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e-mail: tomasz.garbowski@up.poznan.pl

2 Department of Civil and Environmental Engineering, Politecnico di Milano
piazza Leonardo da Vinci 32, 20133 Milano (MI), Italy

e-mail: giuseppe.cocchetti@polimi.it

3 Department of Engineering and Applied Sciences, Università degli studi di Bergamo
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Abstract. In the broad field of Inverse Analysis and Structural Identification, it is nowadays of
a large interest the study of Gaussian Processes, as a reliable and efficient optimisation method,
particularly helpful toward the identification of a global optimum point, under the conditions of
complicated functions to be optimised. In the present contribution, a specific case study is con-
sidered, focusing on a historical road reinforced concrete arched bridge, located in Northern
Italy, employing dynamic modal properties, deciphered from in-situ measurements, previously
acquired under operational traffic conditions, by a standard wired accelerometer system, placed
at the deck level. Aiming at the identification and diagnosis of the bridge structure, three main
methodological steps are herein considered: the adoption of a FEM model of the structure (in
the linear dynamic framework), the definition of an appropriate discrepancy function, based
on measured and numerically computed quantities (natural frequencies and mode shapes of the
bridge), and the investigation of such a discrepancy function, toward a consistent selection of an
optimisation strategy for the identification of sought parameters (Young’s moduli and mass den-
sities of diverse elements of the structure). The presented developments, within the framework of
methodological optimisation approach by Gaussian Processes, and achieved results display a
rather efficient perspective, with reference to the considered case study, toward inverse analysis
for structural diagnosis, in the context of strategic (historical) infrastructures.
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1 INTRODUCTION

In a Structural Identification context, it is nowadays of a large and growing interest the pos-
sibility to effectively estimate model parameters, starting from experimental measurements,
toward reliable model calibration, for subsequent employment and predictions. Within gen-
eral and various approaches (see, e.g., [1, 2]), a significant relevance is assumed by Gaussian
Processes, employable toward the Inverse Analysis goal as optimisation tools, particularly ad-
vantageous, from a computational and robustness point of view, to tackle complicated identifi-
cation problems featuring local minima difficulties (see, e.g.,[3, 4, 5, 6, 7]). Such approaches
have been proven to be particularly efficient in various analyses, regarding different engineer-
ing application fields, such as Environmental Engineering (see, e.g., [8]) and Biomechanical
Engineering (see, e.g., [9]).

Classical Inverse Analysis problems are usually tackled also in Civil Engineering research
and applications, e.g. toward the identification of mechanical properties of structural ele-
ments, for design or diagnosis purposes. In this field, the suitable adoption of in situ testing
and consistent computational modelling, and their reliable combination, represent a fundamen-
tal step together with numerical optimisation for robust and high quality parameter estima-
tions (see, e.g., at a local structural scale [10, 11] or at a global structural scale [12, 13, 14]).
Within Civil Engineering application fields, the dynamic testing of structures in regular oper-
ative conditions plays a significant role toward Structural Health Monitoring purposes. Such
research branch strictly correlates Inverse Analysis and Structural Identification during vi-
bration experiments or operational state measurements of the structure, aiming at the esti-
mation of modal properties of a structure by Operational Modal Analysis, as proposed, e.g.,
in [15, 16, 17, 18, 19, 20, 21, 22, 23].

In combination of innovative Inverse Analysis, based on Gaussian Processes optimisation,
and dynamic modal input measurements, the present paper develops an investigation toward
model calibration in a Structural Dynamics context for a Reinforced Concrete bridge. Specifi-
cally, the considered case study focuses on a historical reinforced concrete arched bridge, Brivio
bridge, located in Northern Italy [24]. The bridge, both for hits historical value and its crucial,
currently active, infrastructural role, has recently been the subject of a thorough study sup-
ported by experimental campaigns, followed by response signal processing and deciphering
(see, e.g., [25, 26, 27, 28]) and by property identification, model calibration and structural di-
agnosis (see, e.g., [29, 30, 31, 32]).

The main goals of the present work aim at defining a complete and robust Inverse Analy-
sis procedure able to efficiently tackle a complex structural identification problem relying on
dynamic modal measurements only, taking advantage of a global optimisation approach, as
provided by Gaussian processes. With specific reference to the considered case study, the in-
vestigation is devised for an efficient and automated methodology toward structural diagnosis or
current operative condition assessment. Moreover, from a more general standpoint, the analysis
procedure may be extended, either as a methodological guideline and application approach, to
related structures in Civil Engineering research fields, combined to Structural Health Monitor-
ing purposes.

