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Abstract: Methods based on Reproducing Kernel Hilbert Spaces (RKHS) have proven to be
a valuable tool for the identification of linear time-invariant systems in both discrete- and
continuous-time. In particular, unlike most other techniques, they enable to systematically
confer a priori desirable properties, such as stability, on the estimated models. However,
existing RKHS methods mainly target impulse responses and, hence, do not extend well to
the context of nonlinear systems. In this work, we propose a novel RKHS-based methodology
for the identification of discrete-time nonlinear systems guaranteeing that the identified system
is incrementally input-to-state stable (δISS). We model the identified system using a predictor
function that, given past input and output samples, yields the output prediction at the next
time instant. The predictor is selected from an RKHS by solving a constrained optimization
problem that guarantees its δISS properties. The proposed approach is validated via numerical
simulations.
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1. INTRODUCTION

Methods based on Reproducing Kernel Hilbert Spaces
(RKHS) are appealing for system identification, since they
allow to systematically enforce some desired properties
on the identified models by suitably “shaping” the re-
producing kernel (Dinuzzo, 2015; Formentin and Chiuso,
2021). For example, in the context of impulse-response
identification of linear systems, one can find conditions
on the reproducing kernel ensuring that every identified
model is bounded-input-bounded-output (BIBO) stable,
without the need of a priori constraining the order of the
model (Pillonetto and De Nicolao, 2010; Pillonetto et al.,
2014; Scandella et al., 2022). The ability of imposing on
the identified models some structural conditions, such as
input-to-state (ISS) stability or smoothness, is of crucial
importance in applications, as it enables to embed prior
knowledge on the identified models and/or to constraint
them to desirable classes.
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Kernel identification of linear systems is well-developed.
Instead, imposing stability guarantees on identified non-
linear models is considerably more challenging, and, es-
sentially, it is still an open problem (Pillonetto et al.,
2011; Pillonetto, 2018). The difficulty of handling the much
broader framework of nonlinear models is exacerbated by
the many possible notions and variations of “stability”
that one may seek in nonlinear systems. Indeed, in the
linear case, BIBO stability, asymptotic stability, uniform
asymptotic stability, exponential stability, and incremental
(input-to-state) stability are all equivalent properties. In
the nonlinear case, instead, they are not. Moreover, the
relationship between BIBO stability of a linear system and
its impulse response does not extend to nonlinear systems.
As a consequence, nonlinear identification methods can-
not be based on the impulse response characterization.
Instead, they must either target input-output operators
(necessarily defined between infinite-dimensional spaces)
such as in (van Waarde and Sepulchre, 2022), or directly
prediction models (predictors for short) as in (Pillonetto
et al., 2011; Bhujwalla et al., 2016; Bai et al., 2014), leading
to state-space models.

In this article, we develop an RKHS-based methodology to
identify incrementally input-to-state (δISS) predictors for
nonlinear systems. In particular, we guarantee that the
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assumptions on the model variables. Similarly to the linear
case, in this article we make the simplifying – yet conve-
nient – assumption that the prediction error e is a 0-mean
Gaussian white noise with variance β2 ∈ R. Namely, for
all i, j ∈ N such that i ̸= j, ei is independent from ej , and

et ∼ N (0, β2), ∀t ∈ N,
where, given ι ∈ N>0, N (µ,Σ) is the ι-dimensional normal
distribution with mean µ ∈ Rι and variance Σ ∈ Rι×ι.
Furthermore, we assume that the predictor function f is
distributed according to a Gaussian Process (Rasmussen
and Williams, 2006, Def. 2.1) with 0-mean function and
with a covariance function kη : R2m+1 × R2m+1 → R
parametrized by a parameter η ∈ Rnη , with nη ∈ N to
be set later on. Formally,

f ∼ GP(0, kη). (4)

Finally, as it is usually done, we assume that the function
f and the prediction error e are independent.

Given the dataset D and a t ∈ {m+1, . . . , n}, we introduce
the column vector

z̄t :=
[
ȳt−m, . . . , ȳt−1, ūt−m, . . . , ūt−1, ūt

]⊤ ∈ R2m+1.

