

LA COLLANA DELLA SCUOLA DI ALTA FORMAZIONE DOTTORALE ACCOGLIE LE MIGLIORI TESI

DI DOTTORATO DELL’UNIVERSITÀ DEGLI STUDI DI BERGAMO, INSIGNITE DELLA DIGNITÀ DI

STAMPA E SOTTOPOSTE A PROCEDURA DI BLIND PEER REVIEW.

The growing role of software in medical processes emphasizes its
critical function in ensuring safety during diagnosis, decision-
making, and device operation. Recent efforts focus on
establishing robust software life cycles and adhering to
certification standards through thorough verification and
validation.
This work explores methodologies for developing medical devices,
highlighting the efficacy of model-based system engineering
(MBSE) for compliance. Furthermore, Combinatorial Interaction
Testing proves beneficial for complex systems, as demonstrated
in case studies like the MVM ventilator, Pill-Box, and PHD protocol.
Finally, for medical software integrating artificial intelligence (AI),
alternative methods based on neural network robustness analysis
are proposed for validation.

ANDREA BOMBARDA obtained his PhD in Engineering and Applied
Sciences (35th Cycle) at the University of Bergamo. During his
university studies in Computer Engineering, he carried out
research experiences in research institutions such as the
University of Texas at Arlington. After earning his PhD, he
currently works as a Research Associate at the University of
Bergamo in the context of the ANTHEM project.

ISBN: 978-88-97413-86-8
DOI: 10.13122/978-88-97413-86-8

 A
n

d
re

a
 B

o
m

b
a

rd
a

 S

.Q
.A

. F
O

R
 M

E
D

IC
A

L
 S

Y
S

T
E

M
S

Collana della Scuola di Alta Formazione Dottorale

- 60 -

Andrea Bombarda

A COMPREHENSIVE APPROACH

for Software Quality Assurance
for Medical Systems

2024

60

file://///CANIANA03/Dati/biblioteca%20Caniana/Adm/IRIS/SEZIONE%202/collana%20DTS/10.6092/9788897413172

Collana della Scuola di Alta Formazione Dottorale

- 60 -

Collana della Scuola di Alta Formazione Dottorale

Diretta da Paolo Cesaretti

Ogni volume è sottoposto a blind peer review.

ISSN: 2611-9927

Sito web: https://aisberg.unibg.it/handle/10446/130100

Andrea Bombarda

A COMPREHENSIVE APPROACH

for Software Quality Assurance

for Medical Systems

__

Università degli Studi di Bergamo

2024

A Comprehensive Approach for Software Quality Assurance

for Medical Systems / Andrea Bombarda. – Bergamo :

Università degli Studi di Bergamo, 2024.

(Collana della Scuola di Alta Formazione Dottorale; 60)

ISBN: 978-88-97413-86-8

DOI: 10.13122/978-88-97413-86-8

Questo volume è rilasciato sotto licenza Creative Commons

Attribuzione - Non commerciale - Non opere derivate 4.0

© 2024 Andrea Bombarda

Progetto grafico: Servizi Editoriali – Università degli Studi di Bergamo

© 2018 Università degli Studi di Bergamo

via Salvecchio, 19

24129 Bergamo

Cod. Fiscale 80004350163

P. IVA 01612800167

https://aisberg.unibg.it/handle/10446/280211

https://aisberg.unibg.it/handle/10446/280211

Acknowledgments

I would like to thank my supervisor Prof. Angelo Gargantini, for his guidance, support and help

during my Ph.D. Moreover, I would like to thank Prof.ssa Elvinia Riccobene, Dr. Paolo Arcaini, Ing.

Silvia Bonfanti, and Prof.ssa Patrizia Scandurra for their continuing and patient support. A lot of the

work presented in this book would not have been possible without their collaboration.

A special thanks to my girlfriend Alessandra, my parents, my brother and the whole “Bombotti” family

for their support and encouragement.

I would like to extend my thanks to Prof. Jeff Lei, from UTA (University of Texas at Arlington), and

all his Ph.D. students for having welcomed me in their university during many visiting periods.

Finally, I wish to thank the many kind people (researchers and not) with whom I had the pleasure to

interact during the journey to produce this book. I would like to thank the University of Bergamo for

making it possible.

I would like to dedicate this book to all those who have believed in me

Table of Contents

Introduction . 1

Chapter 1. State of the art . 5

1.1 Quality of software . 5

1.1.1 Examples of non-quality accidents in medical systems 6

1.2 Standards and regulations for the certification of medical software 7

1.2.1 IEC 62304: Medical Software Development Life Cycle 8

1.2.2 FDA Guidelines: General Principles of Software Validation 11

1.3 The definition of “medical device” . 13

1.4 Legal aspects of the liability for non-quality medical systems 13

1.5 Conclusion . 14

Part I MVM: A mechanical ventilator for ICUs 15

Chapter 2. The MVM case study . 17

2.1 Introduction . 17

2.2 Medical considerations on COVID-19 patients 19

2.3 Design of the MVM . 20

2.4 MVM operating modes . 22

2.4.1 Pressure-Controlled Ventilation Mode . 23

2.4.2 Pressure-Support Ventilation Mode . 23

2.5 MVM electronics and software . 24

2.5.1 Hardware . 24

2.5.2 Software . 25

2.6 Device testing . 29

2.6.1 Software testing . 29

2.6.2 Tests in PCV mode . 30

2.6.3 Tests in PSV mode . 31

2.6.4 Single-fault test condition based on ISO protocols 32

2.6.5 Long-term durability tests . 32

2.6.6 Response of the MVM to an increased oxygen concentration 32

2.6.7 Evaluation of bio-compatibility . 32

2.7 Conclusion . 33

Chapter 3. The software certification process: lessons learned and guidelines 35

3.1 Introduction . 35

3.2 Research methodology . 36

3.2.1 Data collection and analysis . 37

3.2.2 Validation methodology for the lessons learned 38

3.2.3 Validation methodology for the guidelines 38

3.3 Lessons learned . 40

3.3.1 Development process . 40

3.3.2 Development phases . 44

3.3.3 Validation of the lessons learned . 52

3.4 Guidelines . 53

3.4.1 Development process . 55

3.4.2 Development phases . 57

3.4.3 Validation of the guidelines . 60

3.5 Conclusions . 65

Part II Model-based systems engineering for PEMS 67

Chapter 4. Abstract State Machines for MBSE . 69

4.1 Introduction . 69

4.2 The ASMETA framework . 71

4.2.1 Background concepts for Abstract State Machines 72

4.2.2 ASMETA toolset . 73

4.3 ASMETA @ design-time . 74

4.3.1 Modeling . 74

4.3.2 Validation and verification . 78

4.4 ASMETA @ development-time . 85

4.4.1 Model-based test generation . 85

4.4.2 Model-based code generation . 85

4.4.3 Unit test generation . 86

4.5 ASMETA @ operation-time . 88

4.6 Conclusion . 89

Chapter 5. Applying the ASMETA rigorous process to medical case studies 91

5.1 Introduction . 91

5.2 Case studies . 94

5.2.1 The e-Pix case study . 94

5.2.2 The IEEE 11073 PHD protocol case study 96

5.3 From ASMETA specifications to embedded code 98

5.3.1 The e-Pix case study . 98

5.3.2 The MVM case study . 105

5.4 Model-based Testing with ASMETA . 114

5.4.1 Applying MBT to the MVM case study 115

5.4.2 Applying MBT to the PHD protocol case study 121

5.5 Conclusion . 129

Chapter 6. Combinatorial testing for complex PEMS . 131

6.1 Introduction . 131

6.2 Combinatorial sequence testing . 134

6.2.1 Finite State Machines . 134

6.2.2 Combinatorial sequence testing of FSMs 135

6.2.3 Algorithm for CST . 136

6.2.4 Method evaluation . 140

6.3 Comparing combinatorial test generators . 145

6.3.1 Model complexity measures . 145

6.3.2 Computing the cost of test generators . 146

6.3.3 A benchmarking environment for CIT tools 147

6.4 Parallelizing combinatorial test generation . 149

6.4.1 pMEDICI: exploiting MDDs for combinatorial test generation 151

6.4.2 KALI: exploiting SMT solvers for combinatorial test generation 158

6.5 Conclusion . 162

Part III Robustness for AI-based medical software 165

Chapter 7. Neural network robustness . 167

7.1 State of the art on neural network robustness . 167

7.2 Background concepts . 169

7.2.1 Types of neural networks typically used in PEMS 169

7.2.2 Accuracy and errors . 170

7.2.3 Alterations . 171

7.3 The general concept of NN robustness . 173

7.3.1 Robustness for classifiers . 173

7.3.2 Robustness for estimators . 177

7.3.3 Properties of the robustness measure . 180

7.4 Tools and algorithms for robustness estimation of NN classifiers 180

7.4.1 ROBY . 181

7.4.2 The ASAP algorithm . 183

7.5 How to improve the robustness of a NN . 188

7.5.1 Data augmentation . 189

7.5.2 Incremental learning . 189

7.6 Robustness in medical devices . 190

7.7 Conclusion . 191

Chapter 8. Applying robustness computation and improvement to PEMS 193

8.1 The breast cancer case study . 193

8.1.1 Case study description . 193

8.1.2 Robustness evaluation . 195

8.1.3 Robustness improvement . 196

8.1.4 Final considerations . 200

8.2 The PO2 estimation case study . 202

8.2.1 Case study description . 202

8.2.2 Robustness evaluation . 205

8.2.3 Robustness improvement . 208

8.2.4 Final considerations . 210

8.3 Conclusion . 211

Conclusions . 211

List of Figures . 221

List of Tables . 224

List of Listings . 225

References . 227

Introduction

Many people interact with medical devices every day, from the simplest ones, such as pillboxes that

remind the patients to take their pills on the correct day, to the most complex ones such as diagnostic

X-ray equipments or mechanical ventilators in intensive care units (ICUs). Some of these devices were

traditionally based on mechanical and electrical components, and all hardware parts were tested to

guarantee their correct functioning. However, with the development of the technologies, the software

has increasingly become a prominent and critical part of these devices and this has led to the definition

of new kinds of medical devices: Programmable Electronic Medical Systems (PEMS). These safety-

critical systems combine hardware and software to implement their functionalities, which affect

people’s health, and, in case of malfunctions, they can seriously compromise human safety leading

to injuries or even death. For this reason, software that controls or interacts with these devices must

be developed through rigorous processes that aim to ensure its safety, reliability, and quality, and

certified.

To certify the quality of medical systems, several standards have been proposed (see Sect. 1.2), but

the majority of them do not deal with the software part of PEMS and limit only to the hardware part.

The only two standards or guidelines that include references to software are IEC 62304 [64] and the

FDA Guidelines [83]. However, in both documents, only general concepts about the activities that

must be performed for each medical software are given, and no suggestions on the software life cycle

to be used or methods for software validation and verification are presented.

For this reason, this book presents and analyzes several approaches compliant with the regulations

and standards for PEMS certification, aiming at improving or assuring the quality of medical software

and systems. The majority of the experiences and experiments contained in this book are based on the

Mechanical Ventilator Milano (MVM) case study (see Chapter 2), which is a mechanical ventilator for

intensive care units I contributed to develop, test, and certify during the first wave of the COVID-19

pandemic in Italy. From this experience, several lessons learned and general guidelines for developing

medical systems under emergency, while still maintaining compliance with the certification standards,

have been derived. Further details on these guidelines are reported in Chapter 3.

Model-based testing and model-driven development have proven to be suitable for complying with

the certification standards, since they allow producing documents in a formal manner, which is easily

verifiable, and guarantee the required traceability. In this book, I present the application of formal

methods, and in particular of the ASM formalism using the ASMETA framework [7], to the MVM

1

Andrea Bombarda

case study. It has proved to be suitable for system modeling, validation, verification and automatic

code generation. Moreover, I present how using ASMETA can aid in automatically deriving test cases

to be used on the actual implementation of the ventilator. In order to assure the generalizability of

the results, this book presents the application of model-based techniques to other systems, such as a

Pill-Box and the PHD protocol, used for allowing the communication between medical devices.

A limitation discovered during the application of formal methods, such as ASMETA, to the analyzed

case studies for generating test cases, is the significant amount of tests and time required for their

generation or execution. For this reason, this book presents the concept of Combinatorial Interaction

Testing applied to medical software and systems and a way to compare combinatorial test generators.

This aims at choosing the best-fit generator which produces fewer test cases or limits the time required

for the test generation process, depending on the complexity of the system.

Although certification standards describe which activities must be performed for each medical soft-

ware, no complete indication is yet available on how to certify medical systems containing AI-based

components. The only request made by the certifying authorities is that AI algorithms must show to

be at least as safe and effective as another similar legally marketed, which is not based on AI. For this

reason, in this book, I propose the concept of robustness for neural networks (used both as classifiers

or estimators) when they are used in the medical domain. Using this measure, a medical system can

be certified by showing that on the extensive data set used during testing activities, it has proved to be

at least as reliable as other devices already on the market.

Research questions, objectives, and book structure

The goal of this book is to apply state-of-the-art methods, or devise and design new ones, for increasing

or assuring the quality of medical software and systems. In the following, I report the research questions

(RQs) I answer through the chapters of this book.

RQ1: What is the state-of-the-art in the definition of quality for medical software? This is

shown in Chapter 1 in which the concept of quality for software, the definition of medical device,

some legal aspects about the liability for non-quality medical systems, and standards and regulations

for the certification of medical software are analyzed. In particular, two documents are presented

in detail: the standard IEC 62304 [64] and the FDA general principles [83]. The former is an

international standard, which describes the life cycle activities of the software development without

giving any indication on the method to be applied. The latter provides the guidelines for the validation

and verification of the medical software.

2

Introduction

RQ2: Are there any empirical guidelines for developing medical software? During the first wave

of the COVID-19 pandemic, I contributed together with my research group and other researchers and

practitioners in the development, testing, and certification of a real medical system, the Mechanical

Ventilator Milano (see Chapter 2 for more details about the device). Chapter 3 presents lessons learned

and guidelines derived from this effort, especially in the context of an emergency.

RQ3: Are ASMs applicable to support the development of software for medical devices? Chap-

ter 4 presents the ASMETA framework and the set of tools included in the framework to support the

user during the development and the analysis of formal specifications using ASMs. Furthermore,

in order to practically evaluate the applicability of the ASMETA framework to medical software,

in Chapter 5 the application of the ASMETA framework to real case studies, such as the MVM, a

Pill-Box, and the PHD communication protocol, is reported.

RQ4: Considering that combinatorial testing is often used for reducing the complexity of testing

medical software, is there a way to make the test generation process faster? In Chapter 6, I

present the concept of Combinatorial Interaction Testing (CIT) applied to safety-critical systems, such

as medical software. In particular, the difference between several test generators, in terms of test suite

size and generation time is analyzed, and two methodologies for reducing the generation time and, in

general, the cost of testing are presented and used for generating test suites for the MVM case study.

RQ5: Are there methods to validate NN-based medical software? Chapter 7 presents the novel

concept of neural network robustness against input alterations, both for classifiers and estimators. This

measure can be used for increasing the confidence in neural network models used in safety-critical

domains. Furthermore, I present ROBY, a tool for automatic robustness computation for neural

network classifiers, and ASAP, a method for reducing the time required for this evaluation. Moreover,

in Chapter 8 the robustness computation is performed on two different case studies in the medical

domain, namely the breast cancer classification and the blood 𝑃𝑂2 estimation.

This book reports the results of an ongoing research activity carried out by scientific groups I was

part of during my Ph.D. Some parts of the presented work have been developed by co-authors of the

papers published, but they are reported in this book for completeness and to ensure that the reader is

able to fully understand the content.

