Enrpapr rEgE

i i g T} u T

LT A

Figure 4: Membership function for the fuzzy aggregator
owaRain.

sorted in ascending order, thus the highest values
get the highest weights.

* The sub-clause AGGREGATE performs the aggrega-

tion, by summing all products of an item srd by
its weight w.
The resulting aggregated value, aliased as av, is
then checked against the membership function de-
fined by the clause POLYLINE, to obtain a mem-
bership. The polyline is depicted in Figure 4. No-
tice the shape, which is aimed at checking peaks
of rain: below 200 mm, the membership is 0; be-
tween 200 and 250 mm, the membership raises
quickly to 0.7, meaning that, after 250 mm, it is
likely a peak; then, the membership progressively
increases, thus denoting hard peaks of rain at 600
mm.

4.3 Multiple Aggregated Values

Listing 3 reports a further complex fuzzy aggregator,
whose name is weightedMemberships. The goal is
to aggregate memberships to fuzzy sets, provided that
an array of weights is given. We now describe it.

 The aggregator receives two parameters:
memberships is the array of memberships
to aggregate; w is the array of weights.

e The size of the two vectors must be the same,
because w contains the weight for each item in
memberships. This constraint is expressed by the
novel clause PRECONDITION: if this clause is not
satisfied, the aggregation is not performed and an
error is raised.

e In the clause FOR ALL, the sub-clause LOCALLY
multiplies the m item by its weight (in the position
P0S). This value is aliased as wm.

* Two aggregated values must be computed: the
first one is named am and is obtained by summing

Enhancing Soft Web Intelligence with User-Defined Fuzzy Aggregators

3. CREATE FUZZY AGGREGATOR weightedMemberships

PARAMETERS
memberships TYPE ARRAY,
W TYPE ARRAY
PRECONDITION COUNT (memberships) = COUNT (w)

FOR ALL m IN memberships
LOCALLY m * w[POS] AS wm
AGGREGATE wm AS am
AGGREGATE w [POS] AS aw

EVALUATE am / aw;

Listing 3: J-CO-QL™: fuzzy aggregator
weightedMemberships.

all the values wn computed by the clause LOCALLY;
the second one is named aw and is obtained by
summing all the weights in the array w.

The clause EVALUATE assembles the two aggre-
gated values, by dividing am by aw.

By construction (the array memberships contains
memberships) the result is in the range [0, 1], so it
is already a membership. Since we do not want to
modify it, no polyline is defined.

4.4 Semantic Model

We conclude this section by formalizing the rich se-
mantic model of fuzzy aggregators in J-CO-QL™.

* A fuzzy aggregator is defined by means of a tuple

(LV,AV,eval Expr, Points, Params, Precond)

where LV is the (possibly empty) set of “local val-
ues”, AV is the (non empty) set of “aggregated val-
ues”, eval Expr is the expression to evaluate with
aggregated values, Points is the array of points
that constitute the polyline, params is the list of
parameters of the aggregator. Precond is the pre-
condition: if it does not hold on Params, the ag-
gregator is not evaluated.

Each local value [v; € LV is obtained as
lvj=lej(e,POS, Params)

where le; is the expression used to evaluate the

local value; le; can be seen as a function of an

item e and of its position POS in the array, as well

as of the list of parameters.

An aggregated value avy € AV is evaluated as
avy = X.cyaei(e, pos(e), LV, Params)

where aey is the expression used to evaluate the
local value to aggregate; notice that ae; depends
on the item e, its position in the array, the set of
local values and the list of parameters. The sum is
performed for each item e in the V vector, where
V € Params.

 The final membership u is obtained as

u = Polyline(Points,eval Expr(AV, Params))
where the expression evalExpr depends on the
set AV of aggregated values and on the list of

263

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

Oigrerie Dt Pt b

&

i 3
Zengors :! Errichsd q ﬂ :! Pt S P T TS
SEnsor:
i 2 1
.ﬁ 2l Grouped
l'% J' Fimasurement=
Cienhpres g 5

EI Irdegrated
|

Pl rermerky
Figure 5: Preliminary Web-Intelligence process.

parameters.

The resulting value passes through the
functionPolyline, which receives the list Points
of points specified in the clause POLYLINE (if
missing, we assume that Points = [(0,0), (1,1)]).