Additionally, we also let

ȳ :=
[
ȳm+1, . . . , ȳn

]⊤ ∈ Rr,

f̄ :=
[
f(z̄m+1), . . . , f(z̄n)

]⊤ ∈ Rr,

ē := ȳ − f̄ ∈ Rr,

where r = n−m. Then, using the aforementioned statisti-
cal assumptions and the fact that the sum of two normal
variables is a normal variable, we obtain

ē ∼ N (0r×1, β
2Ir), (5a)

f̄ ∼ N (0r×1,Kη), (5b)

ȳ ∼ N (0r×1,Kη + β2Ir), (5c)

where Kη ∈ Rr×r is a positive semidefinite symmetric
matrix, called the kernel matrix, whose (i, j)th element
is kη(z̄m+i, z̄m+j).

Now, consider a vector z∗ ∈ R2m+1. Using the definition
of Gaussian Process, we obtain[

ȳ
f(z∗)

]
∼ N

([
0r×1

0

]
,

[
Kη + β2Ir k∗η(z

∗)

k∗η(z
∗)⊤ kη(z

∗, z∗)

])
,

in which k∗η(z
∗) :=

[
kη(z

∗, z̄m+1), . . . , kη(z
∗, z̄n)

]⊤ ∈ Rr.
Therefore, using the properties of the Normal distribution,
we obtain

f(z∗) | ȳ ∼ N (µf (z
∗), σ2

f (z
∗)), (6)

where

µf (z
∗) = k∗η(z

∗)⊤(Kη + β2Ir)
−1ȳ,

σ2
f (z

∗) = kη(z
∗, z∗)− k∗η(z

∗)⊤(Kη + β2Ir)
−1k∗η(z

∗).

A common choice for the estimator is the expected value
of (6), referred to as fGP (z), and defined as

fGP (z) := µf (z) = k∗η(z)
⊤c =

n∑
i=m+1

cikη(z, z̄i), (7)

in which c := (Kη + β2Ir)
−1ȳ =

[
cm+1, . . . , cn

]⊤ ∈ Rr.

In order to use Predictor (7), it is necessary to select the
values of (i) the variance of the prediction error β2, and
(ii) the kernel parameter η. A common way to select them

is by maximizing the likelihood to obtain the measure-
ments ȳ given a certain value of (β2, η) (MacKay, 1992;
Rasmussen and Williams, 2006). In particular, from (5c),
we notice that

ȳ | (β2, η) ∼ N (0,Kη + β2Ir).

Therefore, (β2, η) can be obtained by solving the optimiza-
tion problem

argmin
β2>0, η∈Rnη

ȳ⊤c+ log det(Kη + β2Ir), (8)

where det(·) is the determinant operator and, for computa-
tional convenience, we equivalently minimize the negative
log-likelihood instead of maximizing the likelihood.

The GPR methodology applies for every symmetric posi-
tive semidefinite kernel kη. Nevertheless, in the literature
it is possible to find kernels specialized for the task of
identifying predictors for nonlinear dynamical systems;
see, e.g., (Pillonetto et al., 2011; Mazzoleni et al., 2020).
However, it is worth noticing that none of these works are
able to guarantee stability of the identified predictor. In
the next section, we will tackle this problem by guarantee-
ing stability of the predictor according to Definition 1.

4. SOLUTION METHODOLOGY

In this section, we provide an estimation method for the
predictor function f guaranteeing that all the identified
predictors are δISS. The proposed method builds on the
GPR estimation methodology described in Section 3. In
particular, we first derive sufficient conditions on the func-
tion f guaranteeing that system (3) is δISS (Proposition 1
hereafter). Then, we translate such conditions into prop-
erties of the estimated predictor (7). Finally, we exploit
these conditions within the GPR procedure.

Proposition 1. Suppose that there exist a class-K function
ϱ and a µ ∈ (0, 1) such that, for all xa, xb ∈ R2m and
ua, ub ∈ R, the following bound holds∣∣f(xa, ua)− f(xb, ub)

∣∣2 ≤ µ

m
∥xa − xb∥22 + ϱ(|ua − ub|).

Then, system (3) is δISS. In particular, Definition 1 applies
with

ω(s, t) :=
√
mα

t
2 s,

κu(s) :=

√
m(2− µ)ϱ(s) +ms2

1− α
,

κe(s) := s

√
m(2− µ)

(1− α)(1− µ)
,

where

α = 1− (µ− 1)2

m
.