The paper is organised as follows. In Section 2 the methodological approach adopted for
Inverse Analysis is presented, focusing both on the Gaussian Processes strategy (Section 2.1)
and on the specific selection of objective function to be investigated (Section 2.2). Section 3
describes the selected case study, namely Brivio bridge, from the structural, modelling and ex-
perimental testing standpoints. As an application of the proposed approach to the specific case
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study, in Section 4, the main results of the developed analyses are collected and discussed,
providing relevant comments. Furthermore, general remarks are outlined in Section 5, gather-
ing global observations and proposing possible future research perspectives, toward achieving
effective Inverse Analysis procedures.

2 INVERSE ANALYSIS INVESTIGATION RELYING ON DYNAMIC MODAL MEA-
SUREMENTS

According to the aims aforementioned in the Introduction, in the current section, the pro-
posed methodology is discussed from a general point of view, both for the selected optimisa-
tion approach, namely Gaussian Processes (Section 2.1), and for a proper choice of the objec-
tive function, to be minimised within an Inverse Analysis strategy, specifically conceived to
rely only on dynamic modal measurements, toward structural mechanical parameter estimation
(Section 2.2).

2.1 Methodological optimisation approach by Gaussian Processes

Gaussian Processes represent a reliable and efficient optimisation method, particularly help-
ful toward the identification of a global minimum point, under conditions of severely com-
plicated functions to be optimised. In the current section, a brief theoretical introduction to
the approach is provided; further details may be found, e.g., in [3, 4, 5, 6], also illustrated by
applications, e.g., in [8, 9].

Gaussian Processes can be illustrated by a linear regression model, which consists of a com-
bination between a linear function of model parameter vector w and a non–linear function of
input data vector x:

y(w,x) =
M∑

m=1

wmφm(x) (1)

where φm(x) is a fixed set of basis functions of the input data variables (e.g., polynomial or
radial basis functions [33, 34]).

For N given learning training patterns (xn, tn), being xn the input vector and tn the obser-
vation response value for n = 1, . . . , N , model parameter vector w of the linear combination
may be obtained by the penalised least–squares method, namely:

w = (ΦTΦ+ αI)−1ΦTt (2)

where ΦN×M is a method design matrix, with elements defined as φm(xn), and I is the identity
matrix of order M . Regularisation parameter α (usually called hyperparameter, in the process
jargon) can be computed by using a validation set or by maximising the evidence of dataset
p(t|α), with respect to α, within a Bayesian inference framework [5].

The Gaussian Process model shall consistently be derived by reformulating the linear model
in terms of a dual representation, where the learning process is achieved by a minimisation of a
regularised error, defined through a N ×N symmetric Gram matrix:

K = ΦΦT = k(x,x′) (3)

4251



Tomasz Garbowski, Giuseppe Cocchetti, Aram Cornaggia, Rosalba Ferrari, and Egidio Rizzi

where elements of the matrix correspond to a kernel function k(x,x′). Such definition allows
for a prediction associated to a new input vector x∗, namely:

GP (x∗|x, t, α) = k∗(x,x
∗)T(K + αI)−1t (4)

where k∗(x,x
∗) holds the role of a covariance vector between a new input x∗ and the whole

set of other inputs.
Therefore, a Gaussian Process approach may be interpreted, according to Bayesian theory, as

a dual representation of a linear combination model, while the kernel function may be conceived
as a covariance function. Consistently, the regression model allows for the prediction of target
variable y(x∗), for each new input vector x∗. The evaluation of conditional distribution p(y|t),
associated to Gaussian Process, requires the definition of relevant mean and covariance, as:

x̄∗ = kTC−1t (5)

σ2(x∗) = x̄∗ − kTC−1k (6)

C(x,x′) = K +
1

β
I (7)

where β is the variance parameter of the target distribution and CN×N is the covariance matrix,
defining likelihood of input x and x′, which should give rise to strongly correlated values of
y(x) and y(x′) in the output space.

