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Abstract

This paper studies a communication game between an uninformed decision maker and two perfectly in-
formed senders with conflicting interests. Senders can misreport information at a cost that increases with 
the size of the misrepresentation. The main result concerns the characterization of equilibria with desir-
able properties: they always exist, are essentially unique, and are robust. Information transmission is partial 
in these equilibria, and persuasion occurs on the equilibrium path. By contrast, equilibria where the deci-
sion maker obtains her complete-information payoff are not robust, and hinge on beliefs with potentially 
undesirable properties.
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1. Introduction

How and to what extent is information revealed when two equally informed senders with 
conflicting interests provide advice to a decision maker? When senders are well informed and 
misreporting is prohibitively expensive, the decision maker can “rely on the information of the 
interested parties” to always make the right choice.1 However, there are many situations where 
information is not fully verifiable and it is possible to misreport it at a reasonable cost.2 Intuition 
would suggest that, in these cases, the decision maker may obtain conflicting advice and make 
wrong choices as a result of being poorly informed.

This type of interaction is at the core of many real-world scenarios. For example, during 
an electoral campaign, candidates competing for consensus may provide voters with different 
accounts of the same events. Similarly, newspapers with opposing political leanings may deliver 
conflicting and inaccurate news. In legal contexts, prosecutors and defendants may tamper with 
evidence in an attempt to persuade a jury. In firms, co-workers competing for a promotion may 
exaggerate their contributions to a team project. Finally, methods used in lobbying against public 
health may include “industry-funded research that confuses the evidence and keeps the public in 
doubt.”

I address the above questions with a costly signaling game between an uninformed decision 
maker and two perfectly informed senders with conflicting interests. The two senders observe the 
realization of a random variable—the state—and then privately deliver a report to the decision 
maker. These reports are literal statements about the realized state. Senders can misreport such 
information, but incur misreporting costs that are increasing in the magnitude of misrepresenta-
tion. By contrast, reporting truthfully is costless. After observing the reports, the decision maker 
must select one of two alternatives. At the end of the game, each player obtains a payoff that 
depends on the realized state and on the alternative selected by the decision maker.

The paper focuses on a class of equilibria referred to as adversarial. The main result pro-
vides a complete characterization of adversarial equilibria and shows they have several desirable 
properties: they always exist, are robust to refinements, and are essentially unique. Specifically, I 
show that the only equilibria satisfying two natural and mild conditions are adversarial. Roughly, 
the first is a monotonicity condition under which the decision maker sometimes interprets higher 
reports as originating from higher states. The second is a dominance condition under which the 
decision maker rules out that senders deliver strictly dominated reports.3 These conditions are 
natural given that reports are literal and misreporting is costly. As the paper shows, they are also 
sufficient to ensure robustness and uniqueness while preserving existence.

In adversarial equilibria, information transmission is partial, and persuasion occurs on the 
equilibrium path. As is typical in signaling games, equilibria where all relevant information 
is transmitted also exist. I refer to equilibria where the decision maker obtains her complete-
information payoff as receiver-efficient. The paper shows that receiver-efficient equilibria hinge 
on beliefs with undesirable properties. In particular, the decision maker must believe that devia-
tions from the equilibrium path occur because a sender purposefully shot himself in the foot. Two 
well-known refinements eliminate receiver-efficient and pure-strategy equilibria: unprejudiced 

1 See, e.g., Milgrom and Roberts (1986).
2 Misreporting information can be a costly activity due to the time and effort required to misrepresent the information, 

as well as the potential loss in reputation, credibility, and future influence. Additionally, misreporting becomes more 
difficult and thus more costly when the information is harder.

3 See Definition 1 in Section 3.1 for a complete and formal statement of these two conditions.
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beliefs (Bagwell and Ramey, 1991) and ε-robustness (Battaglini, 2002).4 By contrast, adversarial 
equilibria withstand the refinement criteria that break down receiver-efficient and pure-strategy 
equilibria.

The senders’ behavior in an adversarial equilibrium is mixed, as they report the truth with 
some probability and misreport otherwise. Upon observing two conflicting reports recommend-
ing different actions, the decision maker understands that the truth is somewhere in between and 
that at least one of the two senders is misreporting. In these cases, the decision maker allocates 
the burden of proof between the senders in a way that depends on their characteristics, such as 
their bias and cost structure. Due to the senders’ mixed behavior, the decision maker cannot al-
ways obtain the information she needs by inverting the senders’ reports. As a result, information 
transmission is only partial and persuasion takes place with positive probability.

The setting studied in the main part of the paper is sufficiently rich to draw general conclusions 
about the setup. To illustrate the takeaways, I also analyze the specific case where senders have 
a similar payoff and cost structure, and where the distribution of the state is such that no sender 
has an ex-ante advantage of any kind. In this symmetric environment, I provide a closed-form 
solution to adversarial equilibria and show that they naturally display symmetric strategies. The 
decision maker equally allocates the burden of proof between the senders by following the rec-
ommendation of the sender delivering the most extreme report. In symmetric environments, the 
senders’ misreporting behavior depends on the shape of the common cost function: with convex 
costs, senders are more likely to convey large misrepresentations of the state rather than small 
lies, while the opposite is true for concave misreporting costs.

This paper shows that the introduction of misreporting costs in a model with multiple senders 
has crucial implications on information transmission. When talk is cheap and misreporting is 
costless, no information can be transmitted if senders have conflicting interests. When infor-
mation is verifiable and misreporting is impossible, only fully revealing equilibria in truthful 
strategies ensue. By contrast, here there are neither babbling nor truthful equilibria. Adversar-
ial equilibria are not receiver-efficient, although they feature a probabilistic revelation of almost 
every state. Competition between senders also impacts how communication takes place. In re-
lated single-sender models with costly talk, there are fully revealing equilibria where senders 
play pure strategies. By contrast, here pure-strategy and fully revealing equilibria are not robust. 
The transmission of information takes place differently than in comparable models of strategic 
communication.

The remainder of this article is organized as follows. In Section 2, I discuss the related liter-
ature. Section 3 introduces the model, which I solve in Sections 4 and 5. In Section 6, I provide 
an example and discuss several extensions of the baseline model. Finally, Section 7 concludes. 
Formal proofs are relegated to Appendix A.

2. Related literature

This paper contributes to the literature on strategic communication with multiple senders. This 
line of work shows several channels through which full information revelation can be obtained 
(Battaglini, 2002; Krishna and Morgan, 2001; Milgrom and Roberts, 1986). Papers in this liter-
ature typically assume that misreporting is either costless (cheap talk) or impossible (verifiable 

4 See Section 4 for a formal definition of unprejudiced beliefs and ε-robustness. I show that these two refinements are 
tightly connected: in this model, equilibria that are ε-robust must be supported by unprejudiced beliefs (Lemma 4). This 
result suggests a novel rationale for the use of ε-robustness in multi-sender communication games.
3
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disclosure). By contrast, in this article misreporting is possible at a cost that depends on the 
magnitude of misrepresentation. Under this modeling specification, there are no babbling equi-
libria or equilibria in truthful strategies. I show that fully revealing and non-revealing equilibria 
co-exist, but only the latter survive natural conditions on the decision maker’s beliefs.

This paper also relates to models of strategic communication with misreporting costs. Kartik 
et al. (2007) show that fully revealing equilibria of single-sender settings with an unbounded 
state space exist. In these equilibria, the receiver can always infer the true state by inverting the 
sender’s inflated language. By contrast, there are no fully revealing equilibria of single-sender 
settings with a bounded state space (Ottaviani and Squintani, 2006; Chen et al., 2008; Kartik, 
2009; Chen, 2011). I extend the analysis of communication with misreporting costs to a setup 
with two competing senders. In this setting, I show that non-revealing equilibria exist and are 
robust even when the state space is arbitrarily large. In these equilibria, the senders mix between 
truthful and exaggerated reports. Revelation is a probabilistic phenomenon considering that the 
decision maker fully learns almost every state with some positive probability.

Few other papers study communication with misreporting costs and multiple senders. Among 
these, Emons and Fluet (2009) analyze a model with two equally informed senders with opposed 
interests. The state, report, and action space is the real line, in contrast with the binary action 
space used here. They find a robust fully revealing equilibrium where senders’ inflate their reports 
in opposite directions. As in Kartik et al. (2007), the receiver can invert the senders’ reports to 
fully learn their private information. By contrast, only non-revealing equilibria are robust in my 
setting where the state space can be unbounded but receiver’s action space is discrete.5 Kartik et 
al. (2021) consider a model where each sender gets a conditionally independent signal about the 
state.6 They show that senders’ strategies are strategic complements: as the misreporting costs 
of one sender increase, all other senders reveal more information. I obtain an analogous result in 
my model with perfectly informed senders.7

In this paper, the combination of multiple senders and signaling costs generates a framework 
that resembles those used in all-pay contests.8 Many applications in different areas study per-
suasion by contending parties as an all-pay contest (Skaperdas and Vaidya, 2012). The use of 
an exogenous “success function” eliminates three potential problems. First, it can discard fully 
revealing outcomes in settings where information asymmetries have relevant consequences (such 
as in lobbying, campaigning, or litigation). Second, it can circumvent the problem of multiplicity 
and robustness of equilibria. Third, it can provide tractability. The analysis of adversarial equi-
libria shows that all these features are obtained in a setting where the decision maker’s behavior 
is endogenously determined rather than exogenously fixed.

5 Fully revealing outcomes do not survive refinements even in single-sender settings where the receiver’s action space 
is discrete and the state space is continuous and unbounded (Vaccari, 2023b).

6 See Section IIID therein. Since senders have different and noisy information, there cannot be equilibria where the 
state is fully revealed.

7 Such a result follows by performing comparative statics with respect to kj on equation (6) and looking at its impli-
cations on the adversarial equilibrium strategies as in Appendix A.2.3.

8 This all-pay feature is missing in related multi-sender signaling models of electoral competition (Banks, 1990; Callan-
der and Wilkie, 2007), where only the elected candidate incurs the signaling cost.
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3. The model

Setup and timeline. There are three players: two informed senders (1 and 2) and one uninformed 
decision maker (dm). Let θ ∈ � ⊆ R be the underlying state, distributed according to the full 
support probability density function f . After observing the realized state θ , two senders privately 
deliver to the decision maker a report rj ∈ �, where rj is the report of sender j (he). The decision 
maker (she), after observing the pair of reports (r1, r2) but not the state θ , selects an alternative 
a ∈ { -©, +©}.
Payoffs. Player i ∈ {1, 2, dm} obtains a payoff of ui(a, θ) if the decision maker selects alterna-
tive a in state θ . I normalize ui ( -©, θ) = 0 for all θ ∈ � and let ui(θ) ≡ ui( +©, θ), where ui(θ)

is weakly increasing in θ . The state is a valence or vertical differentiation score, and it is inter-
preted as the relative quality of alternative +© with respect to alternative -©. The decision maker’s 
expected utility from selecting +© given the senders’ reports is Udm(r1, r2).

Misreporting costs. Sender j bears a cost kjCj (rj , θ) for delivering report rj when the state is 
θ . The cost function Cj is continuous, strictly increasing in |rj − θ |, differentiable for all rj �= θ , 
and satisfies Cj(θ, θ) = 0 for every θ ∈ �. That is, misreporting is increasingly costly in the 
magnitude of misrepresentation, while truthful reporting is always costless. Moreover, for every 
rj ∈ �, Cj(rj , θ) > Cj(rj , θ ′) if |rj − θ | > |rj − θ ′|. That is, reports are cheaper when delivered 
from closer states. The scalar kj > 0 is a finite parameter measuring the intensity of misreporting 
costs. Sender j ’s total utility is

wj(rj , a, θ) = 1{a = +©}uj (θ) − kjCj (rj , θ),

where 1{·} is the indicator function. It follows that, conditional on the decision maker’s eventual 
choice, both senders prefer to deliver reports that are closer to the truth.

Definitions and assumptions. For simplicity, I assume that the state and report space coincide 
with the real line, that is, � = R. All results carry through provided that � is large enough (see 
Appendix A). A generic report r has the literal or exogenous meaning of “The state is θ = r .” I 
say that sender j reports truthfully when rj = θ , and misreports otherwise. Sometimes, I use −j

to denote the sender who is not sender j .
I define the threshold τi as the state in which player i is indifferent between the two alter-

natives. Formally, τi := {θ ∈ � | ui(θ) = 0}. I assume that utilities ui(θ) are such that τi exists 
and is unique for every i ∈ {1, 2, dm}.9 The threshold τi tells us that player i prefers +© to -©
when the state is greater than τi . Throughout the paper, I consider the case where senders have 
opposing biases, i.e., τ1 < τdm < τ2. To make the problem non-trivial, I let τdm ∈ �. Moreover, 
I normalize τdm = 0. Under this configuration, the decision maker prefers to select the positive 
alternative +© when the state takes positive values, and prefers to select the negative alternative -©
when the state is negative. I assume that when the decision maker is indifferent between the two 
alternatives at given beliefs, she selects +©.

I define the reach of sender j in state θ as the report whose associated misreporting costs 
offset j ’s gains from having his own preferred alternative eventually selected. In other words, 
reports that are more expensive than the reach are strictly dominated by truthful reporting. As a 

9 These assumptions are for notational convenience. The model can accommodate for senders that always strictly 
prefer one alternative over the other and for utility functions such that ui (θ) �= 0 for every θ ∈ �, including step utility 
functions.
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Fig. 1. The senders’ reaches in state θ ′ are marked in the horizontal axis as r̄1(θ ′) and r
¯2(θ ′). The misreporting cost 

function kj Cj , here common to both senders and depicted in full black, is increasing in the magnitude of misreporting. 
The senders’ utilities from the selection of the positive alternative, in full gray, are increasing in the realized state.

result, in every equilibrium senders deliver only reports that are within their own reach. Formally, 
the reach of sender 1 in state θ is defined as10

r̄1(θ) := max {r ∈ R s.t. |u1 (θ) | = k1C1 (r, θ)} . (1)

Similarly, the reach of sender 2 in state θ is defined as

r
¯2(θ) := min {r ∈R s.t. |u2 (θ) | = k2C2 (r, θ)} . (2)

I will sometimes use the inverse reaches r̄−1
1 (r1) and r

¯
−1
2 (r2), where r̄−1

1 (·) and r
¯
−1
2 (·) map from 

� to �, and are defined as the inverse functions of r̄1(θ) and r
¯2(θ), respectively. Fig. 1 illustrates 

the senders’ reaches in a state θ ′ ∈ (τ1, τ2).

Strategies. A pure strategy for sender j is a function ρj : � → � such that ρj (θ) is the report 
delivered by sender j in state θ . A mixed strategy for sender j is a mixed probability measure 
φj : � → �(�), where φj (rj , θ) is the mixed probability density that φj(θ) assigns to a report 
rj ∈ �. The cumulative distribution function (CDF) of φj is 	j . I denote by Sj (θ) the support 
of sender j ’s strategy in state θ . Appendix A.2.1 introduces additional notation that is required 
to study equilibria in mixed strategies.

I say that a pair of reports (r1, r2) is off path if, given the senders’ strategies, (r1, r2) will 
never be observed by the decision maker. Otherwise, I say that the pair (r1, r2) is on path. A 
posterior belief function for the decision maker is a mapping p : �2 → �(�) that, given any 
pair of reports (r1, r2), generates posterior beliefs p(θ | r1, r2) with CDF P(θ | r1, r2). Given a 
pair of reports (r1, r2) and posterior beliefs p(θ | r1, r2), the decision maker selects an alternative 
in the sequentially rational set β(r1, r2), where

β(r1, r2) = arg max
a∈{ +©, -©}

Ep [udm(a, θ) | r1, r2] .

As mentioned above, if p(θ | r1, r2) is such that Udm(r1, r2) = 0, then β(r1, r2) = +©.

10 The definition of reach is sender-dependent, as senders play monotonic strategies in the equilibria we consider. 
Specifically, sender 1 inflates the realized state, whereas sender 2 belittles it (see Lemma 1).
6
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3.1. Solution concepts

The solution concept is perfect Bayesian equilibrium (PBE). A PBE is a triple (	1, 	2, p)

such that 	j is optimal given (	−j , p, β), and such that beliefs p follow Bayes’ rule whenever 
possible.11 To avoid outcomes that are sustained by an excessively arbitrary interpretation of the 
senders’ reports, I restrict attention to equilibria where posterior beliefs p satisfy the following 
weak monotonicity condition: for every rj ≥ r ′

j and j ∈ {1, 2},
Udm(r1, r2) ≥ Udm(r ′

1, r
′
2). (wM)

The (wM) condition says that a higher report cannot signal to the decision maker a lower ex-
pected utility from selecting alternative +©.12 Focusing on these equilibria is natural given that 
the value of +© is increasing in the state, reports are literal, and misreporting is costly. An imme-
diate implication of this condition is that senders’ strategies are monotonic: in every equilibrium 
satisfying (wM), each sender either reports truthfully or exaggerates the relative quality of his 
preferred alternative.

Lemma 1. In every perfect Bayesian equilibrium satisfying (wM) we have that rj ≥ θ for all 
θ ≥ τj , and rj ≤ θ for all θ ≤ τj , j ∈ {1, 2}.