The reader can see that, based on this semantic
model, in J-CO-QL™ it is possible to define a broad
range of fuzzy aggregators. As far as we know, this is
a novelty in the panorama of (soft) query languages.

In Section 5, we will show how to exploit fuzzy
aggregators for soft querying data in J-CO-QL™.

S CASE STUDY AND QUERY

This section shows how to use the previously defined
fuzzy aggregators to actually query a JSON data set.
We introduce the case study (Section 5.1); then, we
present the J-CO-QL™ query in details (Section 5.2).

5.1 Case Study

The case study derives from the one we considered
in (Fosci and Psaila, 2022b). In that work, the case
study had to collect data from meteorological sen-
sors and integrate them with registry data. The raw
data were downloaded on-the-fly from an institutional
Open-Data portal' and then pre-processed by a ded-
icated J-CO-QL™ script to be integrated with geo-
graphical information.

In this work, we exploit the same Open-Data portal,
but we downloaded and pre-processed rain measure-
ments; in other words, we performed an activity of

'Open-Data portal of Regione Lombardia
https://www.dati.lombardia.it/

264

Web Intelligence that is depicted in Figure 5, by ex-
ecuting a pool of J-CO-QL" scripts that generate the
source data set for the remainder of this paper. For the
sake of space and since this pre-processing task is out
of the scope of this paper, we quickly summarize it.

1. A collection of 1261 documents describing mete-
orological sensors is downloaded from the Open-
Data portal>. Each document reports the identi-
fier, the typology of measurement (rain, temper-
ature, and so on), the coordinates and other less
interesting data related to one sensor. The name
of the city where the sensor is located is not re-
ported.

2. Each sensor document is enriched with the city in
which the sensor is located, by calling the online

and freely-accessible GeoName service?.

3. A second collection of 5,179,417 documents is
downloaded from the Open Data portal*, describ-
ing the measurements made by sensors in the
period from 01/05/2023 to 31/05/2023. Each
document reports the identifier of the sensor that
performed the measurement, the pure numerical
value and the timestamp. No ficld regarding the
typology (rain, temperature, etc) of the measure-
ment is present.

4. Measurements made by the same sensor are
grouped together: a novel collection of documents
is obtained, such that a document corresponds to
a sensor; it contains the sensor identifier and an
array of measurements (made by that sensor) with
their timestamp.

5. Finally, the collection of sensors is joined with the
collection of grouped measurements: basically,
a document fully describes a sensor and reports
the array of measurements; only rain sensors are
selected. A collection of 207 documents is ob-
tained, related to 903,027 measurements, which
constitutes the initial collection for our case-study.
The collection is saved within a JSON store, with
name MeasuredRain.

Figure 6 reports a document in this collection: no-
tice the array field named rainData (highlighted by a
blue box), which contains simple documents describ-
ing measurements of rain (the field value reports mil-
limeters of rain). Clearly, each single sensor is de-
scribed by one single document.

Zhttps://www.dati.lombardia.it/Ambiente/Stazioni-
Meteorologiche/nf78-nj6b
3https://www.geonames.org/export/ws-overview.html

“https://www.dati.lombardia.it/ Ambiente/Dati-sensori-
meteo/647i-nhxk

4. USE DB Webist2023
ON SERVER jcods 'http://127.0.0.1:17017"';

5. GET COLLECTION lMesauredRain@Webist2023;

o

. FILTER
CASE WHERE WITH .rainData
GENERATE
CHECK FOR
FUZZY SET Si
USING inte

1tRain
n (EXTRACT _ARRAY (
ue FROM ARRAY .ra

FUZZY SET PeaksOfRa
USING owaRain (EXTRACT_ARRAY (
lue FROM ARRAY .raidData)),
FUZZY SET Wanted
USING weight ships (MEMBERSHIP_ ARRAY (
[PeaksOfRain, SignificantRain]), [2, 11])
ALPHACUT 0.8 ON Wanted
BUILD {

d,
HIP_TO (Wanted)
}

DEFUZZIFY;

/. SAVE AS PeaksAndLongRain@Webist2023;

Listing 4: J-CO-QL™: retrieval and soft querying.

Once the input collection is ready, the problem to
address in the case study might be the following.