Any function suitable to generate a specific non–negative covariance matrix can be used as
a covariance kernel function for any ordered set of input vectors; a stationary, non–isotropic
squared exponential covariance function may be selected, as given by:

k(x,x′) = ν exp

(
−1

2

M∑
m=1

γm(xm − x′
m)

2

)
+ b (8)

where ν controls the vertical scale of the problem, γm provides a different scaling factor for
each m–th dimension, b represents the deviation control factor. Such hyperparameters display
a rather important role, directly related to the model sensitivity with respect to the input param-
eters, therefore allowing to measure the importance of the input parameters.

The definition of a covariance function allows for the Gaussian Process prediction of new
input vectors, provided that hyperparameters are effectively calibrated, e.g. by the maximisation
of a log–likelihood function:

δ = [β, ν, γ1, . . . , γM , b]T (9)

log p(t|δ) = 1

2
log |C| − 1

2
tC−1t− N

2
log 2π (10)

as possibly efficiently optimised by gradient based algorithms (e.g., a Levenberg–Marquart Al-
gorithm or a Trust Region Algorithm).
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2.2 Study on the objective function

In a Inverse Analysis approach, a fundamental step is the proper selection of an objective
function f(θ), as a measure of the discrepancy between the numerical model and the real object;
therefore, the minimisation of such a function shall lead to obtain the sought parameters (θ) of
the model.

In the present study, according to a previous selection [29], the objective function is based on
dynamic modal properties of the structure under consideration (mode shapes u(θ)i and mode
frequencies ω(θ)i), while the sought parameters are selected as material Young’s moduli and
densities of diverse structural elements (θ = [E1, . . . , EN , ρ1, . . . , ρM ]). Consequently, the
discrepancy function consists of a vector of differences between the calculated eigenvectors,
i.e. mode shapes of the structure (u(θ)inum), and eigenvalues, i.e. related to modal frequencies
(ω(θ)inum), of the model and, respectively, eigenvectors (ui

exp) and eigenvalues (ωi
exp) obtained

from experiments on a real object, namely in one possible mathematical form:

f(θ) =

(∑n
i=1

∥∥∥u(θ)inum − ui
exp

∥∥∥2)1/2

∥uexp∥
+

(∑n
i=1

(
ω(θ)inum − ωi

exp

)2)1/2

∥ωexp∥
(11)

The proper matching correspondence for eigenvectors and eigenvalues with real counterparts
may be found by Modal Assurance Criterion (MAC) computations [35], also improved by a
priori (i.e., before objective function evaluation) pairing, ensuring a regularisation effect:

MACij =

(
u(θ)inum
∥u(θ)inum∥

)T ( uj
exp

∥uj
exp∥

)
(12)

In order to further deepen the study on the objective function, to allow for better computa-
tional performance of the minimisation algorithm, in view of adoption of Gaussian Processes, a
second definition of discrepancy function is conceived, providing an additional contribution to
Equation (11), namely:

f ∗(θ) = f(θ) + F

∣∣∣∣∣
∑m

j=1 vjρj

ρ̄
− 1

∣∣∣∣∣ (13)

where F acts as a penalty coefficient, vj is the ratio of the volume for a given material struc-
tural element to the volume of the entire structure, and ρ̄ is an average reference material mass
density.

In following Section 4, the results of the study on the objective function are presented, high-
lighting the differences and advantages with respect to each choice of the discrepancy function,
either by Equation (11) or Equation (13), with the aim to achieve an effective adoption of Gaus-
sian Processes as an Inverse Analysis optimisation approach.

3 CASE STUDY: A HISTORICAL CONCRETE BRIDGE

The case study considered in the present work refers to a specific road infrastructure: Brivio
bridge, a historical reinforced concrete three–span arched bridge [24]. The bridge, built in
1917, displays a significant historical and structural value, and currently preserves its full daily
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Figure 1: Brivio bridge (1917): downstream view of the road three–span arched bridge crossing the Adda river;
Brivio (Lecco) right bank (left), Cisano Bergamasco (Bergamo) left bank (right). Picture taken by author E.R. on
7 July 2022.

traffic infrastructural functionality, then keeping a key role in the local territory, between Brivio
(province of Lecco) and Cisano Bergamasco (province of Bergamo), in the Lombardia region,
Northern Italy, over the Adda river (Figure 1).

In the current section, brief descriptions of Brivio bridge (Figure 2) from a structural stand-
point, of the developed FEM model (Figure 3) and of a previously carried out experimental
campaign are provided, for a proper understanding of the Inverse Analysis procedure (source
reference and detailed information may be found in [24, 25, 26, 27, 29]).