Hereafter, I refer to perfect Bayesian equilibria of the game described in this section that 
satisfy condition (wM) simply as equilibria. As we shall see in Section 4, condition (wM) is 
not sufficient to rule out equilibria with undesirable properties. To analyze sensible outcomes, I 
further study a class of equilibria that satisfies two additional conditions on the decision mak-
er’s posterior beliefs. I refer to equilibria satisfying these additional conditions as adversarial 
equilibria, and analyze them in Section 5.

Definition 1. An adversarial equilibrium (AE) is a perfect Bayesian equilibrium of the game 
described in Section 3 where the decision maker’s posterior beliefs p satisfy the following con-
ditions:

i) The (wM) condition holds, and for every pair of reports (r1, r2) such that r
¯2(0) < r2 ≤ 0 ≤

r1 < r̄1(0), and for j ∈ {1, 2}, we have

dUdm(r1, r2)

drj
> 0; (sM)

ii) Once the decision maker observes the pairs of reports 
(
r̄1(0), r

¯2(0)
)

and (0, 0), her posterior 
beliefs p are such that she is indifferent between the two alternatives, i.e.,

Udm

(
r̄1(0), r

¯2(0)
) = Udm (0,0) = 0. (Dom)

The first condition, (sM), establishes monotonicity of posterior beliefs p in a stronger way 
than (wM) does, but only for pairs of reports consisting of conflicting recommendations. Other-
wise, (wM) applies. Since (sM) implies (wM), Lemma 1 applies also to adversarial equilibria. 

11 For a textbook definition of perfect Bayesian equilibrium, see Fudenberg and Tirole (1991).
12 Posterior beliefs p(θ | r1, r2) first-order stochastically dominate p(θ | r ′

1, r ′
2) for rj ≥ r ′

j
, j ∈ {1, 2}, if and only if ∫

u(θ)p(θ | r1, r2)dθ ≥ ∫
u(θ)p(θ | r ′

1, r ′
2)dθ for every weakly increasing utility function u(θ). Thus, (wM) is weaker 

than first-order stochastic dominance as it applies only to u(θ) ≡ udm(θ).
7
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Intuitively, (sM) means that strictly higher conflicting reports inform the decision maker that the 
expected value of selecting alternative +© is strictly higher.

Condition (Dom) draws from a simple dominance argument. Recall that, by definition of 
reach, sender 1 prefers to tell the truth than to deliver r̄1(0) when the realized state is strictly 
negative. Likewise, sender 2 prefers to tell the truth than to deliver r

¯2(0) when the realized state 
is strictly positive. Upon observing the pair of reports (r̄1(0), r

¯2(0)), the decision maker should 
conjecture that the realized state is zero: for otherwise, it must be that one of the two senders is 
delivering a strictly dominated report. A similar logic applies to the pair of reports (0, 0). Recall 
that the senders’ equilibrium strategies are monotonic (Lemma 1). Upon observing (0, 0), the 
decision maker should conjecture that the realized state is zero, for otherwise one of the two 
senders must be delivering a report that is strictly dominated by truthful reporting.13

3.2. An introductory example

The following example illustrates the players’ strategies in an adversarial equilibrium. Con-
sider the following payoff structure: u1(θ) = −u2(θ) = 1 for every θ ∈ �, udm(θ) = 1 if θ ≥ 0
and udm(θ) = −1 otherwise. That is, τ1 = −∞ and τ2 = +∞. Senders incur misreporting costs 
according to kjCj (rj , θ) = |rj − θ |. From (1) and (2), the senders’ reaches are r̄1(θ) = θ + 1
and r

¯2(θ) = θ − 1. The state space is the real line, and the state is distributed according to a 
full support density function which is symmetric around zero. Senders play monotonic reporting 
strategies, meaning that r2 ≤ θ ≤ r1 (Lemma 1).

Senders have symmetric features, and it is only fair to start by assuming their recommenda-
tions are treated equally. Suppose that the decision maker assigns the same weight to the reports 
of the two senders. Specifically, when senders’ reports are such that r2 ≤ 0 ≤ r1, the decision 
maker behaves as if she expects the state to be the average of the two reports. If this average 
exceeds zero, she selects +©; otherwise, she selects -©. Likewise, when both senders claim that 
the state is positive (resp. negative), the decision maker expects the state to be positive (resp. 
negative). This conjectured behavior is coherent with both (sM) and (Dom).

Given the decision maker’s behavior, senders always report truthfully in sufficiently extreme 
states. For example, suppose that the realized state is θ = 1/2. Because of report monotonicity, 
sender 1 delivers reports that are higher than or equal to 1/2. To persuade the decision maker 
in selecting the negative alternative, sender 2 must deliver a report that is lower than −1/2. 
Such a report is also lower than sender 2’s reach, r

¯2(1/2) = −1/2, and thus he cannot profitably 
persuade the decision maker. As a result, sender 2 saves on costs by reporting truthfully, and 
sender 1 follow suit. The same line of reasoning holds true in every state higher than 1/2 and, 
by symmetry, in every state lower than −1/2. Full revelation via truthful reporting always takes 
place in sufficiently extreme states.

Consider now a more moderate state with value θ = 1/4. To appreciate senders’ behavior 
in this case, it is important to first understand which reports are never delivered in equilibrium. 
Recall that sender 1 never claims that the state is lower than its true value, and so r1 ≥ 1/4. 
Sender 2 never delivers misreports that cannot persuade the decision maker. That is, sender 2 
never misreports between −1/4 and 1/4, as doing so would be costly but fruitless. Moreover, he 

13 Condition (Dom) does not require that the decision maker’s posterior beliefs be degenerate at 0. As we shall see, in 
every adversarial equilibrium the pair (r̄1(0), r

¯2(0)) is on path only for θ = 0, and thus it fully reveals that the state is 
indeed zero. By contrast, no sender ever delivers rj = 0 on path, and thus the pair of reports (0, 0) is not only off path 
but it must constitute a double deviation.
8
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does not deliver reports that are excessively low, as they would be too expensive. Specifically, 
sender 2 never delivers reports that are lower than his own reach, r

¯2(1/4) = −3/4. By symmetry, 
sender 1 does not need to deliver reports that are higher than 3/4, even though his reach is 
r̄1(1/4) = 5/4.

We can focus now on what senders do deliver in an adversarial equilibrium, and how often. 
When θ = 1/4, sender 2 must deliver some r2 < −1/4 to persuade the decision maker. Such a 
report is within sender 2’s reach, as r

¯2(1/4) = −3/4. To prevent sender 2 from persuading the 
decision maker, sender 1 must misreport as well. However, now senders’ cannot play pure strate-
gies: when sender 1 reports truthfully, sender 2 wants to misreport; when sender 2 misreports, 
sender 1 can misreport to the point that sender 2 is better off by reporting truthfully. However, 
when sender 2 reports truthfully, sender 1 wants to report truthfully as well, taking us back to 
square one. With probability 1/2 each sender reports truthfully, and misreport otherwise. When 
misreporting, sender 1 is equally likely to deliver any report between 1/4 and 3/4; sender 2 is 
equally likely to deliver any report between −3/4 and −1/4. When −r2 > r1, the decision maker 
incorrectly selects -©. In these cases, we shall say that sender 2 persuaded the decision maker.

The adversarial equilibrium described in this example is the only perfect Bayesian equilibrium 
satisfying both (sM) and (Dom). As we shall see, an adversarial equilibrium robust to refinements 
always exists for general payoff configurations. The senders’ mixed behavior indicates that in-
formation transmission is only partial. Other non-adversarial equilibria where all information 
is transmitted exist. The following section studies revealing equilibria and shows that they are 
problematic.

4. Receiver-efficient equilibria and robustness

The goal of this section is to study how costly talk communication affects the existence and 
properties of two important classes of equilibria: babbling and fully revealing. No information 
is transmitted in the former, whereas the decision maker always learns the state in the latter. 
Typically, in cheap talk games there is a babbling equilibrium, while in standard signaling and 
disclosure games there is a fully revealing equilibrium (FRE). In the setup considered here, full 
revelation can be naturally achieved when senders play truthful strategies, that is, when they 
always report truthfully the realized state. As the next lemma shows, the introduction of misre-
porting costs prevents the existence of both babbling and truthful equilibria.

Lemma 2. There are no babbling equilibria. Misreporting occurs in every equilibrium.

Intuitively, babbling cannot occur because, when misreporting is costly, ignored senders best 
respond by reporting truthfully. Truthful equilibria do not exist because there are always situ-
ations where senders can profit from lying if their competitor reports truthfully.14 Since fully 
revealing outcomes do not necessarily require senders to play truthful strategies, Lemma 2 does 
not rule out the existence of fully revealing equilibria.

14 Lemma 2 applies to all perfect Bayesian equilibria of the game described in Section 3, and not only to those satisfy-
ing (wM). Battaglini (2002) uses an argument similar to the revelation principle to show that, in a multi-sender cheap talk 
model, if there exists a fully revealing equilibrium then there exists a fully revealing equilibrium in truthful strategies. 
Such an argument cannot be applied here because of the presence of misreporting costs. In this model there are fully 
revealing equilibria, but there are no equilibria in truthful strategies.
9
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Fig. 2. Senders’ strategies in a receiver-efficient and fully revealing equilibrium. The reporting rules of senders 1 and 2 
are indicated by black and dashed gray lines, respectively.

In what follows, I show that there exist equilibria where the decision maker achieves her 
complete-information payoff.15 In the setting studied here, the combination of a rich state space 
together with a binary action space implies that the decision maker does not need to know the 
realized state in order to select her favorite alternative. All she needs to know is whether the state 
is positive or negative. For the purposes of this section, studying fully revealing equilibria would 
be too restrictive. The following definition gives a weaker notion of revelation that will prove 
useful for the analysis that follows.

Definition 2. A receiver-efficient equilibrium (RE) is an equilibrium where for every θ ∈ �, 
rj ∈ Sj (θ), and j ∈ {1, 2}, we have β(r1, r2) = +© if θ ≥ 0, and β(r1, r2) = -© otherwise.

A fully revealing equilibrium is also receiver-efficient, but a receiver-efficient equilibrium 
is not necessarily fully revealing. Fig. 2 shows reporting strategies that not only constitute a 
receiver-efficient equilibrium, but are also fully revealing. To verify that Fig. 2 depicts an equilib-
rium, consider the following strategies: sender 1 delivers ρ1(θ) = r̄1(0) for every θ ∈ [0, ̄r1(0)], 
where for simplicity we assume that r̄1(0) < τ2. Otherwise, sender 1 reports truthfully. By con-
trast, sender 2 always reports truthfully, i.e., ρ2(θ) = θ for all θ ∈ �. Given any on path pair 
of reports, posterior beliefs are such that P(θ | r1, r2) = 0 for every θ < r2 and P(θ | r1, r2) = 1
otherwise, which is consistent with sender 2 playing a separating strategy. Off path beliefs are 
such that Udm(r1, r2) < 0 if r1 < r̄1(0), and P(θ | r1, r2) = 1 if and only if θ ≥ r1 ≥ r̄1(0). By 
the definition of reach, sender 1 would never find it profitable to deliver a report r1 ≥ r̄1(0) when 
θ < 0. Sender 2 cannot deviate from his truthful strategy by delivering a negative report when the 
state is positive: since ρ1(θ) ≥ r̄1(0) for every θ ≥ 0, such a deviation would induce β(·, ·) = +©. 
No sender has a profitable individual deviation from the prescribed equilibrium strategies. As a 
result, there exist equilibria where senders always fully reveal the state to the decision maker, 
even though full revelation involves misreporting.

Fig. 2 also illustrates the existence of equilibria in pure strategies. Intuitively, when senders 
play pure strategies and in each state at least one of the two senders plays a separating strategy, 

15 Fully revealing equilibria of this model naturally exist when one of the two senders is unbiased or cannot misreport. 
The former occurs when τj = τdm, while the latter occurs when kj = ∞.
10
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then the decision maker can always invert their reports to recover the underlying truth. This 
argument suggests that all pure-strategy equilibria are receiver-efficient. The next lemma shows 
that such an intuition is correct and, in addition, that all receiver-efficient equilibria are in pure 
strategies.

Lemma 3. An equilibrium is receiver-efficient if and only if it is in pure strategies.

The receiver-efficient equilibrium discussed above is, however, problematic. To see what the 
problem is, consider again the strategies depicted in Fig. 2 and a state θ ′ ∈ (0, ̄r1(0)). Suppose 
that in state θ ′ sender 1 deviates from the prescribed equilibrium by reporting the truth instead 
of ρ1(θ

′) = r̄1(0), whereas sender 2 sticks to his separating reporting rule. Notice that, in the 
equilibrium under consideration, sender 1 never delivers r1 = θ ′. Once the decision maker re-
ceives the off path pair of reports (θ ′, θ ′), her posterior beliefs p induce an expected payoff of 
Udm(θ ′, θ ′) < 0, leading to β(θ ′, θ ′) = -©. These off path beliefs require the decision maker to 
conjecture that the state is likely to be negative. However, this means that the decision maker 
must entertain the possibility that (i) both senders simultaneously deviated from the prescribed 
equilibrium strategies, and (ii) sender 2 purposefully delivered a strictly dominated report.

In the remaining parts of this section, I test receiver-efficient equilibria using two well-known 
refinements that apply to games with multiple senders: unprejudiced beliefs (Bagwell and Ramey, 
1991) and ε-robustness (Battaglini, 2002).

Unprejudiced beliefs. Consider again a deviation from the equilibrium depicted in Fig. 2 where 
both senders report truthfully in some state θ ′ ∈ (0, ̄r1(0)). If, whenever possible, the decision 
maker conjectures deviations as individual and thus as originating from one sender only, then 
she should infer that sender 1 performed the deviation: sender 1 never reports r1 = θ ′ on the 
equilibrium path, whereas sender 2 truthfully reports r2 = θ ′ only when the state is indeed θ ′. 
Since sender 2 is following his separating strategy, the decision maker should infer that the state 
is θ ′ > 0. According to this line of reasoning, off path beliefs must be such that P(θ | θ ′, θ ′) = 1 if 
and only if θ ≥ θ ′, and P(θ | θ ′, θ ′) = 0 otherwise. Consequently, β(θ ′, θ ′) = +©. Such a deviation 
becomes profitable for sender 1 because it economizes on misreporting costs without affecting 
the outcome.

Bagwell and Ramey (1991) introduce the concept of unprejudiced beliefs, formalizing the idea 
that the decision maker should rule out the possibility that multiple senders are deviating at the 
same time whenever it is possible that only a single sender is deviating. Vida and Honryo (2021)
show that, in generic multi-sender signaling games, strategic stability (Kohlberg and Mertens, 
1986) implies unprejudiced beliefs. Apart from their association with the notion of strategic sta-
bility, unprejudiced beliefs are intuitive, easily applicable, and consistent with the notion of Nash 
equilibrium and, as such, constitute a sensible way to refine equilibria in multi-sender signal-
ing games when other criteria fail to do so. The following definition formalizes unprejudiced 
beliefs.16

Definition 3 (Vida and Honryo, 2021). Given senders’ strategies ρj , the decision maker’s poste-
rior beliefs p are unprejudiced if, for every pair of reports (r1, r2) such that ρj (θ

′) = rj for some 
θ ′ ∈ � and j ∈ {1, 2}, we have that p(θ ′′ | r1, r2) > 0 only if there is a sender i ∈ {1, 2} such that 
ρi(θ

′′) = ri .

16 Definition 3 is weaker than the definition originally introduced by Bagwell and Ramey (1991).
11
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We have seen before how an informational free-riding argument breaks down the receiver-
efficient equilibrium depicted in Fig. 2. A natural question is whether such an argument applies 
only in that particular case or if instead it rules out other equilibria. The next proposition estab-
lishes that no receiver-efficient equilibrium supports unprejudiced beliefs.

Proposition 1. There are no receiver-efficient equilibria with unprejudiced beliefs.

ε-robustness. In the model described in Section 3, senders are perfectly informed and the deci-
sion maker can perfectly observe the senders’ reports. In other words, there are no perturbations, 
or “noise,” in the senders’ report or the decision maker’s observations. This modeling strategy 
allows me to isolate the effects of strategic interactions from the effects of statistical information 
aggregation. At the same time, however, it allows for excessive freedom to pick ad-hoc beliefs 
that would not survive the presence of even arbitrarily small perturbations in the transmission of 
information.

I follow Battaglini (2002) and define an ε-perturbed game as the game described in Section 3, 
in which the decision maker perfectly observes the report of sender j with probability 1 − εj and 
with probability εj observes a random report r̃j , where r̃j is a random variable with continuous 
distribution Gj , density gj , and support in �. This may correspond to a situation where with 
some probability the decision maker misreads reports; or, alternatively, where with some prob-
ability senders deliver a wrong report by mistake.17 As before, senders incur misreporting costs 
that depend only on the realized state θ and on their “intended” report rj , and not on the wrongly 
observed or delivered r̃j . The introduction of noise makes any pair of reports possible on the 
equilibrium path. The decision maker’s posterior beliefs depend on ε = (ε1, ε2), G = (G1, G2), 
and the senders’ reporting strategies ρj (θ).

