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Abstract

We consider hydrodynamic chains in (1 + 1) dimensions which are
Hamiltonian with respect to the Kupershmidt-Manin Poisson bracket.
These systems can be derived from single (2+ 1) equations, here called
hydrodynamic Vlasov equations, under the map A™ = ffooo p" fdp. For
these equations an analogue of the Dubrovin-Novikov Hamiltonian
structure is constructed. The Vlasov formalism allows us to describe
objects like the Haantjes tensor for such a chain in a much more com-
pact and computable way. We prove that the necessary conditions
found by Ferapontov and Marshall in [I] for the integrability of these
hydrodynamic chains are also sufficient.

1 Systems of hydrodynamic type
Systems of hydrodynamic type are quasilinear first order PDE of the form

uy = vl(u)ul, i,7 =1..N, (1)

where (z,t) are the independent and (u!,...,u") the dependent variables.
Here and below sums over repeated indices are assumed. A Hamiltonian
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formalism for systems of this type was introduced in [2] by Dubrovin and
Novikov, who defined a Poisson bracket of the form

[ 6L 6l
{L“h}_:/éu%@fldwmﬂdx @)

Here I, I are functionals of u(x) and the first order differential operator 119
is given by:

| g
119 = g () o=+ b (w)eds )
x
They showed that this is a Hamiltonian structure if g% is a nonsingular
contravariant metric and by’ =—¢*I"”, . where F;'-k is a symmetric connection

of zero curvature that is compatible with the metric ¢%/. It is immediate to
see that a Hamiltonian of the form

H= / h(u)dz, (4)

where h(u) is independent of wg, Uy, ..., together with the Hamiltonian
structure (2), leads to an equation of hydrodynamic type, specifically

. . ~ 5 oh

i i ) ij. k

An obvious problem related with systems of hydrodynamic type () is to
determine whether such a system is integrable, in the sense that it admits in-
finitely many conserved densities and commuting flows; in [3], Tsarev proved
that this is true if the system is hyperbolic and can be written in diagonal
form

R, = N(R)R;,

where R’ are called the Riemann invariants and where the A" (called the
characteristic velocities) satisfy the semi-Hamiltonian condition

N\ DN
@(m_»)—@<ﬁfﬁ)

where 0, = 0/0R*. With these hypotheses, the system can then be integrated
by the generalized hodograph transformation ([3]). We remark that the semi-
Hamiltonian property is automatically satisfied for a Hamiltonian system
with Dubrovin-Novikov Hamiltonian structure, and that the conditions for
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the system to be respectively diagonalizable, or semi-Hamiltonian, can be
written invariantly; each corresponds to the vanishing of some tensor ([4],[1]).
In particular, for the diagonalizability condition, if one defines the Nijenhuis
tensor of the matrix v by:

7 a ; 581];" ) avz 8U;
N = g ~ Vigs — <8uj auk)’

and then the Haantjes tensor by:
H}\ = N gv§ v — 0l v — Nﬁkv;vj +N]°;€UBU
then we have the following:

Theorem 1.1. [5] A hydrodynamic type system with mutually distinct char-
acteristic speeds is diagonalizable if and only if the corresponding Haantjes
tensor vanishes identically.

1.1 Hydrodynamic chains

Hydrodynamic chains are defined as a natural generalization of systems of
hydrodynamic type, letting the number of variables and equations go to
infinity. More specifically, we consider, following Ferapontov and Marshall
(M), systems of the type

where A = (A° A')...)" is an infinite column vector and V(A) is an oo X oo
matrix, with the following properties (see [1], [6]),

1) for every row only finitely many elements are nonzero

2) every element of the matrix depends only on a finite number of vari-
ables.