3

Chapter 1. State of the art

In this chapter, I present the main reasons behind the research activities reported in this book. In

particular, the concept of quality for software is presented and discussed in Sect. 1.1, independently

from its application in the medical software field. Sect. 1.2 presents the current state of the art in terms

of standards and regulations to be followed for certifying medical software, while Sect. 1.3 defines

what can be considered a medical device. Then, the responsibilities in case of failure related to the

non-quality of a medical system are discussed in Sect. 1.4, based on the current state-of-the-art in the

Italian, European and International regulations. Finally, Sect. 1.5 concludes the chapter.

1.1 Quality of software

ISO defines software quality as the “capability of a software product to conform to its requirements”.

To be more specific, in the context of software engineering, the concept of software quality refers to

two related but different aspects:

• Functional quality, or external quality, which reflects how well the software complies with a

given design, usually based on its requirements or specifications. It is generally decomposed

into correctness, reliability, integrity, and usability.

• Structural quality, or internal quality, which depends on how the software meets non-functional

requirements that support the delivery of the functional requirements, such as re-usability,

portability, efficiency, or maintainability.

As reported in the list above, several factors influence the quality of the software as described, for

example, in the McCall’s quality model [130], the following properties contribute in defining software

quality:

• Correctness, i.e., the extent to which a program complies with its specifications;

• Reliability, i.e., the system’s ability not to fail;

• Integrity, i.e., the protection of the program from unauthorized access;

• Usability, i.e., the ease of the use of the software;

• Re-usability, i.e., the ease of reusing software in a different context;

• Portability, i.e., the effort required to transfer a program from one environment to another;

5

Andrea Bombarda

• Efficiency, i.e., the way in which the software uses the resources, e.g., processor time or storage;

• Maintainability, i.e., the measure of the effort required to locate and fix a fault in the program

within its operating environment.

Software quality is motivated by at least two main perspectives: risk management and cost manage-

ment. The former, especially in safety-critical contexts, considers the fact that software errors can

cause human fatalities (see Sect. 1.1.1 for some examples in the context of medical systems) which

have been historically caused by poorly designed user interfaces or direct programming errors. The

latter considers that a software product or service governed by good software quality costs less to

maintain, is easier to understand, and is more cost-effective when it has to be changed in response to

pressing business needs.

1.1.1 Examples of non-quality accidents in medical systems

The literature related to the development of medical software and systems reports several examples of

non-quality accidents [119]. Probably, the best-known example is the one of Therac-25 [120] between

1985 and 1987, a medical electron accelerator that was involved in six massive radiation overdoses,

hundreds of times greater than normal. As a result, several people died and others were seriously

injured. Investigations on device software have identified several causes for this malfunction, among

which there are the following: (I) the source code was never independently reviewed, (II) the hardware

has never been tested with the final software until the device was assembled at the hospital, (III) several

error messages were not explained in the user manual and no indication about these errors and possible

threats to patient safety was mentioned, (IV) the software set a flag variable by incrementing it, rather

than by setting it to a fixed non-zero value, leading to occasional arithmetic overflows that cause the

software to bypass safety checks, (V) software engineers had reused software from the Therac-6 and

Therac-20, which used hardware interlocks that masked their software defects and were not present in

Therac-25, (VI) no verification on the correct behavior of the sensors was performed by the software

before operating.

Similar is the case of the therapy planning software created by Multidata Systems International [45],

which miscalculated the appropriate dose of radiation for patients undergoing Cobalt-60 radiation

therapy in Panama. Multidata’s software allowed a radiation therapist to draw on a computer screen

the placement of metal shields called “blocks” designed to protect the healthy tissue of patients from

radiations. However, the software only allowed technicians to use four shielding blocks, and the

Panamanian doctors wished to use five. The doctors discovered that they could trick the software by

6

State of the art

drawing all five blocks as a single large block with a hole in the middle. Nevertheless, what the doctors

did not realize is that the Multidata software gave different answers in this configuration depending on

how the hole was drawn: if the hole was drawn in one direction, then the correct dose of radiation was

calculated, but if it was drawn in another directions the software recommended twice the necessary

exposure.

However, not all problems are related only to the software embedded in medical devices. For example,

in [19], the authors report the results of analyses conducted over more than 30 thousand patients from

the US, where 1 out of 5 of them reported finding a mistake in their Electronic Health Records (EHR),

sometimes caused by bugs in the IT system, and 40% perceived the mistake as serious. Older and

sicker patients were twice as likely to report a serious error compared with younger and healthier

patients, indicating important safety and quality implications since not being able to identify in time

the correct outcome of a medical exam may lead to serious consequences, which could be easily

avoided if the EHR were correct.

1.2 Standards and regulations for the certification of medical software

Due to the safety-critical nature of medical devices, many institutions have provided standards or

guidelines for their certification. Examples of these organizations are the IEC (International Elec-

trotechnical Commission), ISO (International Organization for Standardization), European Union,

FDA (Food and Drug Administration), ANSI (American National Standards Institute), UNI (Ital-

ian Organization for Standardization), DIN (German Institute for Standardization), and CEI (Italian

Electrotechnical Commission).

In the following, the main standards, norms, and regulations produced by the organizations listed

above are reported:

• The ISO 13485 [105], approved also by CEI and UNI, describes the requirements on how

to apply the ISO 9001 [101] for quality system management, for design and development,

installation, and maintenance of medical devices. It has been recently adopted also by FDA,

which has harmonized its requirements to those of the ISO 13485 standard.

• The ISO 14971 [104] specifies terminology, principles, and a process for risk management of

medical devices, including software as a medical device and in vitro diagnostic medical devices.

It is recognized both by FDA (for the US region) and by European certification authorities.

• The European regulation UE 2017/745 [1] defines a new device classification and device scope,

stricter oversight of manufacturers by Notified Bodies, the introduction of the “Person Respon-

7

Andrea Bombarda

sible for Regulatory Compliance” (PRRC) and the economic operator concept, the requirement

of UDI marking for devices, Eudamed1 registration, and increased post-market surveillance

activities. Being a European regulation, it is not requested by FDA for the certification in the

US.

• The IEC 62304 [64] defines the phases to be followed during the life cycle of medical device

software, depending on the risk classification of the device (see Sect. 1.2.1 for a more detailed

description). In general, this is the most used standard, and it is recognized by almost all medical

software certification authorities in the world.

• The IEC 61508-3:2010 [65] defines software requirements for functional safety of electrical,

electronic, or programmable electronic safety-related systems. No formal requirement to use

this standard is given by none of the certification authorities, but its adoption is strongly advised.

• The IEC 60601-1:2005 [63] contains requirements concerning basic safety and essential perfor-

mance that are generally applicable to medical electrical equipment. It is recognized both by

FDA (for the US region) and by European certification authorities.

• The “General Principles of Software Validation” produced by FDA [83] defines several concepts

aiming at guiding the software validation and verification activities, which are required to be

performed throughout the software development life cycle (see Sect. 1.2.2 for a more detailed

description). These guidelines have been proposed by FDA and, thus, are required only in the

United States. However, the principles proposed fit with those of the other main certification

standards (e.g., IEC 62304) which are, instead, required in Europe.

Note that none of these standards or regulations prescribes specific methodologies in which all required

activities must be performed.

1.2.1 IEC 62304: Medical Software Development Life Cycle

The IEC 62304 [64], named “Medical Device Software – Software Life Cycle Process”, has emerged

as the main standard for the management of the software development life cycle for medical devices,

it is adopted by the European Union and the United States, and approved as an international standard

both by IEC and ISO. Moreover, it is adopted by several committees and institutions, such as the

CENELEC (European Committee for Electrotechnical Standardization), ANSI (American National

1Eudamed is an online database, created by the European Commission, providing a living picture of the lifecycle of
medical devices that are made available in the European Union.

8

State of the art

Standard Institute), FDA (Food and Drug Administration) of the United States for use in premarket

submissions, SFDA (State Food and Drug Administration) of China and Japan Industry.

The standard defines common guidelines for medical device software life cycle processes, but does

not impose a specific life cycle model or give guidelines on how the software should be verified and

validated.

The major contribution of the IEC 62304 standard is the definition of three different safety classes,

based on the potential to create an injury to patients by the device:

• Class A: medical software, or software components, that cannot cause injury or damage to

health;

• Class B: medical software, or software components, that can cause non-serious injury;

• Class C: medical software, or software components, that can cause death or serious injury.

In particular, the standard classifies as serious injury an injury that “directly or indirectly is life-

threatening, can result in permanent impairment of a body function or permanent damage to a body

structure, or necessitates medical or surgical intervention to prevent permanent impairment of a body

function or permanent damage to a body structure”.

Processes and tasks per safety class

The IEC 62304 standard defines the processes and tasks (among those reported in Fig. 1) that are

mandatory depending on the class in which the software under development is classified. In general,

the higher the safety class (B and C), the higher the number of additional tasks and the more detailed

needs to be the documentation. Tab. 1 reports the activities that are required by each safety class and

their mapping on the activities as they are numbered in the standard.

Software development planning (5.1) The first step of the software development life cycle consists

in defining the life cycle model to be used. In this plan, one should address: 1. the process to be

used during the development of the software; 2. the deliverables of each activity and the tasks to be

performed; 3. the traceability system among system requirements, software requirements, test and risk

control activities; 4. the software configuration and software problem resolution strategy.

Software requirements analysis (5.2) During the software requirements analysis, functional and

non-functional requirements are defined. Moreover, it is required to measure the risk of potential

9

Andrea Bombarda

Figure 1: Activities within and outside the scope of the IEC 62304 standard.

Activity Class A Class B Class C

Software development planning (5.1) X X X
Software requirements analysis (5.2) X X X
Software architecture (5.3) X X
Software detailed design (5.4) X
Software unit implementation (5.5) X X X
Software unit verification (5.5) X X
Software integration (5.6) X X
Software integration testing (5.6) X X
Software system testing (5.7) X X X
Software release (5.8) X X X
Software maintenance process (6) X X X
Software risk management process (7) X X

Table 1: IEC 62304 software development process – Activities required by each safety class.

defects in every requirement. At every update, the manufacturer should verify software requirements

to avoid contradiction and ambiguity, and re-evaluate the risks previously identified.

Software architecture (5.3) During the definition of the software architecture, it is required to

describe the software structure, identify the software elements, specify functional and performance

requirements for the software elements, identify software elements related to risk control, and verify

the software architecture with respect to the previously defined software requirements.

Software detailed design (5.4) Once the software architecture has been identified, it should be

detailed into software units and, for each unit, a detailed design should be provided.

10

State of the art

Software unit implementation and unit verification (5.5) Each software unit should be imple-

mented and tested. During the software unit verification, the manufacturer shall verify the source

code w.r.t. the previously produced documents, and the results of the verification activities shall be

systematically documented.

Software integration and integration testing (5.6) During this phase, each software unit is inte-

grated with the others on the basis of the integration plan and the final system is verified. As for the

unit testing activities, the manufacturer shall systematically document the results of the verification

activities.

Software system testing (5.7) Once the system has been fully integrated, the tests are performed

on the system as a whole, w.r.t. the system requirements. This activity has to be repeated after each

change in the software.

Software release (5.8) When releasing the software, the device manufacturer shall demonstrate that

the software has been correctly and extensively validated and verified. In case of anomalies, the

manufacturer has to document and establish a process to resolve them.

Software maintenance process (6) During this activity, the manufacturer shall describe the proce-

dures used for the maintenance process. These procedures have to be applied when intervening on the

product that is in use.

Software risk management process (7) The last step that the manufacturer must perform is the

analysis of risk. This analysis aims to identify causes that could contribute to an unsafe situation and

should be performed during the whole software life cycle.

1.2.2 FDA Guidelines: General Principles of Software Validation

The Food and Drug Administration is a federal agency of the United States and is responsible for

protecting and promoting public health through the control and supervision of food safety, tobacco

products, dietary supplements, medications, vaccines, biopharmaceuticals, blood transfusions, med-

ical devices, electromagnetic radiation emitting devices, cosmetics, animal foods, and veterinary

products. In terms of medical software, the General Principles of Software Validation [83] defines

several concepts that can be used as guidance for software validation and verification activities, which

are required to be performed throughout the software development life cycle. Moreover, these concepts

11

Andrea Bombarda

are not limited to software considered as a medical device but also to the software used to produce

medical devices and software used in the quality management processes of the manufacturer. In the

following, the main principles reported in the document are listed:

• Validation and verification activities should use as a baseline the software requirements specifi-

cation document;

• Developers should apply a set of methods and techniques for preventing the introduction of

defects during the software development process, and not only try testing the software after it is

completely written;

• Software validation activities should be planned early in the development process and performed

during all the software life cycle;

• Software life cycle should contain documents necessary for supporting the software validation

and software engineering tasks;

• Software life cycle should contain verification and validation tasks aimed at guaranteeing the

correct functioning of the software during its intended use;

• Software validation and verification processes should be defined and controlled through the use

of a plan, and executed using a set of defined procedures;

• When the software is changed, validation analysis should be conducted not just for the individual

change, but also to determine the impact on the entire software system, to demonstrate that the

change has not altered the system behavior;

• Validation effort and coverage should be based on software complexity and safety risk. In

this way, if the risk increases additional validation activities should be added to guarantee the

coverage of all risks;

• Validation and verification activities should be conducted using the quality assurance precept

of the independence of review to guarantee the quality of software. These activities should be

assigned to staff members that are not involved in the design or implementation of software;

• No validation principle is mandatory, but the device manufacturer retains ultimate responsibility

for demonstrating that the software has been correctly validated.

12

State of the art

Note that the FDA guidelines do not classify medical devices in safety classes and, therefore, each

device manufacturer should perform a combined evaluation using both these guidelines and the IEC

62304 standard to identify the activities to be performed.

1.3 The definition of “medical device”

All the standards mentioned in the previous section are based on the same definition of “medical

device” and, consequently, of “medical software”. In particular, the following are considered medical

devices:

• any instrument, appliance, software, or substance used alone or in combination with other

devices during one of the activities related to the medical field;

• any software intended by the manufacturer for use specifically for diagnostic or therapeutic

purposes, used for assuring the correct functioning of medical instruments;

• any software intended by the manufacturer to be used on human beings for diagnosis, prevention,

control, therapy, or alleviation of a disease;

• any software for diagnosis, control, therapy, mitigation, or compensation for an injury or

handicap;

• any appliance intended to be used as a replacement or modification of the anatomy or a physio-

logical process.

Given these definitions, it is clear that the software of a medical device can also be considered a

medical device itself. In the literature, this aspect is generally defined software as medical device

(SaMD). Moreover, electronic devices that integrate software used in medical processes are normally

defined programmable electrical medical systems (PEMS).

1.4 Legal aspects of the liability for non-quality medical systems

Complying with standards and regulations not only aims to obtain a medical device with higher

quality, but also to avoid legal consequences deriving from a possible malfunction of the device for the

manufacturer. In fact, current guidelines and regulations (see Sect. 1.2 for further details) consider the

device manufacturer the one who assumes all the possible responsibilities and bears any administrative

sanctions deriving from any malfunctioning of the produced medical device.

13

Andrea Bombarda

All the standards require producing a consistent number of documents, and it is justified by the

fact that all these documents can be used at a later time for a re-verification in case the marketed

medical device causes any damage to a human being. Indeed, the legal consequences deriving from

a possible malfunctioning of a medical device for its manufacturer can be limited or avoided if in the

documentation it is clear that:

• The device is not marketed yet;

• The defect causing the damage did not exist when the manufacturer started marketing its product

(so, it is of paramount importance to maintain in the documents all the references of all the

validation tests performed);

• The defect causing the damage cannot be avoided if the manufacturer must comply with some

regulations concerning the application field;

• The defect causing the damage could not have been discovered when the manufacturer started

marketing its product due to the limited scientific knowledge in the state-of-the-art at that time;

• The defect causing the damage is not due to the product itself, but entirely to the product that

embedded the produced device.