Definition 4 (Battaglini, 2002). An equilibrium is ε-robust if there exist a pair of distributions 
G = (G1, G2) and a sequence εn = (εn

1 , εn
2 ) converging to zero such that the off path beliefs 

of the equilibrium are the limit of the beliefs that the equilibrium strategies would induce in an 
ε-perturbed game as εn → 0+.

Intuitively, as the noise fades away, the event in which the decision maker misreads both 
reports becomes negligible. At the limit as ε → 0+, the decision maker infers that she is cor-
rectly observing at least one of the two reports. Once she observes an off path pair of reports in 
an ε-robust equilibrium, the decision maker conjectures—whenever possible—that one sender 
is following his prescribed reporting strategy while the other is not. This last implication of ε-
robustness suggests that there might be a tight connection between the refinement criteria of 
ε-robustness and unprejudiced beliefs. The next lemma confirms the existence of such a relation-
ship.18

Lemma 4. If an equilibrium is ε-robust, then it has unprejudiced beliefs.

A straightforward implication of Lemma 4 and Proposition 1 is that no receiver-efficient or 
fully revealing equilibrium is ε-robust. By Lemma 3, we obtain that also pure-strategy equilibria 

17 Battaglini (2002) perturbs the senders’ observation of the realized state, whereas I perturb the decision maker’s 
observed reports. My perturbation is qualitatively similar to Battaglini’s.
18 Lemma 4 applies to perfect Bayesian equilibria of the game described in Section 3 with n ≥ 2 senders.
12
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are not supported by unprejudiced beliefs and are not ε-robust. These results suggest that mixed-
strategy equilibria are qualitatively important. The next section is dedicated to finding equilibria 
that are robust in the sense that they are ε-robust.

5. Adversarial equilibria

Findings in the previous section show that pure-strategy and receiver-efficient equilibria exist, 
but are supported by off path beliefs with potentially undesirable characteristics. Such results 
motivate the quest for robust equilibria in mixed strategies. Since condition (wM) does not rule 
out receiver-efficient outcomes, a different structure is required to obtain robust equilibria. This 
section aims to identify sufficient conditions under which equilibria are robust, characterize such 
robust equilibria, and show that they have desirable properties. All proofs and a number of inter-
mediate results are relegated to Appendix A.2.

I focus the following analysis on adversarial equilibria as described in Section 3.1. For an 
immediate application of this solution concept, let’s revisit the receiver-efficient equilibrium de-
picted in Fig. 2. To prevent a deviation by sender 1, the decision maker’s posterior beliefs p must 
be such that she selects -© when sender 1’s report is lower than r̄1(0). However, such beliefs can-
not be part of an adversarial equilibrium. By (Dom), the decision maker is indifferent between 
the two alternatives when both senders claim that the state is zero. As a result, by (sM) the de-
cision maker expects the state to be positive when both senders claim that the state is positive, 
and accordingly selects +©. The language structure established by conditions (sM) and (Dom)
is sufficient to rule out receiver-efficient equilibria such as the one depicted in Fig. 2. The next 
lemma confirms that this refining power extends in general to all receiver-efficient equilibria.

Lemma 5. Receiver-efficient equilibria are not adversarial equilibria.

By showing the failure of receiver-efficient outcomes, the above example highlights why 
defining a class of equilibria via (sM) and (Dom) is interesting. Together, these two conditions 
guarantee that the decision maker’s beliefs cannot be unreasonably discontinuous. As a result, 
the decision maker cannot shift the burden of proof entirely on a single sender. The two condi-
tions are complementary: by themselves, neither (sM) nor (Dom) ensure that the state’s sign is 
revealed when senders agree on it. Equilibria where the decision maker relies on both senders are 
consistent with the presence of vanishing noise in their reports. As we shall see, (sM) and (Dom)
yield a single ε-robust outcome.

Conditions underpinning adversarial equilibria rule out all receiver-efficient and, by Lemma 3, 
all pure-strategy equilibria. However, introducing conditions on the decision maker’s beliefs may 
raise some concerns. First, an equilibrium satisfying both (sM) and (Dom) may not exist.19 Sec-
ond, provided that adversarial equilibria exist, there may be an issue of multiplicity. Lastly, even 
adversarial equilibria may not be robust according to the criteria defined in the previous section. 
The following result shows that these issues are not present in the current setting.

Theorem 1. Adversarial equilibria of the game described in Section 3,

i) always exist;

19 Even well-behaved signaling games may have no equilibria (Manelli, 1996).
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ii) are essentially unique in terms of equilibrium outcomes and strategies;
iii) are ε-robust, or outcome- and strategy-equivalent to AE that are ε-robust.20

Next, I provide some intuition and definitions that will prove useful to understand the play-
ers’ strategies in an adversarial equilibrium. To fix ideas, suppose from now on that the realized 
state is positive, θ > 0. Since senders play monotonic strategies (Lemma 1), sender 1 delivers a 
positive report, say r1 ≥ θ . As we have seen in the previous example, the interaction of condi-
tions (sM) and (Dom) has an important consequence: when both senders’ reports are positive, 
the decision maker correctly infers that the state is positive as well. As a result, sender 2 must 
deliver a negative report to achieve persuasion.

Persuasion can take place only when senders deliver reports with conflicting signs. By con-
dition (sM), we know that in these cases the decision maker expects strictly lower reports to 
originate from strictly lower states. To achieve persuasion, sender 2 must deliver a negative re-
port that is sufficiently low. Say that, given sender 1’s report, the decision maker selects -© when 
sender 2 claims that the state is lower than the score s, and selects +© otherwise. We shall say 
that s is the report that swings the decision maker’s choice. The notion of swing report is key for 
understanding adversarial equilibria, and the following definition formalizes such a concept.

Definition 5. The swing report s(r) is defined as

s(r) =
{

{r2 ∈ R2 |Udm(r, r2) = 0} given a r ≥ 0 delivered by sender 1,

{r1 ∈ R1 |Udm(r1, r) = 0} given a r < 0 delivered by sender 2.

If s(r) = ∅, then I set s(r) = −∞ when a report r ≥ 0 is delivered by sender 1, and I set 
s(r) = ∞ when a report r < 0 is delivered by sender 2.

The domain of s(r) consists of reports delivered by sender 1 when r ≥ 0, and by reports of 
sender 2 otherwise. For our purposes, Definition 5 does not need to be exhaustive.21 With a slight 
abuse of language, I hereafter say that sender j swings the report of his opponent −j whenever 
the pair of reports (r1, r2) induce the selection of sender j ’s preferred alternative. Sender 1 swings 
the report of sender 2 when r1 ≥ s(r2). Similarly, sender 2 swings the report of sender 1 when 
r2 < s(r1).

In adversarial equilibria, the swing report s(r) has a number of intuitive properties: first, 
condition (sM) ensures that the swing report, if it exists, is unique; second, condition (Dom) pins 
down the swing report for s(r̄1(0)) = r

¯2(0), s(r
¯2(0)) = r̄1(0), and s(0) = 0. From the interaction 

of (Dom) and (sM), it follows that every report r ∈ [
r
¯2(0), r̄1(0)

]
has a unique swing report s(r)

such that if r > 0 then s(r) < 0 (resp. r < 0 has s(r) > 0). The swing report of a swing report 
is the report itself, that is, s(s(r)) = r . Lastly, higher reports have lower swing reports.22 Since 
s(r) is a strictly decreasing function of r , I shall refer to s(r) as the swing report function.

When the state takes extreme values, a sender may not be able to swing the report of his 
opponent profitably. In particular, persuasion is always prohibitively expensive when s(θ) is 

20 An adversarial equilibrium may not be ε-robust because of its off path beliefs. Part ii) of Theorem 1 states that there 
can be multiple AE sharing the same strategies and outcomes, but differing in their off path beliefs. Part iii) tells us that 
there always exists an AE that is ε-robust and thus unprejudiced.
21 In particular, we do not need to define s(r) for r2 ≥ 0 or r1 < 0. In adversarial equilibria, these reports reveal the 
state’s sign.
22 See Lemma A.1 in Appendix A.2.
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beyond a sender’s reach. For example, sender 2 cannot profitably achieve persuasion when the 
state is such that s(θ) < r

¯2(θ), as r1 ≥ θ and s(r1) is decreasing in r1. In such cases, we should 
expect both senders to report truthfully and deliver matching reports that reveal the state. It is 
helpful to define cutoffs in the state space that help determine when truthful reporting always 
occurs in adversarial equilibria. I refer to these cutoffs as the truthful cutoffs, and define them as 
follows.

Definition 6. The truthful cutoffs θl and θh are defined as

θl := {θ ∈ � | s(θ) = r̄1(θ)} ,

θh := {
θ ∈ � | s(θ) = r

¯2(θ)
}
.

The above cutoffs are states in which senders are at best indifferent between reporting truth-
fully and achieving persuasion by misreporting. Because of the properties of s(·), the cutoffs 
are such that θl < 0 < θh. Moreover, senders have a conflict of interest in every state within the 
truthful cutoffs.23 As mentioned before, we should expect senders to always report truthfully—
and therefore to play pure strategies—when the state lies outside the set (θl, θh). The interaction 
between senders becomes more intricate when the state takes values within the truthful cutoffs.

Consider a situation where the state is positive and within the truthful cutoffs, that is, 
θ ∈ (0, θh). Suppose that sender 2 expects sender 1 to report truthfully. To convince the decision 
maker to select -©, sender 2 would deliver a negative report that is both effective and affordable, 
i.e., r2 ∈ (r

¯2(θ), s(θ)). In equilibrium, sender 1 would anticipate sender 2’s report r2. As a re-
sult, sender 1 would deliver r1 = s(r2) > θ to neutralize sender 2’s persuasion attempt. However, 
sender 2 can foresee this reaction, and expects sender 1 to deliver r1 instead of reporting truth-
fully. Consequently, sender 2 would deliver r ′

2 ∈ (r
¯2(θ), s(r1)), where r ′

2 < r2. Senders are now 
bearing higher misreporting costs in the attempt to defeat each other. Since competing forces es-
calate expenditures, sender 2 would eventually expect its opponent to deliver a report he cannot 
afford to swing, that is, a r ′

1 such that s(r ′
1) < r

¯2(θ). In this case, sender 2 would report truthfully 
to economize on costs. Anticipating this reaction, sender 1 would follow suit, taking us back to 
our starting point where sender 1 reports truthfully the state.24 This informal example suggests 
that senders play mixed strategies in states within the truthful cutoffs.

Conditions (sM) and (Dom) ensure that the decision maker’s problem is trivial when reports 
have the same sign. In these cases, the state is fully revealed by the sender recommending his 
least preferred alternative. By contrast, the problem of strategic inference is more complicated 
when reports have conflicting signs. In these cases, the decision maker cannot determine whether 
the state is positive and sender 2 is misreporting or whether the state is negative and sender 1 
is misreporting. In the attempt to select the correct alternative, the decision maker compares 
and cross-validates the reports. When doing so, she assigns a weight to the senders’ reports 
that depends on their relative characteristics. This process determines the swing report function 
discussed above.

The next proposition characterizes the senders’ reporting strategies and the decision maker’s 
beliefs in adversarial equilibria. Recall that 	j : �2 → [0, 1] is a cumulative distribution function 

23 That is, τ1 ≤ θl < θh ≤ τ2. See Lemma A.2 in Appendix A.2.
24 Recall that, as mentioned at the beginning of Section 5, in adversarial equilibria the decision maker selects the positive 
alternative after observing two positive reports.
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describing the strategy of sender j . Specifically, 	j(rj , θ) denotes the probability that sender j

delivers in state θ a report that is lower than or equal to rj .

Proposition 2. An adversarial equilibrium is a tuple (	1, 	2, p) such that,

i) If θ /∈ (θl, θh), then 	j(rj , θ) = 0 for rj < θ , and 	j(rj , θ) = 1 otherwise, j ∈ {1, 2}. That 
is, both senders always report truthfully when the realized state lies outside the truthful 
cutoffs;

ii) If θ ∈ (θl, 0), then the senders’ reporting strategies are,

	1(r1, θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if r1 < θ

1 − k2−u2(θ)
C2(s(r̄1(θ)), θ) if r1 ∈ [θ, s(θ))

1 − k2−u2(θ)

[
C2(s(r̄1(θ)), θ) − C2(s(r1), θ)

]
if r1 ∈ [s(θ), r̄1(θ))

1 if r1 ≥ r̄1(θ),

	2(r2, θ) =

⎧⎪⎨
⎪⎩

0 if r2 < s(r̄1(θ))

1 − k1
u1(θ)

C1(s(r2), θ) if r2 ∈ [s(r̄1(θ)), θ)

1 if r2 ≥ θ.

iii) If θ ∈ [0, θh), then the senders’ reporting strategies are,

	1(r1, θ) =

⎧⎪⎨
⎪⎩

0 if r1 < θ
k2−u2(θ)

C2(s(r1), θ) if r1 ∈ [θ, s(r
¯ 2(θ)))

1 if r1 ≥ s(r
¯ 2(θ)),

	2(r2, θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if r2 < r
¯ 2(θ)

k1
u1(θ)

[
C1(s(r

¯ 2(θ)), θ) − C1(s(r2), θ)

]
if r2 ∈ [r

¯ 2(θ), s(θ))

k1
u1(θ)

C1(s(r
¯ 2(θ)), θ) if r2 ∈ [s(θ), θ)

1 if r2 ≥ θ.

iv) Posterior beliefs p satisfy (Dom), (sM), and are such that the swing report function s(ri) is 
implicitly defined for i, j ∈ {1, 2}, i �= j , and ri ∈ [

r
¯ 2(0), r̄1(0)

]
, as

s(ri) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rj ∈ �

∣∣∣∣∣
min

{
r1,r

¯
−1
2 (r2)

}∫
max

{
r2,r̄

−1
1 (r1)

} f (θ)
udm(θ)

u1(θ)u2(θ)

dCj (rj , θ)

drj

dCi(ri , θ)

dri
dθ = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Fig. 3 depicts the senders’ strategies in an adversarial equilibrium of a setting where players 
have symmetric features.25 Proposition 2 and Fig. 3 show a discontinuity in the senders’ reporting 

25 The figure depicts the case described in Section 3.2. The state is θ ′ = 1/4, the truthful cutoffs are θh = −θl = 1/2, and 
the swing report function is s(r) = −r . Each misreport rj �= θ is delivered with partial density probability 1/[2(1 − 2θ)], 
and each sender reports truthfully with probability 2|θ ′| = 1/2. See also the discussion on symmetric environments in 
Section 6.
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Fig. 3. The senders’ reporting strategies in an adversarial equilibrium of a setting where misreporting costs are linear and 
players have symmetric features (see Sections 3.2 and 6.1). The CDFs representing sender 1 and 2’s reporting strategies 
when the realized state is θ ′ are depicted in black and gray, respectively. The strategies are discontinuous at θ ′ because 
both senders report truthfully with positive probability.

Fig. 4. Probability of events in an adversarial equilibrium where players have symmetric features. The solid line depicts 
the probability that the senders deliver identical and truthful reports. The dashed and the dotted lines depict the probability 
that the decision maker fully learns the state and that she selects her preferred alternative, respectively.

strategies 	j when reports are truthful, that is, at rj = θ . This discontinuity reflects that with 
positive probability senders report truthfully almost every state.26 As noted before, the decision 
maker fully learns the state upon observing reports that are identical or have the same sign. The 
state is more likely to be revealed in relatively extreme states, where the decision maker obtains a 
substantially different payoff from the two alternatives.27 By contrast, the decision maker is more 
likely to make mistakes in central states, and closer to the point where her preferred alternative 
changes. Fig. 4 depicts the probability of these events, including the likelihood that the decision 
maker eventually selects the alternative she would choose under perfect information.

Results in this section show the prominence of outcomes with partial revelation. This is in 
contrast to related work showing that costly talk generates fully revealing equilibria (Kartik 
et al., 2007; Emons and Fluet, 2009; Ottaviani and Squintani, 2006), unless the state space is 
bounded (Kartik, 2009). The model’s structure plays a key role in determining how much infor-
mation is transmitted in equilibrium. An important distinctive feature of this model is that the 
decision maker’s action space is discrete, whereas the state space is continuous. In other words, 
the number of possible contingencies is higher than the number of alternatives. Specifically, the 
decision maker’s choice is binary, reflecting the judicial or quasi-judicial nature of the problem. 

26 The only exception is θ = 0, where the truth is never reported on the equilibrium path.
27 See Corollary A.1 in Appendix A.2.3.
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Intuitively, when the action space is binary, senders want to persuade the decision maker that the 
state is just sufficiently high (or low). Since different reports come at a different cost, some pool-
ing occurs on path, preventing the full revelation of the state. Differently, when the action space 
is continuous, higher (lower) reports can induce higher (lower) actions, allowing for separating 
equilibria.

6. An example and extensions

6.1. Example: symmetric environments

In what follows, I provide an example where senders have similar characteristics and the 
state is symmetrically distributed. This environment is an important benchmark because it deals 
with situations where no sender has an ex-ante advantage. In addition, it gives us a closed-form 
solution for senders’ equilibrium strategies and supports. The following definition formalizes 
what is meant by a symmetric environment.

