
Annals of Operations Research
https://doi.org/10.1007/s10479-024-05993-8

ORIG INAL RESEARCH

Exact and approximation algorithms for covering timeline in
temporal graphs

Riccardo Dondi1 · Alexandru Popa2

Received: 25 May 2023 / Accepted: 8 April 2024
© The Author(s) 2024

Abstract
We consider a variant of vertex cover on temporal graphs that has been recently defined for
summarization of timeline activities in temporal graphs. The problem has been proved to
be NP-hard, even for several restrictions of the time domain and vertex degree. We present
novel algorithmic contributions for the problem and we give an approximation algorithm
of factor O(T log n), on a temporal graph of T timestamps and n vertices. We focus then
on the NP-hard restriction of the problem, where at most one temporal edge is defined in
each timestamp. For this restriction we present a 4(T − 1) approximation algorithm and a
parameterized algorithm (a reduction to kernel) for parameter the cost, called span, of the
solution.

Keywords Timeline cover · Temporal graph · NP-hard problem · Approximation
algorithm · FPT algorithm

1 Introduction

Novel representations of entity interactions have been considered in network science and
graph literature, in order to take into account their dynamics and heterogeneity. This has
led to the definition of novel graph models, a notable example being temporal networks
(Holme, 2015; Michail, 2016; Holme & Saramäki, 2019). Temporal networks or temporal
graphs represent how interactions (or edges) evolve in a discrete time domain for a given set
of entities (or vertices) (Holme, 2015; Kempe et al., 2002). The time domain consists of a
sequence of timestamps and, for each timestamp of the considered time domain, a temporal
graph defines a static graph (also called snapshot) on the same vertex set. Thus a temporal

Alexandru Popa has contributed equally to this work.

A preliminary version of this paper appeared in Dondi and Popa (2023).

B Riccardo Dondi
riccardo.dondi@unibg.it

B Alexandru Popa
alexandru.popa@fmi.unibuc.ro

1 Dipartimento di Lettere, Filosofia, Comunicazione, Università degli Studi di Bergamo, Bergamo,
Italy

2 Department of Computer Science, University of Bucharest, Bucharest, Romania

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-024-05993-8&domain=pdf
http://orcid.org/0000-0002-6124-2965

Annals of Operations Research

graph can be seen as sequence of static graphs, one for each timestamp, over the same vertex
set, while the edge sets can change from one timestamp to the other. In particular, an edge
observed in a timestamp is called a temporal edge.

The main aspects of temporal graphs considered in the literature have been finding paths
and studying their connectivity (Kempe et al., 2002; Wu et al., 2014, 2016; Erlebach et al.,
2021; Zschoche et al., 2020; Fluschnik et al., 2020; Akrida et al., 2021; Bumpus & Meeks,
2023; Marino & Silva, 2021), but other problems have been studied, for example dense sub-
graph discovery (Rozenshtein et al., 2020; Dondi & Hosseinzadeh, 2021). A fundamental
problem in computer science that has been recently considered for temporal graphs is Vertex
Cover (Akrida et al., 2020; Rozenshtein et al., 2021). In this contribution we will consider a
variant of Vertex Cover on temporal graphs that has been introduced for interaction timeline
summarization, a problem called MinTCover (Rozenshtein et al., 2021). The problem con-
siders a sequence of observed interactions between entities (for example, users of a social
platform) and aims to explain these interactions with intervals of entity activities that, fol-
lowing a parsimony approach, have minimum length. From a graph theory perspective, the
MinTCover problem is defined over a temporal graph, whose vertices represents entities and
whose temporal edges represent interactions between entities.MinTCover then asks, for each
vertex, for the definition of a temporal interval where the vertex is considered to be active
such that each temporal edge e is covered, that is at least one of its endpoints has an interval
activity that includes the timestamp where e is present. The length of an interval activity of a
vertex is called the span of the vertex. The objective function ofMinTCover asks to minimize
the sum of the vertex spans.

Notice that an alternative definition of the span of a vertex could be the number of times-
tamps where the vertex is active. This definition leads to a problem that is more similar to
Vertex Cover (when the time domain consists of a single timestamp the problem is exactly
Vertex Cover). On the other hand, the definition we consider, defined in Rozenshtein et al.
(2021), can be seen as a temporal variant of Vertex Cover above a guarantee, a problem that
has been studied in the literature (Garg & Philip, 2016). In Vertex Cover above a guarantee,
given a graphG the problem askswhether there exists a solution consisting of atmost k+l(G)

vertices, where l(G) is a lower bound on the size of a minimum vertex cover of G, like the
size of a maximum matching or the minimum value of a linear programming relaxation of
Vertex Cover. This leads to a challenging problem, as k is smaller than the size of a vertex
cover and, in most of the cases, also than l(G). Thus for example the strategy of branching
on the endpoints of an edge, in order to compute which one is in a vertex cover, cannot be
applied. Similarly, in our case, since the span of a vertex active in a single timestamp is equal
to 0, we have that a vertex that contributes 0 to the value of the objective function may cover
temporal edges. Thus also in this case strategies like that of branching on the endpoints of
a (temporal) edge cannot be used. This has lead to challenging analysis of the problem, for
example for its parameterized tractability (Froese et al., 2023; Dondi & Lafond, 2023), where
the approaches for Vertex Cover cannot be applied.

MinTCover is NP-hard (Rozenshtein et al., 2021), also for some restrictions: when each
timestamp contains at most one temporal edge (Dondi, 2023), a restriction we denote by
1-MinTCover, when each vertex has degree at most two in each timestamp and the temporal
graph is defined over three timestamps (Dondi, 2023), andwhen the temporal graph is defined
over two timestamps (Froese et al., 2023).

MinTCover has been considered also in the parameterized complexity framework. When
the temporal graph is defined over two timestamps,MinTCover admits a parameterized algo-
rithm for parameter the span of a solution (Froese et al., 2023).

123

Annals of Operations Research

Two results given in Froese et al. (2023) can be applied also for the approximation com-
plexity of MinTCover. A lower bound on the approximability of the problem can be proved
by observing that the reduction from the Odd Cycle Transversal problem1 to MinTCover
on two timestamps presented in Froese et al. (2023) is indeed an approximation preserving
reduction. Since assuming the Unique Games Conjecture Odd Cycle Transversal is known
to be not approximable within constant factor [?], the following result holds.

Theorem 1 (Froese et al., 2023) MinTCover cannot be approximated within constant fac-
tor, assuming the Unique Games Conjecture, even on temporal graphs defined over two
timestamps.

The authors of Froese et al. (2023) give a parameterized algorithm, when the problem is
parameterized by the spanof a solution and the temporal graph is definedover two timestamps.
This parameterized algorithm is based on a parameterized reduction from MinTCover on
a time domain of two timestamps to the Almost 2-SAT problem,2. This reduction can be
easily modified so that it is an approximation preserving reduction from MinTCover on two
timestamps to Almost 2-SAT. Since Almost 2-SAT is approximable within factor O(

√
log n),

for a graph having n vertices (Agarwal et al., 2005), the following result holds.

Theorem 2 (Froese et al., 2023)MinTCover on two timestamps can be approximated within
factor O(

√
log n), for a temporal graph having n vertices.

Related Works.
In Rozenshtein et al. (2021) different variants of theMinTCover problem have been intro-

duced, considering the cases that vertex activity is defined in one interval (as forMinTCover)
or in more than one interval (but in a bounded number), and that the objective function asks
for the minimization of (1) the sum of vertex spans (as for MinTCover) or (2) the maximum
activity span of a vertex.