Notice that the covariance function kη of the Gaussian
Process (4) is a symmetric positive semidefinite function.
Hence, there exists an RKHS H(kη) with kη as a reproduc-
ing kernel (see Aronszajn (1950)) such that the estimator
fGP defined in (7) is an element of H(kη). Therefore, we
can enforce δISS of the estimator by selecting a kernel kη
guaranteeing that the functions insideH(kη) satisfy the as-
sumptions of Proposition 1. In the following, for simplicity,
we restrict the focus on the case where ϱ(s) = µm−1s2.
In particular, we aim to enforce the following stronger
Lipschitz condition

identified predictor is Lipschitz by taking advantage of
the conditions on the reproducing kernel recently proposed
by van Waarde and Sepulchre (2022). Then, we devise a
technique to select the hyperparameters in such a way to
ensure that the predictor is δISS. Specifically, we propose a
constrained version of the well-known marginal likelihood
maximization procedure (MacKay, 1992; Mazzoleni et al.,
2022).

Incremental stability is quite a restrictive stability condi-
tion within the large family of possible nonlinear stability
notions. However, incremental stability represents rather a
natural extension of linear stability, covering many systems
of interest (Lohmiller and Slotine, 1998; Angeli, 2002;
Sepulchre et al., 2022; van Waarde and Sepulchre, 2022),
and incrementally stable systems share many similarities
with contractive and convergent systems (Rüffer et al.,
2013). It therefore represents a natural subject for a first
step toward stable nonlinear predictor identification.

The proposed approach is inspired by the work of van
Waarde and Sepulchre (2022), where the authors consider
the problem of identifying Lipschitz operators between
Hilbert spaces. Unlike van Waarde and Sepulchre (2022),
we directly identify a predictor for the system’s output
given the past outputs and inputs, which is a function
between Euclidean spaces, and not an input-output model
between infinite-dimensional spaces. Moreover, the pro-
posed method guarantees that the identified predictor is
δISS with respect to both the input signal and measure-
ments noise by using a procedure that does not require
manual tuning of the kernel’s parameters. Finally, the pro-
posed method is more suitable for prediction of dynamical
systems, since it can cope with different initial conditions.

The article is organized as follows. Section 2 reports the
problem formulation. Section 3 recalls the Gaussian Pro-
cess Regression approach for nonlinear system identifi-
cation. The proposed methodology is then explained in
Section 4, and it is supported by numerical simulations
in Section 5. Finally, Section 6 presents some concluding
remarks.

2. PROBLEM STATEMENT

We consider a discrete-time system Ψ mapping input
sequences u ∈ RN to output sequences y ∈ RN. Formally,
Ψ ⊂ RN×RN and (u, y) ∈ Ψ if and only if u is mapped to y.
We assume to have at our disposal n ∈ N>0 measurements

D =
{
(ūi, ȳi)

∣∣ 1 ≤ i ≤ n
}

taken from an experiment executed with the system Ψ.
We aim at devising an algorithm that, given the dataset
D and an arbitrary m ∈ N, provides a function f : Rm ×
Rm+1 → R such that

ŷt = f
(
yt−m, . . . , yt−1, ut−m, . . . , ut−1, ut

)
(1)

is a “good approximation” of yt for every (u, y) ∈ Ψ and
every t ∈ N≥m. We refer to m as the model order and
to f as the predictor. Moreover, we restrict our search of
f to the set of functions ensuring a stable predictor in
the sense explained hereafter. We can devise a state-space
realization of (1) as follows

xt+1 = Axt +Gyt +Hut (2a)

ŷt = f(xt, ut) (2b)

xt+1 = Axt +Gyt +Hut

ŷt = f(xt, ut)

et + yt ŷt

+

ut

Fig. 1. Block diagram of the closed-loop system (3).

in which

A :=

[
S 0m×m

0m×m S

]
, G :=

[
B

0m×1

]
, H :=

[
0m×1

B

]
,

and

S :=

[
0(m−1)×1 Im−1

0 01×(m−1)

]
, B :=

[
0(m−1)×1

1

]
.

By letting yt = ŷt + et in (2a), where e ∈ RN is the
prediction error, we obtain the “closed-loop” system

xt+1 = Axt +Gf(xt, ut) +Get +Hut. (3)

System (3), whose block-representation is shown in Fig. 1,
is a system with inputs u and e and state x representing
the predictor (1) operating on past measurements. In qual-
itative and informal terms, we say that the predictor (1)
is “stable” in some sense, if the system (3) is stable in the
same sense. As anticipated in the Introduction, we focus
on incremental input-to-state stability, formally defined in
Definition 1.