Definition 7. In a symmetric environment,

i) the state is symmetrically distributed around zero, i.e., f (θ) = f (−θ) for all θ ∈ �;
ii) kjCj (r, θ) = kC(r, θ) for j ∈ {1, 2}, where k > 0 is finite and C(·, ·) satisfies C(θ + x, θ) =

C(θ − x, θ) for every θ ∈ � and x ∈R; and
iii) payoffs satisfy udm(θ) = −udm(−θ) and u1(θ) = −u2(−θ) for all θ ∈ �.28

Conditions i) to iii) are in addition to the assumptions in Section 3.

In symmetric environments the two senders differ only because they have conflicting interests. 
In other words, there is no particular reason why the decision maker should give more importance 
to the report of one sender than to that of the other. Intuition would suggest that, in a symmetric 
environment, the decision maker should assign the burden of proof equally between the senders. 
The next corollary confirms that this intuition is indeed correct in an adversarial equilibrium.

Corollary 1. In an adversarial equilibrium of a symmetric environment, s(r) = −r for every 
r ∈ [

r
¯ 2(0), r̄1(0)

]
.

The above corollary shows that, in adversarial equilibria of symmetric environments, the deci-
sion maker follows the most extreme recommendation. The burden of proof is equally distributed 
between the senders through a swing report function that is linear even though some fundamen-
tals, e.g., the cost functions, may be non-linear. Moreover, Corollary 1 implies that adversarial 
equilibria naturally have symmetric strategies in symmetric environments.29

With an explicit solution to the swing report function, we obtain a natural closed-form solution 
to the senders’ equilibrium strategies and supports. In applications, this is particularly useful be-

28 By definition of threshold τj (see Section 3), this last condition implies that τ2 = −τ1.
29 In adversarial equilibria, misreporting does not take place outside the set 

[
r
¯2(0), r̄1(0)

]
, and thus Corollary 1 ensures 

symmetry when it matters. Moreover, the corollary is reminiscent of results in all-pay auctions with complete information, 
where it is shown that only symmetric solutions exist with two bidders (Baye et al., 1996).
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Fig. 5. The partial probability density ψ1 as a function of r1 in state θ = 0 and for different cost structures. The environ-
ment is symmetric, and the cost functions are Cj (rj , θ) = |rj − θ |exp . With quadratic loss costs, exp = 2, the density ψ1
grows linearly as reports get further away from the truth (black dashed line). With absolute value linear costs, exp = 1, 
every misreport in the support has the same partial density (black dotted line). With concave costs, exp = 1/2, small 
misrepresentations are more likely than large lies (gray solid line), and when exp = 3 the opposite is true (black solid 
line).

cause in similar environments, such as in contests, typically little is known about mixed-strategy 
equilibria except in some special cases (see Siegel, 2009; Levine and Mattozzi, 2022).

I can now use this closed-form solution to examine the determinants and the characteristics of 
the senders’ misreporting behavior. The convexity or concavity of the cost function determines 
whether senders are more likely to misreport slightly or significantly. Recall that Sj (θ) is the 
support of sender j ’s strategy in state θ . By Step 1 (Appendix A.2.3) and Corollary 1 we obtain 
that, in a symmetric environment, misreporting behavior is described by the following partial 
density, for j ∈ {1, 2} and j �= i,

ψj (rj , θ) = k

−ui(θ)

dC(−rj , θ)

drj
, (3)

where ψj : �2 → R+
0 has support in Sj (θ) \ {θ} (see Appendix A.2.1 for more details). From 

(3) we can see that, if C(·, ·) is strictly convex, then we have dψ1(r1, θ)/dr1 > 0 for all θ ∈
S1(θ) \ {θ} and dψ2(r2, θ)/dr2 < 0 for all θ ∈ S2(θ) \ {θ}. This means that, conditional on 
misreporting, senders are more likely to deliver large misrepresentations of the state than small 
lies. By contrast, when senders have concave costs, misreports that are closer to the truth are 
more likely to be delivered than large misrepresentations.

The above observation may seem counter-intuitive at first. However, a sender’s misreporting 
density ψj is directly affected by his opponent’s marginal costs (see Step 1 in Appendix A.2.3). 
Equilibrium conditions require senders to be indifferent about misreporting slightly more. The 
marginal cost of misreporting must be compensated by a proportionally higher probability of 
inducing the sender’s preferred alternative. Since a sender’s density ψj is proportional to the 
marginal costs of his competitor, dC−j (s(rj ), ·)/drj , the former is higher when the latter is 
higher. In this symmetric environment, ψj(rj , ·) ∝ dC(−rj , ·)/drj . Fig. 5 depicts sender 1’s 
misreporting behavior in a symmetric environment for different concavities of the misreporting 
cost function.

6.2. Discussion and extensions

In this section, I discuss a number of extensions and variations of the baseline model to exam-
ine the non-robustness of receiver-efficient outcomes. The section begins by exploring the simi-
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Fig. 6. The panels illustrate the sender’s reporting strategy in two different equilibria of the monopolistic game. In the 
left panel the equilibrium is receiver-efficient, and the strategy of sender 1 is identical to the one he plays in the fully 
revealing equilibrium of the game with two senders, as discussed in Section 4. The right panel depicts the sender-preferred 
equilibrium, which is not receiver-efficient. There, the sender pools states around the decision maker’s threshold τdm = 0. 
Upon observing the pooling report r∗ , the decision maker is indifferent between the two alternatives.

larities and differences between the baseline model and its respective single-sender counterpart. 
Then, I proceed to consider extensions with more than two senders, information withholding, 
and uncertain preferences.

A single sender. Consider a variant of the model presented in Section 3 whereby only sender 1 
communicates with the decision maker. The rest of the model remains as before. In this monopo-
listic setting, there is a continuum of PBE. Notably, there is a receiver-efficient equilibrium where 
sender 1 plays the same strategy as in the fully revealing equilibrium depicted in Fig. 2, Section 4. 
That is, ρ1(θ) = r̄1(0) for all θ ∈ [0, ̄r1(0)], and ρ1(θ) = θ otherwise. In addition, there are equi-
libria that are not receiver-efficient. In the sender-preferred one, the monopolistic sender achieves 
persuasion by pooling states around the decision maker’s threshold τdm. Receiver-efficient out-
comes do not withstand refinements even when there is only a single monopolistic sender.30

Fig. 6 shows the sender’s reporting strategy in the receiver-efficient and in the sender-preferred 
equilibrium of the monopolistic setting.

In equilibria of the monopolistic game, the sender truthfully reveals extreme states and pools
moderate states that are close to the decision maker’s threshold τdm. This communication pat-
tern is similar in adversarial equilibria of the competitive game, where truthful revelation occurs 
in extreme states while misreporting and persuasion occur in moderate states.31 Equilibria of 
the monopolistic game are all in pure strategies. Intuitively, a monopolistic sender delivers the 
cheapest report that induces the selection of his favorite alternative, whenever this is feasible. 
This logic does not readily extend to competitive settings: pure-strategy equilibria of the baseline 
model with competition exist, but they do not survive refinements.

30 I study more in details this monopolistic setting in Vaccari (2023b), where, among other results, I show that the 
sender-preferred equilibrium is the only equilibrium of the monopolistic game to be perfectly sequential (Grossman and 
Perry, 1986). In addition, every non-revealing equilibrium defeats the receiver-efficient equilibrium (Mailath et al., 1993). 
Among the equilibria passing the Intuitive Criterion test, only the sender-preferred one is undefeated.
31 Adversarial equilibria also feature a probabilistic revelation of almost every state, including the moderate ones. This 
phenomenon does not take place in equilibria of the monopolistic game, where moderate states are pooled.
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More than two senders. Here, I discuss a version of the baseline model with more than two 
biased senders. Denote with N the set of senders and with r the collection of all reports, r =
{rj }j∈N . Suppose that at least one sender has a negative threshold and at least one sender has a 
positive threshold τj . The rest of the model is as before, including that the senders have common 
and perfect information. Like in the baseline model, there is competition between opposed-biased 
senders. The main difference is that now there is also a potential problem of coordination between 
like-biased senders.

Communication games with three or more perfectly informed senders admit fully revealing 
equilibria.32 To check if these equilibria are sensible in a similar way as adversarial ones, we 
first need to extend conditions (Dom) and (sM) to settings with more than two senders. Since 
there is no obvious way to do so, I focus on equilibria that satisfy this alternative condition: 
whenever possible, the decision maker believes that the state is somewhere in between the highest 
report delivered by senders with a positive threshold and the lowest report delivered by senders 
with a negative threshold.33 This alternative condition is relatively simple and mimics some 
implications of (Dom) and (sM).

The fully revealing equilibrium in truthful strategies is the only receiver-efficient equilibrium 
satisfying this alternative condition.34 However, senders’ coordination—which is possible when 
there are more than two competing senders—hinders fully revealing outcomes. This is the case, 
for example, when senders can collude or engage in non-binding pre-play communication. Intu-
itively, like-biased senders may agree to deviate from truthful reporting in a mutually beneficial 
and self-enforcing way. Bernheim et al. (1987) propose the notion of “coalition-proof equilib-
rium” as a solution concept for situations where players can freely discuss their strategies but 
cannot make binding commitments. The next result confirms the intuition that truthful equilibria 
are not immune to group deviations.35 Non-revealing equilibria remain important in a large class 
of economic environments beyond the two-senders case.

Proposition 3. Fully revealing equilibria in truthful strategies of the game with n > 2 senders 
are not coalition-proof.

Refinements. Section 4 and the two previous extensions show that receiver-efficient equilib-
ria exist with any number of senders. There are differences in the criteria used to eliminate 
these outcomes. In the one-sender case, receiver-efficient equilibria are neither perfectly se-
quential (Grossman and Perry, 1986) nor undefeated (Mailath et al., 1993). In the two-senders 

32 For cheap talk games, see Battaglini (2004). The same logic used there applies to this costly talk setting. In truthful 
FRE, senders report truthfully every state, that is, ρj (θ) = θ for every θ ∈ � and j ∈ N . Unilateral deviations are always 
detected, and thus cannot impede full revelation. These equilibria have unprejudiced beliefs: when all senders agree 
except for one, the decision maker is sure that only the disagreeing sender has deviated from the prescribed truthful 
strategy.
33 Denote by rL the highest report among those delivered by senders with τj > 0, and by rH the lowest report among 
those delivered by senders with τj < 0. This alternative condition requires the decision maker to believe that the state is 
surely between rL and rH whenever rL < rH .
34 Since the proof of Lemma 3 extends to this variant of the model with more than two senders, it follows that the 
truthful equilibrium is also the only robust equilibrium in pure strategies. The alternative condition does not rule out the 
plausibility of fully revealing and pure-strategy equilibria.
35 The type of group deviations considered by the notion of coalition-proofness is consistent with the model because 
it preserves its non-cooperative nature. Proposition 3 does not require the application of any additional condition, and it 
applies to cheap talk environments as well.
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case, fully revealing equilibria are neither unprejudiced (Bagwell and Ramey, 1991) nor ε-robust 
(Battaglini, 2002). With three or more senders, fully revealing equilibria in truthful strategies are 
not coalition-proof (Bernheim et al., 1987). For this last case, I further show that fully revealing 
equilibria in truthful strategies are the only receiver-efficient equilibria satisfying a condition that 
is a variation of (sM) and (Dom) for three or more senders.

Refinements used in one case have no bite or cannot be used in the other cases. For ex-
ample, the perfectly sequential and undefeated equilibrium refinements are defined only for 
single-sender settings, and cannot be readily extended to the multi-sender case. Likewise, un-
prejudiced beliefs and ε-robustness cannot be used when there is a single sender, and have no 
pruning power on the FRE in truthful strategy with three or more senders. The coalition-proof 
equilibrium has no power in the two-senders setting considered here because its adversarial con-
figuration prevents the formation of a coalition between senders. Similarly, no coalition can be 
formed when there is only a single sender.

Withholding information. The baseline model does not allow senders to withhold their private 
information or, analogously, to stay silent. Here, I discuss an extension that accommodates for 
information withholding. Let the senders’ report space be � ∪ {∅}, where ∅ corresponds to 
not delivering any report, withholding information, remaining silent, et cetera. Assume that, for 
every state θ ∈ �, sender j ’s cost of withholding information is Cj(∅, θ) = cj ≥ 0.36 The rest 
of the model remains as described in Section 3. Hereafter, I use “silence” and “withholding 
information” interchangeably.37

Adversarial equilibria can be extended to this augmented environment in a natural way. Con-
sider the senders’ reporting strategies in an adversarial equilibrium of the model where silence 
is not allowed; introduce the possibility of withholding information, and suppose that the de-
cision maker is skeptical about silence: when sender 1 (2) withholds information and sender 2 
(1) claims that the state is negative (positive), the decision maker selects the negative (positive) 
alternative.38 Since reporting truthfully is at least as cheap but also at least as good as with-
holding information, the original adversarial reporting strategies constitute an equilibrium also 
in this model’s extension. The same holds true for the receiver-efficient equilibrium depicted in 
Section 4.

The possibility of withholding information at no cost challenges the finding that receiver-
efficient outcomes lack robustness. Intuitively, introducing costless silence restores the possibil-
ity of babbling, allowing the decision maker to neglect reports delivered by a silent sender. In this 
case, there is a receiver-efficient equilibrium where the decision maker obtains information only 
from one sender, as the other one is always ignored and thus remains silent. After observing an 
unexpected report, the decision maker cannot extract the information she needs from the silent 
sender. This equilibrium breaks down once information withholding comes at a positive cost, 
no matter how small: conditional on the outcome, senders would rather report truthfully than 
stay silent. As a result, costly silence preserves the results in Section 4. The next proposition 
summarizes the takeaways from this model extension.

36 Withholding information may be a costly activity. For example, a sender that is known to be informed about the 
realized state may suffer from a reputation loss if he refuses to communicate. Alternatively, withholding information 
may require an active act of suppression, which takes up resources.
37 Emons and Fluet (2019) study an adversarial persuasion game where silence is costless while reporting is always 
costly. In their setting, some states are never revealed in equilibrium. This is in contrast with adversarial equilibria of the 
current setup, where almost every state is revealed with positive probability.
38 Formally, beliefs p are such that β(∅, r2) = -© for every r2 ≤ 0, and β(r1, ∅) = +© for every r1 ≥ 0.
22



F. Vaccari Journal of Economic Theory 213 (2023) 105740
Proposition 4. In the game where senders can withhold information: (i) there are no unpreju-
diced RE when silence is costly for both senders; (ii) there is an unprejudiced RE when silence 
is costless for at least one sender.

Uncertain preferences. All aspects of the baseline model are common knowledge except for 
the realized state, which is known only to the senders. Additional uncertainty may discourage 
misreporting, result in more transmission of information, and potentially restore the plausibility 
of receiver-efficient equilibria. This may be the case, for example, when senders are uncertain 
about the preferences of the decision maker. I show that such type of uncertainty does not nec-
essarily result in robust receiver-efficient equilibria, even when the state and report spaces are 
unbounded.

Consider a variant of the model where senders are uncertain about the decision maker’s 
threshold τdm, which is distributed according to the common knowledge pdf fdm. By contrast, 
the decision maker knows her own preferences. The distribution fdm has full support in 

[
t
¯
, t̄

]
, 

where τ2 > t̄ > t
¯
> τ1. The support of fdm ensures that senders have opposed biases. The rest 

of the model remains as before. Suppose that � ⊃ [
t
¯
, t̄

]
and senders’ preferences are such that 

r
¯2(t̄) < t

¯
< t̄ ≤ r̄1(t

¯
). This last assumption ensures that senders can deliver unambiguous recom-

mendations, as in the baseline model.39 Denote by �′ the game resulting from this variant of the 
baseline model. The next lemma shows that this model extension does not restore the existence 
of robust receiver-efficient equilibria.

Lemma 6. If a receiver-efficient equilibrium of �′ exists, then it is not unprejudiced.

7. Concluding remarks

This paper presents a model of adversarial communication between two perfectly informed 
senders and one uninformed decision maker. Senders can misreport information at a cost that is 
tied to the magnitude of misrepresentation. Misreporting costs represent, e.g., direct costs due 
to technological constraints or indirect costs due to expected reputation damages. The setting 
considered here covers several applications, including electoral campaigns, contested takeovers, 
lobbying, informative advertising, and judicial decision-making. The main results show that a 
minimal and natural belief structure generates robust equilibria with desirable properties, where 
information transmission is only partial. By contrast, equilibria where the decision maker obtains 
her complete-information payoff do not withstand refinements.

The analysis conducted in this paper provides a tractable and appealing approach to studying 
adversarial communication of information that is neither fully verifiable nor entirely cheap. Pre-
vious work shows that communication games typically display fully revealing equilibria when 
there are multiple senders or when misreporting is costly. By contrast, the analysis conducted 
here shows that revealing outcomes are not robust when the problem is quasi-judicial, even with 
two competing senders. This finding enables us to model situations where information asymme-
tries can effectively result in persuasion, even when misreporting is costly and senders’ reports 
can be cross-validated.