The computational complexity of the variants of theMinTCoverproblemhasbeen analyzed
recently. Unlike MinTCover, when the vertex activity is defined in one interval and the
objective function is the minimization of the maximum activity span of a vertex, the problem
admits a polynomial-time algorithm (Rozenshtein et al., 2021). The variants where the vertex
activity is defined as k ≥ 2 intervals are NP-hard for both objective functions considered
(Rozenshtein et al., 2021) and they also do not admit any polynomial-time approximation
algorithm, as deciding whether there exists a solution of span equal to 0 is already an NP-
complete problem (Rozenshtein et al., 2021).

In Froese et al. (2023) the parameterized complexity of the variants of MinTCover has
been explored, considering as parameters the number of vertices of the temporal graph, the
length of the time domain, the number of intervals of vertex activity and the span of a solution.

Two other variants of Vertex Cover in temporal graphs have been considered in Akrida et
al. (2020); Hamm et al. (2022). A first variant, given a temporal graph, asks for the minimum
number of pairs (u, t), where u is a vertex and t is a timestamp, such that each non-temporal
edge e = {a, b} is temporally covered, that is there exists a timestamp t where e is present and
at least one of (a, t) and (b, t) belongs to the cover. A second variant asks for each temporal
edge to be temporally covered at least once for every interval of a given length �.

1 We recall that the Odd Cycle Transversal problem, given a graph, asks for the removal of the minimum
number of edges such that the resulting graph is bipartite.
2 We recall that the Almost 2-SAT given a formula consisting of clauses on two literals, asks for the removal
of the minimum number of clauses so that the resulting formula is satisfiable.

123

Annals of Operations Research

Our results.
In this paper, we give algorithmic contributions forMinTCover, in particular for its approx-

imability, and for 1-MinTCover (the restriction of MinTCover where at most one temporal
edge is present in each timestamp, a restriction also known to be NP-hard (Dondi, 2023)).
First, we present in Sect. 3 a randomized polynomial-time approximation algorithm forMinT-
Cover of factor O(T log n), for a temporal graph defined over T timestamps and n vertices.
Then in Sect. 4 we focus on 1-MinTCover and we provide a parameterized algorithm that
reduces an instance to a polynomial kernel, where the parameter is the span of the solution,
and a polynomial-time approximation algorithm of factor 4(T − 1). In the next section we
introduce the main concepts related to MinTCover and we formally define the MinTCover
problem.

2 Preliminaries

We start this section by introducing the definition of discrete time domain over which a
temporal graph is defined. A temporal graph is defined over a sequence T of timestamps
between 1 and T , denoted by

T = [1 . . . , T].
In what follows, T denotes the number of timestamps over which the temporal graph is
defined.

An interval I = [i, j], with 1 ≤ i ≤ j ≤ T , is the sequence of timestamps with value
between i and j ; notice that if i = j , then I = [i, j] = [i, i] denotes an interval consisting
of a single timestamp.

We present now the definition of temporal graph, where recall that the vertex set is not
changing in the time domain (an example is presented in Fig. 1).

Definition 1 A temporal graph G is a triple G = (V , E, T), where V , E , T are defined as
follows:

1. V is a set of n vertices,
2. T = [1, 2, . . . , T] is a time domain consisting of T timestamps
3. E ⊆ V × V × T is a set m temporal edges, where a temporal edge of G is a triple

{u, v, t}, with u, v ∈ V and t ∈ T .

Given an interval I of T , EI denotes the set of active edges in the timestamps of I , that
is:

EI = {{u, v, t}|{u, v, t} ∈ E ∧ t ∈ I }.
Et denotes the set of active edges in timestamp t .

Given a vertex v ∈ V and lv, rv ∈ T , with lv < rv , an activity interval of v is defined as
an interval

I (v) = [lv, rv]
of the time domain where v is considered active, while in any timestamp not in I (v), v is
considered inactive. Notice that if I (v) = [lv, rv] is an activity interval of v, there may exist
temporal edges {u, v, t}, with t < lv or t > rv . For example in Fig. 1 I (v1) = [1, 1], while
there exist temporal edges outside I (v1), more precisely {v1, v2, 2}, {v1, v3, 2}, {v1, v4, 2}
and {v1, v3, 3}.

123

Annals of Operations Research

Fig. 1 An example of MinTCover on a temporal graph G consisting of vertex set {v1, v2, v3, v4} and time
domain T = [1, 2, 3]. For each timestamp t , we represent the temporal edges defined in that timestamp. For
t = 1, the temporal edges are {v1, v2, 1} {v1, v3, 1}, {v1, v4, 1}, {v2, v4, 1}. The activity interval of each
vertex is represented in gray: vertex v1 is active in interval [1, 1], with span equal to 0, vertex v2 is active in
interval [1, 2], with span equal to 1, vertices v3 and v4 are active in interval [2, 3], each one with span equal
to 1. Hence the overall span is equal to 3

An activity timeline A is a set of activity interval, defined as:

A = {IA(v) : v ∈ V },
that is it contains an activity interval, denoted by IA(v), for each vertex in v ∈ V .

Given a temporal graph G = (V , E, T), a timeline A covers G = (V , E, T) if for each
temporal edge {u, v, t} ∈ E , t belongs to IA(u) or to IA(v).

The span s(I (v)) of an interval I (v) = [lv, rv], for some v ∈ V , is defined as follows:

s(I (v)) = |rv − lv|.
Notice that for an interval I (v) = [lv, rv] consisting of a single timestamp, that is where
lv = rv , it holds that s(I (v)) = 0. The overall span of an activity timeline A is equal to

s(A) =
∑

IA(v)∈A
s(IA(v)).

Now, we are ready to define the problemwe are interested into (see the example of Fig. 1).

Problem 1 (MinTCover)
Input: A temporal graph G = (V , E, T).
Output: An activity timeline of minimum span that covers G.

We introduce now two definitions of degree of a vertex, local degree, defined in each
timestamp, and global degree, defined in the whole temporal graph.

123

Annals of Operations Research

Given a temporal graph G = (V , E, T) and a vertex v ∈ V , the local degree of v in a
timestamp t , denoted by �L(v, t), is equal to the number of temporal edges incident in v at
timestamp t , that is

�L(v, t) = |{{u, v, t} : v ∈ V }|.
The local degree �L of G is the maximum over v and t of �L(v, t). The global degree

�(v) of a vertex v ∈ V is the number of temporal edges incident in v in the overall time
domain, that is

�(v) =
T∑

t=1

�L (v, t).

The global degree � of G is the maximum over v of �(v).
Consider a set V1 ⊆ V of vertices and an activity timelineA1 for V1. Given a set V2 ⊆ V ,

an activity timelineA2 for V2 is in agreement withA1 if, for each v ∈ V1 ∩ V2, it holds that

IA1(v) = IA2(v)

that is the activity interval of v inA1 is identical to the activity interval of v inA2. Furthermore,
when A2 is in agreement with A1, we define as

A = A1 ∪ A2

the activity timeline of V1 ∪ V2 that is in agreement with both A1 and A2.
Given a temporal graph G = (V , E, T), it is possible to compute in polynomial time

whether there exists a solution of MinTCover on G of span 0.