The variables (A° Al,...) are usually called moments. The most famous
example of a hydrodynamic chain is the Benney chain,

AP 4 AT n AP AD =0, n=01,... (7)



which was derived in [7] from the study of long nonlinear waves on a shallow
perfect fluid with a free surface. Kupershmidt and Manin ([§],[9]) found a
Hamiltonian formulation,

Af ={A" H}pp =11 SA™’
given by the Poisson operator
d
""" = (n4+m) A" ' — 4 mAr™ 1 pom=0,1,... (8)

dx
called the Kupershmidt-Manin bracket (KM bracket), together with the

Hamiltonian ) )
H = / (5(,40)2 + §A2> dz. ()

The KM bracket (8) has been considered (see, for example, [10]) as an infinite
dimensional example of the Dubrovin-Novikov structure. The general chain
arising in this way, with a Hamiltonian density

h(A°, ... AN, (10)
takes the form
N-1 N-1
A} = Z (m +n) A" h, AL 4 Z mhy, AT =0,1,... (11)
m,[=0 m=0
Here we have used the notation h; = %, where i = 0,1, .... Compared with

the finite dimensional case of Section 1, the theory of infinite dimensional
Poisson brackets of hydrodynamic type is not so well developed; however,
other examples of such Poisson brackets were given in [11] as a generalization
of the Kupershmidt-Manin bracket (8]), while the problem of the classification
of such chains has been approached recently in [12]. The problem of finding
integrable hydrodynamic chains was firstly approached in a systematic way
by Kupershmidt ([I1]), and, more recently and with different approaches, by
Pavlov ([12, 13, 14, 15, [16]), Ferapontov and Marshall ([I]), and Ferapontov,
Khusnutdinova, Marshall and Pavlov ([6]).

Particularly, in [I], the authors introduced an approach based on the
Haantjes tensor, generalizing Tsarev’s results [3] for finite dimensional sys-
tems. For hydrodynamic chains, calculation of any one component of this

4



tensor only involves finite sums and hence is computable. Following this cri-
terion, Ferapontov and Marshall considered Hamiltonian densities depending
only on the first three moments

h = h(A°, A, A2),

together with the KM bracket (g)), and they looked for the condition on the
Hamiltonian for the system to have zero Haantjes tensor. They found that
the conditions

Hj, =0, 5, k=0,1,2,...

on the first upper component give a complete system of ten third order
quasilinear partial differential equations, of which the simplest are

hago = %, 022 = Shoahzn 122 = Shizhay
2hs 2hy 2hy

o Bl + 2hoohin

2hs ’

(12)
hots = 3hozhia + 2ho1h227
2hs

N

2hs

The last four equations are much more cumbersome.

Remark 1. The list of equations above differs from the original paper (1),
only in the names of the variables, as [1] uses u™ = A" ' n=1,2,...

What Ferapontov and Marshall found were thus necessary conditions for the
integrability of the chain. Remarkably, they were able to solve this system,;
some of the the solutions they found correspond to known integrable systems
(correcting some errors in previous work), while the others, a much larger
class, corresponded to systems since shown to be integrable. This result
suggested a conjecture that the conditions above are not only necessary, but
also sufficient.

Remark 2. In a subsequent paper ([6]), a similar problem was discussed,
but with a Hamiltonian H(A°, AY), and the (a—[3) Hamiltonian structure,

o o iy d ) i
H(fxg) = (a(z—l—]) ‘l‘ﬂ)Aﬂ 1% + (04] +ﬁ)Am+] 1> (13)



which generalizes the KM bracket (8). It is interesting to remark that in this
case too, the conditions for H]Qk = 0 give a complete set of equations for the
third derivatives of the Hamiltonian, and that for these systems it was shown
that the conditions are indeed sufficient.

In the last section of this paper we will prove that the conditions (I2) found
by Ferapontov and Marshall are not only necessary for the vanishing of the
Haantjes tensor, but also sufficient. In order to do this, though, we need do
develop a somewhat different formalism.

2 Vlasov formalism for Hamiltonian hydro-
dynamic chains

In this section we define the Vlasov equations, and we recall ([I7]) how a spe-
cial class of these equations can be related with hydrodynamic chains which
are Hamiltonian with respect to the Kupershmidt-Manin bracket. Moreover,
we show how to construct all the differential geometric objects related with
such chains in the Vlasov picture.