Problem 1. Given the measurements of rain collected
in the MeasuredRain collection, find out those sen-
sors that measured high peaks of rain, possibly with
significant cumulative rain.

Problem 1 can be thought as a soft query.

Query 1. Consider the universe of sensors and two
fuzzy sets in it: the first one is named PeaksOfRain
and denotes those sensors that measured peaks of
rain, the second one is named SignificantRain
and denotes sensors that measured a significant
amount of rain in the monitored period. A third fuzzy
set that is named Wanted denotes those sensors that
are in the fuzzy set PeaksOfRain (with weight 2)
and possibly in the fuzzy set SignificantRain
(with weight 1). Specifically, we are interested in sen-
sors whose membership to the fuzzy set Wanted is no
less than 0.8.

Clearly, in order to evaluate the memberships of
sensors to the desired fuzzy sets, it is necessary to ag-
gregate measurements of rain.

5.2 Query

Listing 4 actually performs Query 1; notice that the
first line number is 4, because the three definitions
of fuzzy aggregators reported in previous listings are
part of the query itself. Hereafter, we present it.

Acquiring Data. Line 4 specifies the database to
connect with. Specifically, notice that the database

Enhancing Soft Web Intelligence with User-Defined Fuzzy Aggregators

"city" : "Osio Sopra",
"province" : "BG",
"sensorId" : 5856,

"latitude" : 45.6338645090807,

"longitude" : 9.55608425579086,
"rainData" g
{
"date" : "12/05/2023 21:00:00",
"value" g 2.2
ho
{
"date" : "24/05/2023 17:00:00",
"value" : 47.8
}
]
}
Figure 6: Example of document in the starting

MeasuredRain collection.

webist2023 is managed by J-CO-DS, the JSON doc-
ument store provided by the J-CO Framework (see
Section 3).

On Line 5, the instruction GET COLLECTION
actually retrieves he content of the collection
MeasuredRain from the database Webist2023; the
collection becomes the new temporary collection of
the process.

Soft Querying with Fuzzy Aggregators. The in-
struction FILTER on Line 6 of Listing 4 actually per-
forms the soft query. Hereafter, we explain it.

e The clause CASE WHERE selects (in a Boolean
way) those documents that have the field
rainData. The remainder of the instruction will
work on these documents.

* The block GENERATE actually generates the output
documents, by possibly performing several ac-
tions, including evaluating memberships to fuzzy
sets, through the clause CHECK FOR.

* The clause CHECK FOR contains many different
branches FUZZY SET, one for each fuzzy set un-
der consideration. We have three branches FUZZY
SET on line 6.

* The first branch FUZZY SET evaluates the mem-
bership to the fuzzy set SignificantRain. To
do this, the soft condition USING (which actu-
ally provides the membership to the fuzzy set un-
der consideration) exploits the fuzzy aggregator
integrateRain defined in Listing 1.

To call the fuzzy aggregator, an array of num-
bers must be provided as actual parameter: since
the array field rainData contains nested docu-
ments; the special function EXTRACT_ARRAY cre-
ates a novel array of numbers by projecting the ar-
ray field rainData on the inner (numerical) field
value.

The membership provided by the fuzzy aggre-
gator integrateRain becomes the membership

265

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

"city" : "Osio Sopra",
"province" : "BG",
"sensorId" : 5856,
"latitude" : 45.6338645090807,
"longitude" : 9.55608425579086,
"rainData" B
{
"date" : "12/05/2023 21:00:00",
"value" 1 2.2
b
{
"date" : "24/05/2023 17:00:00",
"value" 1 47.8

}
1,
"~fuzzysets" : {

"PeaksOfRain"

"SignificantRain"

"Wanted"

}

}

: 0.930466311,
: 0.754000000,
: 0.871644207

Figure 7: Example of temporary document generated by the
instruction FILTER on Line 6 before the block BUILD.

of the current JSON document to the fuzzy set
SignificantRain.

The field “fuzzysets is added to the JSON doc-
ument, so as to report the computed membership.

* The second branch FUZzY SET evaluates the
membership of the current document to the fuzzy
set PeaksOfRain, through the fuzzy aggregator
OwaRain (reported in Listing 2).