Lemma 1 (Rozenshtein et al., 2021) Let G be an instance ofMinTCover. We can compute in
polynomial time whether there exists a solution ofMinTCover on G that has span equal to 0.

Proof In Rozenshtein et al. (2021) it is shown that, given a temporal graph G = (V , E, T)

and a value h ∈ N, it is possible to compute in polynomial time whether there exists an
activity timeline A that covers G such that, for each v ∈ V , |IA(v)| ≤ h. When h = 0, then
|IA(v)| = 0 for each v ∈ V , hence it is possible to check in polynomial time whether there
exists an activity timeline of span equal to 0, thus the lemma holds.
�

Given a temporal graph G = (V , E, T), we can associate a labeled static graph, called
union graph, where all the temporal edges are represented.

Definition 2 Given a temporal graph G = (V , E, T), the union graph associated with G is
a labeled graph GU = (V , EU , λ), where EU = {{u, v} : {u, v, t} ∈ E , for some t ∈ T }
and λ ⊆ (EU × T) is a labeling of the edges in EU defined as λ({u, v}) = {t : {u, v, t} ∈
E, for some t ∈ T }.

In the paper we consider a variant of MinTCover, denoted by 1-MinTCover, when there
exists at most one active temporal edge in each timestamp.

2.1 Preprocessing a temporal graph

Wepresent a preprocessing procedure of a temporal graph and the corresponding union graph
that allows to remove some easy to cover parts. The preprocessing consists of two phases,
we start by describing the first phase.

123

Annals of Operations Research

Phase 1: while there exists a vertex u with global degree 1, remove u and the single temporal
edge {u, v, t} incident in u from G (and GU); u is defined to be active in t (that is
u covers {u, v, t}) with span 0.

Lemma 2 Consider a temporal graph G and the temporal graph G ′ obtained after Phase 1.
Then there exists a solution of MinTCover on G having span at most k if and only if there
exists a solution of MinTCover on G ′ having span at most k.

Proof Consider a solution of MinTCover on G ′ having span equal to h ≤ k. Since the
subgraph removed by Phase 1 can be covered with span 0, it follows that there exists a
solution of MinTCover on G having span equal to h ≤ k.

Consider a solution A of MinTCover on G having span equal to h ≤ k. Consider the
subgraph G ′ of G, induced by the set V ′ of vertices not removed by Phase 1. ThenA defines
a span equal to z ≤ h for G ′, thus concluding the proof.
�

Next, we present the second phase of preprocessing.

Phase 2: While there exists a connected component C of GU that is a simple cycle such that
each edge in C has exactly one label, remove C from GU (and the vertices and
temporal edges corresponding to C from G) and compute a solution ofMinTCover
for C having span equal to 0, by covering each temporal edge with one endpoint of
span 0.

Lemma 3 Consider a temporal graph G and the temporal graph G ′ obtained after Phase 2.
Then there exists a solution of MinTCover on G having span at most k if and only if there
exists a solution of MinTCover on G ′ having span at most k.

Proof Consider a solutionA′ ofMinTCover on G ′ having span equal to h ≤ k. Consider the
set C of connected components of G that are simple cycles such that each of their edges has
exactly one label. For each C ∈ C with C = vC,1, vC,2, . . . vC,z, vC,1, we define an activity
timelineAC that has span 0 and coversC as follows: vC, j , 1 ≤ j ≤ z−1, covers the temporal
edge {vC, j , vC, j+1, t j }, vertex vC,z covers the the temporal edge {vC,z, vC,1, tz}. Since each
vertex of C is active in a single time stamp inAC , then this activity timeline has a span of 0.
Then

A = A′ ⋃

C∈C
AC

is a solution of MinTCover on G having span equal to h ≤ k.
For the other direction, as for the proof of Lemma 2, a solution A of MinTCover on G

having span equal to h ≤ k defines an activity timeline that covers G ′ and has span at most
h, thus concluding the proof.
�

3 An approximation algorithm forMinTCover

In this section we present an approximation algorithm for MinTCover. First, we recall that
by Lemma 1 it is possible to compute in polynomial time whether there exists a solution
of MinTCover having span 0, so in what follows we assume that an optimal solution of
MinTCover on instance G requires a span greater than 0. We give an O(T log n) randomized
approximation algorithm for theMinTCover problem (recall that n is the number of vertices
of G and T is the number of timestamps).

The approximation algorithm consists of two phases:

123

Annals of Operations Research

1. First (Sect. 3.1) it computes an approximated solution that covers the temporal edges
having at least three occurrences

2. It then computes an approximated solution of the remaining part of the temporal graph
(Sect. 3.2).

3.1 Temporal edges with at least three occurrences

In the first phase, the approximation algorithm considers the following subgraph G ′
U =

(V , E ′
U) of the union graph GU (associated with G) that contains edges with at least three

labels. E ′
U is then defined as follows:

E ′
U = {{u, v} : ∃{u, v, t1}, {u, v, t2}, {u, v, t3} ∈ E, with 1 ≤ t1 < t2 < t3 ≤ T }.

Now, consider G ′
U = (V , E ′

U) and compute in polynomial time a vertex cover V ′
U ⊆ V

of G ′
U , by applying a factor 2 approximation algorithm for Vertex Cover (for example with

the approximation algorithm given in Karakostas (2009)). We define an activity A1 for the
of vertices in V ′

U , defining the following activity intervals:

IA1(v) = [1, T], for each v ∈ V ′
U .

We prove now the following result on A1.

Lemma 4 Consider the set of vertices V ′
U and an optimal solution A∗ of MinTCover on

instance G. Then, it holds that (1) every temporal edge with an endpoint in V ′
U is covered by

A1 and (2) it holds that

s(A1) ≤ 2(T − 1)s(A∗).

Proof (1) The first part of the lemma follows by construction, since V ′
U covers each vertex

of G ′
U and each vertex in V ′

U is defined to be active byA1 in each timestamp, thusA1 covers
every temporal edge of G with an endpoint in V ′

U .
(2) Consider a minimum vertex cover V ∗

U of G ′
U . By construction of the approximation

algorithm it holds that

s(A1) ≤ (T − 1)|V ′
U | ≤ 2(T − 1)|V ∗

U |. (1)

Next, we claim that

|V ∗
U | ≤ s(A∗). (2)

Define the set Va of vertices:

Va = {x ∈ V : x has a span greater than 0 in A∗}.
By construction, for each {u, v} ∈ E ′

U , there exist at least three temporal edges {u, v, t} in
G, thus at least one of u, v has a span greater than 0 in a solution of MinTCover on instance
G. Then Va is a vertex cover of G ′

U , thus, since V ∗
U is a minimum vertex cover of G ′

U , it
holds that

|V ∗
U | ≤ |Va |.

and Eq.2 holds. Combining Eqs. 1 and 2, we can conclude that

s(A1) ≤ (T − 1)|V ′
U | ≤ 2(T − 1)|V ∗

U | ≤ 2(T − 1)S(A∗).

thus also the second part of the lemma holds.
�

123

Annals of Operations Research

Fig. 2 ILP formulation for the timeline cover problem for the Min-NC-TCover problem

Now, after the computation of A1, the approximation algorithm removes from G the
vertices in V ′

U and the temporal edges covered by V ′
U (hence all the temporal edges incident

in one vertex of V ′
U). Notice that in the resulting temporal graph every two vertices u, v

are connected by at most two temporal edges, otherwise one of u and v is in V ′
U and the

temporal edges that connect u and v are removed. Hence the number of temporal edges in
the resulting temporal graph is bounded by 2

(n
2

) ≤ n2. We present now the second phase of
the approximation algorithm.