Definition 1. System (3) is said to be δISS if there exist
a class-KL function ω and two class-K∞ functions κu and
κe such that every two solution triplets (xa, ua, ea) and
(xb, ub, eb) of (3) satisfy

∥xa
t − xb

t∥2 ≤ ω
(
∥xa

0 − xb
0∥2, t

)

+ κu

(
sup

s∈N≤t

∣∣ua
s − ub

s

∣∣
)

+ κe

(
sup

s∈N≤t

∣∣eas − ebs
∣∣
)

for all t ∈ N.

With Definition 1 in mind, the problem we consider in this
article can be stated as follows.

Problem 1. Given the dataset D and the model order m,
devise a procedure to find a function f : Rm ×Rm+1 → R
such that (i) for every (u, y) ∈ Ψ and every t ∈ N≥m the
prediction error et = yt − ŷt is “sufficiently small”, and
(ii) the resulting predictor is δISS.

The term “sufficiently small” in Point (i) is formalized in
Section 3 in terms of Bayesian inference.

3. GAUSSIAN PROCESS REGRESSION

Gaussian Process Regression (GPR) is an extension to
the nonlinear case of linear regression. Also known as
Kriging, GPR was introduced for geostatistical simulations
by Matheron (1963), and it is now a well-established
nonlinear regression technique (Rasmussen and Williams,
2006). GPR has also been employed for nonlinear system
identification by Pillonetto et al. (2011) to estimate the
predictor function.

GPR is a Bayesian methodology whose goal is to find the
distribution of the predictor given the available measure-
ments. To use GPR, it is necessary to make statistical
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assumptions on the model variables. Similarly to the linear
case, in this article we make the simplifying – yet conve-
nient – assumption that the prediction error e is a 0-mean
Gaussian white noise with variance β2 ∈ R. Namely, for
all i, j ∈ N such that i ̸= j, ei is independent from ej , and

et ∼ N (0, β2), ∀t ∈ N,
where, given ι ∈ N>0, N (µ,Σ) is the ι-dimensional normal
distribution with mean µ ∈ Rι and variance Σ ∈ Rι×ι.
Furthermore, we assume that the predictor function f is
distributed according to a Gaussian Process (Rasmussen
and Williams, 2006, Def. 2.1) with 0-mean function and
with a covariance function kη : R2m+1 × R2m+1 → R
parametrized by a parameter η ∈ Rnη , with nη ∈ N to
be set later on. Formally,

f ∼ GP(0, kη). (4)

Finally, as it is usually done, we assume that the function
f and the prediction error e are independent.

Given the dataset D and a t ∈ {m+1, . . . , n}, we introduce
the column vector

z̄t :=
[
ȳt−m, . . . , ȳt−1, ūt−m, . . . , ūt−1, ūt

]⊤ ∈ R2m+1.

Additionally, we also let

ȳ :=
[
ȳm+1, . . . , ȳn

]⊤ ∈ Rr,

f̄ :=
[
f(z̄m+1), . . . , f(z̄n)

]⊤ ∈ Rr,

ē := ȳ − f̄ ∈ Rr,

where r = n−m. Then, using the aforementioned statisti-
cal assumptions and the fact that the sum of two normal
variables is a normal variable, we obtain

ē ∼ N (0r×1, β
2Ir), (5a)

f̄ ∼ N (0r×1,Kη), (5b)

ȳ ∼ N (0r×1,Kη + β2Ir), (5c)

where Kη ∈ Rr×r is a positive semidefinite symmetric
matrix, called the kernel matrix, whose (i, j)th element
is kη(z̄m+i, z̄m+j).

Now, consider a vector z∗ ∈ R2m+1. Using the definition
of Gaussian Process, we obtain[

ȳ
f(z∗)

]
∼ N

([
0r×1

0

]
,

[
Kη + β2Ir k∗η(z

∗)

k∗η(z
∗)⊤ kη(z

∗, z∗)

])
,

in which k∗η(z
∗) :=

[
kη(z

∗, z̄m+1), . . . , kη(z
∗, z̄n)

]⊤ ∈ Rr.
Therefore, using the properties of the Normal distribution,
we obtain

f(z∗) | ȳ ∼ N (µf (z
∗), σ2

f (z
∗)), (6)

where

µf (z
∗) = k∗η(z

∗)⊤(Kη + β2Ir)
−1ȳ,

σ2
f (z

∗) = kη(z
∗, z∗)− k∗η(z

∗)⊤(Kη + β2Ir)
−1k∗η(z

∗).