39 Specifically, it allows sender 1 (2) to deliver a report r1 ≥ t̄ (r2 ≤ t
¯
) even when the state is such that the decision 

maker unambiguously prefers the negative (positive) alternative. Similarly, the state space in the baseline model allows 
sender 1 to deliver reports r1 ≥ r̄1(0) and sender 2 to deliver r2 ≤ r2(0).
¯
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The results obtained in this paper can be readily applied to analyze the informative value 
of judicial procedures. In a seminal paper, Shin (1998) conjectures that the assumption of full 
verifiability plays a key role in determining the superiority of adversarial over inquisitorial judi-
cial procedures.40 We can validate this conjecture by modeling adversarial procedures with the 
framework studied in this paper. Findings in Sections 4 and 5 tell us that we can reject receiver-
efficient outcomes by establishing a natural language structure or on robustness grounds. Once 
we are left with non-revealing outcomes, there is space for inquisitorial procedures (i.e., infor-
mation acquisition) to dominate adversarial procedures. The conjecture of Shin (1998) is thus 
correct for any finite intensity of misreporting costs.41
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Appendix A

In the main text, I assume for simplicity that the state and report space coincide with the real 
line, i.e., � = R. However, the analysis carried in this paper only requires the state space to be 
large enough. Hereafter, I assume that

� ⊇ [
r
¯2(0), r̄1(0)

]
.

This assumption ensures that the information senders can transmit is not artificially bounded by 
restrictions in the reports that they can deliver.42 With this assumption, the senders are able to 
deliver reports that unequivocally signal whether the state is non-negative or non-positive.

Lemma 1. In every perfect Bayesian equilibrium satisfying (wM) we have that rj ≥ θ for all 
θ ≥ τj , and rj ≤ θ for all θ ≤ τj , j ∈ {1, 2}.

40 For example, “[. . . ] violations of the verifiability assumption will be an important limiting factor in qualifying our 
findings in favor of the adversarial procedure” (Shin, 1998, p. 403). Under the adversarial procedure, two parties with 
conflicting interests make their case to an uninformed decision maker. By contrast, the inquisitorial procedure requires 
the decision maker to adjudicate based only on her acquired information. The comparison is between a model where the 
decision maker gets information from two competing senders and one where she acquires it through an investigation.
41 In addition to the verifiability assumption, there are other modeling differences between my setting and that of Shin 
(1998): first, I assume that the senders are always perfectly informed about the state, while in Shin (1998) they may 
be uninformed or observe a noisy signal of the state; second, I consider a decision maker that is less informed than the 
senders, while in Shin (1998) every player is, on average, equally informed. In my setting, these differences give a relative 
advantage to the adversarial procedure, and therefore add further force to the potential superiority of the inquisitorial 
procedure.
42 For example, if max� < r̄1(0), then sender 1 cannot deliver reports that are strictly dominated by truthful reporting 
when the realized state is strictly negative.
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Proof. Consider a PBE satisfying (wM) and consider a state θ ≥ τ1. For sender 1, every re-
port r1 < θ is dominated by truthful reporting because C1(r1, θ) > 0 = C1(θ, θ) and (by (wM)) 
Udm(θ, r2) ≥ Udm(r1, r2) for every r2 ∈ �. Therefore, it must be that r1 /∈ S1(θ) for all r1 < θ

and θ ≥ τ1. A similar argument applies to sender 2 and to states θ ≤ τj , j ∈ {1, 2}. �
A.1. Receiver-efficient and pure-strategy equilibria

Lemma 2. There are no babbling equilibria. Misreporting occurs in every equilibrium.

Proof. Suppose that there is an equilibrium in which the decision maker’s strategy is independent 
of sender j ’s reports. Since misreporting is costly, sender j ’s best reply is to report truthfully in 
every state. As a result, it is not sequentially rational for the decision maker to ignore sender j ’s 
reports, contradicting that this is an equilibrium. The same line of logic applies to equilibria in 
which the decision maker’s strategy is independent of both senders’ reports. Therefore, there are 
no babbling equilibria.

Suppose by way of contradiction that there exists an equilibrium where misreporting never 
occurs, that is, where ρ1(θ) = ρ2(θ) = θ for every θ ∈ �. Consider such a truthful equilibrium 
and a state θ = ε > 0, where ε is small enough. To discourage deviations, off path beliefs must 
be such that β(ε, −ε) = +©. However, there always exists an ε > 0 such that, when the state is 
θ = −ε, sender 1 can profitably deviate from the prescribed truthful strategy by reporting r1 = ε, 
as u1(−ε) > k1C1(ε, −ε). This contradicts our supposition that there exists an equilibrium where 
misreporting never occurs. �
Lemma 3. An equilibrium is receiver-efficient if and only if it is in pure strategies.

Proof. Consider a pure-strategy equilibrium and suppose that it is not receiver-efficient, e.g., 
because β(ρ1(θ

′), ρ2(θ
′)) = -© for some θ ′ ≥ 0. In equilibrium, senders never engage in misre-

porting to implement their less preferred alternative with certainty, and therefore it must be that 
ρ1(θ

′) = θ ′. Posterior beliefs p must be such that β(r1, ρ2(θ
′)) = -© for all r1 ∈ (r

¯1(θ
′), ̄r1(θ

′)), 
as otherwise sender 1 would have a profitable deviation. The pair of reports (θ ′, ρ2(θ

′)) can in-
duce -© only if (ρ1(θ

′′), ρ2(θ
′′)) = (θ ′, ρ2(θ

′)) for some θ ′′ < 0. There is no θ ∈ [τ1, 0) such 
that sender 1 would misreport by delivering r1 = θ ′ ≥ 0 to implement -©, and therefore it must 
be that θ ′′ < τ1. Since there is always r ′

1 ∈ (r
¯1(θ

′), θ ′) such that C1(r
′
1, θ

′′) < C1(θ
′, θ ′′) and 

β(r ′
1, ρ2(θ

′′)) = -©, sender 1 has a profitable deviation in state θ ′′, contradicting that there exists 
a pure-strategy equilibrium that is not receiver-efficient.

Now consider a RE and suppose that it is not in pure strategies, but that there is a state θ ′ ∈ �

and a sender j ∈ {1, 2} such that Sj (θ
′) ⊇ {r ′

j , r
′′
j }, with r ′

j �= r ′′
j . Since in a RE we have that 

β(r ′
1, r

′
2) = β(r ′′

1 , r ′′
2 ) for every r ′

i , r
′′
i ∈ Si(θ), i ∈ {1, 2}, it must be that Cj(r

′
j , θ

′) = Cj (r
′′
j , θ ′). 

By Lemma 1, this is possible only if r ′
j = r ′′

j , contradicting that there exists a RE that is not in 
pure strategies. �
Proposition 1. There are no receiver-efficient equilibria with unprejudiced beliefs.

Proof. In a RE, senders play pure strategies (Lemma 3) and the decision maker always selects 
her preferred alternative as if she has complete information, that is, β(ρ1(θ), ρ2(θ)) = +© for all 
θ ≥ 0 and β(ρ1(θ), ρ2(θ)) = -© otherwise. Since misreporting is costly, senders report truthfully 
in states where their least preferred alternative is implemented: ρ2(θ) = θ for all θ ∈ [0, τ2] and 
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ρ1(θ) = θ for all θ ∈ [τ1, 0). However, there are no RE where ρj (θ) = θ for all θ ∈ [τ1, τ2]
and j ∈ {1, 2}; for otherwise, there would always be a state θ ∈ (τ1, τ2) and an off path pair of 
reports (r1, r2), r1 �= r2, such that a sender can profitably deviate from truthful reporting (see 
also Lemma 2). Therefore, in every RE either sender 1 misreports in some state θ ∈ [0, τ2), or 
sender 2 misreports in some θ ∈ (τ1, 0], or both.

Consider now a RE where ρ1(θ
′) �= θ ′ for some θ ′ ∈ [0, τ2). By Lemma 1, we have that 

ρ1(θ
′) > θ ′. To support the equilibrium, off path beliefs p must be such that β(r1, θ ′) = -© for all 

r1 ∈ [θ ′, ρ1(θ
′)) and β(ρ1(θ

′′), r2) = +© for all r2 ∈ (r
¯2(θ

′′), θ ′′] and θ ′′ ∈ [θ ′, τ2). This implies 
that there must be an open set S of non-negative states such that ρ1(θ

′′′) ≥ ρ1(θ
′) > θ ′′′ = ρ2(θ

′′′)
for all θ ′′′ ∈ S. It follows that, for every θ ′′′ ∈ S, the pair of reports (θ ′′′, θ ′′′) is off path. By 
Lemma 1, and since ρ2(θ) = θ for all θ ∈ [0, τ2] and ρ1(θ) = θ for all θ ∈ [τ1, 0), we have that 
posterior beliefs p are unprejudiced (Definition 3) only if p(θ | θ ′′′, θ ′′′) = 0 for all θ < 0. Unprej-
udiced beliefs imply that β(θ ′′′, θ ′′′) = +©, and sender 1 can profitably deviate by reporting the 
truth in state θ ′′′ ∈ S. A similar argument applies to RE where ρ2(θ

′) �= θ ′ for some θ ′ ∈ (τ1, 0]. 
Therefore, there are no RE (and, by Lemma 3, no pure-strategy equilibria) with unprejudiced 
beliefs. �
Lemma 4. If an equilibrium is ε-robust, then it has unprejudiced beliefs.

Proof. Consider the posterior beliefs pG,ε that the strategies φj of a PBE (see Section 5 for the 
notation used to describe mixed strategies) induce in an ε-perturbed game for some distribution 
G and sequence εn, i.e.,

pG,ε(θ | r1, r2) = f (θ)
pG,ε(r1, r2 | θ)

pG,ε(r1, r2)

= f (θ) [ε1ε2g1(r1)g2(r2) + ε1(1 − ε2)g1(r1)φ2(r2, θ) + (1 − ε1)ε2g2(r2)φ1(r1, θ)]

ε1ε2g1(r1)g2(r2) + ε1(1 − ε2)g1(r1)
∫
�

f (θ)φ2(r2, θ)dθ + (1 − ε1)ε2g2(r2)
∫
�

f (θ)φ1(r1, θ)dθ
.

As εn → 0+ the event in which both reports are wrongly delivered or observed becomes negli-
gible, and thus we have that pG,ε → pG,0+ , where

pG,0+(θ | r1, r2) = f (θ) [ε1g1(r1)φ2(r2, θ) + ε2g2(r2)φ1(r1, θ)]

ε1g1(r1)
∫
�

f (θ)φ2(r2, θ)dθ + ε2g2(r2)
∫
�

f (θ)φ1(r1, θ)dθ
. (4)

By (4) we obtain that, for any distribution G with full support and any sequence εn → 0+, 
pG,0+(θ | r1, r2) > 0 if and only if φj (rj , θ) > 0 for some j ∈ {1, 2}. By Definition 8 (and thus 
by Definition 3) we get that the limit beliefs pG,0+ are unprejudiced, and therefore every PBE of 
the game described in Section 3—and thus every equilibrium—that is ε-robust is supported by 
unprejudiced beliefs.43 �
Lemma 5. Receiver-efficient equilibria are not adversarial equilibria.

Proof. Consider a RE and suppose that it is also an AE. Conditions (Dom) and (sM) apply, im-
plying that β(r1, r2) = +© for every pair of reports such that rj ≥ 0 for j ∈ {1, 2}. Consider a state 

43 Notice that the proof of Lemma 4 readily extends to an n-sender version of the game, for any finite n ≥ 2. In particular, 
given a profile of reports (r1, . . . , rn) and a set of senders N = {1, . . . , n}, we have that pG,0+ (θ | r1, . . . , rn) > 0 if and 
only if φj (rj , θ) > 0 for n − 1 senders. This is consistent with the idea behind unprejudiced beliefs, where the decision 
maker conjectures that deviations are individual.
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θ ′ ≥ 0. Since the equilibrium is receiver-efficient, we have that β(ρ1(θ
′), ρ2(θ

′)) = +©. To pre-
vent deviations by sender 2, beliefs must yield β(ρ1(θ

′), r2) = +© for every r2 ∈ (r
¯2(θ

′), ̄r2(θ
′)). 

Because of (sM), it must be that ρ2(θ
′) = θ ′. It follows that ρ1(θ

′) = θ ′, as we have noticed 
before that β(θ ′, θ ′) = +© for every θ ′ ≥ 0. A similar logic applies to states θ ′ < 0, implying that 
both senders always report truthfully. This is in contradiction with Lemma 2. Therefore, a RE 
cannot be an AE. �
A.2. Adversarial equilibria

A.2.1. Notation for mixed strategies
Before analyzing adversarial equilibria, I first introduce some useful notation. To describe 

mixed strategies, I use a mixed probability distribution φj (rj , θ) that, for every state θ , assigns a 
mixed probability density to report rj by sender j . This specification allows me to describe the 
senders’ reporting strategies as mixed random variables whose distribution can be partly con-
tinuous and partly discrete. Mixed-type distributions that have both a continuous and a discrete 
component to their probability distributions are widely used to model zero-inflated data such as 
queuing times. For example, the “rectified Gaussian” is a mixed discrete-continuous distribution.

I denote the probability that sender j reports truthfully in state θ with αj (θ). I denote the prob-
ability (density) that sender j misreports by delivering report rj in state θ with ψj(rj , θ), where 
rj �= θ . Together, the partial probability functions αj(θ) and ψj(·, θ) determine the mixed prob-
ability distribution φj (·, θ) in a way that I explain more in details in the following paragraphs. 
The CDFs of φj and ψj are 	j(rj , θ) and �j(rj , θ), respectively.

Formally, I partition the support Sj (θ) of each sender’s strategy in two subsets, Cj (θ) and 
Dj (θ). To represent atoms in φj (θ), I define a partial probability density function αj(·, θ) on 
Dj (θ) such that 0 ≤ αj (rj , θ) ≤ 1 for all rj ∈ Dj (θ), and α̂j (θ) = ∑

rj ∈Dj (θ) αj (rj , θ). By 
contrast, the continuous part of the distribution φj(θ) is described by a partial probability density 
function ψj(·, θ) on Cj (θ) such that 

∫
rj ∈Cj (θ)

ψj (rj , θ)dθ = 1 − α̂j (θ). I set αj (r
′, θ) = 0 for all 

r ′ /∈Dj (θ) and ψj(r
′′, θ) = 0 for all r ′′ /∈ Cj (θ).

As we shall see (Lemma A.11 and Step 3), in every adversarial equilibrium Dj (θ) = {θ}
for all θ ∈ � and j ∈ {1, 2}. Therefore, for ease of notation, I set αj (θ) ≡ αj (θ, θ) = α̂j (θ). 
The score αj (θ) thus represents the probability that sender j reports truthfully in state θ ∈ �. 
The partial probability density functions αj(θ) and ψj(·, θ) determine the generalized density 
function φj (θ) through the well-defined mixed distribution44

φj (x, θ) = δ(x − θ)αj (θ) + ψj(x, θ),

where δ(·) is the Dirac delta generalized function.45

A mixed-strategy for sender j is a mixed probability measure φj(θ) : � → �(�) with support 
Sj (θ). I indicate with φj (rj , θ) the mixed probability assigned by φj (θ) to a report rj in state θ
that satisfies∫

rj ∈Sj (θ)

φj (rj , θ)drj = αj (θ) +
∫

rj ∈Cj (θ)

ψj (rj , θ)drj = 1.

44 Under this specification, even the “mass” αj (·) is a partial probability “density.”.
45 The Dirac delta δ(x) is a generalized function such that δ(x) = 0 for all x �= 0, δ(0) = ∞, and 

∫ ε
−ε δ(x)dx = 1 for 

all ε > 0.
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Sender j ’s expected utility from delivering rj when the state is θ in an adversarial equilibrium ω
is Wω

j (rj , θ).

A.2.2. Supporting lemmata

Lemma A.1. In an adversarial equilibrium, every report r ∈ [
r
¯ 2(0), r̄1(0)

]
has a swing report 

s(r) ∈ [
r
¯ 2(0), r̄1(0)

]
such that: (i) if r ≷ 0 then s(r) ≶ 0 and s(0) = 0; (ii) s(s(r)) = r; (iii) for 

every r ∈ [
r
¯ 2(0), r̄1(0)

]
, ds(r)/dr < 0; (iv) s (r̄1(0)) = r

¯ 2(0).

Proof. Consider a report r1 by sender 1 such that r1 ∈ (0, ̄r1(0)]. By (Dom) and (sM) we ob-
tain that Udm(r1, r

¯2(0)) < 0 < Udm(r1, 0), and therefore there exists r2 ∈ [r
¯2(0), 0) such that 

Udm(r1, r2) = 0. Thus, r2 = s(r1). A similar argument holds for a report r2 ∈ [r
¯2(0), 0). It fol-

lows that, for every r ∈ [
r
¯2(0), r̄1(0)

]
, there exists s(r) ∈ [

r
¯2(0), r̄1(0)

]
such that if r > 0 then 

s(r) < 0, and if r < 0 then s(r) > 0. From (Dom) and Definition 5 we obtain that s(0) = 0 and 
s (r̄1(0)) = r

¯2(0). From Definition 5 and point (i) we get that if r ′ = s(r) then r = s(r ′), and 
therefore s(s(r)) = r . By applying the implicit function theorem and (sM) to s(r), we obtain that 
ds(r)/dr < 0 for every r ∈ [

r
¯2(0), r̄1(0)

]
. �

Lemma A.2. In an adversarial equilibrium, truthful cutoffs are such that θl < 0 < θh and 
(θl, θh) ⊂ [τ1, τ2] ∩

[
r
¯ 2(0), r̄1(0)

]
.