Let f(z,p,t) be a distribution function in the in the (1+1)-dimensional phase
space, and consider the Lie-Poisson bracket

{J,H}rp = //f{g—;,(;—]}[} dpdzx, (14)

where H, K are functionals of f and where the bracket {, },, is the canoni-
cal ‘single-particle’ Poisson bracket. Hamilton’s equations related with such
brackets,

ft = {fa H}LP7
or, equivalently,
oH
_— e 0
ft _l— {f’ 5f }x7p Y

are called Viasov equations, and they arise in the theories of plasma physics
and vortex dynamics. The relation between these equations and the hydro-



dynamic chains of the previous section is obtained by defining

wo f(p, o t) — {A™Mz, 1)}, (15)
A" = /p"fdp,

where the integral above converges, for example, if f is bounded and |f| — 0
faster than |[p|=™", ¥n > 1.

As was shown in [17] by one of the present authors, if we restrict the bracket
(I4) to functionals depending on the moments alone:

H=H(A . . . A
then the Lie-Poisson bracket restricts to the Kupershmidt-Manin Poisson

bracket (8]):
{/ Hyrp ={J, H}rum-
In order to prove this, is sufficient to use the chain rule for the map pu:
SH(AY,...AN-Y) X 6H 6A™ = 6H

of T san s &sAant (16)

then the KM bracket arises as the push forward of the L-P bracket under
this map. If we look at the evolution equations described by this bracket, for
Hamiltonian functionals of type

H = /h(AO,...AN—l)dx, (17)

we obtain a relation between a class of Vlasov equations

ft:{f>H}LP> (18)
and the Kupershmidt-Manin hydrodynamic chains (L)

AP = {A" H}.p,, n=01,....

We call equations (I8)) hydrodynamic Viasov equations; more explicitly, re-
calling that for functionals of type (IT) we have

SH(A,...AN-Y) &
) S (19)
n=0




these equations take the form

N-1 N-1
fi =< > p"hnmAzL> fr— (Z np"—lhn> fa (20)
n=0

n,m=0

Ferapontov and Marshall started to study the differential-geometric proper-
ties of such hydrodynamic chains using the countably infinite set of discrete
coordinates A", but instead, it is possible to study these properties by looking
at the corresponding hydrodynamic Vlasov equations directly.

In order to do so, we want to consider equation (20) as a kind of (1 + 1)-
dimensional hydrodynamic type system ([Il). Indeed, we notice that equations
(20)) are linear with respect to the derivatives f; and f,; thus, we consider
the function

f(p, 1),

as a vector; the independent variable p is treated as a continuous parameter,
analogous to the discrete index in the components of a finite dimensional
vector. We will, for brevity, suppress the dependence on (x,t). In this way,
the hydrodynamic Vlasov equations (20) can be viewed as (1 4 1) hydrody-
namic type systems of continuously infinitely many equations and variables;
indeed they can be written in the form

fulp) = / V() f(a)da, (21)

where the kernel V({;) is given by

V(g):< z_:pnthnm>fp - (i:npn_lhn)é(p —q). (22)

n,m=0

It is important here that we do not consider (20) as a (2 + 1)-dimensional
hydrodynamic type system. Rather, we consider f, as a functional of f,
namely

K[f] := /f(r)5'(p—r)dr = fp,



where ¢'(p — ) is the derivative of the Dirac delta function. Thus, the kernel
(22) may be considered as depending on f, analogously to discrete non-linear
hydrodynamic type systems.

To complete our construction, we need to substitute, in a formal way, discrete
objects with continuously indexed ones; namely:

n=0,1,2,... peR
A™(x,t) f(p,z,t)
Oh(AC,..,AN-1) Shlf]
dAm of(p)
Sums on repeated | Integrals on repeated
discrete indices continuous indices

Using these coordinates, we can construct any tensor object related with
a hydrodynamic chain (II), the relation being an analogue of the classical
change of coordinates of a tensor under the map p. The advantage of this
formulation is that, instead of studying infinite-component tensors, we can
consider integral operators, which are much more compact and computable.