1.5 Conclusion

In this chapter, the concept of quality for software in a broader way, and in specific for medical

devices, has been presented, and standards and guidelines adopted for the certification of medical

device software have been identified. The standard IEC 62304 identifies the step of the software

development life cycle, without reference to a specific life cycle. Companies that want to certify their

software have to map the applied process for software development with the totality of the clauses of

the IEC 62304 standard. Once the documents are available, they are submitted to the organizations

responsible for certifying the software that evaluate the documentation and provide the certification

or request for changes to fit the presented process with the standards.

This certification process has to be followed by producers not only for getting the certification and the

authorization for marketing the products, but also for assuring the quality of the produced medical

device and for protecting themselves w.r.t. possible malfunctioning consequences.

The effort of adhering to IEC 62304 and certifying a medical device, together with the lessons learned

from this process are presented, for the MVM case study (see Chapter 2), in this book in Chapter 3.

14

Part I

MVM: A mechanical ventilator for ICUs

Chapter 2. The MVM case study

In this chapter, one of the main case studies for the research activities discussed in this book is

presented. Here, I introduce the Mechanical Ventilator Milano (MVM), which is a project to which I

have contributed during the first phases of the emergency related to the COVID-19 pandemic in Italy,

especially for the process of software testing and its certification as a medical device. The chapter is

based on [2] and is structured as follows. Sect. 2.1 introduces the history of the MVM device, together

with the reasons that motivated the work on it. Sect. 2.2 reports some of the medical considerations

about the conditions and treatments that are generally performed in patients with COVID-19, while

Sect. 2.3 describes the design of the device. In Sect. 2.4 the functioning of the MVM and its operating

modes are presented, while the hardware and software configuration of the ventilator is introduced in

Sect. 2.5. Finally, Sect. 2.6 and Sect. 2.7, respectively, present the testing procedures (not limited only

to the software components) executed on the final device and conclude the chapter.

2.1 Introduction

Mechanical ventilators are necessary tools in every modern intensive care unit (ICU). The type and

intensity of ventilation support required by a patient vary over the course of treatment. Therefore,

modern mechanical ventilators are versatile and adapt to patient needs. Commercially available

devices control volume, pressure, or gas flow, and the breathing cycle timing. They support both

patients who cannot breathe, and who can still trigger a mechanical cycle by a spontaneous inspiratory

effort [174]. Today’s mechanical ventilators are complex machines, composed of many specialized

components and implementing several ventilation modes [109, 148, 174].

The exponential growth of COVID-19 cases, especially at the beginning of 2020, put ICUs all over the

world under unprecedented pressure. The drastic increase in demand for these devices exceeded the

capacity of the existing supply chains, especially in regions where cross-border supply was disrupted.

This created the need for a simpler, but technically suitable, machine that could be mass-produced on

a very large scale and in a short time frame.

The MVM Collaboration has responded to this need by developing the Mechanical Ventilator Milano

(MVM), a reliable, fail-safe, and easy to operate mechanical ventilator, built from a small number of

readily available and cheap parts.

The design is inspired by the idea proposed by Manley [124] back in 1961, i.e. the possibility of using

the pressure of the gases from the anesthetic machine as the motive power for a simple apparatus to

17

Andrea Bombarda

ventilate the lungs of the patients in the operating theater [80], but adapting the design by replacing all

moving mechanical parts with electromechanical components, allowing better parameter control and

improving robustness and reliability in the long-term operation, often needed by COVID-19 patients,

as also discussed in Sect. 2.2.

The MVM was designed in a collaboration between healthcare professionals and experimental physi-

cists, benefiting from the medical expertise of the former and the latter’s technical expertise in

designing gas handling systems, with industrial partners (Elemaster, Italy and Vexos, Canada) who

provided access to laboratories and production lines for both R&D and prototype construction, and IT

researchers from academia.

The MVM was certified by the Center for Devices and Radiological Health, U.S. Food and Drug

Administration (FDA) for Emergency Use Authorization in May 20201, in response to concerns

related to the insufficient supply and availability of FDA-approved ventilators for use in healthcare

settings to treat patients during the COVID-19 pandemic, and received the Health Canada Medical

Device Directorate Authorization for Importation or Sale, under Interim Order for Use in Relation to

COVID-19 in September 20202. Moreover, it has obtained the CE marking at the beginning of May

2021, and thus it can be used and sold also in Europe. A 10,000-unit production run was recently

performed in Canada (Vexos and JMP Solutions). Moreover, there is an ongoing project that aims to

deliver MVM devices where they are most needed and is currently being sold by an African Union

charity3. The cost of a single unit turned out to be about 10,000 USD, about five times less than other

commercially available mechanical ventilators for ICUs.

The MVM is a mechanical ventilator for adult patients assisted with tracheal tubes, designed to

directly control pressure, while the resulting delivered volume is measured. Pressure control is widely

used in COVID-19 patients, who are susceptible to additional lung damage from too high pressure

or volume [46, 57, 184]. The MVM can be operated in two modes, pressure-controlled ventilation

(PCV), and pressure support ventilation (PSV). In PCV mode, the ventilator controls the timing of the

breathing cycle and regulates the pressure applied to the patient. PCV mode is used in the acute phase

of the disease when the patients are deeply sedated or paralyzed. By delivering mechanical breath with

an exponentially decelerating flow pattern, PCV allows pressures to balance across lung units during

a preset time, resulting in significantly reduced pressures and improved ventilation distribution. This

allows lowering the risk of barotrauma attributable to the high pressures often required to ventilate

1https://bit.ly/3dcZ6vs
2https://bit.ly/30K3CfX
3https://breathoflifeafrica.org/#MentorProject

18

https://bit.ly/3dcZ6vs
https://bit.ly/30K3CfX
https://breathoflifeafrica.org/#MentorProject

The MVM case study

these patients [125]. On the other hand, PSV is an assisted ventilatory mode that is patient-triggered,

pressure-limited, and flow-cycled. The main use of this mode is to wean the patient off mechanical

ventilation because it unloads the work of breathing and allows a gradual decrease in ventilator support

until extubation [48]. Further details about the two operating modes are reported in Sect. 2.4.

Invasive mechanical ventilation exposes the patient to risks arising from infections, pneumothorax,

ventilator-associated lung injury, and oxygen toxicity [137], as well as operator errors. Therefore, the

MVM has a sophisticated integrated alarm system, in accordance with EN 60601-1-8:2007 [63], that

monitors the various aspects of the breathing cycle and alerts the operator when any anomalies arise. In

order to make it easier to control more ventilators, the MVM is directly connected to the hospital alarm

system, so that the medical operators can intervene also when not near the faulty or alarmed ventilator.

Hardware and software are designed to be as straightforward as possible to mitigate the risk of operator

error. In addition, the MVM must be used in association with an oximeter and a capnometer. The

system is designed to comply with the guidelines defined in ISO 80601-2-12:2020 [106]. The test

results demonstrating compliance are discussed in Sect. 2.6.

2.2 Medical considerations on COVID-19 patients

According to current studies, approximately 5% of patients hospitalized with COVID-19 develop

severe lung damage [53, 95]. This condition reflects the pathophysiology of severe acute respiratory

distress syndrome (ARDS). ARDS is a disease characterized by reduced lung compliance due to loss

of surfactant function, collapsed lung areas, and accumulation of interstitial/alveolar plasma leakage.

Computerized Tomography (CT) scans demonstrate uneven distributions of aerated areas, and dense,

consolidated regions of the lung; the remaining alveolar surface for gas exchange is greatly reduced in

adult patients, a condition termed baby lung [94]. It has been suggested that the clinical management

of COVID-19 patients with severe lung damage should follow the established guidelines for ARDS

subjects [126,139]. This opinion has been confirmed by a recent study comparing COVID-19 subjects

to patients affected by ARDS due to other causes; the physiological differences between ARDS from

COVID-19 and other causes were found to be small [95].

For this reason, the main supportive treatment for patients with ARDS is mechanical ventilation

with supplemental oxygen, currently deemed the most appropriate, following a discussion that has

been ongoing since the syndrome was first described in 1967 [16]. The tidal volume (𝑉𝑡𝑖𝑑𝑎𝑙 4) is a

key parameter, with potentially unfavorable effects if incorrectly set, such as ventilator-induced lung

injury. Starting in the 1970s, a 𝑉𝑡𝑖𝑑𝑎𝑙 of 12 − 15𝑚𝐿 per 𝑘𝑔 of predicted body weight (PBW) was
4The tidal volume is the amount of air a person inhales during a normal breath

19

Andrea Bombarda

recommended by clinicians until, in 2000, the Acute Respiratory Distress Syndrome Network reported

that the length of hospital stay and mortality could be significantly reduced using a lung-protection

strategy. This strategy includes low𝑉𝑡𝑖𝑑𝑎𝑙 ventilation (< 8𝑚𝐿 per 𝑘𝑔 of PBW) to avoid over-distension

of the baby lung, a limited plateau pressure (PP) ≤ 30𝑐𝑚𝐻2𝑂, and a sufficient positive end-expiratory

pressure (PEEP5) ≤ 15𝑐𝑚𝐻2𝑂 [50]. PEEP targeting must be tailored to prevent lung injury due to

cyclic alveolar opening and collapse and to improve oxygen delivery (amount of lung recruited) while

avoiding volutrauma (lung over-distension) and cardiovascular compromise.

In addition to invasive ventilation, a series of therapies were tested in patients affected by COVID-19

pneumonia: nasal high-flow therapy, continuous positive airway pressure, and non-invasive ventilation.

These strategies have been found to be suitable only in the mild and early stage of the disease, when

they may be effective in stabilizing the clinical course. The early stage of COVID-19 pneumonia

is characterized mainly by vascular endothelium injury, altered vasoregulation, and hypoxemia due

to ventilation-perfusion mismatch. The majority of the lung is still not affected, which explains the

relatively good pulmonary compliance at this stage and the interstitial edema rather than the alveolar

edema seen on CT scans [126]. For patients with severe cases or who do not respond well to milder

early-stage treatments, COVID-19 pneumonia may develop into ARDS, requiring treatment with an

invasive ventilation device, such as the MVM. The duration of invasive ventilation treatment can last

from a few days to several weeks and depends on the severity of ARDS and the presence or absence

of comorbidities [81].

2.3 Design of the MVM

Fig. 2 shows a schematic of the MVM, with typical connections to the patient and to the oxygen and

medical airways. In the following, the design conventions used in the figure are described. Dashed

lines indicate electrical connections, and the solid lines indicate gas connections. Thick black lines

represent the breathing circuit, thin red lines are connections to pressure measurements, and the green

line is the gas connection to drive the pneumatic valve at the end of the expiratory line. The direction

of gas flow is indicated by the blue (inspiratory phase) and red (expiratory phase) arrows. The lines

in gray indicate the breathing circuit relief lines. The beige rectangle represents the main electronics

and control board and the yellow square represents the supervisor board, which provides a redundant

monitor and control.

The gas blender, GB-1, is external to the MVM unit. The breathing circuit and other items that get

in contact with or are near the patient are replaced before each use in order to assure their sterility.
5The PEEP is the pressure in the lungs above atmospheric pressure that exists at the end of expiration

20

The MVM case study

Figure 2: Schematic of the MVM ventilator system (light blue box) with the connection to the patient.

The ventilator receives its air and oxygen supply from the facility and the operator mechanically sets

the fraction of inspired oxygen (𝐹𝑖𝑂2), i.e, the concentration of oxygen in the gas mixture, on the

external gas-blender GB-1. The pressure out of the gas-blender is monitored by PI-5 and regulated to

the appropriate pressure for the MVM by PR-1. In case of excess pressure at the MVM input, RV-1

relieves excessive air.

The MVM operates by opening the inspiratory valve, V-1, to provide the breathing gas to the patient

at the desired pressure with the expiratory valve, V-2, closed. On command from the controller, V-1

is then closed and V-2 is opened to allow the patient to exhale. A mechanical PEEP valve, RV-2, sets

a positive end-expiratory pressure. At the end of the expiratory phase, V-2 is closed, V-1 is opened

and the cycle repeats.

V-1 is a proportional solenoid valve controlled by a loop using the pressure measured by PI-3. V-2

is a low-impedance pneumatically operated valve and is controlled by a three-way electrical valve,

V-4. To avoid the need for a second source of gas, the pneumatic control is effected using the MVM

input gas regulated to low pressure by PR-2. The RV-3 and V-3 relief valves prevent over-pressure

21

Andrea Bombarda

Figure 3: A view of the inside of the MVM.

and under-pressure, respectively, in the patient’s line. The pressure in the expiratory line is measured

by two independent indicators, PI-2 on the main control board and PI-6 on the supervisor board. The

(unidirectional) flow of gas to the patient from V-1 is measured by FI-1, while the (bidirectional) flow

of gas into and out of the patient is indicated by PI-1, using the pressure differential developed over

FI-2. The oxygen content of the gas provided to the patient is measured with OS-1, and shown on the

ventilator’s graphical interface. V-5 is a check valve to prevent back-flow from the patient into the

MVM.

F-1 is a bacterial filter ensuring that the air exhausted from the ventilator is free from bacteria or virus

particles and thus safe for doctors and nurses surrounding the patient. Indeed, this filter prevents the

large diffusion of droplets that would otherwise be emitted in the surroundings, as demonstrated by

many flow visualization studies [67, 68, 138], and could spread COVID-19 (or other viruses).

Fig. 3 shows the inside of the stainless steel enclosure of the MVM, with the pneumatic control

components and the electronics board. Furthermore, the yellow labels on the electronic components

identify them, as in Fig. 2.

2.4 MVM operating modes

As anticipated in Sect. 2.1, the MVM is designed to ventilate patients in two different modes, namely

Pressure-Controlled Ventilation (PCV) and Pressure-Support Ventilation (PSV). The basic concepts

of the two ventilation strategies are analyzed below.

22

The MVM case study

Figure 4: Respiratory cycle during PCV ventilation.

2.4.1 Pressure-Controlled Ventilation Mode

PCV is a time-cycled ventilation mode in which the operator sets the inspiratory pressure, the PEEP,

the duration of the inspiratory phase of the breathing cycle, and the number of breaths per minute.

As flow and volume are not directly set, the resultant patient tidal volume varies, depending on lung

compliance and resistance, patient effort, and inspiratory pressure.

Fig. 4 shows the respiratory cycle during PCV ventilation. A new inspiration begins either after a

breathing cycle is completed according to the set respiratory rate (RR), or if the MVM detects the

initiation of a breath by the patient before the cycle is complete and the inhale trigger criteria are met.

The trigger window for a patient-initiated breath occurs during the expiratory phase of the previous

breath. When inspiration begins, the MVM provides the patient with the set inspiratory pressure

(𝑃𝑖𝑛𝑠𝑝) for the set duration of the inspiratory phase of the breathing cycle. The respiratory rate and the

ratio between the inspiratory and expiratory times (I:E) are the parameters that control the time cycle.

2.4.2 Pressure-Support Ventilation Mode

In PSV mode, the MVM provides pressure to help the patient breathe, while the patient controls the

RR. This mode is not suitable for patients who cannot initiate breathing on their own. A pressure-

support breath is initiated when the MVM detects a sudden pressure drop, which indicates the start

of patient inspiration. Such sudden drops in the pressure are determined by measuring the changes in

the rate at which the pressure is decreasing, indicated by the downward curvature near the start of the

pressure vs. time waveform.

23

Andrea Bombarda

Figure 5: Respiratory cycle during PSV ventilation.

Fig. 5 shows the respiratory cycle during PSV ventilation. When a pressure-support breath is triggered,

the MVM increases the pressure to the set 𝑃𝑖𝑛𝑠𝑝. Then, when the patient’s inspiratory flow drops below

30% of its peak, the MVM ends inspiration and returns pressure to the baseline, allowing exhalation.

If the patient does not trigger a breath within a set apnea-trigger time window, the MVM switches to

PCV mode, and an apnea alarm, which must be reset by the operator, is activated.