Figure 2: Brivio bridge (1917): schematic representation of downstream front.

The reinforced concrete road bridge consists of three arched spans, supported by character-
istic twin parabolic arches and with hanging underneath straight deck. The structure shows full
symmetry, with respect to its mid–longitudinal plane. The average height of the deck is about
8 m above water level (Adda river, flowing out of the Lecco branch of Como lake and going
down toward the Po valley). The central span, supported by two pillars in the bed of the river,
is 44 m long, while the lateral spans, connected to the river banks, are 43.4 m long, summing
up to a total length of 130.8 m (in the sequel, for the sake of simplicity: “Span 1” for the lateral
span toward Brivio, “Span 2” for the central one, “Span 3” for the lateral span toward Cisano
Bergamasco, as also shown in Figure 2). The twin parabolic arches of the bridge are designed
on a geometry with a 42.80 m span and a 8.00 m rise. The cross section of each arch struc-
tural element displays a rectangular shape, built with a constant width (0.60 m) and a variable
height (from 1.37 m, at the impost, to 1.25 m, at the crown), being the whole profile of each
arch symmetric, with respect to the vertical axis at half span. Each arch is connected to the
corresponding other, on their upper central part, by eight transverse beams, and to the bridge
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deck through a system of sixteen reinforced concrete hangers (at each side, at each span), with
a rectangular cross section (0.32 m × 0.60 m). The road deck is 9.2 m wide, as designed for
two roadway lanes, contoured by two sidewalks (each 0.8 m wide), built as cantilevers. Two
main longitudinal girders (section 0.45 m × 1.00 m) are placed in each span of the bridge, at
a respective transverse distance of 8.60 m, and are joined by further secondary beam elements
(section 0.20 m × 0.55 m) installed at a distance equal to 2 m, symmetrically located with re-
spect to the vertical longitudinal plane of the bridge; between this girder system, transverse grid
beam connections (section 0.30 m × 0.75 m) are employed, approximately every 2.30 m. Such
grid substructure is completed, at the deck level, by a reinforced concrete slab, with a thickness
of 0.15 m. The intermediate supports of the spans, inside the river bed, are constituted by two
concrete piers, built with a tapered cross section (maximum dimensions, at the base, equal to
12.8 m × 3.8 m, respectively in the transverse and longitudinal directions). The pier foundation
system is set on forty–eight reinforced concrete piles (square cross section with a 0.35 m side),
with a driving depth ranging from 13 m to 16 m. Supporting reinforced concrete slabs (height
equal to 1 m) are placed above both the intermediate piers and the abutments.

Consistently with the above–provided synoptic technical description, a linear elastic FEM
model of Brivio bridge (single span, referring to Span 1, see Figure 3) is adopted, as originally
developed in [29], employing the Abaqus finite element code, then combined with Python and
Matlab self–implemented routines.

X

Y

Z

Figure 3: FEM model of Brivio bridge (single span); colours identify diverse elements of the structure for sought
material parameters.

The model is conceived as a three–dimensional frame structure composed by beam finite el-
ements, realised as an assembly of five principal structural components: deck, longitudinal deck
girders, arches, hangers and upper transverse beams, as also highlighted in Figure 3, together
with the reference coordinate system (x for the longitudinal axis, y for the vertical axis and z
for the transverse horizontal axis of the bridge). The mechanical constitutive parameters are
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selected consistently with the five underlying structural components, although only nine param-
eters (five Young’s moduli and four mass densities) are finally adopted as sought parameters
in the Inverse Analysis problem, according to a sensitivity analysis study previously developed
in [29] and as reported in Tables 1 and 2. The geometrical features of the FEM model are care-
fully assumed as in [29]. The deck is modelled by a meshing grid of 254 beams, the arches
are built by 70 elements, whereas 24 elements are employed for the upper beams. Moreover,
the deck–hanger and the hanger–arch joints are reproduced by the implementation of rigid link
models. Globally, the FEM model of the bridge sums up to 380 beam elements and 1680 de-
grees of freedom, keeping a significantly reduced size for the computational model, in view of
the computational burden for repetitive runs within the Inverse Analysis optimisation. Further,
non–structural mass components, e.g. referring to the asphalt layer, are also included in the
model. In defining the boundary conditions, the model is implemented as simply supported
at the deck with combined elastic supports (linear spring elements), namely with two z–axis
rotational springs at both extremities and two translational springs (at x–axis, horizontal, and
y–axis, vertical, respectively), set at the second edge.