As an example, we write down explicitly the Vlasov formalism for the
Kupershmidt-Manin structure (). This is given by the metric

GMAC AL ] = (m + n) A,

and to this metric corresponds, in the Vlasov coordinate, an operator g|f],
depending on two real parameters

g"9[f],  pgeR (23)

and symmetric with respect to p,q. The relation with the metric in the
Vlasov coordinates is the identity

//g(pﬂ) [f]% 5(?5(1;) dpdq=G™[A" A", .. .] (24)
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which is an analogue of the classical change of variables of a (2,0)—tensor
under the map (IH). Of course, when a continuous index is repeated, we
integrate with respect to the repeated index. If we take

gPOf] = —fo(p)é(p — q), (25)

then, substituting in (24]), we indeed have

/ / 9P [flp"q"dpdg = — / fop)p™ " dp = (m +n) AL

We notice that, in the new coordinates, the Dirac delta function plays the
role of the Kronecker delta 5;, indeed, we have

SAT [ A
Y3707~ | g e i

As a consequence of this, we notice that the metric (25]) in the Vlasov coor-
dinates has diagonal form. In addition, we will say that a metric ¢®% is non
degenerate if there exists an inverse metric g(, ) such that

/g(p,a)g(%q)da = 5(]9 - q) (26)

Continuing the analogy, we can now pursue a direct computation of the
differential geometric object we need, directly in the Vlasov coordinates. So,
we define the Christoffel symbols, which are given, in components, by the
following formula:

PN _1 [ o (59(a7q> 0g(ar) _59(%7“))
b(q,r)' 5[ (S she s ) 4 (21)

For the metric (25)), the Christoffel symbols are

b( g ): ~&'(p = q)o(r — q),

q,r

10



and then the curvature, defined in analogy with the classical case as
s ab(,:)  9b(,:) s a s a
)56 8 P P
(p, C_IJ’) of(q)  0f(r) g,a) \p,r ra) \pq 25)
28

is found to be identically zero.

3 The Haantjes tensor for hydrodynamic Vlasov
equations

We introduce now the Nijenhuis and Haantjes tensors for a Vlasov equation
of hydrodynamic type (I820)). Particularly, in the second part of the section
we will consider the special case when the Hamiltonian density depends only
on the first three moments, h(A° A, A%), so that

2—}; = ho + phy + pha,

and we calculate the conditions for a system with such a Hamiltonian to
have vanishing Haantjes tensor. As in the previous examples, this differen-
tial geometric result for a Vlasov hydrodynamic equation can be lifted to
the corresponding hydrodynamic chain. Consider first the general case of
a Hamiltonian function of type (I0). In order to simplify our notation, we
write the kernel ([22)) as

V(%) = Baf, — 46130~ ) (29)
where
N-1 N-1
A(p) = Z nhnpn_l 5 B(pa Q) = Z hnmpnqm
n=0 n,m=0

are polynomials in p and p, ¢ respectively, whose coefficients are the deriva-
tives of the Hamiltonian. As with the discrete case, we define the Nijenhuis
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tensor for a hydrodynamic Vlasov equation as
SV (¥ oV (¥ sV(®) V(¢
N( b );:/ v(o‘) C) —V(O‘) (q)—v(p) () _oVE) da, (30)
q,r q) 6f() r) 6f(a) aJ\0f(q) of(r)
while the Haantjes tensor is then given by
Hp:Z//vaﬁvo‘—N“vpvﬁ+
q,T a, B q r B,r «Q q
N VPN N PV (PV(2)) dads. (31)
o) \B) \r ¢.r) \a) \p
Let us calculate the Nijenhuis tensor for a general kernel (29)); first of all, we

have to compute the variational derivative of V' with respect to f. A direct
calculation shows that

W( ( Z p"q rlhnml> (Z p”thnm> p—7)+

n,m,l=0 n,m=0
- < Z np"‘lq’”hnm) 3(p—q). (32)
n,m=0
If we denote
C(p,q,r): Z P g M,
n,m,l=0

then the identity (32)) may be written

5V(p) 0B(p,q)

£ = B dp—r)———=(p—q).
50y Clp,q,r)fp+ B, q)0'(p —7) op Cw—a)- (33)

Substituting equations (29) and (33)) into the definition of the Nijenhuis ten-
sor (30), and using properties of the delta function, we obtain

p
N(q 7,,) = E(p7 Q7T)fp + F(p7 T)(S(p - q) - F(p7 Q)é(p - T>7
where E and F' are polynomials given by

dB(p, q) +3A(p)

F(p,q)=(A(q)—A(p)) o o

8Bép, a)fadoz

B(p.q)— /B<a,q>

12



and

E(p,q,7)=A(r) = A(g))C(p, ¢,7)+ B(p, q)%i’r)

+B(q,r)(aBg;’ q) 9B(p, 7“)) .