2.5 MVM electronics and software

Electronics and software are responsible for controlling valve systems, reading ventilation parameters

(e.g., pressure, flow, and oxygen concentration), generating audible and visual alarms in hardware

(including LEDs, and buzzers), monitoring the correct ventilation, and interacting with the operator.

Both electronics and software are composed of three main macro-components:

• Graphical user interface (GUI), a touch-screen panel that displays the information needed to

check the respiratory condition, allows parameter setting, and displays ventilation parameters

and alarm settings.

• Controller, which receives operator input from the GUI, communicates with the valve con-

trollers, serial interfaces, and other sub-components, and sends to them commands.

• Supervisor, that monitors the overall behavior of the system and ensures that the machine runs

safely.

2.5.1 Hardware

The MVM operations are managed by an electronic board hosting all the components required to

measure the relevant quantities, drive input and output valves, and activate visual and audio signals

for the operator. The board houses a microcontroller (ESP32), a Raspberry Pi 4, and the supervisor.

24

The MVM case study

The ESP32 includes a dual-core 240 MHz microcontroller, 0.5 MB of RAM, Wi-Fi, and Bluetooth

connectivity that are deactivated, in order to comply with the regulations on medical devices connec-

tivity6. The ESP32-based solution is widely used in the IoT environment, hence it is readily available,

and is programmed using an Arduino core. A USB connection between the ESP32 and the Raspberry

Pi enables the transmission of commands and settings from the GUI to the controller and the read-back

of the system status.

The supervisor board includes a microcontroller that is programmed with the standard Arduino

bootloader to allow firmware updates via an optoisolated serial connection with the Raspberry Pi.

This connection is also used to enable monitoring during the ventilation, in order to check the safety

of each ventilation state.

The power is provided by an external unit, equipped with a battery ensuring 2 hours of autonomy, that

generates two independent 12 V sources. One is regulated with step-down converters to 3.3 V and 5

V, as required to operate the sensors and the ESP32. The other one provides power to the valves, to

the supervisor, and to the Raspberry Pi. In this way, a failure of either of the supply lines would still

leave a microcontroller active to alert the operator and to return to a safe state.

Three I2C buses connect the sensors and the microcontrollers. The main I2C bus connects the pressure

sensors PI-1 and PI-2, and the flow-meter FI-1 to the ESP32. Two ADCs connect to the main bus,

digitizing the readings from the 𝐹𝑖𝑂2 analog oxygen sensor and the PI-5 analog pressure sensor, and

monitoring internal voltages. The main I2C bus connects the supervisor to the controller, enabling the

watchdog function. A priority bus connects the PI-3 sensor to the ESP32 and allows it to be polled

at frequencies over 1 kHz, as required by the fast proportional–integral–derivative pressure controller,

used for handling the input valve. A third dedicated I2C bus connects the supervisor to the PI-6 sensor

and an ADC that monitors the board’s internal voltages. This auxiliary bus ensures normal supervisor

operation in case the main I2C bus freezes.

The control boards include ON/OFF valve controls, current-feedback valve controllers, and visual and

audio alarm circuits.

2.5.2 Software

The high-level software architecture, shown in Fig. 6, illustrates the communication among the three

software components, namely the controller, the supervisor, and the GUI.

6For safety reasons, not all the certification standards allow using wireless connections to control medical devices.

25

Andrea Bombarda

Figure 6: The high-level MVM software architecture.

Figure 7: The MVM GUI.

GUI

When the MVM is turned on, the graphical user interface guides the operator through startup pro-

cedures, including setting operating parameters and alarm thresholds and performing hardware and

software self-tests, aiming at checking that every component of the MVM works as expected.

The GUI home screen is divided into three parts, as shown in Fig. 7. The central part displays the three

monitored parameter waveforms (airway pressure, inspiratory tidal volume, and airflow). A side panel

displays the current value of other monitored parameters, alarms, and warnings, while the bottom part

is dedicated to parameter setting and to the menu buttons. The GUI is written in Python3, using the

PyQt5 library, and runs on a Raspberry Pi, chosen for its wide availability and its computing-power

to power-consumption ratio.

Controller

The controller software, implemented in C++, receives inputs from the GUI and interacts directly with

the hardware, by receiving patient breathing data and issuing commands, and vice-versa. Its software

is divided into four sub-modules:

26

The MVM case study

STARTUP

EXPIRATORYPAUSE

EXPIRATION
entry /closeInputValve;openOutputValve
exit /closeOutputValve

INSPIRATION
entry /openInputValve(MVM_PIO.P_C_V)

INSPIRATORYPAUSE
entry /closeInputValve

RM
entry /
openInputValve(MVM_PIO.RM)

EXPIRATORYPAUSE

EXPIRATION
entry /closeInputValve;openOutputValve
exit /closeOutputValve

INSPIRATION
entry /openInputValve(MVM_PIO.P_C_V)

INSPIRATORYPAUSE
entry /closeInputValve

RM
entry /
openInputValve(MVM_PIO.RM)

R1

EXPIRATORYPAUSE

EXPIRATION
entry /closeInputValve;openOutputValve
exit /closeOutputValve

INSPIRATION
entry /openInputValve(MVM_PIO.P_C_V)

INSPIRATORYPAUSE
entry /closeInputValve

RM
entry /
openInputValve(MVM_PIO.RM)

PCV

R1

EXPIRATORYPAUSE

EXPIRATION
entry /closeInputValve;openOutputValve
exit /closeOutputValve

INSPIRATION
entry /openInputValve(MVM_PIO.P_C_V)

INSPIRATORYPAUSE
entry /closeInputValve

RM
entry /
openInputValve(MVM_PIO.RM)

EXPIRATORYPAUSE
entry /

EXPIRATION
entry /closeInputValve;openOutputValve
exit /closeOutputValve

INSPIRATION
entry /openInputValve(MVM_PIO.P_S_V)

INSPIRATORYPAUSE
entry/...

RM
entry /

EXPIRATORYPAUSE
entry /

EXPIRATION
entry /closeInputValve;openOutputValve
exit /closeOutputValve

INSPIRATION
entry /openInputValve(MVM_PIO.P_S_V)

INSPIRATORYPAUSE
entry/...

RM
entry /

R1

EXPIRATORYPAUSE
entry /

EXPIRATION
entry /closeInputValve;openOutputValve
exit /closeOutputValve

INSPIRATION
entry /openInputValve(MVM_PIO.P_S_V)

INSPIRATORYPAUSE
entry/...

RM
entry /

PSV
entry /apnea_backup_mode=false
R1

EXPIRATORYPAUSE
entry /

EXPIRATION
entry /closeInputValve;openOutputValve
exit /closeOutputValve

INSPIRATION
entry /openInputValve(MVM_PIO.P_S_V)

INSPIRATORYPAUSE
entry/...

RM
entry /

SELFTEST
exit /mode=MVM_mode.PCV

VENTILATIONOFF
entry /closeInputValve;openOutputValve;
finish

after expiration_duration_ms ms
2

[!rm_request]
1

[!exp_pause]
2

else

2

after max_exp_pause ms
/exp_pause = false

1

else

2

[exp_pause]

1

[rm_request]

1

[ins_pause]

2

after inspiration_duration_ms ms
1

after max_ins_pause ms/ins_pause=false2

[pawGTMaxPinsp]
2

else
3

[!ins_pause]

1

after triggerWindowDelay_ms ms
[dropPAW_ITS_PCV&&!exp_pause]

3

after max_rm_time ms
rm_request=false

2

after expiration_duration_ms ms
2

[!rm_request]
1

[!exp_pause]
2

else

2

after max_exp_pause ms
/exp_pause = false

1

else

2

[exp_pause]

1

[rm_request]

1

[ins_pause]

2

after inspiration_duration_ms ms
1

after max_ins_pause ms/ins_pause=false2

[pawGTMaxPinsp]
2

else
3

[!ins_pause]

1

after triggerWindowDelay_ms ms
[dropPAW_ITS_PCV&&!exp_pause]

3

after max_rm_time ms
rm_request=false

2

after expiration_duration_ms ms
2

[!rm_request]
1

[!exp_pause]
2

else

2

after max_exp_pause ms
/exp_pause = false

1

else

2

[exp_pause]

1

[rm_request]

1

[ins_pause]

2

after inspiration_duration_ms ms
1

after max_ins_pause ms/ins_pause=false2

[pawGTMaxPinsp]
2

else
3

[!ins_pause]

1

after triggerWindowDelay_ms ms
[dropPAW_ITS_PCV&&!exp_pause]

3

after max_rm_time ms
rm_request=false

2

else2

after min_exp_time_psv ms [exp_pause]

4

else

1

[ins_pause]
1

[!rm_request]
1

[!exp_pause]
2

after max_ins_pause ms/ins_pause=false
2

after triggerWindowDelay_ms ms
[dropPAW_ITS_PSV&&!exp_pause]

2

after max_rm_time ms
rm_request=false

2

after max_exp_pause ms
exp_pause=false

1

after min_insp_time_ms ms
[flowDropPSV]

1

[!ins_pause]
1

after max_insp_time_psv ms
2

[rm_request]
2

[pawGTMaxPinsp]
3

else2

after min_exp_time_psv ms [exp_pause]

4

else

1

[ins_pause]
1

[!rm_request]
1

[!exp_pause]
2

after max_ins_pause ms/ins_pause=false
2

after triggerWindowDelay_ms ms
[dropPAW_ITS_PSV&&!exp_pause]

2

after max_rm_time ms
rm_request=false

2

after max_exp_pause ms
exp_pause=false

1

after min_insp_time_ms ms
[flowDropPSV]

1

[!ins_pause]
1

after max_insp_time_psv ms
2

[rm_request]
2

[pawGTMaxPinsp]
3

else2

after min_exp_time_psv ms [exp_pause]

4

else

1

[ins_pause]
1

[!rm_request]
1

[!exp_pause]
2

after max_ins_pause ms/ins_pause=false
2

after triggerWindowDelay_ms ms
[dropPAW_ITS_PSV&&!exp_pause]

2

after max_rm_time ms
rm_request=false

2

after max_exp_pause ms
exp_pause=false

1

after min_insp_time_ms ms
[flowDropPSV]

1

[!ins_pause]
1

after max_insp_time_psv ms
2

[rm_request]
2

[pawGTMaxPinsp]
3

poweroff
1

startupEnded

2

after max_exp_pause ms
/exp_pause = false

1

[!exp_pause]
2

[exp_pause]

1

after expiration_duration_ms ms
2

after triggerWindowDelay_ms ms
[dropPAW_ITS_PCV&&!exp_pause]

3

[stopVentilationReq || stopVentilation]/
apnea_backup_mode=false;
stopVentilationReq=false

1

[!ins_pause]

1 after max_ins_pause ms/ins_pause=false2

else

2

[!rm_request]
1

after max_rm_time ms
rm_request=false

2

[pawGTMaxPinsp]
2

after inspiration_duration_ms ms
1

startVentilation[mode==
 MVM_mode.PCV]/
start;closeOutputValve

1 else

2

after apnealag ms/apneaAlarm;apnea_backup_mode=true;mode=MVM_mode.PCV

3

after min_exp_time_psv ms [mode==MVM_mode.PCV]

5

[ins_pause]

2

else
3

[mode==MVM_mode.PSV] 1

[rm_request]

1

poweroff

after max_exp_pause ms
exp_pause=false

1

[!exp_pause]
2

after min_exp_time_psv ms [exp_pause]

4
after triggerWindowDelay_ms ms
[dropPAW_ITS_PSV&&!exp_pause]

2

[stopVentilationReq || stopVentilation]/
stopVentilationReq=false

1

[!ins_pause]
1

after max_ins_pause ms/ins_pause=false
2

[pawGTMaxPinsp]
3

else

1

[!rm_request]
1 after max_rm_time ms

rm_request=false

2

after min_insp_time_ms ms
[flowDropPSV]

1
after max_insp_time_psv ms

2
startVentilation[mode==
 MVM_mode.PSV]/
start;closeOutputValve

3

[ins_pause]
1

else2

[rm_request]
2

poweroff

poweroff
2

poweroff

2

selfTestPassed

1

resume
3

Figure 8: The Yakindu State Machine for the MVM controller.

• the interface allows the communication with the GUI and the supervisor;

• the monitor observes the sensors and the status of the system and triggers alarms;

• the control changes the respiratory phases using a state machine and controls valves;

• the hardware drivers open and close valves and raise visual and audio alarms.

The operation modes are implemented in the controller with a state machine. Fig. 8 shows the state

machine modeled with the Yakindu Statechart Tool (Itemis AG). It interacts with the valve controller,

opens and closes the expiratory valve V-2, and sets the desired pressure for the inspiratory valve V-1.

The corresponding C++ code has been generated from the state-chart model and integrated into the

controller logic.

The state machine describes the states in which the device can operate and the transitions between

them. In particular, the machine starts in the StartUp state and needs to complete all the SelfTests

before operating, either in PCV or PSV mode. The SelfTests take about ten minutes to complete,

assuming the doctor already knows the parameters to be set for the alarm thresholds and has been

using the MVM before.

27

Andrea Bombarda

Figure 9: Schematics of the pressure controller of the MVM.

During the breathing cycle, the MVM controls the valve V-1 to increase the pressure during the

inspiration phase for the prescribed time duration. The actual tidal volume depends on the patient’s

response and on how quickly the regulator reaches the pressure set point, 𝑃𝑠𝑒𝑡 . To protect the patient,

the device must never overshoot this point significantly, by controlling the pressure peaks. To satisfy

these objectives and constraints, the control algorithm has been designed to reach 𝑃𝑠𝑒𝑡 in a fixed

rise time, and without overshooting. For this reason, the MVM implements a control architecture

composed of two nested control loops, often used in safety-critical industrial products, that allows

a simpler controller tuning, based on first-principle considerations, and ensures sufficient robustness

against disturbances.

Fig. 9 shows the controller structure and the simplified parameters used to model the patient’s lungs,

namely linear resistance 𝑅𝑝𝑎𝑡 , and compliance 𝐶𝑝𝑎𝑡 . The outer loop regulates the pressure at the

patient by reading the value given by the PI-2 sensor, read at 300 Hz rate; it is controlled by a simple

integrator, whose time constant depends only on the desired rise time. On the other hand, the inner loop

controller is a proportional-integral regulator that is automatically tuned through patient parameters

(𝑅𝑝𝑎𝑡 and 𝐶𝑝𝑎𝑡) and is fed back with the pressure at the valve outlet PI-3, read at 1 kHz rate. To

be adaptable to every patient, patient parameters are automatically determined during the first three

respiratory cycles. To ensure patient safety during this phase, the inner controller parameters are fixed

and set to ensure smooth pressure rise in 300-500 ms, over the expected range of 𝑅𝑝𝑎𝑡 and 𝐶𝑝𝑎𝑡 , with

an overshoot always lower than 2 mbar. A recursive least-squares method is used to estimate patient

parameters, limiting memory use in the microcontroller. Then, the identified 𝑅𝑝𝑎𝑡 and 𝐶𝑝𝑎𝑡 are used to

tune the inner loop and the time constant of the outer loop to reach a more desirable rise time of about

28

The MVM case study

100 ms. Note that model parameters, estimated after three respiratory cycles, can be continuously

updated and re-tuned as necessary, upon the doctor’s request.

Supervisor

The supervisor software is implemented in C++ and is responsible for monitoring the controller, the

GUI, and the hardware. In case of errors, it raises alarms if not already raised by the controller or the

GUI, ensuring patient safety. For instance, if the pressure in the circuit exceeds the maximum allowed

value for a given duration, the supervisor switches off the ventilation and brings the valves into the

safe position (valve V-1 closed and V-2 open), which allows the patient to breathe.

