure points, exploiting this

http://wiki.ros.org/BestPractices


3

24-0006

knowledge systematically in the robot development process
remains challenging, as it is not integrated into practice and
robot software development tools. Turning capable robot
prototypes to valuable products remains a challenge for
another reason. Although robotic application developers can
select from a wide range of robot components to perform
advanced sensing, planning, and control tasks, little is known
about their expected performance once they are integrated and
deployed in robotic applications. This is a reality check that
decides whether to make or break, and, too often, this is done
in an ad hoc manner by manually checking within controlled
scenarios whether the robot will operate at scale, without
human intervention, and with the desired repeatability and
precision.
Thus, establishing a methodology to support engineers not

only to boost their robot components to a higher Technology
Readiness Level (TRL) but also to systematically deploy
prototype systems into reliable products could be a promising
future research direction for robot software engineering. This
methodology would support engineers in collecting the
required evidence that their robots operate correctly and safely
in their targeted environments, and at the same time, increase
the trustworthiness of deployed robot applications. Examples
of evidence include, to name a few, field test reports, standard
conformance assessments, and other quality assurance artifacts
such as code and design reviews. However, such boosting
methodology is not currently available for robotics. Preferably,
the methodology also considers the complete lifecycle of
robotic systems and applications, including continuous
maintenance and improvement, which is a topic of high
relevance for learning-enabled robots operating over a long
period.
A potential contribution to such a boosting methodology can

be found in the field of performance evaluation and
benchmarking. Robotics has a long tradition of performance
evaluation and benchmarking through scientific competitions.
Over the past decades, teams from across the world have
competed with their robots during notable events such as the
DARPA Grand Challenge and RoboCup. Competition tasks
range from application-oriented scenarios in domestic,
manufacturing, logistics, and disaster environments to
game-oriented scenarios such as soccer. Because teams
compete regularly under replicable conditions, it is possible to
monitor and assess scientific progress. Although the focus of
these competitions is different from, for example, a company
aiming to turn a prototype into a product, there are
opportunities to generalize insights, practices, and evaluation
protocols gained from competitions to boost robot prototypes
to products. We argue that competition already encodes a huge
body of knowledge on how and at which level of detail
acceptance criteria of robotic systems are specified and how to
measure and assess these acceptance criteria. Detailing these
acceptance criteria into robot software tools and possibly
automating their evaluation in the context of real product
scenarios could be a component in incrementally boosting the

TRL of robotic systems and, at the same time, a promising
future direction for robot software engineering.

V. ENGINEERING TRUSTABLE ROBOTS

With robots becoming an integral part of our daily lives,
answering the following question becomes more and more
urgent: How to engineer robots that humans will trust?
We will not accept anymore robots that expose (i) behaviors

that are not aligned with our social and human values, like
safety, fairness, ethics, and privacy, and (ii) opaque behaviors,
i.e., without explaining the rationale for choices and actions.
The use of AI in some robotic modules exacerbates the
problem of trust. This is testified by the recent AI Act released
by the European Union, which is the first law to regulate the
use of AI in Europe. It provides a framework that delineates
different requirements and obligations for both the use and
provision of AI systems within the European Union (EU). It
classifies AI systems based on risk for humans and society in
four categories, and regulates if and how AI-based systems
can be produced, used or deployed.
While accomplishing a mission, a robot will be required to

obey laws and follow specific regulations, not only concerning
safety or security, but also social and human values, as, e.g.,
regulated by the AI act. For instance, let us consider a robot in
the assistive healthcare domain. The patient or operators
supporting the patient in this activity, should be able to specify
preferences like consensus about the treatment, risk
management assessment, balance for benefit or moral attitude.
Then, there is the need of instruments to guarantee that the
behavior of the robot(s) will be compliant with the specified
ethical preferences. This can be obtained by automatically
transforming the ethical specification into an unambiguous
and precise formulation, for instance, in some form of modal
or temporal logic, which can be programmatically exploited,
e.g., to automatically generate the correct-by-construction
logic needed for coordinating the robots and their interactions
with humans, as well as the environment.
Explainability and monitorability are important methods to

contribute to the perceived trustworthiness by users, industry,
and society. As described in5, ‘explainable, causal and ethical
AI’ is a potential key driver of adoption. Despite the ideal of a
human-centric AI and the recommendations to empower the
users via transparency and accountability of decisions, the
power and the burden to preserve the users’ rights still remain
in the hands of the (autonomous-) systems producers. There is
the need for theory and software technology to equip persons
with a shield that empowers them during their interaction with
the digital world in accordance with their views about privacy
and ethics.

5

https://www.mckinsey.com/industries/healthcare/our-insights/transforming-he
althcare-with-ai (last accessed 01 June 2024).

https://www.mckinsey.com/industries/healthcare/our-insights/transforming-healthcare-with-ai
https://www.mckinsey.com/industries/healthcare/our-insights/transforming-healthcare-with-ai


4

24-0006

VI. CONCLUSIONS

We sketched four research directions in software engineering
for autonomous robots that end-users and other humans will
trust. These directions cover the complete life-cycle from
design, to validation, and deployment of robot software and
are not complete, yet a starting point for making robots more
trustworthy.

ACKNOWLEDGMENTS

This work was supported in part by project SERICS
(PE00000014) under the NRRP MUR program funded by the
EU - NGEU. We would like to thank all the participants of the
ICRA 2023 workshop on Robot Software Architectures.