Parameter
Lower Upper Reference
bound bound value

Deck elastic modulus, E1 [GPa] 24.4 45.4 34.9
Main longitudinal girders elastic modulus, E2 [GPa] 24.4 45.4 34.9

Parabolic arches elastic modulus, E3 [GPa] 25.0 46.4 35.7
Hangers elastic modulus, E4 [GPa] 25.0 46.4 35.7

Upper transverse beams elastic modulus, E5 [GPa] 25.0 46.4 35.7

Deck mass density, ρ1 [kg/m3] 1710 3170 2440
Main longitudinal girders mass density, ρ2 [kg/m3] 1710 3170 2440

Parabolic arches mass density, ρ3 [kg/m3] 1710 3170 2440
Hangers mass density, ρ4 [kg/m3] 1710 3170 2440

Table 1: Material input parameters and search domain for the Inverse Analysis problem, based on the FEM model.

Parameter Reference value
Upper transverse beams mass density, ρ5 [kg/m3] 2440

I–support translational (x–axis) spring stiffness, k1 [kN/m] 10−5

I–support translational (y–axis) spring stiffness, k2 [kN/m] 1010

I–support rotational spring stiffness, k3 [kNm] 10−5

II–support rotational spring stiffness, k4 [kNm] 10−5

Table 2: Base FEM model parameters, at fixed values, not included in the Inverse Analysis search domain.

In order to feed the optimisation procedure in the Inverse Analysis methodology, the nu-
merical counterparts computed on the FEM model are compared with experimentally obtained
quantities (i.e., identified experimental mode shapes and modal frequencies). Operational ex-
perimental campaigns were performed on Brivio bridge between 11 and 13 June 2014 (see
details reported in [25, 26, 27]). Several instrumentation systems were adopted during the test
phases, in particular: ten uniaxial wired piezoelectric accelerometers, seven wireless sensors,
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four QDaedalus system total stations and a laser scanner; simultaneous dynamic testing and
measurement of the structure, under regular operational traffic loading conditions, were defined
also according to diverse setups. In the present work, experimentally identified quantities are
acquired from previously processed data, while details on experimental identification and re-
sponse signal processing may be found, respectively, in [29] and [28], with reference both to
single span and whole bridge analysis.

4 ANALYSIS RESULTS

In the current section, the computed results are presented, as based on the previously de-
scribed methodology, objective function choice and FEM model. In particular, as a key term in
understanding and solving the Inverse Analysis problem, the discrepancy function is analysed
according to four configurations:

1. 9D search domain, based on the complete set of parameters,
θ = [E1, E2, E3, E4, E5, ρ1, ρ2, ρ3, ρ4];

2. 5D search domain, based on a reduced set of parameters, limited to Young’s moduli,
θ = [E1, E2, E3, E4, E5];

3. 2D search domain, based on a reduced set of parameters, limited to averaged Young’s
modulus and mass density,
θ = [Ē, ρ̄];

4. 4D search domain, based on a simplified beam model characterised by two structural
components, respectively associated to Young’s modulus and mass density values,
θ = [E1, E2, ρ1, ρ2].

By limiting the problem to a two–parameter space (configuration 3), it is possible to observe
that a mode adjustment in the modal pairing, as inner loop in the objective function evaluation,
leads to a very irregular and discontinuous objective function (see Figure 4a). On the con-
trary, by selecting a priori the appropriate modes, without the possibility of changing them in
the fitting process, namely by introducing a MAC regularisation as proposed in Section 2.2, a
continuous target function may effectively be obtained (see Figure 4b).

Therefore, on the basis of such preliminary analyses, the introduction of a regularisation
procedure turns out to be a necessary step in view of the application of Gaussian Processing,
to reduce abrupt function discontinuities. However, also in such a regularised approach (see
Figure 4b), the employment of Gaussian Processes still appears to be less feasible, due to the in-
trinsic “ill–posedness” condition of the objective function, linked to the identification based just
on modal properties, as displayed by the “valley” of possible “realisations”, i.e. by the couple
of parameters equally satisfying the minimisation problem. Therefore, such an issue may lead
to an impractical or misleading application of Gaussian Processing optimisation, suggesting for
an improvement of objective function definition toward achieving an automated identification
method.