3.2 Temporal edges with at most two occurrences

We consider now a temporal graph graph G, where each pair of vertices is connected by at
most two temporal edges. We give an approximation algorithm for this case. Notice that the
number of temporal edges is bounded by 2

(n
2

) ≤ n2.
The approximation algorithm is based on the randomized rounding technique and it is

inspired by the approximation algorithm for Set Cover (Hochbaum, 1982).
First of all, we present an ILP formulation to model the following variant of the problem,

calledMinimumNon-Consecutive TimelineCover (Min-NC-TCover), where: (1) each vertex
can be active in several non necessarily consecutive timestamps and (2) if each vertex is active
in x timestamps, 1 ≤ x ≤ |T |, it has a span of x−1, hence it contributes x−1 to the objective
function. Notice that sinceMin-NC-TCover is less restrictive thanMinTCover, the optimumof
Min-NC-TCover on a temporal graph G is not greater than the optimum ofMinTCover on the
same instance. Indeed any solution ofMinTCover on G is also a solution ofMin-NC-TCover
on the same instance. Furthermore, notice thatMin-NC-TCover is an NP-hard problem, since
on a temporal graph defined on two timestamps the two problems are identical andMinTCover
is known to be NP-hard in this case (Froese et al., 2023).

We use a randomized rounding algorithm to find an O(log n) approximation solution
to the Min-NC-TCover problem. Then, we transform the solution for the Min-NC-TCover
into a solution for the MinTCover problem increasing the cost within a factor of at most
T −1. Thus, we obtain a O(T log n) approximation for theMinTCover problem. The integer
program formulation of the Min-NC-TCover problem is presented in Fig. 2. Notice that in
the formulation a variable xtv , for v ∈ V and t ∈ {1, 2, . . . T }, is equal to 1 when vertex
v is active in timestamp t , 0 when it is not active. Furthermore, notice that we can assume
that every vertex is active in at least one timestamp (if it is active in no timestamp, we can
make it active in one timestamp without increasing the value of the objective function), thus
constraint (4) in Fig. 2 is always satisfied.

The O(T log n) approximation for the MinTCover problem is presented in Algorithm 1.
The algorithm solves an ILP relaxation from Fig. 2, then it defines a solution forMinTCover

123

Annals of Operations Research

by rounding the variables and by defining each vertex active in an interval that includes the
minimum and maximum timestamp delimited by the rounded variables.

Algorithm 1 O(T log n) approximation algorithm for the MinTCover problem.
1. Solve the LP relaxation of the ILP formulation fromFig. 2, wherewe relax constraint (6) to be 0 ≤ xtv ≤ 1.
2. Define c = 4n2.
3. For every variable xtv , define a boolean variable Xt

v , initialized to 0.
4. Repeat log4 c

times the following point (point 5),
independently for each variable

5. For every variable xtv , assign Xt
v to 1 with probability xtv ,

that is P[Xt
v = 1] = xtv .

6. For every vertex v such that there exist at least two variables Xt
v = Xt

v = 1, let tmin be the smallest t
such that Xt

v = 1 and tmax be the maximum t such that Xt
v = 1. We make the vertex v active in interval

[tmin , tmax].

We prove now the correctness and the approximation ratio of Algorithm 1.

Lemma 5 With probability at least 1
2 , Algorithm 1 outputs a feasible solution for the MinT-

Cover problem that has a span of at most O(T log n) of the span of an optimal solution.

Proof First, we consider the correctness of the Algorithm 1, in particular that each temporal
edge is covered, then we consider the approximation factor.

Consider a temporal edge {u, v, t}, we bound the probability that the edge is not covered
after one step of rounding:

Pr({u, v, t} is not covered) = Pr(xtu = 0 and xtv = 0)

= Pr(xtu = 0)Pr(xtv = 0)

= (1 − Pr(xtu = 1))(1 − Pr(xtv = 1))

= (1 − xtu)(1 − xtv) ≤ 1/4

The last step follows from the fact that (1−xtu)(1−xtv) ismaximizedwhen xtu = xtv = 1/2.
Then, after log4 c rounds it holds that

Pr({u, v, t} is not covered after log4 c rounds) =
log4 c∏

i=1

Pr({u, v, t} is not covered in round i) ≤ (
1

4
)
log4 c = 1

c

Consider the overall set E of temporal edges. Recall that it holds that |E | ≤ n2, since
each pair of vertices is connected by at most two temporal edges. Using the union bound we
show that the probability that after log4 c rounds there exist uncovered temporal edges is less
than 1/4.

Pr((∃{u, v, t} ∈ E not covered after log4 c rounds) (7)

≤
∑

{u,v,t}∈E
Pr({u, v, t} is not covered after log4 c rounds) ≤ |E |1

c
≤ 1

4
(8)

We prove now the approximation ratio of Algorithm 1.We denote by OPT f the fractional
optimum of the ILP from the Fig. 2. Notice that by the first constraint of the ILP it holds that

123

Annals of Operations Research

∑T
t=1 x

t
v ≥ 1, hence

∑T
t=1 x

t
v −1 ≥ 0. After step 4 of Algorithm 1 we have that the expected

span of our solution:

E[
∑

v∈V
(

T∑

t=1

Xt
v − 1)] =

∑

v∈V
(

T∑

t=1

E[Xt
v] − 1) ≤

∑

v∈V
(

T∑

t=1

log4 c Pr(xtv = 1) − 1) (9)

=
∑

v∈V
(

T∑

t=1

log4 c x
t
v − 1) ≤ log4 c

∑

v∈V
(

T∑

t=1

xtv − 1) ≤ log4 c · OPT f

(10)

Now, using the Markov inequality, we have that:

Pr [Cost of Algorithm1 ≥ 4 log4 c · OPT f] ≤ 1/4 (11)

Thus, using union boundwehave that the probability that solution provided byAlgorithm1
is not valid (Eq.8) or does not have the desired approximation ratio (Eq.11) is less than or
equal to 1/2. If at the end of step 4, we do not obtain a solution of Min-NC-TCover with the
aforementioned properties, we repeat the algorithm (in expectation we need 2 repetitions).

In step 5, we transform the solution C of theMin-NC-TCover problem into a solutionA2 of
the MinTCover problem by defining, for each vertex v ∈ V , an interval IA2(v) of minimum
span that includes all the timestamps where v is defined to be active in C. It follows that if a
vertex v is active in a timestamp t in C then it is active in a timestamp t in A2. Thus, since
the solution C covers all the temporal edges of G, then also the solution A2 produced by
the Algorithm 1 covers all the temporal edges of G and is a valid solution to theMinTCover
problem.

If we denote by ALG the span of the solution A2 returned by the Algorithm 1 and by
ALG(v) the number of timestamps in which the vertex v is active in the solution returned by
Algorithm 1, we have ALG = ∑

v∈V (ALG(v) − 1) However, from step 5 of Algorithm 1
we have that if there exists only one t such that Xt

v = 1, then also ALG(v) = 1. Thus, we
have that E[ALG(v) − 1] ≤ (T − 1)(

∑T
t=1 E[Xt

v] − 1). Therefore:

E[ALG] =
∑

v∈V
E[(ALG(v) − 1)] ≤ (T − 1)

∑

v∈V
(

T∑

t=1

E[Xt
v] − 1) ≤ (T − 1) log4 c OPT f

where the last inequality follows from Inequality 10.Wehave that the expected approximation
ratio of Algorithm 1 is O(T log n).
�

We can prove now that the overall algorithm has an approximation factor O(T log n).