Apart from the fact that the aggregator OwaRain
performs an OWA aggregation (instead of a cumu-
lative aggregation) the branch behaves similarly to
the previous one: the aggregator is called by pass-
ing the array of values obtained by projecting the
array rainData on the inner field value by means
of the special function EXTRACT_ARRAY; then, the
computed membership becomes the degree to the
fuzzy set PeaksOfRain.

Definitely, the goal of he fuzzy set PeaksOfRain
is to denote (through the membership) those sen-
sors that measured a peak of rain; the OWA ap-
proach allows for doing that, because the items
with the highest values (typically, two or three)
gain the greatest weights; consequently, many
days of rain with few millimeters of rain do not
contribute significantly to the aggregated mem-
bership: in contrast, two days with heavy rain on
a mass of dry days strongly contribute to obtain
high membership.

A second field is added into the field “fuzzysets,
denoting the membership to the novel fuzzy set.

e The third branch FUZZY SET evaluates the de-
gree of the current JSON document to the fuzzy
set Wanted. The goal is to combine the mem-
berships to the fuzzy sets PeaksOfRain and
SignificantRain in such a way the former con-
tributes with weight 2, while the latter contributes
with weight 1.

266

"city" : "Osio Sopra",
"province" : "BG",
"sensorId" : 5856,
"latitude" : 45.6338645090807,
"longitude" : 9.55608425579086,
"Wanted" : 0.871644207
}
Figure 8: Example of document saved in the

PeaksAndLongRain collection.

Clearly, the fuzzy aggregator (reported in List-
ing 3) weightedMemberships is exploited, but
this time it is necessary to create an “array of
memberships”: this is done by the special func-
tion MEMBERSHIP_ARRAY. Specifically, this func-
tion creates a novel array by taking the previ-
ously calculated memberships to the listed fuzzy
sets (i.e., PeaksOfRain and SignificantRain),
whose values are taken from the special field
“fuzzysets. The second actual parameter is a
constant array that reports the weights to apply
(i.e.,2 and 1, respectively); this way, requirements
in Query 1 are met.

The resulting membership becomes the member-
ship degree to the fuzzy set Wanted.

The third and final field is added to the field
“fuzzysets, with the membership to the fuzzy
set Wanted.

* The clause ALPHACUT discards JSON documents
whose membership to the fuzzy set Wanted is less
than 0.8. This way, only documents that describe
sensors that actually measured peaks of rain and
possibly significant rain during the monitored pe-
riod (or very close to this situation) are selected.

* The final block BUILD restructures the output doc-
uments and the option DEFUZZIFY removes the
special filed ~“fuzzysets, so as documents be-
come again classical crisp JSON documents.

Saving the Results. The resulting collection, which
contains documents describing sensors of interest on
the basis of Problem 1, is finally saved by Line 7. The
collection is named PeaksAndLongRain.

6 CONCLUSIONS

In this paper, we enhanced the potential application
of Soft Web Intelligence by introducing the concept of
“user-defined fuzzy aggregator”. The concept allows
users of the J-CO-QL™ language that are involved
in tasks of Soft Web Intelligence (enabled by the J-
CO Framework) to directly perform complex aggre-
gations of array fields in JSON documents, so as to
directly obtain memberships to fuzzy sets by aggre-

gating raw data; definitely, sophisticated soft queries
are made possible.

The paper resumes the vision of Soft Web Intel-
ligence, then introduces the novel statement CREATE
FUZZY AGGREGATOR, by presenting three different ex-
amples of aggregators, together with its semantic
model. Then, through a case study, a short yet sophis-
ticated query is presented, which exploits all the three
previously defined fuzzy aggregators for performing
a complex soft query on rain data.

As a future work, we will finish to investigate the
definition of user-define fuzzy aggregators, so as to
cope with very complex situations; in this sense, we
also plan to build a library of fuzzy aggregators to
distribute with the J-CO Framework. Furthermore,
we plan to investigate how web scraping tools could
be effectively integrated within Soft Web Intelligence:
indeed, we expect that these tools represent some-
how uncertainty about the data they extract from Web
pages, because this uncertainty could be easily man-
aged with soft computing and soft querying. Defi-
nitely, although we already demonstrated the effec-
tiveness of the J-CO Framework for integrating ge-
ographical data sets (see (Fosci and Psaila, 2022a)),
we want to further push its capabilities towards soft
querying, specifically by allowing users to define their
complex constructs (see (Fosci and Psaila, 2023)).