Proof. By Lemma A.1 we have that s (r̄1(0)) = r
¯2(0) < 0 and, for every r ∈ [

r
¯2(0), r̄1(0)

]
, 

ds(r)/dr < 0. Moreover, dr
¯2(θ)/dθ > 0 and thus r

¯2(θ) > r
¯2(0) for every θ > 0. Since s(0) = 0, 

there is a state θ ′ ∈ (0, ̄r1(0)) such that s(θ ′) = r
¯2(θ

′). From Definition 5, we obtain that θ ′ =
θh ∈ (0, ̄r1(0)). Similarly, we get that θl ∈ (r

¯2(0), 0). Since r̄1(τ1) = τ1 < 0 and r
¯2(τ2) = τ2 > 0, 

it follows from Definition 6 that (θl, θh) ⊂ [τ1, τ2]. �
Lemma A.3. In an adversarial equilibrium: (i) Sj (θ) = {θ} for j ∈ {1, 2} and all θ /∈ (θl, θh); 
(ii) Sj (θ) contains more than one report for j ∈ {1, 2} and all θ ∈ (θl, θh).

Proof. I begin by proving that Sj (θ) = {θ} for all θ /∈ (θl, θh). Consider an AE and a state θ ≥ θh. 
Since by Lemma 1 we have that minS1(θ) ≥ θ ≥ θh, it must be that S2(θ) = {θ} as s(r1) ≤ r

¯2(θ)

for every r1 ∈ S1(θ). Since β(θ, θ) = +©, sender 1 best replies to r2 = θ with r1 = θ and therefore 
S1(θ) = {θ} as well. A similar argument applies to states θ ≤ θl , completing the first part of the 
proof. Note that when θ = θl , sender 1 is actually indifferent between reporting θl and r̄1(θl). 
Since this is a measure zero event, which is irrelevant to the analysis that follows, I will consider 
only the case where S1(θl) = {θl}, without any loss of generality.

I turn now to prove that Sj (θ) contains more than one report for every θ ∈ (θl, θh). Suppose by 
way of contradiction that S1(θ) = {r1} for some θ ∈ (θl, θh). By Lemma 1, we have that r1 ≥ θ . 
Consider first the case where θ ≤ r1 < 0. In an AE, sender 2 best replies to r1 ∈ [θ, 0) with r2 = θ

because, by (Dom) and (sM), we get β(r1, θ) = -©. However, sender 1 can profitably deviate from 
the prescribed strategy by delivering r ′

1 = s(θ), where 0 < s(θ) < r̄1(θ) (Lemmata A.1 and A.2), 
contradicting that S1(θ) = {r1}. Consider next the case where r1 ≥ 0 and r1 ≥ θ . If s(r1) ≤ r

¯2(θ), 
then it must be that S2(θ) = {θ}. By Definition 6 and Lemma A.1 we have that r

¯2(θ) < 0 and 
r1 ≥ s(r

¯2(θ)) > 0. Since r
¯2(θ) < θ , sender 1 can profitably deviate from the prescribed strategy 

by reporting either r ′
1 = s(θ) ∈ (0, r1) if θ < 0, or r ′

1 = θ if θ ≥ 0, as in both cases we get 
that β(r ′ , θ) = +© and C1(r

′ , θ) < C1(r1, θ). If instead s(r1) > r2(θ), then sender 2 must be 
1 1 ¯
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delivering some report r ′
2 ∈ (r

¯2(θ), s(r1)). Therefore, if r1 > θ , then sender 1 is strictly better 
off reporting θ rather than r1 because β(θ, r ′

2) = β(r1, r ′
2) = -© and C1(r1, θ) > 0 = C1(θ, θ). If 

instead r1 = θ , then θ ≥ 0 and since r
¯2(θ) ≥ r

¯2(0) we have that s(r ′
2) ≤ r̄1(θ) (Lemma A.1). In 

this case, sender 1 can profitably deviate from the prescribed strategy by reporting r ′
1 = s(r ′

2). 
Similar arguments apply to S2(θ) = {r2}, completing the proof. �
Lemma A.4. In an adversarial equilibrium, for every θ ∈ (θl, θh), supports Sj (θ) are such that

maxS1(θ) ≤ min
{
r̄1(0), r̄1(θ), s

(
r
¯ 2(θ)

)}
,

minS2(θ) ≥ max
{
r
¯ 2(0), r

¯ 2(θ), s (r̄1(θ))
}
.

Proof. Consider an AE and a θ ∈ (θl, θh). By the definition of reach (equations (1) and (2)) every 
r1 > r̄1(θ) is strictly dominated by truthful reporting, and thus maxS1(θ) ≤ r̄1(θ). Similarly, we 
obtain that minS2(θ) ≥ r

¯2(θ) and therefore by (sM) and by Definition 5 every r1 > s(r
¯2(θ))

is dominated by r ′
1 = s(r

¯2(θ)) and every r2 < s(r̄1(θ)) is dominated by r ′
2 = s(r̄1(θ)). Thus, 

maxS1(θ) ≤ s(r
¯2(θ)) and minS2(θ) ≥ s(r̄1(θ)). For every θ ∈ [0, θh) we have r̄1(θ) ≥ r̄1(0) and 

r
¯2(θ) ≥ r

¯2(0), and therefore minS2(θ) ≥ r
¯2(0). Since s(r

¯2(0)) = r̄1(0) (Lemma A.1), it follows 
from (sM) and Definition 5 that s(r2) ≤ r̄1(0) for every r2 ∈ S2(θ), and therefore maxS1(θ) ≤
r̄1(0). Similarly, we obtain that minS2(θ) ≥ s(r̄1(0)) for every θ ∈ (θl, 0). �
Lemma A.5. In an adversarial equilibrium, r2 /∈ S2(θ) for every r2 ∈ (s(minS1(θ)), θ) and θ >

0, and r1 /∈ S1(θ) for every r1 ∈ (θ, s(maxS2(θ))) and θ < 0.

Proof. Consider θ ∈ (0, θh). By Lemmata 1 and A.1 we have that s(minS1(θ)) < 0, and by 
Definition 5 we have that β(r1, r2) = +© for every r1 ∈ S1(θ) and r2 ∈ (s (minS1(θ)) , θ). For 
sender 2, every r2 ∈ (s (minS1(θ)) , θ) is strictly dominated by truthful reporting, and therefore 
r2 /∈ S2(θ). A similar argument applies to sender 1 for θ ∈ (θl, 0), and Lemma A.3 proves the 
case of θ /∈ (θl, θh), completing the proof. �
Lemma A.6. In an adversarial equilibrium, for every θ ∈ (θl, θh),

• reports r1 ∈ (minS1(θ), maxS1(θ)) have s(r1) > r
¯ 2(θ);

• reports r2 ∈ (minS2(θ), maxS2(θ)) have s(r2) < r̄1(θ).

Proof. Suppose not, and consider r ′
1 ∈ (minS1(θ), maxS1(θ)) for some θ ∈ (θl, θh) such that 

s(r ′
1) < r

¯2(θ). By Definition 6 we have that r
¯2(θ) < 0 and by Lemma A.1 we have that 

s(r
¯2(θ)) < r ′

1. This is in contradiction to Lemma A.4, which states that maxS1(θ) ≤ s(r
¯2(θ)). A 

similar argument holds for reports r2 ∈ (minS2(θ), maxS2(θ)), completing the proof. �
Lemma A.7. In an adversarial equilibrium, αj(rj , θ) = 0 for all rj ∈ (minSj (θ), maxSj (θ)), 
j ∈ {1, 2}, and θ ∈ (θl, θh).

Proof. Consider θ ∈ (θl, θh) and suppose that there is an AE ω where sender 1’s strategy φ1(θ)

has an atom α1(r
′
1, θ) > 0 in some report r ′

1 ∈ (minS1(θ), maxS1(θ)). By Lemma A.6, we 
have that s(r ′

1) > r
¯2(θ). The expected payoff of sender 2, Wω

2 (·, θ), is discontinuous around 
r2 = s(r ′

1) and therefore it must be that, for some ε > 0 small enough, (s(r ′
1), s(r

′
1) + ε) ∩

S2(θ) = ∅. There exists an ε′ > 0 small enough such that Wω(r ′′, θ) > Wω(r ′ , θ) for some 
1 1 1 1
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r ′′
1 ∈ (

s
(
s(r ′

1) + ε′) , r ′
1

)
, where by Lemma A.1 we have that s

(
s(r ′

1) + ε′) < r ′
1, thus contra-

dicting that this is an equilibrium. A similar argument applies to atoms in sender 2’s strategy, 
completing the proof. �
Lemma A.8. In an adversarial equilibrium, minS1(θ) = θ for all θ ≥ 0, and maxS2(θ) = θ for 
all θ ≤ 0.

Proof. Consider an AE ω and θ ≥ 0. By Lemma 1, it must be that minS1(θ) ≥ θ . Suppose 
by way of contradiction that minS1(θ) > θ . By Lemma A.3 it has to be that θ < θh and by 
Lemma A.5 we obtain that S2(θ) ∩ (s(minS1(θ)), θ) = ∅. Therefore, unless sender 2’s strategy 
has an atom α2(s(minS1(θ)), θ) > 0, we have that 	2(s(minS1(θ)), θ) = 	2(s(θ), θ). How-
ever, since β(r1, s(minS1(θ))) = +© for all r1 ∈ S1(θ) and C2(s(minS1(θ)), θ) > 0, it must be 
that α2(s(minS1(θ)), θ) = 0 as s(minS1(θ)) is strictly dominated by r2 = θ . Hence, we have 
that, for some ε > 0, Wω

1 (θ, θ) > Wω
1 (r1, θ) for every r1 ∈ [minS1(θ), minS1(θ) + ε) ∩ S1(θ), 

contradicting that there can be an AE with minS1(θ) > θ for a θ ≥ 0. A similar argument holds 
for sender 2 and θ ≤ 0, completing the proof. �
Lemma A.9. In an adversarial equilibrium, Sj (θ) \ {θ} contains more than one report for j ∈
{1, 2} and every θ ∈ (θl, θh).

Proof. Consider an AE ω and a state θ ∈ [0, θh). By Lemma A.8 we have that minS1(θ) =
θ , and by Lemma A.3 we have that S1(θ) contains more than one report. Suppose by way of 
contradiction that S1(θ) \ {θ} = {r1} for some r1 > 0. Since C1(r1, θ) > 0, it must be that, in 
equilibrium, r1 induces +© with strictly higher probability than truthful reporting. This implies 
that there is some r2 ∈ [s(r1), s(θ)) in the support of sender 2’s strategy, r2 ∈ S2(θ). Since reports 
that are further away from the realized state are more costly, it must be that α2(r

′
2, θ) > 0 for some 

r ′
2 ∈ [s(r1), s(θ)), and φ2(r2, θ) = 0 for all r2 ∈ [

s(r1), r
′
2

)
. But then Wω

1 (s(r ′
2), θ) > Wω

1 (r1, θ), 
contradicting that this is an equilibrium.

Consider now the case where θ ∈ (θl, 0) and suppose again that S1(θ) \ {θ} = {r1}. By 
Lemma A.3, we have that Sj (θ) contains more than one report for j ∈ {1, 2}, and therefore 
minS1(θ) = θ . By Lemmata A.4 and A.5 we have that r1 ≥ s(θ) > 0 and maxS2(θ) = θ . If 
r1 = s(θ), then sender 2 can profitably deviate from the prescribed strategy by always reporting 
θ − ε for some ε > 0 small enough. If instead r1 > s(θ), then it must be that S2(θ) ∩ [s(r1), θ) =
∅, as every r2 ∈ [s(r1), θ) would be strictly dominated by truthful reporting. Since S2(θ) con-
tains more than one report, there must be some r2 < s(r1) such that r2 ∈ S2(θ). Therefore, 
Wω

1 (s(θ), θ) > Wω
1 (r1, θ), contradicting that this is an equilibrium. A similar argument applies 

to S2(θ) \ {θ}, completing the proof. �
Lemma A.10. In an adversarial equilibrium, Sj (θ) \ {θ} is convex for all θ ∈ (θl, θh) and j ∈
{1, 2}.

Proof. Consider an AE ω and a state θ ∈ (θl, θh). By Lemma A.9 we have that Sj (θ) \ {θ}
contains more than one report, j ∈ {1, 2}. Suppose by way of contradiction that S1(θ) \ {θ} is 
not convex, but instead there are two reports r ′

1, r
′′
1 ∈ S1(θ) \ {θ} with r ′

1 < r ′′
1 , such that r1 /∈

S1(θ) \ {θ} for every r1 ∈ (r ′
1, r

′′
1 ). By Lemmata 1, A.1, and A.5 we have that r ′

1 > 0, r ′
1 ≥ s(θ), 

and s(r ′′
1 ) < s(r ′

1) < 0. Since C1(r
′′
1 , θ) > C1(r

′
1, θ) and dCj (r,θ)

dr
> 0 for every r > θ , it must 

be that every report r1 ≥ r ′′ such that φ1(r1, θ) > 0 induces the implementation of alternative +©
1
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with strictly higher probability than every report r ′′′
1 ≤ r ′

1 such that φ1(r
′′′
1 , θ) > 0. This is possible 

only if r2 ∈ S2(θ) for some r2 ∈ [s(r ′′
1 ), s(r ′

1)]. Since 	1(r1, θ) is constant for all r1 ∈ (r ′
1, r

′′
1 ), 

it must be that sender 2’s strategy has an atom α2(r2, θ) > 0 in some r2 ∈ (s(r ′′
1 ), s(r ′

1)], and 
φ2(r

′
2, θ) = 0 for all r ′

2 ∈ [s(r ′′
1 ), s(r ′

1)] such that r ′
2 �= r2. However, for some ε > 0 small enough 

we have that Wω
1 (s(r2), θ) > Wω

1 (r1, θ) for all r1 ∈ [r ′′
1 , r ′′

1 + ε) such that r1 ∈ S1(θ), where 
s(r2) < r ′′

1 , contradicting that this is an equilibrium. A similar argument applies to S2(θ) \ {θ}, 
completing the proof. �
Lemma A.11. In an adversarial equilibrium, the strategies φj (θ) have no atoms in Sj (θ) \ {θ}
for every θ ∈ (θl, θh) and j ∈ {1, 2}.

Proof. Consider an AE ω. Lemma A.3 shows that Sj (θ) contains more than one report for all 
θ ∈ (θl, θh) and Lemma A.7 shows that φj (θ) has no atoms in (minSj (θ), maxSj (θ)). Consider 
a state θ ∈ (θl, θh), and suppose that φ1(θ) has an atom in maxS1(θ), i.e., α1(maxS1(θ), θ) > 0. 
By Lemma A.4, we have that maxS1(θ) ≤ min{s(r

¯2(θ)), ̄r1(θ)} and minS2(θ) ≥ max{r
¯2(θ),

s(r̄1(θ))}. If minS2(θ) > s(maxS1(θ)), then Wω
1 (r1, θ) > Wω

1 (maxS1(θ), θ) for any r1 ∈
[s(minS2(θ)), maxS1(θ)). If minS2(θ) = s(maxS1(θ)), then, since sender 2’s expected pay-
off Wω

2 (·, θ) is discontinuous at r2 = s(maxS1(θ)), it must be that r ′
2 /∈ S2(θ) for all 

r ′
2 ∈ (s(maxS1(θ)), s(maxS1(θ)) + ε) and some small ε > 0. Otherwise, for some ε′ > 0, 

Wω
2 (s(maxS2(θ)) − ε′, θ) > Wω

2 (r ′
2, θ) for any r ′

2 ∈ [s(maxS1(θ)), s(maxS1(θ)) + ε]. How-
ever, this would contradict either Lemma A.9 or Lemma A.10, and therefore it would not be 
possible in an AE.

Suppose now that φ1(θ) has an atom in minS1(θ), i.e., α1(minS1(θ), θ) > 0. By Lemma A.8, 
if θ ≥ 0 then minS1(θ) = θ , and therefore let us suppose that θ ∈ (θl, 0) and that minS1(θ) > θ

when θ < 0. By Lemmata A.1, A.5, and A.8 we have that minS1(θ) ≥ s(θ) > 0. If minS1(θ) =
s(θ), then it must be that φ2(θ, θ) = 0, as Wω

2 (θ −ε, θ) > Wω
2 (θ, θ) for some ε > 0 small enough. 

But then the atom in minS1(θ) would be strictly dominated by truthful reporting as C1(s(θ), θ) >
0 and β(s(θ), r2) = -© for every r2 ∈ S2(θ), contradicting that this is an equilibrium. Consider 
now the case where minS1(θ) > s(θ). We have that 	1(r1, θ) = 0 for every r1 < minS1(θ), 
and by Lemma A.1 we have that s(minS1(θ)) < θ . Therefore, it must be that φ2(r2, θ) = 0 for 
every r2 ∈ [s(minS1(θ)), θ). However, this implies that, for sender 1, minS1(θ) is dominated by 
s(θ), contradicting that this can be an equilibrium. Similar arguments hold for atoms α2(r2, θ)

for r2 ∈ S2(θ) \ {θ}, completing the proof. �
Lemma A.12. In an adversarial equilibrium, S1(θ) is convex for all θ ≥ 0 and S2(θ) is convex 
for all θ ≤ 0.