Theorem 3 MinTCover can be approximated within factor O(T log n) in polynomial time.

Proof First, notice that both algorithms have polynomial time complexity. Now, letA1 be the
activity assignment of the first phase of the algorithm and let A2 be the activity assignment
of the second phase of the algorithm. Let A f = A1 + A1 be the solution consisting of the
assignment of A1 and A2. Notice that, since all the vertices defined to be active by A1 are
removed, A f is well-defined.

Let A∗ be an optimal solution of MinTCover on instance G, recall that by Lemma 4 it
holds that

s(A1) ≤ 2(T − 1)s(A∗),

123

Annals of Operations Research

while by Lemma 5 it holds that

s(A2) ≤ O(T log n s(A∗)).

Summing up the two inequalities we have that

s(A f) ≤ s(A1) + s(A2) ≤ 2(T − 1)s(A∗) + O(T log n)s(A∗) ≤ O(T log n)s(A∗),

thus concluding the proof.
�
We have presented a randomized rounding approximation algorithm. The algorithm can

be derandomized applying the conditional probability method. The approach is based on
choosing deterministically the value of variables Xt

v so that the conditional probability that
the obtained solution is not a feasible solution of span O(T log n) is a value below 1.

4 Algorithms for 1-MinTCover

In this section we study 1-MinTCover, the variant of the MinTCover problem in which the
temporal graph from each timestamp contains a single temporal edge. For this variant we give
a fixed-parameter algorithm for parameter the span of the solution, more precisely a reduction
to a polynomial kernel, and an approximation algorithm with approximation factor 4(T −1).
We start by proving some properties of 1-MinTCover that are useful for both algorithms.

Consider a solutionA of 1-MinTCover on a temporal graphG.We assume that the instance
has been preprocessed as described in Sect. 2.1, hence the union graphGU does not contain a
disjoint simple cycle whose edges have exactly one label and there is no vertex having global
degree one. Moreover, we assume that the union graph GU is connected, otherwise we can
solve 1-MinTCover on each connected component independently.

4.1 1-MinTCover properties

In this subsection we focus mainly on the vertices that have global degree greater than two
in G and we prove some properties on these vertices. Denote byD ⊆ V the set of vertices in
G having global degree greater than two (that is those vertices having at least three incident
temporal edges). We start by proving the following result.

Lemma 6 Let G be an instance of 1-MinTCover that admits a solution of span k. LetD ⊆ V
be the set of vertices in G having global degree greater than two. Then, (1) |D| ≤ 2k; (2)
There are at most 6k temporal edges incident to vertices of D.

Proof Recall that |V | = n and |E | = m. Notice that in an instance of 1-MinTCover, since
there exists at most one temporal edge in each timestamp, the following property holds: a
vertex that covers z temporal edges, 1 ≤ z ≤ m, has a span of at least z−1. Since G admits a
solution of 1-MinTCover of span k, it follows that there can be at most n + k temporal edges
in G.

(1) Recall that each vertex of G has global degree at least two, since we have applied
the preprocessing from Sect. 2.1. Thus the sum of the vertex degrees (we count twice each
temporal edge), is bounded as follows (recall that �(v) denotes the global degree of vertex
v):

∑

v∈V
�(v) ≤ 2(n + k). (12)

123

Annals of Operations Research

Notice that
∑

v∈V
�(v) =

∑

v∈D
�(v) +

∑

v∈V \D
�(v).

Weknow that the vertices v ∈ D are the only vertices inG that have�(v) ≥ 3, and thus the
vertices v ∈ V \D have degree precisely 2 (since we have eliminated the degree one vertices
using the preprocessing fromSect. 2.1). Therefore, we have that

∑
v∈V \D �(v) = 2(n−|D|).

Assume towards a contradiction that |D| > 2k. Then, since each vertex in D has global
degree at least three, we have that:

∑

v∈D
�(v) +

∑

v∈V \D
�(v) ≥ 2n + |D| > 2(n + k),

thus leading to a contradiction with Inequality 12. Thus |D| ≤ 2k.
(2) Since by Inequality 12, it holds that

∑
v∈V �(v) = ∑

v∈D �(v) + ∑
v∈V \D �(v) ≤

2(n + k), it follows that
∑

v∈D
�(v) ≤ 2(n + k) −

∑

v∈V \D
�(v). (13)

Since each vertex of V \ D has degree exactly 2, it follows that
∑

v∈V \D
�(v) = 2|V \ D|. (14)

From Eqs. 13 and 14, we have that
∑

v∈D
�(v) ≤ 2(n + k) − 2|V \ D|. (15)

Since we have proved that |D| ≤ 2k, thus |V \D| ≥ n − 2k, from Eq.15 it follows that
∑

v∈D
�(v) ≤ 2(n + k) − 2|V \ D| ≤ 2(n + k) − 2(n − 2k) = 6k

thus concluding the proof.
�
Now, we prove that the union graph G ′

U obtained from GU by removing the vertices in
D consists of disjoint paths.

Lemma 7 Let G ′ be the temporal graph obtained by removing the vertices in D. Then, the
union graph G ′

U associated with G ′ consists of a set of disjoint paths where each edge has
a single label.

Proof First notice that, since G ′ is obtained by removing the vertices in D, there cannot be
vertices in G ′

U of degree larger than 2, thus each connected component is either a path or
a simple cycle. Furthermore, notice that if two vertices of G ′

U are connected by an edge
with different labels, then since these vertices have global degree two in G, they induce a
connected component in G, thus they would have been removed by Phase 2 of Preprocessing
of Sect. 2.1.

Now, assume that there exists a simple cycle; then either is a simple cycle not connected
to any vertex of D, but then it would have been removed by Phase 2 of preprocessing, or
there exists a vertex v of the cycle connected to a vertex of D. But then v would have degree
larger than 2 in GU and it would be in D, and thus it cannot belong to G ′.
�

123

Annals of Operations Research

4.2 A polynomial kernel

We now present an algorithm that computes a polynomial kernel for 1-MinTCover for param-
eter k (the span of the solution), based on Lemma 6 and Lemma 7. Informally, since |D| ≤ 2k
and the temporal edges incident in some vertex of D are at most 6k (see Lemma 6), we have
to shrink only the number of vertices of degree two.

As a preliminary step, consider the graph G and compute the set S of connected compo-
nents of GU induced by vertices of degree two. Notice that, by Lemma 7, each connected
component in S is a path in GU . Furthermore, for each C ∈ S, denote by {vC,1, wC,1, tC,1}
and {vC,2, wC,2, tC,2} the two temporal edges of G connecting vertices vC,1, vC,2 ∈ D with
vertices wC,1, wC,2, respectively, of C .

Given a pathC inS, compute theminimumspan, denoted by s(C), of a timeline activity for
the vertices of C (notice that the timeline activity is defined only for the vertices of C , not for
vC,1 and vC,2) that covers each temporal edge ofC plus both temporal edges {vC,1, wC,1, tC,1}
and {vC,2, wC,2, tC,2}. s(C) can be computed in polynomial time by first finding, for each
vertex w of C , the span s(w,C) of a timeline activity that covers each temporal edge of C
plus both temporal edges {vC,1, wC,1, tC,1} and {vC,2, wC,2, tC,2}, where w covers the two
temporal edges incident in it, while each other vertex of C covers exactly one temporal edge
incident in it. s(C) is then the minimum, over vertices w of C , of s(C, w).