The framework is available on a Github page’.

REFERENCES

Alahakoon, D. and Yu, X. (2015). Smart electricity me-
ter data intelligence for future energy systems: A sur-
vey. IEEE Transactions on Industrial Informatics,
12(1):425-436.

Bringas, P. G., Pastor, I., and Psaila, G. (2019). Can
blockchain technology provide information systems
with trusted database? the case of hyperledger fabric.
In I C. on Flexible Query Answering Systems, pages
265-277. Springer, Cham.

Dombi, J. and Jénds, T. (2022). Weighted aggregation sys-
tems and an expectation level-based weighting and
scoring procedure. European Journal of Operational
Research, 299(2):580-588.

Farahbod, F. and Eftekhari, M. (2012). Comparison of
different t-norm operators in classification problems.
arXiv preprint arXiv:1208.1955.

Fosci, P. and Psaila, G. (2022a). Soft integration of geo-
tagged data sets in j-co-ql+. ISPRS International Jour-
nal of Geo-Information, 11(9):484.

Fosci, P. and Psaila, G. (2022b). Towards soft web intelli-
gence by collecting and processing json data sets from

3Github repository of the J-CO Framework:
https://github.com/JcoProjectTeam/JcoProjectPage

Enhancing Soft Web Intelligence with User-Defined Fuzzy Aggregators

web sources. In Proceedings of the 18th I. C. on Web
Inf. Systems and Technologies.

Fosci, P. and Psaila, G. (2023). Soft querying powered by
user-defined functions in j-co-ql+. Neurocomputing,
546:126311.

Han, J. and Chang, K.-C. (2002). Data mining for web in-
telligence. Computer, 35(11):64-70.

Kacprzyk, J. and Zadrozny, S. (2010). Soft computing and
web intelligence for supporting consensus reaching.
Soft Computing, 14(8):833-846.

Li, H. and Yen, V. C. (1995). Fuzzy sets and fuzzy decision-
making. CRC press.

Poli, V. S. R. (2015). Fuzzy data mining and web intelli-
gence. In I. Conf. on Fuzzy Theory and Its Applica-
tions (iFUZZY), pages 74-79. IEEE.

Psaila, G. and Fosci, P. (2018). Toward an anayist-
oriented polystore framework for processing json geo-
data. In Int. Conf. on Applied Computing 2018, Bu-
dapest; Hungary, 21-23 October 2018, pages 213—
222. IADIS.

Reddy, P. V. S. (2010). Fuzzyalgol: Fuzzy algorithmic lan-
guage for designing fuzzy algorithms. J. of Computer
Science and Engineering, 2(2):21-24.

Yager, R. R. (1988). On ordered weighted averaging ag-
gregation operators in multicriteria decisionmaking.
IEEE Transactions on systems, Man, and Cybernet-
ics, 18(1):183-190.

Yao, Y., Zhong, N., Liu, J., and Ohsuga, S. (2001). Web
intelligence (wi) research challenges and trends in the
new information age. In Asia-Pac. C. on Web Intelli-
gence, pages 1-17. Springer.

Zadeh, L. A. (1965). Fuzzy sets. Information and control,
8(3):338-353.

Zadeh, L. A. (2004a). A note on web intelligence, world
knowledge and fuzzy logic. Data & Knowledge Engi-
neering, 50(3):291-304.

Zadeh, L. A. (2004b). Web intelligence, world knowledge
and fuzzy logic—the concept of web iq (wiq). In L
C. on Knowledge-Based and Intelligent Inf. and Eng.
Systems, pages 1-5. Springer.

Zhang, Y.-Q. and Lin, T. Y. (2002). Computational web
intelligence (cwi): synergy of computational int. and
web technology. In W. C. on Comp. Int.., volume 2,
pages 1104-1107. IEEE.

Zhong, N., Liu, J., Yao, Y., Wu, J.,, Lu, S., Qin, Y., Li, K,,
and Wah, B. (2006). Web intelligence meets brain in-
formatics. In I. Ws. on Web Intelligence Meets Brain
Informatics, pages 1-31. Springer.

267