Like the controller, the supervisor has an integrated state machine that models its behavior. After

startup, it waits for the operator to start the self-test procedure. Then, the supervisor alternates between

two operation modes, namely breathing off (the MVM is ready to work but it is not ventilating)

and breathing on (the device is ventilating). To ensure the patient’s safety, the supervisor can move

into a fail-safe state from any state, in case of errors.

Software certification

As already introduced in Sect. 1.2, every medical device must comply with the IEC 62304:2015

regulation. More details about the process followed, some of the lessons learned from the certification

effort, and guidelines will be reported in Chapter 3.

2.6 Device testing

Taking into account the hardware and software of the MVM as a whole, all standards require a system

testing activity, using different ventilation modes. During this activity, failures are simulated, and the

long-term durability of the device is demonstrated.

2.6.1 Software testing

In order to achieve the software certification and to assure the quality and reliability of the MVM, a

regular software testing process has been carried out together with the software development. Indeed,

as I will later present in details in Chapter 3, during the development of the MVM we have followed an

agile-like process, in which software development and software testing, for each software unit, have

been performed in parallel. Given that the most of the participants to the development of the MVM were

not software testers, no particular methodologies (e.g., model-based testing, combinatorial testing,

29

Andrea Bombarda

Parameter Range Units

𝑃𝑃 ±(2 + (4% 𝑜 𝑓 𝑠𝑒𝑡 𝑣𝑎𝑙𝑢𝑒)) 𝑐𝑚𝐻2𝑂
𝑃𝐸𝐸𝑃 ±(2 + (4% 𝑜 𝑓 𝑠𝑒𝑡 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑖𝑟𝑤𝑎𝑦𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒)) 𝑐𝑚𝐻2𝑂
𝑉𝑡𝑖𝑑𝑎𝑙 ±(4 + (15% 𝑜 𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)) 𝑚𝐿

𝑅𝑅 ±(0.5 + (5% 𝑜 𝑓 𝑠𝑒𝑡 𝑣𝑎𝑙𝑢𝑒)) 𝑚𝑖𝑛−1

𝐼 : 𝐸 ±(0.1 + (5% 𝑜 𝑓 𝑠𝑒𝑡 𝑣𝑎𝑙𝑢𝑒))

Table 2: Acceptable ranges for the measured breathing parameters of interest.

etc.) have been adopted, but only simple test cases, written by hands and guided by the code coverage

have been used. This complex process lasted for more than two months, considering altogether the

testing activities.

2.6.2 Tests in PCV mode

The test setup that have been used in this phase is equivalent to that described in Fig. 201.102 in

the ISO 80601-2-12:2020 reference standard [106]. In particular, the breathing simulator (IngMar

Medical - ASL 5000) is used both as a test lung (with settable compliance and resistance) and as an

independent sensor for pressure, flux, temperature, and oxygen concentration.

This series of tests refers to the ISO reference standard, Section 201.12 for pressure-controlled inflation-

type testing, Subsection 201.12.1.102, verifying that the values of the breathing parameters set and

measured by the MVM agree within the declared accuracy range. The only exception is the value

of tidal volume 𝑉𝑡𝑖𝑑𝑎𝑙 , which is not set in MVM, for which the measured value is compared with the

value independently measured by the breathing simulator.

In Tab. 2 the acceptable ranges for the measured breathing parameters of interest are reported. Out

of the 21 tests in the ISO standard Table 201.105, only the first 11 have been performed, as they are

the ones involving tidal volumes in the range relevant for MVM operation (50𝑚𝐿 ≤ 𝑉𝑡𝑖𝑑𝑎𝑙 ≤ 500𝑚𝐿).

For each condition, the testers ensured that the breaths resulted in smooth and reproducible time

traces, such as the one shown in Fig. 10. Measurements were taken over 30 cycles under steady state

conditions. The plateau pressure (PP) and PEEP were measured in the last 50𝑚𝑠 of the inspiratory and

expiratory phases, respectively, while 𝑉𝑡𝑖𝑑𝑎𝑙 was obtained by averaging the MVM measurement over

30 cycles and compared to breathing simulator measurements, averaged over the same cycles. RR

and I:E were calculated from the collected waveforms using custom algorithms, which has allowed

testers to verify that the calculated values agree well with those from the breathing simulator. When

comparing the breathing simulator measurements to the values set in MVM (or in the case of𝑉𝑡𝑖𝑑𝑎𝑙 , to

30

The MVM case study

Figure 10: Example waveforms from the breathing simulator with the MVM in PCV mode.

Figure 11: Example waveforms from the breathing simulator with the MVM in PSV mode.

the MVM reported value), all breathing parameters have been found to be within the tolerances given

in Tab. 2, for all 30 cycles.

2.6.3 Tests in PSV mode

In PSV mode, the patient actively initiates a breathing cycle by producing a decrease in airway pressure.

Then, the ventilator must readily recognize this decrease and provide airflow support in a way not to

stress the patient’s compromised respiratory system. The MVM must also recognize the patient-driven

end of the inspiratory phase and begin the expiratory phase. To achieve a quick recognition of the

patient breathing effort, a trigger system based on the second derivative of the airway pressure with

respect to time was devised. Its sensitivity is set by varying the threshold on the maximum value of

this parameter.

31

Andrea Bombarda

A typical waveform of the MVM operating in PSV mode is shown in Fig. 11. Thanks to the sensitivity

of the trigger, even in the case of a patient’s breathing effort as low as 2𝑐𝑚𝐻2𝑂, the MVM is able to

recognize the effort within 100 − 200𝑚𝑠 and starts the inspiration by providing the desired pressure

support.

2.6.4 Single-fault test condition based on ISO protocols

A medical device, regardless of its software, must be robust even w.r.t. specific single faults conditions

(see Section 201.13.2.101 of the ISO standard [106]). The tested conditions relate to the disruption,

disconnection, or bad connection of the external components, such as the gas delivery to the patient

pathway or the pressure to the patient sensors. The tests performed ensure that when any one of

the fault conditions is triggered, the system successfully maintains the patient’s breathing parameters

in the safety zone and triggers an alarm. For this kind of testing, the fault conditions are induced

manually by disconnecting external components during the test operation, such as the PI-2 sensor.

Once the default conditions are restored, the ventilator performance is automatically re-established.

2.6.5 Long-term durability tests

As required by the standards, several units were continuously tested for a period of three months.

During this testing, the units met all the criteria defined for correct operation, as no alarms of any kind

were recorded.

2.6.6 Response of the MVM to an increased oxygen concentration

Paragraph 201.12.1.105 of the ISO standard [106] requires evaluating the ventilator’s speed of response

to a change in the 𝐹𝑖𝑂2 set point, i.e., the oxygen concentration. This test involves measuring 𝑡𝑟𝑖𝑠𝑒

(i.e., the time required for the oxygen concentration in the lung to rise from 21% to 90% when the

input 𝐹𝑖𝑂2 is suddenly increased to 100%. This test has been performed by connecting the MVM

to a gas analyzer, which measures oxygen concentration, and to an adjustable test lung, setting the

parameters as in Tab. 3 in the MVM, and starting it in PCV mode with 𝐹𝑖𝑂2 at 21%. Once steady-state

conditions are reached, 𝐹𝑖𝑂2 is then suddenly increased to 100%. The measured time 𝑡𝑟𝑖𝑠𝑒 for the

oxygen concentration to reach 90% during the expiratory phase is reported in Table 3.

2.6.7 Evaluation of bio-compatibility

Bio-compatibility of breathing gas pathways of a brand-new MVM was assessed according to the ISO

18562-3:2017 guideline [103]. The analyses were carried out using a thermal desorption unit coupled

32

The MVM case study

𝑉𝑡𝑖𝑑𝑎𝑙 [𝑚𝐿] 𝐼 : 𝐸 𝑅𝑅 [𝑚𝑖𝑛−1] 𝑅𝑝𝑎𝑡 [𝑐𝑚𝐻2𝑂/(𝐿𝑠)] 𝐶𝑝𝑎𝑡 [𝑚𝐿/𝑐𝑚𝐻2𝑂] 𝑡𝑟𝑖𝑠𝑒 [𝑠]
500 1:2 10 5 20 76
150 1:2 20 20 10 85

Table 3: Parameters used to test the MVM response to increase in 𝐹𝑖𝑂2.

to gas-chromatography and mass spectrometry detection, in accordance with the ISO 16000-6:2011

guideline [100]. The tests showed that volatile emissions from a brand-new MVM system are limited

to a few chemicals, which mainly belong to the siloxanes family. The presence of such chemicals

was somehow expected, due to the large use of silicones in biomedical devices. However, all values

complied with the permissible levels suggested by ISO 18562-3:2017 [103] and decreased after one

day of use as they were washed away from medical air.

2.7 Conclusion

The Mechanical Ventilator Milano, a novel intensive therapy mechanical ventilator designed for

rapid, large-scale, low-cost production for the COVID-19 pandemic, has been conceived, designed,

prototyped, and tested by a unique international collaboration of scientists, medical specialists, and

industrial partners. Due to its complexity, composition of both hardware and software (structured as

a set of several modules) and the successful process of device certification, it is a complete example

of a medical device, which quality has to be assured. Thus, in the next chapters, I will often use it as

a case study for conducting further experiments.

33

Chapter 3. The software certification process: lessons learned

and guidelines

In this chapter, lessons learned during the development of the Mechanical Ventilator Milano (MVM)

are presented. Moreover, through validation activities, some empirical guidelines for the development

of medical devices are derived starting from the lessons learned. These guidelines are proposed to be

used under emergencies, but some of them can be generalized to every software development condition.

This chapter is based on [22, 24] and is structured as follows. Sect. 3.1 introduces the work presented

in this chapter, by highlighting the objective and the research questions that have been used for the

definition of the lessons learned and guidelines. Sect. 3.2 presents the research methodology used by

me and the research team I was part of for the identification of the lessons learned, their validation and

the derivation of guidelines. In Sect. 3.3 and Sect. 3.4 the lessons learned and guidelines that have

been identified are respectively detailed and validated. Finally, Sect. 3.5 concludes the chapter.

3.1 Introduction

The development of safety-critical devices, especially when they are used in the medical domain,

considers certification as a mandatory step [82, 85, 112] since a software failure or malfunction can

compromise the health of human beings that interact with it. In particular, as reported in Sect. 1.2, in

healthcare, devices must comply with the IEC 62304 [64] standard and the FDA guidelines [83].

The importance of a well-documented and correct software life cycle in the development of medical

systems has been discussed in [158] and [116]. Literature confirms that applying a well-documented

life cycle is not limited to just assuring the safety and the certification of medical devices [176],

since adopting frameworks and the good principles of software engineering can help developers to

compare different medical devices for identifying gaps between them and improve the capabilities

of products [140]. However, one may argue that using a well-documented and correct life cycle

when developing medical software under emergency (such as for the MVM case study during the

COVID-19 pandemic – see Chapter 2) is a time-consuming activity that cannot be fully followed. In

fact, the focus on well-documented and regulated frameworks poses some constraints on the adoption

of agile software development techniques or requires the adaptation of selected agile methods and

practices [131]. Nevertheless, in the literature, we can find attempts to apply agile practices also in

medical software development planning, for example, by integrating the more classical V-model with

agile methodologies [129, 132].

35

Andrea Bombarda

In this chapter, I present the experience acquired during the work on the mechanical ventilator and

some of the lessons learned that aim to speed up the development process while still satisfying

the safety standards, even under emergency. By emergency, I mean producing software under the

following constraints: 1. the first hard constraint is time, meaning that the software device should be

produced as soon as possible; 2. the second hard constraint concerns establishing a development team

in a hurry, in an emergent and voluntary fashion, based on the personal network, heterogeneous under

various dimensions, and composed of people that dedicate their private time to the project, while

still continuing their normal job. In other emergency situations, like hurricanes or earthquakes, there

can be additional constraints like lack of energy power or Internet connection, but this chapter only

presents lessons learned and guidelines derived from the MVM experience, and thus I limit myself to

the limitations observed during the MVM project.

In particular, this chapter tries to answer the following research question: “Are there any empirical

guidelines for developing medical software under emergency?”. More specifically, it can be detailed

in the following three aspects:

• Which development process is most appropriate for the development of safety-critical devices

under emergency?

• How can the activities of the development process be performed in order to be simplified and

sped up under emergency, while still maintaining the rigorousness required by certification

standards?

• How to deal with a heterogeneous development team built in an emergent and voluntary fashion?

3.2 Research methodology

In this section, I present the research methodology followed during the work presented in this chapter.

It is based on a case-study approach [155] since it is considered the most appropriate research

methodology to study a phenomenon in its natural context, i.e., when the phenomenon is difficult to

study in isolation. Indeed, in the MVM project, it is difficult to clearly and precisely identify and

delimit in a real context the process and the activities to be followed when producing software devices

that are supposed to be compliant with safety standards under emergency.

Fig. 12 presents an overview of the research methodology. In the following, the three main steps of

the researches presented in this chapter are explained in details.

36

The software certification process: lessons learned and guidelines

Figure 12: Research Methodology.

Activity # People Deliverables

System development plan 3 5
Supporting activities 22 12
System requirements 5 1
Software Architecture Design & Risk Management 10 3
Software Requirement Spec. 21 15
Software Detailed Design Impl. 18 N/A
Unit Testing 22 20
Integration Testing 11 2
Validation Testing 9 2

Table 4: Summary of the effort required for each phase.

3.2.1 Data collection and analysis

For identifying lessons learned and guidelines, data has been collected along the various activities

of the software development process, namely during requirements engineering, architectural design,

testing (unit, integration, and validation), implementation, documentation, and traceability checking.

To provide an overview of the project activities that created the data for this chapter, Table 4 summarizes

the effort required in terms of (i) activities performed; (ii) number of people involved in each activity;

and (iii) deliverables produced for documentation – each of these is a Microsoft Word document.

Collected data were heterogeneous: they consist of the various deliverables created for the certification

purpose and stored in a Google Drive shared – among the members of the certification team – folder,

but also of other items created during the project completion, such as whiteboard sketches, notes

(personal or shared within sub-teams), source code, comments in the code, changes requests, test

reports, emails, and so on.

All this data allowed to formulate a set of lessons learned, which are reported in Sect. 3.3, and to

derive from them a set of guidelines, reported in Sect. 3.4.

37

Andrea Bombarda

3.2.2 Validation methodology for the lessons learned

Sect. 3.3.3 presents the validation of the lessons learned. They have been discussed in three inter-

national events, where I and the development team members have been invited to provide keynotes

or invited presentations. Moreover, they have been validated through lectures for PhD courses and

seminars provided in three European universities. Finally, the largest validation has been executed

in the context of two courses for the Italian engineering society, held in date September 20th 2021

and October 2nd 2021 as virtual events, which had, overall, 56 attendees. During these courses, par-

ticipants have responded to questionnaires aimed at checking the level of agreement and importance

of each lesson learned (see the replication package [23]), by alternating sessions in which they were

provided with new content with validation sessions in which the questionnaires were filled. In total,

56 complete answers have been analyzed to draw conclusions.

The data collected during the validation of the lessons learned enabled to formulate a set of guidelines

that may help during the development of safety-critical systems under emergency. In Sect. 3.4, I

present the guidelines and show how they have been synthesized from the lessons learned.

3.2.3 Validation methodology for the guidelines

The guidelines have been validated via questionnaires (see the replication package [23]) and interviews.

In particular, validation activities involved experts in the development of safety-critical systems in

healthcare, but also in other domains. Since the validation process aimed at identifying patterns in

the replies, it has been done through identical copies of the questionnaires that have been distributed

to various groups of experts (i.e., (𝑖) experts in health care safety-critical systems, (𝑖𝑖) experts in

safety-critical systems in other domains, mostly automotive, (𝑖𝑖𝑖) experts in agile and safety-critical

systems, (𝑖𝑣) experts involved in the development of the MVM, (𝑣) experts in computer science, and,

finally, (𝑣𝑖) developers of other ventilators under emergency) to grasp different points of view.