OB(p.
-5 P

or

Remark 3. [t is easy to verify that E is a polynomial in p,q,r whose co-
efficients are quadratic expressions in the derivatives of h, for it is defined
as a product of polynomials which are linear in the derivatives of h. For
F', though, this fact is less clear, because of the integral in the last term.
Howewver, it is possible to write the integrand as a polynomaial in a, since we
have

2N -2
/ B(a,q)%@’a) foda = / 3" Pulp,q)a” fada =
275\/:—02
== R q)/na"_lf(a)da =
n=0
2N -2

= - Z npn(p> q)An—l.
n=0

Here the P, are suitable polynomials with coefficients quadratic in the deriva-
tives of the Hamiltonian. We observe that the number of moments appearing
in these expressions will generally be bigger than N. Similar dependence on
the A™ will appear in the calculation of the Haantjes tensor as well.

The calculation of the Haantjes tensor is similar. It follows from the above,
with a long but essentially straightforward calculation, that

q,r

H(p)z@m%mn. (34)

We will call the polynomial Q(p, q,7), above, the Haantjes polynomial for the
related hydrodynamic Vlasov equation. Remarkably, in the above expression
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there do not appear any coefficients in the J-function or its derivative. It
would be interesting to find a deeper explanation for this. In addition, given
the Haantjes tensor H;:k for the corresponding hydrodynamic chain, we have
the following relation:

221 5t T Mk) - fu (gp) %dp’

which is the change of variables under the map (I5), introduced in Section
(@), for a tensor of type (1,2). Explicitly:

Zq rfHj), = /piQ(p,q,T)fpdp- (35)

So, to study the properties of the Haantjes tensor of a chain it is sufficient to
study the properties of the corresponding Haantjes polynomial. It is possible
to show that, for NV > 2, this polynomial has the form

)3N—-53N—5

Q. q,r Z ) Quand'q™r” (36)

m=0 n=0

where the coefficients ()., are linear or quadratic expressions of type
Qunm = Quam (i, hij, hiji, A, ... AT i,j,k=0,...,N —1,
involving the first, second and third derivatives of the Hamiltonian
h(A°, .. ANTh),
as well as explicit dependence on the moments

A0 AN

Y

and on ‘extra’ moments not appearing in the Hamiltonian,
AN AN (37)

These appear, as explained in Remark[3], when integrals of the form [ " f,da
are evaluated. The Haantjes polynomial is antisymmetric with respect to ¢
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and r. Writing the Haantjes polynomial ) as in (30), the equation (35
becomes

00 3N—54(N-2)
qurkH;-k:/ Z Z ngkpq i fpdp =
7,k=0 7,k=0 I=
3N—54(N-2)
-> > (s r#s)
3,k=0 I=

so that
A(N—2)

;k == Z (i + QAT

=0

As a consequence of the equations above, we have, for every fixed ¢, that
H’k—O Vi, k> 3N — 5.

This fact, noticed in [1] by Ferapontov and Marhall, in this setting turns out
to be a straightforward consequence of the dependence of the Hamiltonian on
finitely many moment variables. In order for the Haantjes tensor to vanish
identically, we note that the remaining H;:k must vanish provided that all the
Q1 do so. Hence, the problem of the vanishing of a tensor with infinitely
many components has been reduced to the vanishing of the coefficients of a
polynomial,

Qljk = 07

V 1=0,...,4N-2), jk=0,...,3N —5.

We look at these conditions as a system on the derivatives of the Hamiltonian
h. Using the antisymmetry of the Haantjes polynomial in ¢ and r, we can
reduce the number of conditions, since @ is divisible by (¢ — r). In the case
N = 3, the Haantjes polynomial reduces to



We write
4

Qp.q,r) = (g —7) Y Mi(q,r)p'
1=0
then, successively requiring the coefficients of M, and then M3 to vanish
leads to 10 partial differential equations of the form

hijk = Fijic (R, By, A) i,j,k,n,m,1=0,...,N —1.