Proof. Consider an AE ω and suppose by way of contradiction that S1(θ) is not convex for 
some θ ∈ [0, θh). By Lemma A.8 we have that minS1(θ) = θ , and by Lemma A.10 we have 
that S1(θ) \ {θ} is convex. Therefore, it must be that minS1(θ) \ {θ} > θ and φ1(r1, θ) =
0 for every r1 ∈ (θ,minS1(θ) \ {θ}). In equilibrium, every r1 > minS1(θ) \ {θ} such that 
φ1(r1, θ) > 0 must yield the implementation of alternative +© with strictly higher probability 
than truthful reporting, as C1(r1, θ) > 0. This is possible only if φ2(r2, θ) > 0 for some r2 ∈
[s (minS1(θ) \ {θ}) , s(θ)). However, for some ε > 0 small enough, it must be that φ2(r

′
2, θ) = 0

for every r ′
2 ∈ [s (minS1(θ) \ {θ}) , s(θ) − ε), as every such report r ′

2 is dominated by reporting 
s(θ) − ε. Therefore, there exists an ε′ > 0 such that Wω

1 (s(s(θ) − ε), θ) > Wω
1 (r ′

1, θ) for all 
r ′ ∈ [minS1(θ) \ {θ}, minS1(θ) \ {θ} + ε′), contradicting that this is an equilibrium. Lemma A.3
1
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considers the case where θ /∈ (θl, θh), and a similar argument applies to states θ ≤ 0 and support 
S2(θ). �
A.2.3. Proof of Proposition 2

Step 1. In an adversarial equilibrium, for every θ ∈ (θl, θh) and i, j ∈ {1, 2} with i �= j , sender j

delivers report rj ∈ Sj (θ) \ {θ} according to

ψj (rj , θ) = ki

−ui(θ)

dCi(s(rj ), θ)

drj
.

Proof. Consider an AE and a state θ ∈ (θl, θh). Given strategy φ1(θ), sender 2 gets an expected 
utility of Wω

2 (r2, θ) = (1 −	1(s(r2), θ))u2(θ) −k2C2(r2, θ) from delivering r2 ∈ S2(θ) \{θ}. By 
Lemmata A.10 and A.11 we have that Sj (θ) \ {θ} is convex and atomless. By Lemmata 1, A.2, 
and A.4, we have that Sj (θ) ⊂ [

r
¯2(0), r̄1(0)

]
for all θ ∈ (θl, θh), and therefore by Lemma A.1 we 

have that ds(r)/dr < 0 for all rj ∈ Sj (θ). Therefore, we can set 
dWω

2 (r2,θ)

dr2

∣∣
r2∈S2(θ)\{θ} = 0, and 

since φj (rj , θ) = ψj(rj , θ) for all rj ∈ Sj (θ) \ {θ} (Lemma A.11), we obtain the partial pdf

ψ1(s(r2), θ) = k2

−u2(θ)

dC2(r2, θ)

dr2

dr2

ds(r2)
= k2

−u2(θ)

dC2(r2, θ)

ds(r2)
.

By replacing r1 = s(r2) we obtain that ψ1(r1, θ) = k2−u2(θ)
dC2(s(r1),θ)

dr1
for r1 ∈ S1(θ) \ {θ}. Simi-

larly, we obtain that for r2 ∈ S2(θ) \ {θ}, ψ2(r2, θ) = k1−u1(θ)
dC1(s(r2),θ)

dr2
. �

Step 2. In an adversarial equilibrium, for every state θ ∈ (θl, θh), supports Sj (θ) are

S1(θ) = {θ} ∪ [
max {s(θ), θ} ,min

{
r̄1(θ), s

(
r
¯ 2(θ)

)}]
,

S2(θ) = {θ} ∪ [
max

{
r
¯ 2(θ), s (r̄1(θ))

}
,min {s(θ), θ}] .

Proof. Consider an adversarial equilibrium and a state θ ∈ [0, θh). Since for every θ ≥ 0 we have 
that θ ∈ S1(θ) (Lemma A.8) and both sets S1(θ) and S1(θ) \ {θ} are convex (Lemmata A.12 and 
A.10), it follows that S1(θ) = [θ, maxS1(θ)].

Lemma A.10 shows that also S2(θ) \{θ} is convex. Since minS1(θ) = θ , Lemma A.5 says that 
when θ > 0 we have that φ2(r2, θ) = 0 for all r2 ∈ (s(θ), θ), and therefore maxS2(θ) \{θ} ≤ s(θ)

for all θ ∈ (0, θh). Suppose that maxS2(θ) \ {θ} < s(θ). In this case, it must be that φ1(r1, θ) = 0
for every r1 ∈ (θ, s(maxS2(θ) \ {θ})), as for sender 1 every such a report r1 would be dominated 
by truthful reporting. This is in contradiction to Lemma A.12, and it must be that maxS2(θ) \
{θ} = s(θ) for every θ ∈ (0, θh). When θ = 0, we have that maxS2(0) = 0 (Lemma A.8).

Lemma A.11 shows that φ2(r2, θ) is atomless in S2(θ) \ {θ}. Therefore, for r2 ∈ S2(θ) \ {θ}
we have that 	2(r2, θ) = �2(r2, θ), and by using Step 1 we can write

	2(r2, θ)|r2∈S2(θ)\{θ} =
r2∫

minS2(θ)

ψ2(r, θ)dr = k1

u1(θ)
[C1(s(minS2(θ)), θ) − C1(s(r2), θ)] .

The probability that sender 2 misreports information in state θ ∈ (0, θh) is

	2(s(θ), θ) = k1
C1(s(minS2(θ)), θ). (5)
u1(θ)
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Since minS2(θ) ≥ r
¯2(θ) (Lemma A.4), it follows from Lemma A.1 that, for every θ ∈ (0, θh), 

s(minS2(θ)) < r̄1(θ). Lemma A.9 shows that the set S2(θ) \ {θ} is not a singleton, and since 
maxS2(θ) \ {θ} ≤ s(θ) it must be that minS2(θ) < s(θ). Therefore, by Lemma A.1 we have 
that s(minS2(θ)) ∈ (θ, ̄r1(θ)) for θ ∈ (0, θh). Finally, by the definition of reach we get that 
C1(r̄1(θ), θ) = u1(θ)/k1, and C1(r1, θ) < u1(θ)/k1 for every r1 ∈ [θ, ̄r1(θ)). It follows that 
	2(s(θ), θ) ∈ (0, 1) for every θ ∈ (0, θh). By using s(s(r)) = r and s(0) = 0 (Lemma A.1), 
when θ = 0 we obtain that 	2(s(0), 0) = 1 only if minS2(0) = r

¯2(0).
The above argument shows that θ ∈ S2(θ) and that φ2(θ) has an atom in r2 = θ of size 

α2(θ) = 1 − 	2(s(θ), θ). Lemma 1 implies that every pair of on path reports (r1, r2) such 
that rj ≥ 0, j ∈ {1, 2}, must yield β(r1, r2) = +©. By reporting truthfully when θ ≥ 0, sender 2 
obtains a payoff of Wω

2 (θ, θ) = u2(θ). It must be that maxS1(θ) ≤ s(minS2(θ)), as other-
wise every report r1 > s(minS2(θ)) would be dominated by s(minS2(θ)). Since φ1(θ) has 
no atom in s(minS2(θ)) > θ (Lemma A.11), by reporting r2 = minS2(θ) sender 2 (almost) 
always induces the selection of his preferred alternative -©, and gets an expected payoff of 
Wω

2 (minS2(θ), θ) = −k2C2(minS2(θ), θ).
In equilibrium, each sender must receive the same expected payoff from delivering any 

report that is in the support of its own strategy. Since by the definition of reach we ob-
tain C2(r

¯2(θ), θ) = −u2(θ)/k2, it follows that Wω
2 (minS2(θ), θ) = u2(θ) = Wω

2 (θ, θ) only 
if minS2(θ) = r

¯2(θ). For a θ ∈ [0, θh), we have that S2(θ) = [r
¯2(θ), s(θ)] ∪ {θ}. It also fol-

lows that maxS1(θ) = s(r
¯2(θ)): if maxS1(θ) < s(r

¯2(θ)), then r
¯2(θ) < s(maxS1(θ)) and every 

r2 < s(maxS1(θ)) would be strictly dominated by s(maxS1(θ)). Thus, S1(θ) = [θ, s(r
¯2(θ))]. 

Similar arguments apply to the case where θ ∈ (θl, 0), completing the proof. �
Step 3. In an adversarial equilibrium, for every state θ ∈ (θl, θh), strategies φj (θ) have an atom 
at rj = θ of size αj (θ), where

α1(θ) =
{

k2−u2(θ)
C2 (s(θ), θ) if θ ∈ [0, θh)

1 − k2−u2(θ)
C2 (s(r̄1(θ)), θ) if θ ∈ (θl,0],

α2(θ) =
{

1 − k1
u1(θ)

C1
(
s(r

¯ 2(θ)), θ
)

if θ ∈ [0, θh)
k1

u1(θ)
C1 (s(θ), θ) if θ ∈ (θl,0].

Proof. Consider an adversarial equilibrium and a state θ ∈ [0, θh). The proof of Step 2 shows 
that φ2(θ) has an atom in r2 = θ of size α2(θ) = 1 − 	2(s(θ), θ). From equation (5) and given 
minS2(θ) = r

¯2(θ), we obtain that

α2(θ) = 1 − k1

u1(θ)
C1(s(r

¯2(θ)), θ).

By Lemma A.11, sender 1’s strategy φ1(θ) admits an atom only in minS1(θ) = θ . We can use 
Step 1 to write

	1(r1, θ)|r1∈S1(θ) = α1(θ) +
r1∫

θ

ψ1(r, θ)dr

= α1(θ) + k2 [C2(s(r1), θ) − C2(s(θ), θ)] .
−u2(θ)
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Since maxS1(θ) = s(r
¯2(θ)), it must be that 	1(s(r

¯2(θ)), θ) = 1. By using s(s(r
¯2(θ))) = r

¯2(θ)

(Lemma A.1) and given that from the definition of reach we obtain C2(r
¯2(θ), θ) = −u2(θ)/k2, 

we have that

	1(s(r
¯2(θ)), θ) = α1(θ) + k2

−u2(θ)

[
C2(s(s(r

¯2(θ))), θ) − C2(s(θ), θ)
]

= α1(θ) + 1 − k2

−u2(θ)
C2(s(θ), θ) = 1,

from which we obtain that

α1(θ) = k2

−u2(θ)
C2(s(θ), θ).

A similar procedure can be used for θ ∈ (θl, 0), completing the proof. �
Lemma A.13. In an adversarial equilibrium, for every on path pair of reports (r1, r2) such that 
r2 = s(r1), the decision maker’s posterior beliefs are

p(θ | r1, r2) > 0 if and only if θ ∈ [max{r2, r̄
−1
1 (r1)},min{r1, r

¯
−1
2 (r2)}].

Proof. Consider an AE and a pair of reports (r1, r2) such that r̄1(0) ≥ r1 > 0 > r2 ≥ r
¯2(0). 

Given equilibrium supports in Step 2, all such pairs are on path (e.g., for θ = 0). Upon observing 
(r1, r2), the decision maker forms posterior beliefs p(θ | r1, r2). By Lemma 1, it must be that 
p(θ | r1, r2) = 0 for every θ /∈ [r2, r1]. By Lemma A.3, it must be that p(θ | r1, r2) = 0 for every 
θ /∈ [θl, θh]. By Step 2 we have that minS2(θ) ≥ r

¯2(θ) and maxS1(θ) ≤ r̄1(θ), and therefore 

p(θ | r1, r2) = 0 for every θ /∈
[
r̄−1

1 (r1), r
¯
−1
2 (r2)

]
, where from equations (1) and (2) we obtain 

that

r̄−1
1 (r1) = min {θ ∈ � |u1(θ) = k1C1(r1, θ)} ,

r
¯
−1
2 (r2) = max {θ ∈ � | − u2(θ) = k2C2(r2, θ)} .

From Step 2 we also have that, for every θ ∈ [0, θh), maxS1(θ) = s(r
¯2(θ)) ≤ r1(θ). Therefore, 

given the report r1 ∈ (0, ̄r1(0)], it must be that p(θ | r1, r2) = 0 for all θ such that s(r
¯2(θ)) < r1. 

By Lemma A.1 and since dr
¯2(θ)/dθ > 0, there is a state θ ′ such that s(r

¯2(θ
′)) = r1. De-

note such a state by t1(r1) := {θ ∈ � | s(r
¯2(θ)) = r1}, where t1(r1) > 0 and dt1(r1)/dr1 > 0. 

Similarly, denote t2(r2) := {θ ∈ � | s(r̄1(θ)) = r2}. Given equilibrium supports, it must be that 
p(θ | r1, r2) = 0 for all θ /∈ [t2(r2), t1(r1)].

By Lemma A.1 and since s(r
¯2(θh)) = θh (Definition 6), we obtain that t1(r1) ≤ θh for ev-

ery r1 ∈ [θh, ̄r1(0)], and therefore min{r1, t1(r1)} ≤ θh for all r1 ∈ (0, ̄r1(0)]. Similarly, we get 
that max{r2, t2(r2)} ≥ θl for all r2 ∈ [r

¯2(0), 0). We have that p(θ | r1, r2) = 0 for every θ /∈
[max{r2, ̄r

−1
1 (r1), t2(r2)}, min{r1, r

¯
−1
2 (r2), t1(r1)}], and by Step 2 we obtain that p(θ | r1, r2) ∝

f (θ) · φ1(r1, θ) · φ2(r2, θ) > 0 otherwise.
Consider now the case where r2 = s(r1) (or, by Lemma A.1, r1 = s(r2)). By definition, in 

state θ ′ = t1(r1) we have that s(r
¯2(θ

′)) = r1. We get that s(r1) = r
¯2(θ

′) = r2 and r
¯
−1
2 (r2) = θ ′ =

t1(r1). Similarly, we obtain that r̄−1
1 (r1) = t2(r2). For every pair of reports (r1, s(r1)), we have 

that p(θ | r1, s(r1)) > 0 if and only if θ ∈
[
max

{
r2, r̄

−1
1 (r1)

}
,min

{
r1, r

¯
−1
2 (r2)

}]
. �

After establishing the senders’ equilibrium supports and strategies, I can now proceed to study 
the decision maker’s posterior beliefs. It is sufficient to examine how posterior beliefs p shape 
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the swing report function s(r). By Lemma A.1, we have that s(r) ∈ [
r
¯2(0), r̄1(0)

]
for every 

r ∈ [
r
¯2(0), r̄1(0)

]
, with s(r) < 0 if r > 0, s(r) > 0 if r < 0, and s(0) = 0. Given the supports 

and the strategies as in Steps 1, 2, and 3, we obtain that every pair of reports (r1, r2) such that 
r
¯2(0) ≤ r2 < 0 < r1 ≤ r̄1(0) is on path. By Definition 5 and Lemma A.1 we have that, for a pair 
of reports (r1, r2 = s(r1)),

Udm(r1, s(r1)) = Udm(s(r2), r2) =
∫
�

udm(θ)p(θ | r1, s(r1))dθ = 0.

We can use p(r1, s(r1) | θ) = φ1(r1, θ) · φ2(s(r1), θ) and previous results to show how poste-
rior beliefs p pin down the swing report function s(r) in an adversarial equilibrium. The next 
proposition shows how the swing report function depends on the model’s parameters.

Step 4. In an adversarial equilibrium, the swing report function s(ri) is implicitly defined for 
i, j ∈ {1, 2}, i �= j , and ri ∈ [

r
¯ 2(0), r̄1(0)

]
, as

s(ri) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rj ∈ �

∣∣∣∣∣
min

{
r1,r

¯
−1
2 (r2)

}∫
max

{
r2,r̄

−1
1 (r1)

} f (θ)
udm(θ)

u1(θ)u2(θ)

dCj (rj , θ)

drj

dCi(ri , θ)

dri
dθ = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (6)

Proof. Given the equilibrium reporting strategies φj (rj , θ) = δ(rj − θ)αj (θ) + ψj (rj , θ), j ∈
{1, 2} (Steps 1, 2, and 3), the mixed probability distribution p(r1, r2 | θ) = φ1(r1, θ)φ2(r2, θ) is

p(r1, r2 | θ) = δ(r1 − θ)δ(r2 − θ)α1(θ)α2(θ) + δ(r1 − θ)α1(θ)ψ2(r2, θ)

+ δ(r2 − θ)ψ1(r1, θ)α2(θ) + ψ1(r1, θ)ψ2(r2, θ).

Consider a pair of reports (r1, r2) such that r̄1(0) ≥ r1 > 0 > r2 ≥ r
¯2(0) and r2 = s(r1) (as 

by Lemma A.1 we have that if r > 0, then s(r) < 0). Since Ci(θ, θ) = 0 for every θ ∈ �

and i ∈ {1, 2}, we obtain that ψj(s(θ), θ) = 0 for j ∈ {1, 2}, and therefore p(r1, s(r1) | θ) =
ψ1(r1, θ)ψ2(s(r1), θ).

The swing report s(r1) is defined in Definition 5 to be the report r2 ∈ � such that 
Udm(r1, r2) =

∫
�

udm(θ)p(θ | r1, r2)dθ = 0. By Lemma A.1 we know that s(r1) ∈ [r
¯2(0), 0). 