Table 5 provides an overview of the experts involved in the validation. In total, the validation

effort involved 37 experts, which are practitioners or academics, answering the questionnaires (21

practitioners and 16 academics), and 9 of them accepted to be contacted for a video call interview (7

practitioners and 2 academics) to better understand their responses and feedbacks. Those experts that

performed an interview are highlighted by a * symbol in Table 5.

Our questionnaires mostly contained closed-ended questions, except for an optional open-ended ques-

tion at the end of the two groups of questions which was inserted to collect free comments from the

participants. The interviews were driven by the content of the questionnaires and their responses. For

each interview, the main criticalities or stronger agreements of the specific expert were then discussed

38

The software certification process: lessons learned and guidelines

ID Years Industry/Academia/ Other Role

1 < 1 Open Source Ventilator Team
2 1-3 Industry Mechanical engineer
3* 4-5 Industry CTO
4 >20 Academia Director of Technology
5 <1 Academia Scientist
6 11-20 Academia Assistant professor
7 <1 Academia PhD student
8* <1 Academia Assistant professor
9 4-5 Academia Associate professor
10 <1 Academia PostDoc
11 4-5 Academia PostDoc
12 <1 Academia PostDoc
13 <1 Academia Associate professor
14 >20 Industry CTO
15 <1 Academia Associate professor
16* >20 Industry Program manager/Quality manager
17 1-3 Industry Developer
18 6-10 Industry System/Software architect
19 <1 Industry Developer
20 6-10 Industry Developer
21 11-20 Industry System/Software architect
22 1-3 Academia Assistant professor
23* 4-5 Academia Associate professor
24 1-3 Academia Assistant professor
25 6-10 Industry Developer
26 6-10 Industry System manager
27 11-20 Industry Developer
28 1-3 Industry CTO
29 11-20 Industry CTO
30* 1-3 Industry Developer
31 11-20 Academia Full professor
32* 11-20 Industry System manager
33* >20 High risk systems
34* >20 High risk systems
35 1-3 Academia Assistant professor
36 4-5 Industry Technical expert of software quality
37* 6-10 Industry System/Software architect

Table 5: Experts overview. The column year stands for “Years of experience in the development of critical
software”. The IDs with asterisk are experts interviewed.

in depth. The interviews have been performed by a minimum of 4 co-authors: one co-author had the

role of the driver of the interview, supported by another and the other two co-authors were mainly

responsible for taking notes. At the end of each interview, the co-authors met to summarize the

outcomes and findings of the interview.

By analyzing the validation results on each guideline, here I discuss the benefits and risks of each of

them and clarify their scope (see Sect. 3.4.3).

39

Andrea Bombarda

Software Integration and
integration testing

5.6

Validation/System testing
5.7

Software detailed Design Software Implementation

SW requirements
analysis Unit Testing

5.5

5.4 5.5

5.2

Component 1

Component nSw architectural design

System requirements

Risk management

5.3

5.2

7

So
ftw

ar
e

D
ev

el
op

m
en

t P
la

nn
in

g

5.
1

Su
pp

or
tin

g
ac

tiv
tit

es

Figure 13: MVM software development process.

3.3 Lessons learned

As presented in Sect. 3.1, during the development of the MVM, several actions and activities have

been carried out to ensure the quality of its software according to the IEC 62304 standard [64]. In

this section, I present the process I and the research team I was part of followed, all the performed

activities with their relevant details, and the lessons learned during them. Some of the activities are

useful for the whole development process (e.g., planning activities and tools definition), while others

are more connected to a specific development phase (e.g., requirement analysis or software design).

3.3.1 Development process

As required by the standards and regulations for medical software (see Section 1.2 for more details),

the first activity to be performed while developing medical software is the definition of the soft-

ware development process, together with all supporting activities aimed at defining processes, task

responsibilities, and tools to be used.

Software development planning

First, the device has been classified based on its potential to cause injuries, as required by the IEC

62304 standard. Starting from the safety classification and taking into account the activities required

by the IEC 62304 standard (which are summarized in Sect. 1.2.1 and in Fig. 1), the MVM as a whole

has been classified in class C since death or serious injury is possible. Considering the safety class

and the mandatory activities, the team has defined the development process to be adopted, depicted in

Fig. 13, which integrates the classical V-model with agile practices, aiming at improving the rapidity

and flexibility of software development, while still guaranteeing the expected safety of the device.

The list of activities included in the adopted software development process is as follows:

40

The software certification process: lessons learned and guidelines

1. Software Development Planning, which regards the entire MVM and maps to activity 5.1 in the

standard, including all supporting activities;

2. System requirements and Software architectural design, which refer to the MVM as a whole and

define the desired components, after a risk analysis has been performed;

3. Software requirements analysis and Software detailed design, which are performed for each of

the components previously identified during the architectural design phase;

4. Software implementation and Unit testing, which are performed for every component of the

MVM;

5. Integration and Validation testing, which are performed by integrating all software components

with the hardware and by testing the system as a whole.

For each phase of the process, the software development plan defines the tasks to be performed, the

inputs necessary for its execution, and the deliverables expected when the phase is completed. As

shown in Fig. 13, the adopted process model recalls a V-model, in which all the activities required by

the standard are mapped to process phases. For each software component, the identified development

process allowed the teams to work iteratively (inner dark circle in Fig. 13) to guarantee the conformance

among requirements, architecture, design, and implementation. The integration between the V-model

and agile practices favored flexible responses to changes, due to the need to develop the ventilator

as quickly as possible, caused by the fact that the work on the MVM was performed during an

emergency. In this way, the MVM team could better parallelize the process in an agile-like mode

and foster a collaborative approach. Moreover, agile practices are considered by the outer circle in

Fig. 13 as well: after validation/system testing all the processes can be re-executed one or more times

to integrate solutions to detected problems. At the end of the day, the MVM team combined various

models of software development processes, namely the V-model with agile practices and model-driven

development (mostly for the state machine component, such as the one reported in Fig. 8).

Lesson learned 1: 1. IEC 62304 and V-Model: The development process was strongly

influenced by the IEC 62304 standard, so the V-model, although not mandated, is the “best fit”

with regulatory requirements as it produces the necessary deliverables required when seeking

regulatory approval. 2. Use of agile practices: However, it was necessary to integrate the

V-model with agile practices, to combine efficiency, quality, maintainability, and flexibility.

41

Andrea Bombarda

Figure 14: Excerpt of the task list.

Teams definition and meetings planning

During this activity, the teams have been defined, as well as their composition. Seven subgroups were

created ad-hoc during the project, taking into account competencies, workload, and availability of

individuals. For each group, the coordination team identified a group leader, which was responsible

for meeting deadlines and for reporting the progress to the project coordinator, and an activity to

be assigned to each of them. The first group was in charge of defining the software development

plan, supporting activities, and performing the risk analysis; the second group had the goal to define

software requirements; the software architecture specification was designed by group three, while

group four developed the MVM software. Groups five and six run software unit testing, integration

and system testing, respectively. Finally, another group prepared the operational and maintenance

manual.

Then, the coordinators have defined the structure and schedule of the meetings. The entire MVM

team met daily (including holidays) for 1 hour from 5 PM to 6 PM CET to check the status of the

project and set the goals for the next day. The project leaders went through the task list (see Fig. 14)

to check the status of each task and to check if some obstacles emerged. Moreover, each sub-team had

to organize task-specific meetings to synchronize their work at other times of the day. Because of the

lockdown due to the COVID-19 emergency in Italy, only a few in-person meetings were organized (and

authorized by the special national commissioner). Moreover, since the teams included people (mainly)

from Europe and America, only the late afternoons and nights were suitable for online meetings.

The aspect that made the MVM project particularly challenging was related to the characteristics

of the team. In fact, the teams were multidisciplinary and heterogeneous, involving people with

different backgrounds, including physicians, physicists, electronic engineers, and computer scientists,

and composed of volunteer people motivated by the social nature of the project and by their passion.

Lesson learned 2: 1. Coordination effort: The project was successful, but there was a quite

huge overhead of coordination, with various calls every day from the morning to evening. The

42

The software certification process: lessons learned and guidelines

coordination of the team should not be underestimated. Open-source software development

could be a good development experience from which projects of this nature can learn. 2. En-

larging team: The experience on the development of the MVM has confirmed what is reported

in the Mythical Man-Month [49]: adding people is not necessarily a good solution to improve

the efficiency and effectiveness of a team. 3. Commitment and participation: Having responsi-

bilities for each sub-activity and setting strict intermediate goals have favored commitment and

participation.

Supporting activities

In parallel to the definition of the development process, a set of supporting activities has been

identified: project management, the definition of a change control process, the definition of the

development environment, and the definition of code guidelines. These activities are related to the

production of documents, guidelines, and processes to be used throughout the software life cycle.

Initially, the teams selected the tools supporting them in project management. The management team

initially had evaluated the use of a project management tool like Jira, but in the end, decided to use

only a combination of more accessible tools, considering the heterogeneity of the group and the non-

expertise of all the members with dedicated software, like Google Drive, GitHub, Zoom, and Slack.

For modeling system requirements and system architecture, UML (Unified Modeling Language) has

been used, and it turned out to be understandable also for people not experts in software engineering.

We have put all the documents on Google Drive and the code on GitHub, which provides hosting

for software development and version control using Git. This allowed people from all over the

world to contribute to the development of different parts of the software. This approach has allowed

keeping track of all the changes in the code, which is really useful to manage and control the software

development process. Moreover, GitHub has also been used to manage issues and to signal addings or

fixes to the software. Furthermore, a continuous integration system has been established using Travis

CI1 (Continuous Integration).

For all the activities that foresee a document as output, the team decided to apply two review steps. The

first was performed internally by a designated member of the team. Once the document was approved,

the Design Authority (Elemaster - one of the companies involved in the MVM production) was in

charge of reviewing such documents and producing the Review Acceptance document containing all

the comments. Later, the comments were addressed and possibly included in a new version that was

1https://travis-ci.org/

43

https://travis-ci.org/

Andrea Bombarda

resubmitted again to the Design Authority. This process was performed iteratively until the Design

Authority approved the final version of the document.

Considering that several activities of the software development life cycle were supposed to produce

a document as a result, the coordination team needed to produce document templates. The initial

templates for the documents were kindly provided by the Canadian Nuclear Laboratories (CNL)

sub-team, which has great experience in critical software certification (not in the medical field,

though). This greatly helped to speed up the process from the start. To keep track of the links among

requirements in the documents, during the development of the MVM, a CNL collaborator developed

an in-house tool. This tool reads each document subject to traceability and generates a traceability

matrix for the requirements. The tool has been daily executed to illustrate the existing links and report

missing or faulty links.

Lesson learned 3: 1. Multiplicity of tools: The use of a great variety of tools (one tool for each

particular purpose) even if not integrated and not specific for software project management, has

provided indispensable support to the team. 2. Templates and review process: Having a partner

that provided all the necessary templates and a clear review process has helped to define which

activities should be performed. 3. Use of UML: Standard graphical notations like UML have

shown to improve communication and to be easily usable by non-software experts (very skilled

in other fields, though) too.

3.3.2 Development phases

After having performed the activities described above, which generally refer to the development

process, we have tackled the activities required by the process presented in Fig. 13. In the following,

activities and lessons learned on each phase of the development process are presented.

System requirements (5.2)

One of the obstacles encountered during the first implementation of the MVM was the lack of well-

defined and traceable system requirements. This caused a lot of confusion between the developers

of different components, and some operations did not meet the requirements of the standards that

regulate the ventilator development.

According to point 5.2 of the IEC 62304 [64] standard, the system requirements analysis has been

performed to define the requirements of the device at a higher level of abstraction. In this phase,

the team has defined functional, performance, safety, and cybersecurity requirements, the overall

44

The software certification process: lessons learned and guidelines

structure of the system, environmental conditions, materials, and human factors. Furthermore, each

requirement has been uniquely identified by a number, which has been used for traceability purposes

during the whole software development process.

Writing complete software requirements has allowed the MVM team to identify conceptual bugs in

the first prototype of the ventilator. For example, the MVM team has discovered that the prototype

was faulty because, in case of failure of one of the components, the system was not able to put itself

in a safe mode, so that the valves are positioned to allow the patient autonomous breathing. For this

reason, the necessity to have an additional component, namely the supervisor, came out. This required

a change of the initial electronic board with the introduction of a small microcontroller devoted to

assuring the safety of the device.

During the writing of system requirements, reverse engineering some parts of the prototype has been

useful in order to get a complete and consistent requirement specification of the device operation. It

has been applied when no enough information was available, and this was the case, for example, for

the specification of the alarms. The reverse engineering process also helped to reveal details useful to

specify the duration of a trigger window, namely the time interval within which spontaneous breathing

can be detected (in PCV mode - see Chapter 2 for more details on the ventilation modes).

Lesson learned 4: 1. Written requirements: Not having written requirements since the

beginning led to various attempts to address the requirements in different software components.

For this reason, precise system requirements are also very important in an emergency situation.

Having developers referring to the same written documents without inconsistencies reduces the

development time. 2. Reverse engineering: For systems for which a prototype is available,

especially if it is developed by domain experts, reverse engineering has shown to be a viable

solution to discover the functionalities and configuration parameters to be included in the

requirements of the system. 3. Need of a traceability system: A traceability system helps

developers to trace all the requirements and their changes throughout the development process.

Software Architecture Design (5.3)

Based on the requirements identified during the System requirements analysis (see Sect. 3.3.2), the

architecture of the MVM has been designed to be composed of three main software and hardware

units, namely Graphical User Interface (GUI), Control Software (Controller), and Supervisor Software

(Supervisor). The overall representation of the Software Architecture is reported in Fig. 6.

45

Andrea Bombarda

The GUI is the software running on the touch screen panel. It displays information to the doctors like

airway pressure, minute volume, positive-end expiratory pressure (PEEP) for the most recent breath,

respiratory rate (RR), and peak inspiratory pressure. Furthermore, the user can use it to set ventilation

and alarm parameters and thresholds. On the other hand, the controller receives user input from

the GUI, e.g., the start/stop ventilation command. It implements the state machine of the ventilator

behavior (see Fig. 8), which has mainly three regions: ventilation off, ventilating in PCV mode, and

ventilating in PSV mode. Based on the current state, it opens/closes the input and output valves. In

addition, the controller is responsible for managing ventilator alarms in case of errors.

Finally, the supervisor monitors the overall behavior of the system, checks if the controller, the GUI,

and the hardware are working as expected, and, in case of errors, it raises alarms. Furthermore, the

supervisor forces the machine into a safe mode to prevent patient injuries in the event of errors of the

other units during ventilation.

Lesson learned 5: 1. Upfront aspects balancing: As we can learn from software architecting, it

is important to go towards “just-in-time architecture” [145] and to find a balance between upfront

aspects (what is planned before the start of development) and emerging aspects (what appears

as decisions are taken in the course of the development, e.g. by fixing wrong assumptions or

making decisions deliberately postponed) [179]. 2. Importance of the architecture: Software

architecture is still important even during emergency development. In fact, the development

team has experimented that without a well-defined architecture (as for the prototype), it was

not clear how software components were supposed to synchronize and exchange information

among them.

Risk management (7)

The IEC 62304 standard requires each component to be classified based on the potential to cause

injuries. Table 6 reports the safety class for each of the three components of the MVM. In particular,

both the GUI and the controller are classified as class A software because their behavior, despite

affecting the operation of the machine, does not cause patient injuries, since safety-critical tasks and

Software unit Safety class

GUI A
Controller A
Supervisor C

Table 6: MVM software units and their safety classifications.