A common choice for the estimator is the expected value
of (6), referred to as fGP (z), and defined as

fGP (z) := µf (z) = k∗η(z)
⊤c =

n∑
i=m+1

cikη(z, z̄i), (7)

in which c := (Kη + β2Ir)
−1ȳ =

[
cm+1, . . . , cn

]⊤ ∈ Rr.

In order to use Predictor (7), it is necessary to select the
values of (i) the variance of the prediction error β2, and
(ii) the kernel parameter η. A common way to select them

is by maximizing the likelihood to obtain the measure-
ments ȳ given a certain value of (β2, η) (MacKay, 1992;
Rasmussen and Williams, 2006). In particular, from (5c),
we notice that

ȳ | (β2, η) ∼ N (0,Kη + β2Ir).

Therefore, (β2, η) can be obtained by solving the optimiza-
tion problem

argmin
β2>0, η∈Rnη

ȳ⊤c+ log det(Kη + β2Ir), (8)

where det(·) is the determinant operator and, for computa-
tional convenience, we equivalently minimize the negative
log-likelihood instead of maximizing the likelihood.

The GPR methodology applies for every symmetric posi-
tive semidefinite kernel kη. Nevertheless, in the literature
it is possible to find kernels specialized for the task of
identifying predictors for nonlinear dynamical systems;
see, e.g., (Pillonetto et al., 2011; Mazzoleni et al., 2020).
However, it is worth noticing that none of these works are
able to guarantee stability of the identified predictor. In
the next section, we will tackle this problem by guarantee-
ing stability of the predictor according to Definition 1.

4. SOLUTION METHODOLOGY

In this section, we provide an estimation method for the
predictor function f guaranteeing that all the identified
predictors are δISS. The proposed method builds on the
GPR estimation methodology described in Section 3. In
particular, we first derive sufficient conditions on the func-
tion f guaranteeing that system (3) is δISS (Proposition 1
hereafter). Then, we translate such conditions into prop-
erties of the estimated predictor (7). Finally, we exploit
these conditions within the GPR procedure.

Proposition 1. Suppose that there exist a class-K function
ϱ and a µ ∈ (0, 1) such that, for all xa, xb ∈ R2m and
ua, ub ∈ R, the following bound holds∣∣f(xa, ua)− f(xb, ub)

∣∣2 ≤ µ

m
∥xa − xb∥22 + ϱ(|ua − ub|).

Then, system (3) is δISS. In particular, Definition 1 applies
with

ω(s, t) :=
√
mα

t
2 s,

κu(s) :=

√
m(2− µ)ϱ(s) +ms2

1− α
,

κe(s) := s

√
m(2− µ)

(1− α)(1− µ)
,

where

α = 1− (µ− 1)2

m
.

Notice that the covariance function kη of the Gaussian
Process (4) is a symmetric positive semidefinite function.
Hence, there exists an RKHS H(kη) with kη as a reproduc-
ing kernel (see Aronszajn (1950)) such that the estimator
fGP defined in (7) is an element of H(kη). Therefore, we
can enforce δISS of the estimator by selecting a kernel kη
guaranteeing that the functions insideH(kη) satisfy the as-
sumptions of Proposition 1. In the following, for simplicity,
we restrict the focus on the case where ϱ(s) = µm−1s2.
In particular, we aim to enforce the following stronger
Lipschitz condition
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where n = 100, σu = σy = 0.1, dA = 1, dB = 3, u : R → R
is the input, and vj(h, u, x0) is the forced output of system
j at time h given the initial condition x0. Hence, ū and ȳ
are noisy measurements of u and y, respectively. The input
at time t ∈ R is chosen as the random variable

u(t) =
20∑
i=1

Ai sin(2πνit+ φi), (14d)

where, for every i ∈ {1, . . . , 20},
Ai ∼ U(0.1, 1), νi ∼ U(0.1, 1), φi ∼ U(0, 2π), (14e)

with U(a, b) the uniform distribution on [a, b] ⊂ R. The
variables {Ai, νi, ϕi}20i=1 are all mutually independent. For
the identification procedure, we selected m = 1 and the
Gaussian kernel (12). The optimization problem (11) is
solved using ε = 10−10 and ψ = 0.99. Given a dataset
D = {(ūi, ȳi)|1 ≤ i ≤ n}, we define the performance index

q(D) = 1−

√√√√
∑n

t=m+1 |ȳt − fGP (z̄t)|2∑n
t=m+1

∣∣ȳt −∑n
i=m+1 ȳi

∣∣2 .