Now, we present the details of the reduction to kernel (Algorithm 2). Starting from G =
(V , E, T), we compute a temporal graphG ′ = (V ′, E ′, T) by applying Algorithm 2 on each
connected component C of S.

Algorithm 2 The algorithm that computes a polynomial kernel of 1-MinTCover for path C
of S.
Consider a path C of S, connected to vertices of D with temporal edges {vC,1, wC,1, tC,1} and
{vC,2, wC,2, tC,2} (possibly wC,1 = wC,2).
C is replaced by a corresponding path P(C) in G′ as follows:
1. If C has a single vertex wC , then P(C) consists of a vertex zC and temporal edges {vC,1, zC , tC,1},

{vC,2, zC , tC,2},
2. If C has at least two vertices, then P(C) consists of vertices zC,1 and zC,2

and temporal edges {vC,1, zC,1, tC,1}, {vC,2, zC,2, tC,2}, plus if tC,1 > tC,2, temporal edge
{zC,1, zC,2, tC,1 + s(C)}, if tC,1 ≤ tC,2, temporal edge {zC,1, zC,2, tC,2 + s(C)}.

Algorithm 2 replaces each pathC with a corresponding path P(C). In particular, it shrinks
each long C (consisting of at least two vertices), by replacing it with a path P(C) consisting
of exactly two vertices. If the vertices ofC cover all the temporal edges incident in them with
a span s(C), then also the vertices of P(C) covers all the temporal edges incident in them
with span s(C).

We prove the correctness of Algorithm 2 in the following lemma.

Lemma 8 Let G = (V , E, T) be a temporal graph input of 1-MinTCover and let G∗ =
(V ∗, E∗, T ∗) be the temporal graph computed by Algorithm 2 on input G. Then |V ∗| ≤ 8k
and |E∗| ≤ 9k. Moreover, 1-MinTCover admits a solution of span k on instance G if and
only if 1-MinTCover admits a solution of span k on instance G∗.

Proof First,we prove that |V ∗| ≤ 8k and |E∗| ≤ 9k.We start by consideringV ∗. ByLemma6
we have that |D| ≤ 2k. Now, consider the vertices of degree two in G∗. By construction each

123

Annals of Operations Research

of such vertices is adjacent to a vertex of D. Since by Lemma 6, there exist at most 6k
temporal edges of G incident in a vertex ofD and the same property holds for G∗, it follows
that there are at most 6k vertices having degree two in G ′, thus

|V ∗| ≤ 2k + 6k = 8k.

As for the set E∗, there are at most 6k temporal edges incident in vertices of D. Moreover,
by construction each vertex of V ∗ \ D is connected with at most another vertex of V ∗ \ D.
Since |V ∗\D| ≤ 6k, there are at most 3k temporal edges connecting vertices of V ∗ \ D. It
follows that

|E∗| ≤ 6k + 3k = 9k.

Now,we prove the correctness ofAlgorithm2.Assume thatA is a solution of 1-MinTCover
on instance G. Then, define a solution A∗ of 1-MinTCover on instance G∗ as follows:

1. For each v ∈ D,then IA∗(v) = IA(v)

2. For each P(C) in G∗, if {vC,1, zC,1, tC,1} is covered by vC,1 or if {vC,2, zC,2, tC,2}
is covered by vC,2, then compute an activity timeline A∗

C of span 0, that covers the
temporal edges of P(C) and possibly one uncovered temporal edge of {vC,1, zC,1, tC,1},
{vC,2, zC,2, tC,2}

3. For each P(C) in G∗, if {vC,1, zC,1, tC,1} is not covered by vC,1 and if {vC,2, zC,2, tC,2}
is not covered by vC,2, then compute an activity timeline A∗

C of span s(C) that covers
the temporal edges of P(C) as follows: if tC,1 > tC,2, then zC,1 covers its two incident
temporal edges, else zC,2 covers its two incident temporal edges; the other vertex of
P(C) covers the uncovered temporal edge of P(C) with span equal to 0.

By construction it holds that:

s(A∗) = s(A).

Now, consider a solution A∗ of 1-MinTCover on instance G∗. Then, define a solution A
of 1-MinTCover on instance G as follows:

1. For each v ∈ D, then IA(v) = IA∗(v)

2. For each P(C) in G∗, if {vC,1, zC,1, tC,1} is covered by vC,1 or if {vC,2, zC,2, tC,2} is
covered by vC,2, then compute an activity timeline AC of span 0 that covers all the
uncovered temporal edges incident in C .

3. For each P(C) in G∗, if {vC,1, zC,1, tC,1} is not covered by vC,1 and {vC,2, zC,2, tC,2}
is not covered by vC,2, then compute an activity timeline AC that covers each temporal
edge incident in vertices of C and that has span equal to s(C).

By construction it holds that:

s(A) ≤ s(A∗)

thus concluding the proof.
�
While we are able to bound the number of temporal edges, the timestamps may have

values that are not bounded by a function of k. We conclude this subsection by considering
the time domain T ∗ and showing how to modify it so that each timestamp is bounded by a
function of k. If T ∗ = [1, . . . , T ∗], where |T ∗| > 9k(k + 1), we redefine T ∗ as follows:

1. Order the timestamps in increasing order

123

Annals of Operations Research

Fig. 3 An example of subdivision of an edge: two vertices u and v connected by an edge {u, v} with labels t1
and t2 (left); the subdivision of edge {u, v} (right)

2. From i = 1 to T ∗ −1, if for two consecutive timestamps t∗i , t∗i+1 it holds that t
∗
i+1 − t∗i >

k + 1, then update each timestamp t∗j , with i + 1 ≤ j ≤ T ∗, as follows:

t∗j = t∗j − (t∗i+1 − t∗i) + (k + 1)

At the end of this procedure each pair of consecutive timestamps have difference at most
k + 1. Since by Lemma 8 we have that |E∗| ≤ 9k, it follows |T ∗| ≤ 9k(k + 1). Furthermore,
if consider two timestamps t∗a , t∗b with t∗b ≥ t∗a . If t∗b − t∗a = h ≤ k before the updating, then
t∗b − t∗a = h after the updating. If t∗b − t∗a = h > k before the updating, then t∗b − t∗a = k + 1
after the updating, thus no vertex can be defined active in an interval of G∗ that includes
[t∗a , t∗b].

4.3 An approximation algorithm

In this subsection we present a polynomial time 4(T − 1)-approximation algorithm (Algo-
rithm 3) for the 1-MinTCover problem. We start by showing that starting from a union graph
GU where edges can have multiple labels, we can compute a corresponding simple union
graph GU ,s where each edge has a single label and such that GU has a feedback vertex set of
size k if and only if GU ,s has a feedback vertex set of size k We recall that a feedback vertex
set of a graph is a subset of the vertex set that, after its removal, leaves the graph acyclic. For
union graph GU (which formally is a labeled multigraph), the definition of feedback vertex
set is the same as for graphs, but in this case there can be cycles of length 2 between two
vertices, when they are connected by two parallel edges with different labels.