In a further step, adopting a 5D parameter space (configuration 2), Young’s moduli of di-
verse structural components are considered as model parameters to be calibrated, while mass
densities are assumed at a fixed value, as previously estimated in [29], aiming at temporarily
excluding the “realisation valley” issue. In order to prepare the appropriate number of learn-
ing points, required for Gaussian Processes implementation, numerical evaluations of the FEM
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Figure 4: Normalised bar plot of the objective function in the 2D parameter space (configuration 3): (a) without
MAC regularisation, (b) with MAC regularisation.

model and of the discrepancy function are produced over a regular grid in the search domain
for 57 = 16,807 points (i.e., for 7 scanning values, for each of the 5 sought parameters). Such
an investigation of the objective function highlights non–satisfactory minima conditions, such
as minimum points in non–feasible parameter space locations and equivalent minimum points,
namely for a negligible variation of discrepancy function value, associated to significantly dif-
ferent parameter vector estimations (see Table 3). The highlighted behaviour may be interpreted
as a lack of observed quantities (e.g., for missing data about mode shapes of other parts of the
bridge, as bridge arches) in the objective function and/or as a reduced sensitivity, with respect to
the sought parameters. The issue can further be confirmed by investigating the shape of the ob-
jective function, for example through cross section representations, where several irregularities
and local minima may be observed (see the example cross sections collected in Figure 5).

f(θ) [-] 0.005990 0.006053 0.006098 0.006114 0.006118 0.006184 0.006210
E1 [GPa] 45.2 45.2 45.2 45.2 45.2 45.2 45.2
E2 [GPa] 24.4 34.8 24.4 27.9 27.9 27.9 45.2
E3 [GPa] 35.7 32.1 35.7 35.7 35.7 35.7 28.6
E4 [GPa] 46.4 42.8 42.8 42.8 39.3 46.4 42.8
E5 [GPa] 35.7 42.8 35.7 46.4 46.4 42.8 39.3

Table 3: Seven best values of the objective function, by grid search, and corresponding parameters in the 5D search
domain (configuration 2).

Similar results are obtained in the original 9D parameter space (configuration 1), analysed
with a regular grid of 39 = 19,638 points (i.e., for 3 scanning values, for each of the 9 sought
parameters), as depicted in Figure 6 with four sample cross sections of the objective function,
also highlighting non–feasible locations for minimum points at the search domain boundaries.

In consideration of the observed features of the employed objective function, in view of a
proper choice of the minimisation algorithm to tackle the identification problem, it is worth to
mention that the selection of “local algorithms” to find the global minimum (rather related to
the “best” minimum within the possible combination of sought parameters) exhibits practical
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Figure 5: Selected cross sections of the objective function in the 5D parameter space (configuration 2).

Figure 6: Selected cross sections of the objective function in the 9D parameter space (configuration 1).
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difficulties, while the use of “global algorithms” (including Gaussian Processes), associated
with a large computational cost, may not guarantee the estimation of parameters at feasible
values, due to a possible mismatch between “global” numerical minimum and “best” parameter
combination from a structural standpoint.

An attempt to improve the identification behaviour of the objective function is developed by
introducing a penalty term related to the mass densities of the structural components, as pro-
posed in Section 2.2. In order to validate the novel approach, a pseudo–experimental configura-
tion is developed in a 4D parameter space, on a simplified beam model (configuration 4), namely
by adopting two beam structural components, each characterised by an associated Young’s mod-
ulus and mass density. Consistently, Figure 7 displays an example of the modification effect
produced on the objective function shape by the introduction of the mass density penalty term.

Figure 7: Three–dimensional cross section of the objective function in the 4D parameter space (configuration 4),
with penalty mass density factor F = 1000.

For testing the numerical procedure, within the validation scheme, one parameter value
(specifically ρ2) is kept at a fixed value, while the other three parameters are estimated, using
pseudo–experimental data, at varying penalty coefficient F . For two diverse reference structural
configurations, four identification tests are conducted, as respectively reported in Table 4 and
Table 5. However, the computed results, even for elevated penalty coefficient values, do not
allow to ensure for correct parameter estimations neither for a robust identification procedure.
Therefore, the modified formulation of the objective function may be deemed as only partially
improved, although not effective in defining a fully reliable automated calibration methodology
in the present context, at this stage of development.