If these conditions hold, it is easy to verify directly that the Haantjes poly-
nomial Q(p, q,r) is identically zero. We also recalculated the conditions on
the zeroth upper component

H), =0 (38)

which Ferapontov and Marshall used as necessary conditions for the Haantjes
tensor to vanish (see Section [[T]). It is then straightforward to verify that if
these conditions (B8)) hold, then ) vanishes identically. It thus follows that
the necessary conditions are also sufficient, as Ferapontov and Marshall had
conjectured.

4 Dubrovin-Novikov Hamiltonian formalism
for hydrodynamic Vlasov equations

Hydrodynamic Vlasov equations can be viewed as a generalization of systems
of hydrodynamic type. In particular, the Lie-Poisson bracket (I4]) can be
seen as a Dubrovin-Novikov Poisson bracket (2)). In this section we formalize
an analogue of the DN Poisson bracket for these equations; and we provide
two explicit examples, for a class of diagonal metrics and for the second
Hamiltonian structure of the Benney chain.

The main objects for the construction of a bracket of this form has already
been defined: given a metric

g(:n,q) 1],

we can define the Christoffel symbols and the curvature

(an) o)
a7 p.q,7
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given explicitly by (27), (28). Moreover, in view of the definition of the new
Poisson bracket, we notice that the elements b; are here replaced by

T a, T

_ 1 ) (a8 [ 09@B) | 091 _59<w’”))
_2// 9 <6f<r> 55 5i) )

Given these objects, we can define an infinite dimensional Poisson bracket
of hydrodynamic type as

(K, H},: ///[S < (v a% +b<p;q) aggj)> 5];2% ydpdadrz.

(39)
where K, H are functionals of the type (I7]). Given a Poisson bracket of type
([B9), the related Hamiltonian evolution equations are then

fep) ={f, H}v =

- [ gt )55 e

4.1 Diagonal metrics

In order to find explicit expressions for the Christoffel symbols and of the
curvature, we now restrict ourselves to the case when the metric g is diagonal
with components g, ,) of the form

Ipa) = ﬁ5 (p—q)- (40)

The function k[f] can depend on f and finitely many of its derivatives with
respect to p. The first advantage of a diagonal metric is that the inverse
metric has components given by

g9 = k[f]5(p — q), (41)

17



and so Hamilton’s equations take the simpler form

B 8 oH D, r) 0H
Ile.2) = K 50 576 //( )ax 57 () "

For general k[f], the calculation of the Christoffel symbols and of the curva-
ture presents many difficulties, due to the presence of higher p-derivatives of
f. On the other hand, the simplest case, when k[f] depends only on f and
not on its derivatives, turns out to be of relatively little interest, as Hamil-
ton’s equations became the direct sum over R of one-dimensional (N = 1)
Poisson brackets of type (). As an example, the (o — f3) structure (I3), in
the case a = 0, belongs to this class, with

g# = %5@ - q).

In this section, we develop the first non-trivial case, when the function k
depends only on f,. We have the following

Proposition 1. If for all p,q, the function k depends only on on the first
p—derivative of f, i.e.

I(pg) = ﬁf}'f (r—q), (42)

then the Christoffel symbols have the form

p [fq] 1]{5”[f]
(1) = st ot - s - st -, @

where k', k" are the first and second derivatives of k respectively. The metric
g is flat if and only if k[f,] is linear in f,.

Proof. The proof is a direct computation. In the calculation of the Christoffel
symbols (27]), we note that for the metric ([42]) we have

09(pq) K[ fp]

5f(7,) - k[fp]gél(p - T)(S(p - Q)u

18



substituting in the definition (27]) of the Christoffel symbols, this leads to

p _1 k/[fa] / k/[fa] /
(7)) =5 [ Kot = o) (ot = rita = a) + {0510~ st - )+

q,r k(fa]? klfal?
— :[;f‘]]]z §(q— a)d(r — q)) da =
KA LK [fp] o
—§m5 (p—r)dlp—q) + §m5 (p—q)d(p—r)+
LE[fplK'[fa]
- §W6 (¢ —p)o(r—q).