Consider the union graph GU , then compute a graph GU ,s by subdividing each edge of
GU with more than one label in a set of edges as follows (an example in Fig. 3): for each
{u, v} ∈ EU labeled by t , (1) a new vertex eu,v,t is added to GU ,s ; (2) edge {u, v} is removed
and (3) edges {eu,v,t , u} and {eu,v,t , v}, labeled by t , are added to GU ,s .

The vertices eu,v,t added to GU ,s are called subdivision vertices.

Lemma 9 Consider a union graph GU and the corresponsing simple union graph GU ,s . Then
GU has a feedback vertex set of size k if and only if GU ,s has a feedback vertex set of size k.

Proof Consider a feedback vertex set F of GU . We claim that F is also a feedback vertex
set of GU ,s . Indeed, assume that there exists a cycle C ′ in GU ,s that does not contain any

123

Annals of Operations Research

vertex of F . Consider the set of vertices A of C ′ which are not subdivision vertices. Then in
GU the vertices corresponding to A induces a cycle (possibly of length 2), thus F would not
be a feedback vertex set.

Assume now, that F ′ is a feedback vertex set of GU ,s , we construct a feedback vertex set
F ′′ of GU ,s that does not contain subdivision vertices as follows: if one subdivision vertex
eu,v,t belongs to F ′, then replace eu,v,t with one of u or v that is not already in F ′. Notice that
we can assume that at most one u and v is in F ′, otherwise eu,v,t is an isolated vertex after
the removal of u and v and thus it can be removed from F ′. We claim that F ′′ is a feedback
vertex set of GU ,s . Assume this is not the case, then after the removal of F ′′ there is a cycle
C ′ in GU ,s . However, notice that C ′ must contain a subdivision vertex eu,v,t , otherwise C ′
is a cycle also after the removal of F ′, leading to a contradiction. Since eu,v,t belongs to
F ′\F ′′, by construction F ′′ contains one of u, v, hence eu,v,t is a leaf after the removal of
F ′′. It follows that, after the removal of F ′′, C ′ is not a cycle in GU ,s . Now, the set of vertices
of GU corresponding to F ′′ is also a feedback vertex set of GU , and has size equal to |F ′|,
thus concluding the proof.
�

Algorithm 3 4(T − 1)-approximation algorithm for 1-MinTCover
1. Construct the union graph GU = (V , E) of G and the corresponding simple union graph GU ,s .
2. Compute a 2-approximate feedback vertex set F of GU ,s and GU (see the approximation algorithm in

Becker and Geiger (1996); Bafna et al. (1999))
3. Make each vertex v ∈ F active in the time interval [1, T].
4. Cover the graph G − F using the first reduction rule from Sect. 2.1, since G − F is acyclic.

Algorithm 3 considers the union graph GU and its associated simple union graph GU ,s ,
computes a feedback vertex set ofGU ,s and, for each vertex in the feedback vertex set, makes
it active in the whole time domain. The key to the analysis of Algorithm 3 is the following
structural lemma that relates the size of an optimal solution of 1-MinTCover to the size of a
minimum feedback vertex set of GU ,s .

Lemma 10 Let G be a temporal graph, input of 1-MinTCover. Let GU be the corresponding
union graph and GU ,s be the corresponding simple union graph. If an optimal solution of
1-MinTCover on G has a span of k, then a feedback vertex set of GU and GU ,s has at most
2k vertices.

Proof Consider the setD of vertices having degree larger than three. By Lemma 6, it follows
that |D| ≤ 2k. Moreover, after the removal of the vertices in D (see Lemma 7), we obtain
a graph consisting of disjoint paths. Thus D is a feedback vertex set of GU consisting of at
most 2k vertices. By Lemma 9, D is also a feedback vertex set of GU ,s , thus concluding the
proof.
�

We analyze now the correctness and the performance of Algorithm 3.

Theorem 4 Algorithm 3 is a polynomial 4(T − 1)-approximation algorithm for the 1-
MinTCover problem.

Proof Algorithm 3 produces a valid cover of G in polynomial time, since F is a feedback
vertex set of GU ,s and GU ,s \ F is acyclic and thus, we can iteratively apply the first rule
from Sect. 2.1 and obtain a timeline activity of span 0 for G − F .

123

Annals of Operations Research

We analyze now the approximation factor of Algorithm 3. First, observe that the global
span of the activity timeline returned by the algorithm is

ALG ≤ 2(T − 1)|F∗|,

where F∗ is a minimum feedback vertex set in the graph GU ,s . From Lemma 10 we have
that

|F∗| ≤ 2 · OPT ,

where OPT is the minimum span of any activity timeline on the graph G. Thus, it holds
that

ALG ≤ 2(T − 1)|F∗| ≤ 2(T − 1) 2 OPT ≤ 4(T − 1)OPT ,

thus concluding the proof.
�

5 Conclusion

In this paper we have presented algorithmic contributions onMinTCover, a problem recently
introduced for covering temporal graphs. We have presented an approximation algorithm of
factor O(T log n) and for 1-MinTCover, the restriction where at most one temporal edge is
defined in each timestamp, we have presented and reduction to a polynomial kernel and a
4(T − 1) approximation algorithm.

There are several interesting open problems related to MinTCover. There is a gap in the
approximation complexity of the problem. In particular is it possible to obtain an approxima-
tion algorithmwhose factor does not depend on T forMinTCover and 1-MinTCover? Another
interesting open problem is whether it is possible to obtain a fixed-parameter tractable algo-
rithm with parameter the span of the solution.

Funding Open access funding provided by Università degli studi di Bergamo within the CRUI-CARE Agree-
ment. This work was supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS -
UEFISCDI, Project Number PN-III-P1-1.1-TE-2021-0253, within PNCDI III.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by
any of the authors.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

Annals of Operations Research

References

Agarwal, A., Charikar,M.,Makarychev, K., &Makarychev, Y. (2005). O (sqrt log n) approximation algorithms
for Min UnCut, Min 2CNF Deletion, and directed cut problems. In Proceedings of the Thirty-seventh
Annual ACM Symposium on Theory of Computing (pp. 573–581). https://doi.org/10.1145/1060590.
1060675

Akrida, E. C., Mertzios, G. B., Spirakis, P. G., & Raptopoulos, C. L. (2021). The temporal explorer who
returns to the base. Journal of Computer and System Sciences, 120, 179–193. https://doi.org/10.1016/j.
jcss.2021.04.001

Akrida, E. C., Mertzios, G. B., Spirakis, P. G., & Zamaraev, V. (2020). Temporal vertex cover with a sliding
time window. Journal of Computer and System Sciences, 107, 108–123. https://doi.org/10.1016/j.jcss.
2019.08.002

Bafna, V., Berman, P., & Fujito, T. (1999). A 2-approximation algorithm for the undirected feedback ver-
tex set problem. SIAM Journal on Discrete Mathematics, 12(3), 289–297. https://doi.org/10.1137/
S0895480196305124

Becker,A.,&Geiger,D. (1996).Optimization of pearl’smethod of conditioning andgreedy-like approximation
algorithms for the vertex feedback set problem. Artificial Intelligence, 83(1), 167–188. https://doi.org/
10.1016/0004-3702(95)00004-6

Bumpus, B. M., & Meeks, K. (2023). Edge exploration of temporal graphs. Algorithmica, 85(3), 688–716.
https://doi.org/10.1007/s00453-022-01018-7