5 CONCLUSIONS

In the present paper, a methodology for model calibration relying on dynamic modal mea-
surements is sought. The Inverse Analysis problem has been tackled in an application case
study devoted to a reinforced concrete road arched bridge, Brivio bridge (1917), of a significant
historical and infrastructural interest for Structural Health Monitoring assessment in the present
operative conditions.
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Reference Test 1 Test 2 Test 3 Test 4
f ∗(θ) [–] – 0.4901 0.8349 2.8628 13.2080
F [–] – 0 10 100 1000

E1 [GPa] 33.74 38.02 38.02 36.81 36.81
E2 [GPa] 28.38 31.55 31.55 31.55 31.55
ρ1 [kg/m3] 2235 2524 2524 2441 2441
ρ2 [kg/m3] 2147 2400 2400 2400 2400

Table 4: First test case for effectiveness of mass density penalty term in objective function, evaluated in 4D
parameter space (configuration 4).

Reference Test 1 Test 2 Test 3 Test 4
f ∗(θ) [–] – 0.3955 0.9702 5.5767 18.2130
F [–] – 0 10 100 1000

E1 [GPa] 38.00 36.81 36.81 38.02 39.22
E2 [GPa] 29.00 27.41 27.41 27.41 27.41
ρ1 [kg/m3] 2300 2193 2193 2276 2359
ρ2 [kg/m3] 2500 2400 2400 2400 2400

Table 5: Second test case for effectiveness of mass density penalty term in objective function, evaluated in 4D
parameter space (configuration 4).

In particular, within the general framework of Inverse Analysis approaches, an optimisation
strategy based on Gaussian Processes has been selected and discussed, as an innovative method
to tackle a demanding identification problem, both from computational efficiency and capabil-
ity in searching for a “global” minimum. The choice of a promising optimisation approach
has been coupled with multiple and improving definitions of a suitable objective function, as a
central element in an Inverse Analysis problem. Moreover, considering the specific case study,
particular attention has been devoted in the adoption of a FEM model apt to computationally
generate numerical counterparts of the dynamic modal properties of the bridge structure, previ-
ously acquired out of an experimental campaign.

Further, with reference to the case study of Brivio bridge and, at the same time, providing
observations of a more general validity, the investigation has been focused on the peculiar fea-
tures and behaviour of the objective function, with possible regularisations and modifications,
also at varying size of the parameter optimisation space. From the analysis results some main
comments may be derived:

• in relying on dynamic modal measurements, as experimental data for identification prob-
lem, a regularisation criterion (e.g., by a fixed Modal Assurance Criterion) is required to
reduce abrupt discontinuity jumps in the discrepancy function shape;

• the exploitation of modal properties, as a unique experimental source, intrinsically ex-
hibits a “non–well posedness” condition, in terms of multiple “realisations”, in aiming at
a joint estimation of stiffness and mass properties of a structural system, namely leading
to the identification of the correlated parameters;

• incomplete modal dynamic measurements (e.g. just at the deck level) may lead to a non–
effective and non–robust identification procedure, consequently difficult to be tackled by
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optimisation algorithms, also including Gaussian Processes;

• the introduction of penalty and regularisation terms in the discussed objective functions
may lead to improved computational performances, however not sufficiently effective to
provide a robust approach to be adopted in an automated identification procedure, toward
structural assessment and diagnosis.

Despite the computational difficulties highlighted by the on–going analysis, the deepening
and improved understanding on the objective function behaviour, for the tackled problem, con-
firm the validity of Inverse Analysis approaches toward Structural Identification and Structural
Health Monitoring, with possible extensions, in future developments, to the insertion of addi-
tional sources of measurements.

Moreover, additional and corroborating studies, which may act just on the pure modelling
side, based on pseudo–experimental results, relying on a full control of the underlying FEM
modelling, for a digital replication of the infrastructure, may help in guidelining appropriate
optimisation paths and variable choices, and needed measurement data, in the identification
process, to investigate the role of “well-posedness”, of the scheduled optimisation task, and as-
sociated reliability of the optimisation algorithm that is being employed. This is concomitantly
under current research investigation, as separately reported for first encouraging outcomes in
companion paper [36].
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