For each j ∈ {A,B}, the performance of the identified
predictor is assessed on a validation dataset Dv

j ̸= Dj

distributed according to (14) with n = 5 · 104 and
σu = σy = 0. After selecting the hyperparameters, we
employ the procedure presented by Scandella et al. (2021)
to reduce the computational complexity of the identified
model. The proposed method is analyzed using Monte
Carlo simulations with 103 runs.

Figures 2 and 3 show the box plots of the performance
index q(Dv

j ) for the two cases j = A and j = B,
respectively. Here, we can note that, by enforcing stability
using the proposed method, we obtain a slight decrease
in performance, i.e. in the capability of the identified
predictor to explain future measurements. However, in
both cases, the variance of the performance decreases
significantly. Therefore, the proposed procedure is more
reliable and less susceptible to the specific datasets used.
These observations can be explained by the fact that
the proposed procedure select (β2, η) in a smaller set
of possible parameters due to the additional constraints
of (11). Furthermore, the conditions that we impose are
only sufficient, and they can be too restrictive in some
cases.

The main advantage of the proposed procedure is that the
identified predictor is guaranteed to be δISS. As stated
in Section 4, the predictor is δISS if its norm squared is
smaller thanm−1 = 1. In Figure 4, it is possible to see that
this condition is satisfied for all the identified predictors.
Furthermore, in Figure 5, we show the output of one of the
estimated systems from system B to 25 different inputs
that converge to 1 asymptotically starting from random
initial conditions. Here, we can see that the outputs always
converge to the same value as expected from a δISS system.

6. DISCUSSION & CONCLUSIONS

We introduced a novel identification procedure based on
Gaussian Process Regression of nonlinear systems guar-
anteeing that the estimated predictor is incrementally
input-to-state stable. In particular, we devised a sufficient
condition on the kernel parameters and the regularization
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Fig. 2. Box plots of the performance index on the valida-
tion dataset for System A.
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Fig. 3. Box plots of the performance index on the valida-
tion dataset for System B.
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Fig. 4. Box plots of the squared norm of the identified
predictor of the two systems.

term to enforce such stability guarantees on the identified
predictor. We also showed that two commonly used kernels
in system identification satisfy the proposed condition and,
hence, can be employed for this application.

The main limitation of the proposed approach lies in the
restrictiveness of the imposed conditions ensuring δISS
(Proposition 1) when m > 1. Future research will aim
to weaken such conditions to increase the performance of
the identified model without sacrificing stability.
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|f(a)− f(b)|2 ≤ λ∥a− b∥22, ∀a, b ∈ R2m+1, (9)

with λ := µm−1 < m−1. Clearly, the only RKHS whose
elements all satisfy (9) is the one that contains only the
zero function. Indeed, if a non-zero function f ∈ H(kη)
satisfies (9), then there exists h ∈ R such that hf ∈ H(kη)
does not satisfy (9). Therefore, by following van Waarde
and Sepulchre (2022), we proceed as follows: (i) first, we
define a class of RKHS containing only functions that
satisfy (9) with a generic λ ∈ R>0; (ii) then, we derive a
condition on the kernel parameter η and the noise variance
β2 guaranteeing that λ < m−1 holds for all identified
functions.

The first step is obtained with the following proposition
by adapting the work of van Waarde and Sepulchre (2022,
Thm. 8) to the setting considered in this paper.

Proposition 2. Let kη : R2m+1 × R2m+1 → R be a
symmetric positive semidefinite kernel such that

kη(a, a)− 2kη(a, b) + kη(b, b) ≤ ∥a− b∥22, ∀a, b ∈ R2m+1.
(10)

Let H(kη) be the RKHS defined by kη, and let ∥·∥kη
be the

norm on H(kη). Then, every function f ∈ H(kη) satisfies

condition (9) with λ = ∥f∥2kη
.