46

The software certification process: lessons learned and guidelines

ATmega328P

Supervisor Software (Supervisor)

InterfaceBreath
Monitor

Alarm

get
measurement

raise
alarm

set
alarm

Hardware
Drivers

Hardware
Monitor

get
measurement

set alarm

set
parameter

ESP32

Control Software (Controller)

Raspberry	Pi	4

Graphical User Interface (GUI)

User

Serial
Communication «interface»

USB
serial port

«interface»
USB

serial port

«interface»
UART

«interface»
I2C Bus

«interface»
UART

GUI-Controller

InterfaceUser Interface

Monitor

Interface

Monitor
«interface»

I2C Bus

Control

Hardware
Drivers

Serial
Communication

I2C
Communication

get Alarm

get/set

get/set

patient
breath

get/set

get/set/status

run/pause

Figure 15: Detailed MVM software architecture.

decisions are previously approved by the supervisor. On the other hand, the supervisor is the most

critical component, since it both forces the machine into a safe mode to prevent patient injuries in case

of errors during ventilation and intervenes in case of GUI and controller failures, so it is classified as

class C.

Lesson learned 6: 1. Safety assurance effort: Isolating safety-critical features, by organizing

the system in different components, has allowed the testing team to focus the safety assurance

effort on a limited portion of the system.

Software Requirement Analysis (5.2) & Software detailed design (5.4)

After having identified the components and their safety class, the third activity in the development

process consists of specifying for each software component the requirements in a separate document,

detailing those introduced in the system requirements. The documents of Software Requirement

Analysis and Software detailed design contain different types of requirements, among which there

are functional and capability requirements, software inputs and outputs, interfaces between software

and other components, alarms and warnings, user interface requirements, and requirements related to

system installation and maintenance. In order to increase the understandability, also for team members

not used in reading software requirements, state machines have been widely used to define the behavior

of GUI, Controller, and Supervisor. Alternatively, the teams have used diagrams and drawings, and in

few cases a more powerful tool, such as Yakindu (more in Sect. 3.3.2), which has allowed to identify

both states and events that trigger the change of state. For each state in every diagram, the MVM

team has defined the detailed behavior, the user inputs, the expected outputs, performance, and failure

conditions. Furthermore, for each software component, the software unit interfaces have been defined,

to ensure that the software subsystem will communicate properly with external components. In Fig. 15

a more detailed architecture of the software components of MVM is reported.

47

Andrea Bombarda

The doctors interact with the User Interface sub-component, and the interaction is handled by the GUI

controller and the Interface component, which manages the connection with the control software - via

a USB serial port - and with the Supervisor - via a UART interface. The monitor module is used to

supervise the interaction with the GUI.

The Control sub-component implements the logic of the Control Software (Controller). It is in turn

composed of two sub-components: the valve controller and the state machine. The former controls the

valves, while the latter controls the transition between operation modes (i.e., ventilation off, running

in PCV mode, and running in PSV mode). The controller receives user inputs from the GUI, e.g.

the start/stop ventilation command. The vital signs of the patient are checked by the monitor sub-

component, and, in case of errors, ventilator alarms are raised by the controller. The controller also

interacts with the hardware through the Hardware Drivers component to open or close the input and

output valves.

Finally, the Supervisor Software (Supervisor) component gets measurements from the Hardware

Drivers component, monitors both the hardware devices and the patient breath, and, when needed

(e.g., when switching to the safety mode), raises alarms and changes parameters of the controller and

the GUI.

Lesson learned 7: 1. Modularity and parallelization: Designing a product in a modular way

has been a successful decision, since, in a distributed project (such as the one of the MVM) it

has allowed different teams to work in parallel on different parts of the system. 2. State machines

for wide interpretability: Using state machines, for specification and design, has contributed

to favoring the discussion on the adopted solutions, even with people not used to software

development, since graphical representations are easily understandable.

Implementation (5.5)

Due to the necessity of adhering to the certification standard, several parts of the software which were

already available before the re-engineering effort needed to be changed. Table 7 reports the lines of

code of the three main software units (before the re-engineering effort and at the end).

The GUI unit is written using the PyQT5 framework in Python. It is a set of Python bindings for

Qt5, which allows access to many aspects of modern desktop and mobile systems2. In addition to the

functionalities already present in the prototype, several new functionalities expected by the software

requirement specifications have been added. For example, many alarms have been changed, in terms

2More info at: https://pypi.org/project/PyQt5/

48

https://pypi.org/project/PyQt5/

The software certification process: lessons learned and guidelines

Lines of code
Software unit Prototype Released version Language

GUI 14,347 26,027 Python
Controller 4,653 14,331 C++
Supervisor NA 2,689 C++

Table 7: Lines of code of the MVM software units.

of thresholds and behavior. Moreover, to avoid problems in the communication between GUI and

controller, a new protocol used by the GUI to send/receive messages to/from the controller, and

implementing the guidelines defined in the IEC 61784 standard [66], has been devised.

The majority of the re-engineering activities have been performed over the controller unit:

• The state machine sub-component has been completely rewritten. The development team has

introduced the use of the Yakindu Statechart tool3 for its implementation, as shown in Fig. 8. In

detail, after the startup and the self-test phases, the machine is put in the ventilation-off mode.

From there, it can go either to the PSV or PCV modes, depending on the choice of the doctor and

on the patient’s condition. Inside these modes, there are other sub-states (including inspiration

and expiration). After having modeled the state machine component, its C++ code has been

automatically generated from the Yakindu model.

• The valve controller sub-component has been modified, accordingly to the hardware modifica-

tions. For example, a new controller tuning method has been implemented.

• The alarms have been updated and adapted since they have to comply with those that have been

added or modified in the GUI code. In particular, all the alarms have been implemented to

comply with the IEC 60601-1-8 [63] and ISO 80601-2-12 [106] standards.

As previously introduced, in the re-engineered MVM version, the supervisor has been developed in

C++ from scratch, and it required the addition of two different software serial lines: one used to

communicate with the GUI and one with the controller.

Lesson learned 8: 1. Mix of programming languages: Using several programming languages

in a single project is usually discouraged [128]. However, in an emergency (such as during

COVID-19) in which the products have to be delivered as soon as possible, we have experi-

enced that having more languages allows the inclusion of more developers and speeds up the

implementation process, with only a minimal effort in the integration of the code. 2. Coding

standards and guidelines: Sharing the coding standards and guidelines (e.g., the importance of

3https://www.itemis.com/en/yakindu/state-machine/

49

https://www.itemis.com/en/yakindu/state-machine/

Andrea Bombarda

comments [150]) with all the people involved in the implementation phase is of key importance,

in particular with heterogeneous development groups, even during emergency development.

3. Advantages of state machines in implementation: State machines added flexibility and main-

tainability since it was very simple to modify them and then regenerate code, which was directly

integrated, through a wrapper, into the hand-written code.

Unit Testing (5.5)

Aiming at introducing CI/CD techniques in the development process, a continuous integration system

on Travis CI has been configured to guarantee that new software implementations did not compromise

the functioning of the already existing code. This way, every commit made on each component

brought forth a new re-execution of all the unit tests. In fact, the testing activities have been executed

in parallel with the implementation, since every test failure has required corrections in the code, and

it has been performed against the unit software requirement specifications.

As MVM has different components, each written in a different programming language, its testing has

been performed using several testing frameworks. The testing team has unit-tested the GUI using

PyTestQt4, which has allowed to simulate users by faking clicks on the buttons and testing that the

behavior of the GUI was the one expected. To test the controller and the supervisor, the hardware has

been mocked to emulate the interaction with it. Controller and supervisor test cases was written using

the Catch2 framework5 and the Trompeloeil mocking library6.

All the testing failures have been tracked using the GitHub issues tracking system, and this has allowed

the testing team to monitor the progress of the fixes in the software.

Lesson learned 9: 1. Testing not only safety-critical components: Defining in advance the

safety classes of all components of the developed system can significantly increase the speed

of testing activities. In fact, medical software safety standards do not mandate extensive unit

testing for class 𝐴 components. Thus, a good practice is to design the system in a modular

way, isolating all the non-dangerous functions (i.e., in class 𝐴) that testers can limitedly check.

2. Importance of testing: Besides what is required by standards, testing activities are important

when performed for safety-critical components. This is a consolidated aspect when working

with software engineers but not for all the people composing heterogeneous teams such as the

4https://pypi.org/project/pytest-qt/
5https://github.com/catchorg/Catch2
6https://github.com/rollbear/trompeloeil

50

https://pypi.org/project/pytest-qt/
https://github.com/catchorg/Catch2
https://github.com/rollbear/trompeloeil

The software certification process: lessons learned and guidelines

MVM ones. 3. Advantages of CI tools in community projects: As MVM has been a community

project, where a lot of people have worked at the same time on the same system, CI tools have

proved to be crucial for maintaining under control the modifications made by all developers.

Integration (5.6) & Validation Testing (5.7)

During integration and validation testing, hardware and software components have been incrementally

integrated. While developing the MVM, the main challenge has been the need of having the hardware

available, since some of the software components included in the controller or supervisor require

direct interaction with it. This is particularly true for the final integration steps, while for the first

integration phases the HW can be ignored and just simulated. Thus, final integration testing phases

have been performed on-site, only by the people working in the company that produces the MVM, or

by the ones that had a physical version of the ventilator.

During the development of a medical device that interacts with patients, one should simulate not

only hardware and interaction with the doctors but also the patients. For this purpose, an active lung

simulator (such as the ASL 5000 [70]), or a passive mechanical one, has been used. The results of

the integration testing activities, for each one of the test cases, have been reported in Integration Test

Procedure and Integration Test Report documents.

With validation testing, the whole system has been tested as a unit, to confirm the correct behavior

of MVM according to the system requirements. This activity must be performed over a real physical

version of MVM, without any hardware simulation, and simulating patient breath using the ASL 5000

active lung simulator. It has been guided by the ISO 80601-2-12 standard [106], to prove the basic

performance and usability of the ventilator.

Lesson learned 10: 1. Integration testing for SIMDs: It is particularly challenging to develop

and validate software-in-medical devices (SIMDs) and, in general, systems that integrate hard-

ware, software, and mechanics by distributed teams. Often, real hardware is needed for testing

the software that is affected or affecting a piece of hardware. Software-in-the-loop simulation

is often a good solution to this challenge; however, it is not a solution, in general. In fact, sim-

ulation requires a special setting with professional simulation tools and an accurate hardware

model. They are not always readily available, especially in a context in which the hardware

is under development as the software is. Furthermore, as we can learn from robotics, “Cur-

51

Andrea Bombarda

0%10%20%30%40% 10%20%30%40%50%60%70%80%90%100%
Percentage of Responses

LL10.1
LL9.3
LL9.2
LL9.1
LL8.3
LL8.2
LL8.1
LL7.2
LL7.1
LL6.1
LL5.2
LL5.1
LL4.3
LL4.2
LL4.1
LL3.3
LL3.2
LL3.1
LL2.3
LL2.2
LL2.1
LL1.2
LL1.1

LL

Strongly disagree
Disagree
Neither agree nor disagree

Agree
Strongly agree

(a) Agreement with each lesson learned.

0%10%20%30% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
Percentage of Responses

LL10.1
LL9.3
LL9.2
LL9.1
LL8.3
LL8.2
LL8.1
LL7.2
LL7.1
LL6.1
LL5.2
LL5.1
LL4.3
LL4.2
LL4.1
LL3.3
LL3.2
LL3.1
LL2.3
LL2.2
LL2.1
LL1.2
LL1.1

LL

1 2 3 4 5

(b) How much is the LL important?

Figure 16: Importance of the lessons learned.

rent simulation solutions are not capable of emulating real-world phenomena in a sufficiently

realistic manner. ” [86].

3.3.3 Validation of the lessons learned

After having defined the lessons learned (in the following, referred to as LL), their validation has

been performed with a variety of experts (appertaining to the Italian engineering society) during two

seminars, by following these three steps:

1. Additional questions have been asked to investigate the opinions of experts before presenting

lessons learned;

2. The lessons learned have been presented;

3. Each expert evaluated the importance and agreement with the presented lesson learned.

The percentages of agreement/disagreement with the presented LL are reported in Fig. 16a. The results

gathered show that, generally, the participants (strongly) agreed with the LL, except in a few cases.

In particular, some participants disagreed with LL.2.1 (Coordination effort) and LL.2.2 (Enlarging

team). The former because they were skeptical of using open-source software instead of more specific

ones, and the latter because they thought that having as many people as possible would lead to faster

results. The opinions received highlighted that it was confusing to ambiguously talk about teams

without clearly distinguishing between coordination and development teams. LL.3.1 (Multiplicity

of tools) created the most disagreement, mainly because it was not clear the context where different

tools would be used. Many participants did not agree with the use of UML (LL.3.3) because other

visual notations could be used, even if they are not recognized as a standard in the community. For

52

The software certification process: lessons learned and guidelines

LL.6.1 (Safety assurance effort) and LL.7.1 (Modularity and parallelization) there were only few

disagreements. Finally, for LL8.1, the validation highlights that the use of multiple programming

languages can lead to integration problems.

The behavior of Fig. 16a is reflected in Fig. 16b. Not surprisingly, for some participants, lessons

learned with disagreement in Fig. 16a are also not that important: LL.3.1 (Multiplicity of tools),

LL.3.3 (Use of UML), LL.6.1 (Safety assurance effort), and LL.7.1 (Modularity and parallelization).

Exceptions are LL.2.1 (Coordination effort) and LL.2.2 (Enlarging team) for which many participants

did not agree, although they retain them important issues. On the opposite, they agree/strongly agree

with LL.3.2 (Templates and review process), but some of the participants do not think that it is

important for critical software development under emergency.

3.4 Guidelines
Exploiting the feedback received during the validation of lessons learned, in this section, I present the
guidelines for developing medical devices under emergency derived from each lesson learned. For
deriving guidelines, lessons learned have been grouped, filtered, and modified. Table 8 reports how
the validation activities have been used to obtain the corresponding guideline.

Lessons learned Validation result Guidelines

LL.1.1 IEC 62304 and V-Model

LL.1.2 Use of agile practices

Merge the two lessons learned LL.1.1

and LL.1.2 into a unique guideline.

GL1 Plan-driven/predictive and ag-

ile integration

LL.2.1 Coordination effort

LL.2.2 Enlarging team

LL.2.3 Commitment and participa-

tion

Distinction between coordination

team and development team in terms

of responsibilities and activities.

GL4 Resources initial estimation

GL5 Coordination team and plan

GL6 Responsibilities assignment

GL7 Flexible development teams

LL.3.1 Multiplicity of tools Distinction between tools for coordi-

nation and communication of the co-

ordination team and of development

teams.

GL8 Inter-team coordination and

communication

GL9 Intra-team coordination and

communication

LL.3.2 Templates and review pro-

cess

Clarification of what to do when ex-

isting templates are not available and

a review process is not already estab-

lished.

GL2 Review process

GL3 Documentation templates

LL.3.3 Use of UML Generalization to visual/graphical no-

tation in general

GL11 Use visual and graphical no-

tations

53

Andrea Bombarda

LL.4.1 Written requirements

LL.4.2 Reverse engineering

Merge the two LLs. GL12 Precise requirements and re-

verse engineering

LL.4.3 Need of a traceability system Recommendation of a practice (trace-

ability system) that was not exten-

sively used during the initial develop-

ment of the MVM but deemed to be

important.

GL10 Define a traceability system

LL.5.1 Upfront aspects balancing

LL.5.2 Importance of the architec-

ture

LL.7.1 Modularity and paralleliza-

tion

Clarification of how to manage

changes in software architecture and

introduction of communities of prac-

tice as an instrument to evaluate the

impact on architecture and to assess

and validate architectural decisions.

GL13 Define an architecture upfront

GL14 Limit the upfront architecture

to stable decisions

GL15 Update the architecture

GL16 Exploit communities of prac-

tices

LL.6.1 Safety assurance effort Reformulation of the lesson learned. GL17 Isolate safety-critical parts

LL.7.2 State machines for wide in-

terpretability

LL.8.3 Advantages of state machines

in implementation

Identification of the two main uses of

state machines.