By Lemma A.13 we have that p(θ | r1, s(r1)) > 0 if and only if

θ ∈ [max{r2, r̄
−1
1 (r1)},min{r1, r

¯
−1
2 (r2)}].

Through Bayes’ rule, we can rewrite the condition Udm(r1, s(r1)) = 0 as Gs(r1, s(r1)) = 0, 
where

Gs(r1, r2) = 1

p(r1, r2)

min
{
r1,r

¯
−1
2 (r2)

}∫
max

{
r2,r̄

−1
1 (r1)

} udm(θ)f (θ)ψ1(r1, θ)ψ2(r2, θ)dθ.

By substituting for the equilibrium strategies ψj(rj , θ) as described in Step 1, we obtain the 
implicit definition of the swing report given in equation (6). �
Proof of Proposition 2. The proof follows directly from Steps 1 to 4. Part i) follows from 
Lemma A.3. Steps 1–3 provide a characterization of the senders’ reporting strategies and their 
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supports. The CDF 	j(rj , θ) is obtained by integrating φj (rj , θ) from minSj (θ) or −∞ to rj . 
Part iii) follows from Step 4 and the observation that, by construction, posterior beliefs p must 
satisfy conditions (sM) and (Dom). �
Corollary A.1. In an AE, the probability of full revelation and the probability that senders deliver 
the same report increase as the realized state is further away from zero.

Proof. Given the reporting strategies as in Proposition 2 (and Steps 1–4), the probability that 
senders deliver the same report in state θ is α1(θ)α2(θ). The probability that the decision maker 
fully learns the state is α1(θ) when θ ≥ 0 and α2(θ) otherwise. The proof follows directly from 
the following two derivatives.

dα1(θ)

dθ
=

{
k2

u2(θ)2
du2(θ)

dθ
C2 (s(θ), θ) + k2−u2(θ)

dC2(s(θ),θ)
dθ

> 0 if θ ∈ [0, θh)

− k2
u2(θ)2

du2(θ)
dθ

C2 (s(r̄1(θ)), θ) − k2−u2(θ)
dC2(s(r̄1(θ)),θ)

dθ
< 0 if θ ∈ (θl,0),

dα2(θ)

dθ
=

⎧⎨
⎩

k1
u1(θ)2

du1(θ)
dθ

C1
(
s(r

¯2(θ)), θ
) − k1

u1(θ)

dC1
(
s(r

¯2(θ)),θ
)

dθ
> 0 if θ ∈ [0, θh)

− k1
u1(θ)2

du1(θ)
dθ

C1 (s(θ), θ) + k1
u1(θ)

dC1(s(θ),θ)
dθ

< 0 if θ ∈ (θl,0). �
A.2.4. Proof of Theorem 1

Step 5. Adversarial equilibria are essentially unique.

Proof. The solution of equation (6) is unique and depends only on the model’s primitives 
udm(θ), f (θ), ui(θ), τi , ki , Ci(ri, θ), for i ∈ {1, 2}. Therefore, for every r ∈ [r

¯2(0), ̄r1(0)], the 
swing report s(r) is the same in every AE. It follows that the truthful cutoffs θl and θh, and the 
senders’ reporting strategies φj (θ) and supports Sj (θ), j ∈ {1, 2}, are also the same in all AE. 
Thus, all AE are strategy- and outcome-equivalent. �

To study whether there exist adversarial equilibria with unprejudiced beliefs I apply the 
following definition, which is adapted from Bagwell and Ramey (1991) to accommodate non-
degenerate mixed strategies.46

Definition 8. Given senders’ strategies φj , the decision maker’s posterior beliefs p are unprej-
udiced if, for every off path pair of reports (r1, r2) such that φj (rj , θ ′) > 0 for some j ∈ {1, 2}
and θ ′ ∈ �, we have that p(θ ′′ | r1, r2) > 0 if and only if there is a sender i ∈ {1, 2} such that 
φi(ri , θ ′′) > 0.

Lemma A.14. There exist adversarial equilibria with unprejudiced beliefs.

Proof. Consider an AE and an off path pair of reports (r1, r2). By Steps 1, 2, and 3, and by 
Lemma A.3, we obtain that the only pair of reports such that φj(rj , θ) = 0 for all θ ∈ � and 
j ∈ {1, 2} is (0, 0). For every other off path pair of reports, there is always a sender i such 
that φi(ri , θ) > 0 for some θ ∈ �. There are three types of off path pairs of reports that need 

46 Definition 3, introduced by Vida and Honryo (2021) and used in Section 4, is a weaker version of Definition 8. 
Lemma 4 applies to unprejudiced beliefs as in both definitions.
36



F. Vaccari Journal of Economic Theory 213 (2023) 105740
to be considered: those that violate Lemma 1, such as when r1 > r2; those that violate Step 2, 
such as when r1 > s(r

¯2(r2)); those that violate Lemma A.3, such as when r1 �= r2 for some 
(r1, r2) /∈ (θl, θh)

2.
For beliefs to be unprejudiced, Definition 8 requires that for every such off path pair of reports 

we have that p(θ ′′ | r1, r2) > 0 if and only if there is a sender i ∈ {1, 2} such that φi(ri , θ ′′) > 0. 
Since p(θ ′′ | r1, r2) can be arbitrarily small, I can focus on the decision maker’s beliefs that only 
one sender is deviating. Specifically, I will consider some posterior beliefs p′ which, given an 
off path pair of reports (r1, r2) and provided that φj (rj , θ) > 0 for some θ ∈ � and j ∈ {1, 2}, 
rationalize deviations as originating with certainty from one specific sender i. If there is an AE 
with such posterior beliefs p′, then there exists an AE with posterior beliefs p′′ (e.g., a small 
perturbation of p′) that satisfy Definition 8 (and hence also Definition 3).

First, if 0 ≤ r1 < r2 (resp. r1 < r2 ≤ 0), then set p′ such that the decision maker believes 
that sender 1 (resp. 2) is the deviator. Given the equilibrium strategies, it must be that sender 2
(1) is reporting truthfully, and therefore p′ leads to β(r1, r2) = +© ( -©). Consider now the case 
where r1 < 0 < r2, and set p′ such that the decision maker believes that only sender 1 (or 2) 
is deviating. It must be that sender 2 (1) is reporting truthfully, and therefore β(r1, r2) = +©
( -©). Second, consider an off path pair of reports such that, for x ≥ 0, we have that r2 > x and 
r1 ≥ s(r

¯2(x)) (resp. r1 < y ≤ 0 and r2 ≤ s(r̄1(y))). If the decision maker believes that sender 1
(2) is the deviator, then it must be that θ = r2 (θ = r1) and therefore β(r1, r2) = +© ( -©). Finally, 
consider an off path pair (r1, r2) /∈ (θl, θh)

2 with r1 �= r2. If both r1, r2 ≥ θh (resp. r1, r2 ≤ θl), 
then, by inferring that only one sender is deviating, the decision maker believes that θ ≥ θh > 0
(θ ≤ θl < 0) and selects β(r1, r2) = +© ( -©).

Since p′ is consistent with conditions (Dom) and (sM), and since given p′ no sender is bet-
ter off deviating from the prescribed equilibrium strategies, it follows that there are AE with 
unprejudiced beliefs as defined in Definitions 3 and 8. �

The next result confirms that there exist adversarial equilibria supported by unprejudiced be-
liefs (as in both Definition 3 and 8) that are also ε-robust.47

Step 6. There are adversarial equilibria with unprejudiced beliefs that are also ε-robust.

Proof. Consider an ε-perturbed game with sequence εn and full support distributions Ĝ =
(Ĝ1, Ĝ2) such that ĝ1(r1) ≈ 0 for all r1 < 0 and ĝ2(r2) ≈ 0 for all r2 > 0. This means that it 
is relatively unlikely that the decision maker will misinterpret the report of sender 1 (resp. 2) to 
be negative (resp. positive). By equation (4), the limit beliefs p̂0+ induced by the strategies of an 
AE after the decision maker observes a pair of reports (r1, r2) such that 0 ≤ r1 < r2 are

p̂0+(θ | r1 ≥ 0, r2 > 0) ≈ f (θ)
δ(r2 − θ)α2(θ)

f (r2)α2(r2)
.

Therefore, the CDF P̂0+ = ∫
p̂0+(θ | r1, r2)dθ is such that

P̂0+(θ | r1 ≥ 0, r2 > 0) ≈
{

0 if θ < r2

1 if θ ≥ r2.

47 Since ε-robustness implies unprejudiced beliefs, it would be sufficient to show that there exist adversarial equilibria 
that are ε-robust. Step 6 simply remarks that the two refinements are different.
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As εn → 0+ and for every off path pair of reports that are both positive, the decision maker 
is almost sure that the realized state coincides with the report of sender 2. Similarly, we obtain 
that P̂0+(r1 < 0, r2 ≤ 0) ≈ 0 for all θ < r1 and ≈ 1 otherwise, and by Lemma 4 we have that 
p̂0+(θ | r1 < 0, r2 > 0) > 0 only for θ ∈ {r1, r2}. Therefore, the limit beliefs p̂0+ are arbitrarily 
close to the posterior beliefs p′ in the proof of Lemma A.14, and can support an AE. Since an AE 
is also a PBE, by Lemma 4 we obtain that some adversarial equilibria with unprejudiced beliefs 
are ε-robust. �
Step 7. An adversarial equilibrium always exists.

Proof. Given strategies φj (rj , θ) = δ(rj − θ)αj (θ) +ψj (rj , θ) as in Steps 1 and 3, with support 
Sj (θ) as in Step 2, posterior beliefs p(θ | r1, r2) are such that the swing report function s(r) is as 
in Step 4. Given s(r), strategies φj (rj , θ) are optimal by construction, and no sender j ∈ {1, 2}
is better off deviating from φj (rj , θ). For every primitive of the model satisfying the conditions 
outlined in Section 3, there must exist an adversarial equilibrium as defined by Definition 1. �
Proof of Theorem 1. The proof follows directly from Steps 5–7. Part iii) is implied by Steps 5
and 6. �
A.3. Example and extensions

Corollary 1. In an adversarial equilibrium of a symmetric environment, s(r) = −r for every 
r ∈ [

r
¯ 2(0), r̄1(0)

]
.

Proof. The proof follows directly from Step 4: consider a symmetric environment and sup-
pose that s(r) = −r . Given a report r ∈ (0, ̄r1(0)), the interval of integration in (6) has 
max{−r, ̄r−1

1 (r)} = − min{r, r
¯
−1
2 (−r)}. Since the integrand in (6) is symmetric around zero, we 

obtain that Gs(r, −r) = 0, confirming that indeed s(r) = −r . �
Proposition 3. Fully revealing equilibria in truthful strategies of the game with n > 2 senders 
are not coalition-proof.

Proof. For a proof, see Vaccari (2023a). �
Proposition 4. In the game where senders can withhold information: (i) there are no unpreju-
diced RE when silence is costly for both senders; (ii) there is an unprejudiced RE when silence 
is costless for at least one sender.

Proof. Consider the model’s extension where senders can withhold information at a cost cj > 0, 
j ∈ {1, 2}. Suppose there exists a RE where information withholding takes place on the equilib-
rium path. In a RE, given the senders’ strategies, the decision maker selects alternative +© when 
θ ≥ 0, and alternative -© otherwise. Since both silence and misreporting are costly, the equilib-
rium must be such that sender 2 reports truthfully when θ ≥ 0, and sender 1 reports truthfully 
when θ < 0. As a result, information withholding is either performed by sender 1 in some θ ≥ 0
and/or by sender 2 in some θ < 0.

Suppose there is a RE where r2 = θ for all θ ≥ 0, while r1 = ∅ for some θ ′ ≥ 0 (the proof is 
similar for the other case). To sustain this RE, beliefs must assign β(θ ′, θ ′) = -© to all θ ′ ≥ 0 such 
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that ρ1(θ
′) = ∅. An argument similar to that in the proof of Proposition 1 shows that this cannot 

be a RE: sender 1 can deviate by reporting truthfully when the strategy prescribes to stay silent. 
From the pair of reports (θ ′, θ ′), the decision maker infers that sender 1 has deviated from the 
equilibrium strategy because sender 2 delivers r2 = θ ′ only in state θ ′, whereas sender 1 never 
delivers θ ′ on path. After learning from sender 2 that θ ′ ≥ 0, the decision maker must select +©, 
contradicting that β(θ ′, θ ′) = -©. As a result, there are no unprejudiced RE when silence is costly 
for both senders.

Consider now a model’s extension where sender 2 can withhold information at no cost, c2 = 0, 
and focus on the RE with the following strategies: sender 1 plays the same reporting strategy as 
in Fig. 2 (Section 4), whereas sender 2 always stays silent (the proof for the case c1 = 0 is 
similar). The beliefs of the decision maker are such that, no matter what sender 2 reports, she 
selects +© when r1 ≥ r̄1(0), and selects -© otherwise. Sender 2 cannot gain by deviating from 
his withholding strategy, for the decision maker would anyway ignore his reports.48 The off 
path beliefs supporting this RE do not suffer from the problems outlined in Section 4. To see 
this, consider the out-of-equilibrium contingency where the decision maker observes the pair of 
reports (r ′

1, ∅) for some r ′
1 ∈ [0, ̄r1(0)). Since sender 2 always stays silent, such an off path pair 

of reports cannot be originating from a double deviation. The decision maker would understand 
that sender 1 is the deviator but, differently from the FRE considered in Section 4, now she 
cannot learn the realized state from sender 2. The decision maker can reply to any report of 
sender 1 that is lower than r̄1(0) by selecting -©, under the belief that such a report may have 
been delivered in some negative state. Individual deviations by sender 2 are always detectable, 
and the state’s sign is always revealed by sender 1’s equilibrium reporting strategy. As a result, 
this RE is unprejudiced. �
Lemma 6. If a receiver-efficient equilibrium of �′ exists, then it is not unprejudiced.

Proof. In every equilibrium of �′, misreporting occurs in some state outside 
(
t
¯
, t̄

)
. Suppose 

by way of contradiction that ρj (θ) = θ for all θ /∈ (
t
¯
, t̄

)
and j ∈ {1, 2}. By Lemma 1, senders 

play monotonic reporting strategies in equilibrium, i.e., supS2(θ) ≤ θ ≤ infS1(θ).49 Therefore, 
it must be that β

(
t̄ , t̄

) = +© and, to discourage deviations, beliefs must be such that β
(
t̄ , t

¯

) = +©. 
Since t̄ < r̄1(t

¯
), sender 1 can profitably deviate by reporting r1 = t̄ when θ = t

¯
, contradicting the 

supposition.
Next, consider a RE of �′. By definition of RE, it must be that for every θ ∈ � and rj ∈ Sj (θ)

the decision maker selects β(r1, r2) = +© if θ ≥ τdm, and selects β(r1, r2) = -© otherwise. When 
θ ≥ t̄ , the decision maker selects +© on the equilibrium path, as t̄ ≥ τdm surely. Consequently, 
when θ ≥ t̄ , truth-telling is strictly dominant for sender 2, who instead prefers action -©. For a 
similar reason, sender 1 reports truthfully in every state θ < t

¯
. Since in every equilibrium there 

must be some misreporting, it has to be the case that sender 1 misreports in some state θ ≥ t̄ , 
sender 2 misreports in some θ < t

¯
, or both.

Suppose that, in this RE, sender 1 misreports in some state θ ′ ≥ t̄ . As argued before, sender 2 
reports truthfully in that state, i.e., ρ2(θ

′) = θ ′ �= ρ1(θ
′). By Lemma 1, in equilibrium sender 2 

never delivers reports that are strictly higher than the realized state. That is, supS2(θ) ≤ θ . As 
a result, the report r2 = θ ′ is never delivered by sender 2 when the state is lower than θ ′. Since 

48 Costless silence effectively restores the possibility of babbling (cfr. Lemma 2).
49 Since Lemma 1 follows from (wM), it naturally applies to this variation of the baseline model as well.
39



F. Vaccari Journal of Economic Theory 213 (2023) 105740
sender 2 reports truthfully in every θ ≥ t̄ , the report r2 = θ ′ is on path only when the state is 
θ ′. By contrast, the pair of reports (θ ′, θ ′) is off path because sender 1 misreports in state θ ′. To 
sustain this RE, beliefs must be such that β(θ ′, θ ′) = -©, for otherwise sender 1 would prefer to 
not misreport in state θ ′. However, these off path beliefs have the same issues discussed in Sec-
tion 4: if we require the decision maker to conjecture deviations as originating from one sender 
only (whenever possible), then upon observing the pair (θ ′, θ ′) she should infer that sender 1 per-
formed the deviation. For otherwise, the decision maker must believe that sender 2 purposefully 
deviated from the prescribed equilibrium strategies by delivering a strictly dominated report. 
Given that sender 2 truthfully reports θ ′ only when the state is θ ′, the decision maker learns the 
true state after observing the off path pair of reports (θ ′, θ ′). Consequently, she selects action 
+© because θ ′ ≥ t̄ , contradicting that β(θ ′, θ ′) = -©. A similar argument applies to RE where 
sender 2 misreports in some state θ ′′ < t

¯
. As a result, if there is a RE of �′, then it is not unprej-

udiced. �
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