In view of Proposition 2, a function f ∈ H(kη) satisfies (9)

if kη satisfies (10) and ∥f∥2kη
< m−1. Therefore, to

guarantee that an identified predictor fGP of the form (7)
is δISS, we need to select a parameter η ensuring that
kη satisfies (10) and, at the same time, that the squared
norm of fGP is smaller than m−1. Once a set of feasible
parameters η ensuring that kη satisfies (10) is found, we

can guarantee ∥f∥2kη
< m−1 by suitably constraining the

optimization problem (8). To this aim, notice that

∥fGP ∥2kη
=

n
i=m+1

n
j=m+1

cicj⟨rz̄i , rz̄j ⟩kη
= c⊤Kηc,

where ⟨·, ·⟩kη is the inner product of H(kη), ra = kη(a, ·) ∈
H(kη) is the representer function of a ∈ R2m+1, and
where we used the definition of Kη and the fact that
kη(a, b) = ⟨ra, rb⟩kη by construction. Then, the optimiza-
tion problem (8) can be modified as follows




argmin
β2>0, η∈Rnη

ȳ⊤c+ log det(Kη + β2Ir),

subj. to β2 ≥ ε, η ∈ Ωk, mc⊤Kηc ≤ ψ,
(11)

where Ωk ⊆ Rnη is the set of all the values of η such
that the condition (10) is satisfied, while ε ∈ (0,∞) and
ψ ∈ (0, 1) are arbitrary constants introduced to make sure
the feasibility set is closed. Ideally, ε is as small as possible,
and ψ as large as possible. In particular, smaller values of
ψ lead to more contractive estimated predictors but, at
the same time, narrow the search space.

Now, we focus on Condition (10) and, in particular, on
how to select a kernel guaranteeing that Ωk ̸= ∅. A kernel
ensuring that Ωk ̸= ∅ is called viable. Following the proofs
reported by van Waarde and Sepulchre (2022), in Proposi-
tion 3 below we show that the widely used Gaussian kernel
is viable. More interestingly, in Proposition 4, we show
that the kernel proposed in Pillonetto et al. (2011) for the
identification of nonlinear predictors is viable as well.

Proposition 3. Let η = (τ, γ) ∈ R2
>0 and kη the Gaussian

kernel defined by

kη(a, b) = τ exp
�
− γ∥a− b∥22


, (12)

for all a, b ∈ R2m+1. Then Ωk = {(τ, γ) ∈ R2
>0 | 2τγ ≤ 1}.

Proposition 4. Let η = (τ, ξ, γ, p) ∈ R3
>0 × N≤m and kη

the kernel such that, given

za =

ya1 , . . . , y

a
m, ua

1 , . . . , u
a
m, ua

m+1

⊤ ∈ R2m+1,

zb =

yb1, . . . , y

b
m, ub

1, . . . , u
b
m, ub

m+1

⊤ ∈ R2m+1,

we have

kη(z
a, zb) = τ

m−p+1
t=1

exp(−ξt− γ∥zat − zbt∥22), (13)

where

zat =

yat , . . . , y

a
t+p−1, u

a
t , . . . , u

a
t+p−1

⊤ ∈ R2p,

zbt =

ybt , . . . , y

b
t+p−1, u

b
t , . . . , u

b
t+p−1

⊤ ∈ R2p.

Then

Ωk ⊇

(τ, ξ, γ, p) ∈ R3

>0 × N≤m

 2τγ ≤ 1,

2e−ξ − e−ξ(m−p+2) ≤ 1

.

Kernel (13) is designed so as older measurements weight
less than more recent ones in the computation of the
predicted values. Hence, it models systems with fading
memory. In particular, the parameter ξ plays the role of
a forgetting factor. Proposition 4 validates this intuition
by stating that, in order to guarantee the predictor δISS,
ξ should be larger than a threshold that depends on m.
In particular, it is easy to see that, regardless of the
model order, every ξ ≥ log 2 is automatically fine for what
concerns δISS, although smaller values may be feasible in
general.