Dondi, R., & Lafond, M. (2023). An FPT algorithm for temporal graph untangling. In 18th International
Symposium on Parameterized and Exact Computation (IPEC 2023). https://doi.org/10.4230/LIPICS.
IPEC.2023.12. Schloss-Dagstuhl-Leibniz Zentrum für Informatik

Dondi, R., & Popa, A. (2023). Timeline cover in temporal graphs: Exact and approximation algorithms. In
International Workshop on Combinatorial Algorithms (pp. 173–184). https://doi.org/10.1007/978-3-
031-34347-6_15

Dondi, R. (2023). Untangling temporal graphs of bounded degree.Theoretical Computer Science, 969, 114040.
https://doi.org/10.1016/J.TCS.2023.114040

Dondi, R., &Hosseinzadeh,M.M. (2021). Dense sub-networks discovery in temporal networks. SNComputer
Science, 2(3), 158. https://doi.org/10.1007/s42979-021-00593-w

Erlebach, T., Hoffmann, M., & Kammer, F. (2021). On temporal graph exploration. Journal of Computer and
System Sciences, 119, 1–18. https://doi.org/10.1016/j.jcss.2021.01.005

Fluschnik, T.,Molter, H., Niedermeier, R., Renken,M., &Zschoche, P. (2020). Temporal graph classes: A view
through temporal separators. Theoretical Computer Science, 806, 197–218. https://doi.org/10.1016/j.tcs.
2019.03.031

Froese, V., Kunz, P., & Zschoche, P. (2023). Disentangling the computational complexity of network untan-
gling. Theory of Computing Systems. https://doi.org/10.1007/s00224-023-10150-y

Garg, S., & Philip, G. (2016). Raising the bar for vertex cover: Fixed-parameter tractability above a higher
guarantee. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms
(pp. 1152–1166). https://doi.org/10.1137/1.9781611974331.CH80

Hamm, T., Klobas, N., Mertzios, G. B., & Spirakis, P. G. (2022). The complexity of temporal vertex cover
in small-degree graphs. In Proceedings of the AAAI Conference on Artificial Intelligence (vol. 36, pp.
10193–10201). https://doi.org/10.1609/aaai.v36i9.21259

Hochbaum, D. S. (1982). Approximation algorithms for the set covering and vertex cover problems. SIAM
Journal on Computing, 11(3), 555–556. https://doi.org/10.1137/0211045

Holme, P. (2015). Modern temporal network theory: A colloquium. The European Physical Journal B, 88(9),
234. https://doi.org/10.1140/epjb/e2015-60657-4

Holme, P., & Saramäki, J. (2019). A map of approaches to temporal networks. Temporal Network Theory.
https://doi.org/10.1007/978-3-030-23495-9_1

Karakostas, G. (2009). A better approximation ratio for the vertex cover problem. ACM Transactions on
Algorithms, 5(4), 41–1418. https://doi.org/10.1145/1597036.1597045

Kempe, D., Kleinberg, J.M., &Kumar, A. (2002). Connectivity and inference problems for temporal networks.
Journal of Computer and System Sciences, 64(4), 820–842. https://doi.org/10.1006/jcss.2002.1829

Marino, A., & Silva, A. (2021). Königsberg sightseeing: Eulerian walks in temporal graphs. In International
Workshop on Combinatorial Algorithms (pp. 485–500). https://doi.org/10.1007/978-3-030-79987-8_34

Michail, O. (2016). An introduction to temporal graphs: An algorithmic perspective. Internet Mathematics,
12(4), 239–280. https://doi.org/10.1080/15427951.2016.1177801

Rozenshtein, P., Bonchi, F., Gionis, A., Sozio, M., & Tatti, N. (2020). Finding events in temporal networks:
Segmentationmeets densest subgraphdiscovery.Knowledge and Information Systems, 62(4), 1611–1639.
https://doi.org/10.1007/s10115-019-01403-9

123

https://doi.org/10.1145/1060590.1060675
https://doi.org/10.1145/1060590.1060675
https://doi.org/10.1016/j.jcss.2021.04.001
https://doi.org/10.1016/j.jcss.2021.04.001
https://doi.org/10.1016/j.jcss.2019.08.002
https://doi.org/10.1016/j.jcss.2019.08.002
https://doi.org/10.1137/S0895480196305124
https://doi.org/10.1137/S0895480196305124
https://doi.org/10.1016/0004-3702(95)00004-6
https://doi.org/10.1016/0004-3702(95)00004-6
https://doi.org/10.1007/s00453-022-01018-7
https://doi.org/10.4230/LIPICS.IPEC.2023.12
https://doi.org/10.4230/LIPICS.IPEC.2023.12
https://doi.org/10.1007/978-3-031-34347-6_15
https://doi.org/10.1007/978-3-031-34347-6_15
https://doi.org/10.1016/J.TCS.2023.114040
https://doi.org/10.1007/s42979-021-00593-w
https://doi.org/10.1016/j.jcss.2021.01.005
https://doi.org/10.1016/j.tcs.2019.03.031
https://doi.org/10.1016/j.tcs.2019.03.031
https://doi.org/10.1007/s00224-023-10150-y
https://doi.org/10.1137/1.9781611974331.CH80
https://doi.org/10.1609/aaai.v36i9.21259
https://doi.org/10.1137/0211045
https://doi.org/10.1140/epjb/e2015-60657-4
https://doi.org/10.1007/978-3-030-23495-9_1
https://doi.org/10.1145/1597036.1597045
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.1007/978-3-030-79987-8_34
https://doi.org/10.1080/15427951.2016.1177801
https://doi.org/10.1007/s10115-019-01403-9

Annals of Operations Research

Rozenshtein, P., Tatti, N., & Gionis, A. (2021). The network-untangling problem: From interactions to activity
timelines.DataMining andKnowledgeDiscovery, 35(1), 213–247. https://doi.org/10.1007/s10618-020-
00717-5

Wu, H., Cheng, J., Huang, S., Ke, Y., Lu, Y., & Xu, Y. (2014). Path problems in temporal graphs. Proceedings
of the VLDB Endowment7(9), 721–732 https://doi.org/10.14778/2732939.2732945

Wu, H., Cheng, J., Ke, Y., Huang, S., Huang, Y., & Wu, H. (2016). Efficient algorithms for temporal path
computation. IEEE Transactions on Knowledge and Data Engineering, 28(11), 2927–2942. https://doi.
org/10.1109/TKDE.2016.2594065

Zschoche, P., Fluschnik, T., Molter, H., & Niedermeier, R. (2020). The complexity of finding small separators
in temporal graphs. Journal of Computer and System Sciences, 107, 72–92. https://doi.org/10.1016/j.
jcss.2019.07.006

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s10618-020-00717-5
https://doi.org/10.1007/s10618-020-00717-5
https://doi.org/10.14778/2732939.2732945
https://doi.org/10.1109/TKDE.2016.2594065
https://doi.org/10.1109/TKDE.2016.2594065
https://doi.org/10.1016/j.jcss.2019.07.006
https://doi.org/10.1016/j.jcss.2019.07.006

	Exact and approximation algorithms for covering timeline in temporal graphs
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Preprocessing a temporal graph

	3 An approximation algorithm for MinTCover
	3.1 Temporal edges with at least three occurrences
	3.2 Temporal edges with at most two occurrences

	4 Algorithms for 1-MinTCover
	4.1 1-MinTCover properties
	4.2 A polynomial kernel
	4.3 An approximation algorithm

	5 Conclusion
	References