Rearranging, we obtain equation (43)). For the calculation of the curvature
(28)) the technique is the same, and we obtain

S k,//[fp] / / / /
R<p7q’r) - m(é (p—7)0'(p—s)0(p—q) = (p—q)d(p—5)dp - T))+

%Z’{[ﬁ] (5”(1’ = q)8(p = 5)o(p 1) = 6"(p = r)o(p — 5)d(p — Q)>+
%%fp}? (5’(19 —)é(p—9)0(p—7r)—&(p—r)d(p—s)d(p— q)>.

It is elementary to see that the condition k”[f,] = 0 leads to the vanishing
of the curvature tensor. On the other hand, evaluating the result above
with suitable test functions, it is possible to prove that the condition is also

sufficient.
O

So, a metric of type (40) is flat if and only if has the form

1
Iipg) = A bé(p —-q),

with a, b not depending on f. The related evolution equations are then

- o §H  0f(p) @ SH

19



In the special case a = 1, b = 0, we obtain the canonical Lie-Poisson bracket
(I8), with Poisson operator of the form

500 = 8o — a1+ [ 30— )= 1) L) (44)

4.2 The second Hamiltonian structure for the Benney
chain

The second Hamiltonian structure for the Benney equation (7)) is defined by
the local Poisson operator

(M) = (Go) ™ S (BirAT, (15)

where the metric GGy has components,

n—1
(Go)™ = kn AP AN 4 (k4 + 2) AR 4 (ki) AR AT
i=0
n—2
=) (n—i—1AFAT, (46)
i=0
and the Christoffel symbols are given by
n—2
(Bz)l:: _ knAk—l(S:Ln—l n +1 5k+n Z Ak+25n i— 2
=0
n—1
+ > (AR 4 (k) AR e ) (47)

Il
o

i

The Hamiltonian density is %Al. This structure appeared for the first time
n [I8], where Kupershmidt derived it as a dispersionless limit of the second
Poisson structure of the KP hierarchy. Recently, Blaszak and Szablikowski
rediscovered it ([19],]20]) using the semiclassical R-matrix approach. Using
the techniques developed in the previous sections, we obtain that the metric
(46]) becomes, in the Vlasov picture,
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9 =f,fy = pf0(p — @) + F(p)d(p — Q)+f(p>f;:£@fp+

/f dr —8(p—q)f(p )/(Tf_(r;)er,

and the Christoffel symbols (T) are then found to be

(¢ —p)?
—d(p—q)d(p— S)/iﬂ >) ds+
+d(q—p)d /f_pd +
fp f(p)

+ == (0(p—q) = 0(r—q)) + == (0"(¢g —7) = (g —p))-
r—p r—pr

In analogy with the Kupershmidt-Manin structure, if we consider a Hamilto-
nian density depending on a finite number of moments h = h(A4°,..., AN71),
we obtain Vlasov equations of the form (2II), with kernel V(Z ) given by

( ) Z himg™ ( —n A = "+ D" f(p)+

n,m=0

n—2
_ ZpiAn—i—lfp + Z(n i 1)piAn—i—2f(p)> +
i=0 i=0

n—1

N—

=0
n—2
_fpzpznzl sz lqn21>

Consider now the Galilean transformation
p—p+aq,
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where « is a constant. It is easy to verify that, under this change of coordi-

nates, we have

where m; = 7 is the Poisson operator ([d4]). Thus the brackets (@4l and (45)
are compatible.

5 Conclusions and open questions

We have considered the problem of the integrability of Hydrodynamic chains
which are Hamiltonian with respect to the Kupershmidt-Manin Poisson bracket.
It turns out that this problem can be reduced to the study of the correspond-
ing hydrodynamic Vlasov equation, for which the differential geometric ob-
jects related with a chain become integral operators. Using this formulation,
we calculated the Haantjes tensor explicitly and found the conditions for it to
vanish, showing that the conditions found bt Ferapontov and Marshall are in
fact sufficient. In addition, we have constructed a suitable Dubrovin-Novikov
Hamiltonian formalism for hydrodynamic Vlasov equations, getting explicit
conditions for a class of diagonal metrics to be flat. Finally, we have found
the formulation, in Vlasov variables, of the second Hamitonian structure for
the Benney hierarchy. It would be interesting to study the analogous condi-
tions on the Hamiltonian for the vanishing of the Haantjes tensor for systems
with this Hamiltonian structure.
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