To summarize, the proposed identification algorithm reads
as follows:

1. Select an arbitrary order m ∈ N and a viable kernel
kη, e.g., those analyzed in Propositions 3 and 4;

2. Select (β2, η) by solving the optimization prob-
lem (11);

3. The identified predictor is then given by (7), and it is
δISS as defined in Definition 1.

5. NUMERICAL RESULTS

In this section, we consider the problem of identifying a
discrete-time predictor of the output y generated by the
following two deterministic δISS continuous-time systems

A :


ẋ = −x− x3 + ς(u2)

y = x
B :





ẋ1 = − 8
3x1 + ς(x2)ς(x3)

ẋ2 = 10(x3 − x2)

ẋ3 = −x3 + u

y = 28x2 − x1x2

where u is the input and ς(·) = max(min(·, 3),−3) is a
piecewise linear saturation. System B is analyzed by Angeli
(2002). In particular, we consider an experiment Dj (with
sampling time 0.1) generated by system j ∈ {A,B}
obtained by sampling the stochastic variables

x̄0 ∼ N (0dj×1, Idj ), (14a)

ūt ∼ N (u(0.1(t− 1)), σ2
u), ∀t∈ {1, . . . , n}, (14b)

ȳt ∼ N (vj(0.1(t− 1), u, x̄0), σ
2
y), ∀t∈ {1, . . . , n}, (14c)
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where n = 100, σu = σy = 0.1, dA = 1, dB = 3, u : R → R
is the input, and vj(h, u, x0) is the forced output of system
j at time h given the initial condition x0. Hence, ū and ȳ
are noisy measurements of u and y, respectively. The input
at time t ∈ R is chosen as the random variable

u(t) =
20∑
i=1

Ai sin(2πνit+ φi), (14d)

where, for every i ∈ {1, . . . , 20},
Ai ∼ U(0.1, 1), νi ∼ U(0.1, 1), φi ∼ U(0, 2π), (14e)

with U(a, b) the uniform distribution on [a, b] ⊂ R. The
variables {Ai, νi, ϕi}20i=1 are all mutually independent. For
the identification procedure, we selected m = 1 and the
Gaussian kernel (12). The optimization problem (11) is
solved using ε = 10−10 and ψ = 0.99. Given a dataset
D = {(ūi, ȳi)|1 ≤ i ≤ n}, we define the performance index

q(D) = 1−

√√√√
∑n

t=m+1 |ȳt − fGP (z̄t)|2∑n
t=m+1

∣∣ȳt −∑n
i=m+1 ȳi

∣∣2 .

For each j ∈ {A,B}, the performance of the identified
predictor is assessed on a validation dataset Dv

j ̸= Dj

distributed according to (14) with n = 5 · 104 and
σu = σy = 0. After selecting the hyperparameters, we
employ the procedure presented by Scandella et al. (2021)
to reduce the computational complexity of the identified
model. The proposed method is analyzed using Monte
Carlo simulations with 103 runs.

Figures 2 and 3 show the box plots of the performance
index q(Dv

j ) for the two cases j = A and j = B,
respectively. Here, we can note that, by enforcing stability
using the proposed method, we obtain a slight decrease
in performance, i.e. in the capability of the identified
predictor to explain future measurements. However, in
both cases, the variance of the performance decreases
significantly. Therefore, the proposed procedure is more
reliable and less susceptible to the specific datasets used.
These observations can be explained by the fact that
the proposed procedure select (β2, η) in a smaller set
of possible parameters due to the additional constraints
of (11). Furthermore, the conditions that we impose are
only sufficient, and they can be too restrictive in some
cases.

The main advantage of the proposed procedure is that the
identified predictor is guaranteed to be δISS. As stated
in Section 4, the predictor is δISS if its norm squared is
smaller thanm−1 = 1. In Figure 4, it is possible to see that
this condition is satisfied for all the identified predictors.
Furthermore, in Figure 5, we show the output of one of the
estimated systems from system B to 25 different inputs
that converge to 1 asymptotically starting from random
initial conditions. Here, we can see that the outputs always
converge to the same value as expected from a δISS system.

6. DISCUSSION & CONCLUSIONS

We introduced a novel identification procedure based on
Gaussian Process Regression of nonlinear systems guar-
anteeing that the estimated predictor is incrementally
input-to-state stable. In particular, we devised a sufficient
condition on the kernel parameters and the regularization
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Fig. 2. Box plots of the performance index on the valida-
tion dataset for System A.
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Fig. 3. Box plots of the performance index on the valida-
tion dataset for System B.
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Fig. 4. Box plots of the squared norm of the identified
predictor of the two systems.

term to enforce such stability guarantees on the identified
predictor. We also showed that two commonly used kernels
in system identification satisfy the proposed condition and,
hence, can be employed for this application.

The main limitation of the proposed approach lies in the
restrictiveness of the imposed conditions ensuring δISS
(Proposition 1) when m > 1. Future research will aim
to weaken such conditions to increase the performance of
the identified model without sacrificing stability.
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