GL18 Use state machines in specifi-

cations

GL19 Use state machines for code

generation

LL.8.1 Mix of programming lan-

guages

Specification of some caveats (e.g.,

when it does not make integration dif-

ficult).

GL20 Different programming lan-

guages

LL.8.2 Coding standards and guide-

lines

Reformulation of the lesson learned. GL21 Coding standards and guide-

lines

LL.9.1 Testing not only safety-

critical components

LL.9.2 Importance of testing

LL.9.3 Advantages of CI tools in

community projects

LL.10.1 Integration testing for

SIMDs

The lessons learned overlapped in

some way and the research team has

identified the need for a better orga-

nization of them. This led to the re-

formulation of the lessons learned in

three more clear guidelines.

GL22 Continuous integration and

unit testing

GL23 Focus on testing activities

GL24 Role of emulators

Table 8: Mapping between lessons learned and guidelines for developing medical software under emer-

gency.

Overall, based on the validation of the lessons learned, in the guidelines, a clear distinction has been

made between the coordination team and the development team. The former is more structured and

54

The software certification process: lessons learned and guidelines

stable, while the latter is more agile and dynamic. Furthermore, the validation of the lessons learned

has been used as precise and specific feedback in the formulation of the guidelines.

As well as for the lessons learned, the guidelines are divided into those referred to specific phases of

the development process and those concerning the process in general.

3.4.1 Development process

GL1 Plan-driven/predictive and agile integration: Integrate plan-driven/predictive processes with

agile practices, to combine rigorousness with efficiency and flexibility. The integration of different

processes allows one to benefit from the good characteristics of both plan-driven [21] (or predic-

tive [133]) and agile processes. A mix of different development processes has already been proposed

in the literature. For example, the pros and cons of blending agile and waterfall processes are discussed

in [115, 149], while in [132] the authors integrate agile and the V-model.

GL2 Review process: Define a clear review process to identify the activities that should be performed.

A clear review process allows to speed up the development since when a review is required before

continuing with the next activities, the steps to follow are already well known and it does not become a

bottleneck. It also offers an efficient way to improve the quality and effectiveness of the development

process [110].

GL3 Documentation templates: Reuse and/or adapt existing templates, when available, for produc-

ing the documentation required by certification standards and processes, otherwise produce precise

templates to be adopted by the entire project. Considering that saving time is important, especially

under emergency, it is better if there are already established templates that can be reused (for example,

given by a collaborating company). This aspect is usually underestimated, especially for agile-based

software development processes [122] that claim not to produce a lot of structured documentation.

However, for safety-critical software, the regulations require producing a great amount of deliverables

that cannot be avoided. If templates are not available, it is recommended to define them before starting

the development process in order to know from the beginning which information must be reported.

GL4 Resources initial estimation: Estimate the competencies, resources, and commitment of the

various team members in the initial phases of the project, since potential new members should be

added in this initial phase. Despite the emergency, in fact, it is important to invest some time in this

upfront activity during the startup phase, as introducing members during the development process

could increase the time-to-market due to the time required to understand the project. This guideline

is confirmed by many other researchers, such as in [49] and [127].

55

Andrea Bombarda

GL5 Coordination team and plan: Define the coordination team and the coordination plan of the

team upfront and in the startup phase. Despite the emergency, the coordination team must be ready

to work as soon as possible and there must be clear indications for the development teams. The lack

of precise indications could lead to misunderstandings and increase the time required to complete the

project. The same conclusions have been observed by [135] and [164], in which the importance of

coordination teams is highlighted.

GL6 Responsibilities assignment: Assign precise and stable responsibilities to the members of the

coordination team. The coordination team should be as stable as possible to avoid delays that can easily

propagate to the development teams. The importance of building a coordination team is well known

in the literature. In particular, most of the research works consider the presence of effective leaders

who both steer development and motivate developers crucial to ensure a successful product [121].

GL7 Flexible development teams: Development teams can be created according to the needs

during development and members should be prepared to help in various tasks according to their

availability and competencies. In every iteration or sprint, team members can be assigned to different

tasks. Development teams should work agile and change should be the norm rather than the exception.

Under emergency, there are strong timing constraints and agility and flexibility within the development

team can greatly help. The idea of flexible development teams is widely adopted in agile processes,

especially when the software has to be produced for an emergency, e.g. the COVID-19 pandemic [170].

GL8 Inter-team coordination and communication: Define the communication and coordination

instruments, tools, and protocols for inter-team coordination. When working in different groups,

there is the need for clear and stable instruments, tools, and protocols for communication and coor-

dination among the different teams. Many of the responses received from the surveys about LL3.2

(see Sect. 3.3), i.e., the lesson learned from which this guideline derives, complained about the use of

multiple tools, instruments, and protocols. For this reason, the guidelines isolate the inter-team coordi-

nation, for which the coordination mechanisms must be fixed, and the intra-team communication (see

GL9 for further details). Each project may require specific mechanisms for inter-team coordination,

such as the one proposed in [142].

GL9 Intra-team coordination and communication: Delegate to the members of the development

team the selection of instruments and tools for development and intra-team coordination and com-

munication. Within the development teams, members should be able to select the development,

communication, and coordination instruments and tools they like. This could be considered counter-

intuitive, but it can help in saving a lot of time, since no training in a specific instrument or tool is

necessary for the development team members. Note that coordination and communication inter-team

56

The software certification process: lessons learned and guidelines

must be fixed a priori, as defined by GL8. Guaranteeing a certain grade of autonomy is a well-

established principle in agile-based development teams, even if there are still a lot of challenges to be

faced when implementing autonomous teams [163], mainly related to inter-team tasks.

3.4.2 Development phases

GL10 Define a traceability system: Define upfront and in the startup phase a traceability system

for the entire development. Traceability is of key importance in the development of safety-critical

systems, both for security and certification purposes. Then, from the initial phases of the project,

there is a need for a traceability system for the entire development. In fact, even under emergency,

traceability information can be used to support the analysis of implications and integration of changes

that occur in the system, its maintenance and evolution, and its testing activities. This guideline is

recognized as valid from several works in the literature, such as [162] and [99].

GL11 Use visual and graphical notations: Use, when possible, visual, graphical, and easy-to-

understand notations (e.g., UML) for communication among team members with heterogeneous exper-

tise and competencies. The importance and wide interpretability of graphical notations is universally

recognized. This is even more important during an emergency, when teams can be composed of

members with different backgrounds and knowledge. In this case, graphical notations might facilitate

communication among team members [59].

GL12 Precise requirements and reverse engineering: Write precise system requirements also in

an emergency situation. If a prototype exists, use reverse engineering to extract useful information.

Requirements are important to guide the development and the validation phase. Even if in agile

processes is common to skip or not to focus on requirement specifications, although under emergency,

the requirements must be written in a precise way. This guideline is particularly useful for safety-

critical systems since certification authorities require a set of documents among which there are the

requirements. The necessity of precise (even formal) requirements has been advocated for a long time,

for example, in [8, 143].

GL13 Define an architecture upfront: Define an architecture upfront to allow different teams to work

in parallel on different parts of the system and facilitate integration. When working under emergency,

every aspect that could increase the rapidness of the development is important. For this reason, a clear

identification of components and interfaces might help development teams in being faster, by working

independently and in parallel. The upfront architecture should be as stable as possible (see GL14),

but teams must be prepared to adapt it in the event of a change in requirements [76].

57

Andrea Bombarda

GL14 Limit the upfront architecture to stable decisions: Limit the upfront architecture to stable

decisions while paying attention to concerns that matter across team borders. An architecture

description can be considered a boundary object between multiple cross-functional teams: it can be

used to create a common understanding across sites while preserving each team’s identity [179]. For

this reason, an upfront architecture should be limited to stable decisions, and then it should be updated

with emerging aspects. The upfront architecture should include aspects that influence coordination

and those interfaces that are shared among different teams (see GL13).

GL15 Update the architecture: Integrate system architects into teams to capture emerging aspects

during development and update the architecture accordingly. Since the upfront architecture should

be limited to stable aspects, architects, or those team members playing the role of architects and

taking architectural decisions, should capture emerging aspects during development and update the

architecture accordingly [180].

GL16 Exploit communities of practices: Exploit communities of practices to reason about changes

that impact the architecture, and to assess and validate architectural decisions. In order to reduce

assumptions that can become inconsistencies, it is important to carefully assess decisions before setting

them into stone. Community of practices is a good instrument to enable architects to reason about

changes [179]. They can be effectively used to solve issues that span over multiple teams [108].

GL17 Isolate safety-critical parts: Isolate safety-critical features in specific components or modules

to focus the safety assurance effort on a limited portion of the system. Safety standards often require

different levels of attention and different validation activities. The isolation of safety-critical features

in specific components or modules permits limiting the validation and certification activities, and

therefore saving time under emergency development. The aim is similar to the well-known practice

of using a security kernel with the desire to isolate and localize all “security-critical” software in one

place [156].

GL18 Use state machines in specifications: Use state machines to specify modes and mode transitions

in the requirement specification. State machines are used in various domains and are good tools for

easily communicating complex behaviors, especially when development teams are heterogeneous.

Moreover, if some kind of formal verification is needed, with state machines (or equivalent methods),

it can be easily performed [7].

GL19 Use state machines for code generation: Use, when possible, executable state machines to

specify the main functional logic and the critical part of the system, and then generate code from

them. Based on the MVM experience, the use of executable state machines promotes modifiability,

58

The software certification process: lessons learned and guidelines

maintainability, and understandability (see GL18). In particular, tools like Yakindu SCT7 or other

state-machine-based tools can be a good choice when it comes to developing a critical part of the

system, as they allow generating automatically actual code [25, 31], which can be verified and tested

at state-machine-side [172].

GL20 Different programming languages: Allow the use of different programming languages to

facilitate the inclusion of heterogeneous developers and speed up the implementation process, when

this does not create integration problems. When the use of different programming languages does

not create integration problems, e.g. when code produced with different languages is deployed

on different hardware components or when the communication mechanisms between modules are

language-independent, it would be beneficial to allow development teams to use languages they are

familiar with [128]. As explained in LL8.1 in Sect. 3.3, when developing software under emergency,

with heterogeneous development teams, exploiting the competencies that every member has in a

particular programming language can aid in reducing the time required for the completion of the

project.

GL21 Coding standards and guidelines: Adopt coding standards and guidelines from the beginning.

Safety standards often require coding standards and, in general, they promote the quality of the code.

Using coding standards and guidelines can increase the readability of the code, which is important

for code inspections and static analysis. Moreover, even under emergency, if the composition of the

development teams is heterogeneous, defining in advance coding standards and guidelines is useful

for preventing possible errors or hardly-understandable code. The importance of adhering to coding

standards from the beginning is highlighted by many researchers, such as in [40], where the authors

empirically assess their value and suggest not to insert them at a later time as any modification (aimed

at adapting the software to the chosen coding standards) has a non-zero probability of introducing a

fault or triggering a previously concealed one.

GL22 Continuous integration and unit testing: Use CI tools and automated unit testing in order

to continuously integrate the contributions of the various teams, to keep and promote quality, and to

maintain under control the modifications made by all the developers. CI tools and automatic testing

instruments enable various teams to work in parallel without breaking the code and permit to avoid the

big bang integration problem. The importance of continuous integration is highlighted in [74], where

CI tools are claimed to be effective, since they allow a shorter time between the possible introduction

of a bug in the system and its detection. This is of paramount importance, especially for complex

safety-critical systems developed under emergency and in a distributed way.
7https://www.itemis.com/en/yakindu/state-machine/

59

Andrea Bombarda

GL23 Focus on testing activities: While guaranteeing the quality of the entire system, testing activities

should focus on safety critical components as required by the standard. Safety critical components

are those that require major attention, in terms of quality and test effort. Parts of the system that

are not critical can follow classic quality management recommendations. Focusing software testing

activities on critical components is often used in practice, especially when companies want to reduce

their time-to-market [79]. Anyhow, testing is important on all components of a safety-critical device,

regardless of the safety classification.

GL24 Role of emulators: When possible, use simulators and/or emulators, but plan for integration,

system, and acceptance testing phase. Simulators and emulators can speed up development and

validation, but are often limited and integration, system, and acceptance testing cannot be performed

using them. This is a well-known aspect of integration testing for safety-critical systems, such as for

trains and ships [72], or automotive [159]. Especially if the system under development is composed

of hardware and software, the testing in the field activity must be planned and performed in the real

environment, with the real hardware.

3.4.3 Validation of the guidelines

Validation via questionnaires

After having defined the guidelines, they have been validated using two different ways, namely through

questionnaires and interviews as explained in Sect. 3.4.3.

During the questionnaires, the participants have been asked about their agreement with each guideline,

using a Likert scale (from strongly disagree, to strongly agree). The results of these surveys are

presented in Fig. 17. The agreement level for each guideline is generally lower than the one on the

lessons learned (see Fig. 16a). This was somehow expected since the guidelines are given in a more

affirmative and prescriptive style. Moreover, this is also due to the wider experience and expertise

of the involved experts during questionnaires which have been involved in order to collect different

points of view. However, in all cases (except for GL20), the agreement levels remain very positive.

Validation via interviews

To further investigate the results obtained during the questionnaires, some of the participants have

accepted to be interviewed (see Sect. 3.4.3) to examine the reasons for which they were particularly

agreeing or disagreeing with the proposed guidelines.

60

The software certification process: lessons learned and guidelines

0%20%40% 20% 40% 60% 80% 100%
Percentage of Responses

GL24
GL23
GL22
GL21
GL20
GL19
GL18
GL17
GL16
GL15
GL14
GL13
GL12
GL11
GL10
GL9
GL8
GL7
GL6
GL5
GL4
GL3
GL2
GL1

GL

1 (Strongly disagree)
2

3
4

5 (Strongly agree)

Figure 17: How do you agree/disagree with the GL?

Tab. 9 and Tab. 10 summarize the opinions collected in terms of the benefits expected if one follows

the guideline and the risks. Especially for the guidelines with the lower agreement (like GL20),

thanks to the direct interaction with the experts, the summary tables better identify the limits and

circumscribe their intended use. This will enable users of the guidelines to carefully assess how each

guideline should be applied to their project. For instance, for GL20, I here report a typical scenario in

which it can be followed, i.e., when different programming languages are used on different hardware

components.

Guideline Benefits Risks

GL1 Plan-driven/predictive

and agile integration

• It enables to benefit from the good

characteristics of predictive and agile

processes.

• It could result in an inefficient approach if

the advantages/disadvantages of both pro-

cesses are not well known.

GL2 Review process • It permits to clearly define the re-

view process to speed up the devel-

opment.

• Misidentification of activities if inexpe-

rienced people are in charge of the review

process.

GL3 Documentation tem-

plates

• Precise templates permit to speed

up the development while guarantee-

ing quality.

• Reusing templates allows saving

time and building on consolidated

experience.

• Too specialized templates may not in-

clude all the information required by certi-

fication standards.

• Produce precise template is time-

expensive.

61

Andrea Bombarda

GL4 Resources initial estima-

tion

• Despite the emergency, investing

some time in this upfront activity in

the startup phase permits to speed-up

the development process, as well as

reduce risks.

• Sometimes the competencies and re-

sources needed for a project may be un-

known when it is in its initial stage, or their

estimation may be not completely reliable.

GL5 Coordination team and

plan

• This permits to have a coordination

team ready to work and have clear in-

dications for the development teams.

• Sometimes the project can be not well

defined at the beginning, and thus it can be

difficult to define upfront who to insert into

the coordination team.

GL6 Responsibilities assign-

ment

• Having the coordination team as

stable as possible permits avoiding

delays that can easily propagate to

development teams.

• Some new tasks and responsibility may

emerge during the development.

GL7 Flexible development

teams

•When development teams work ag-

ile, they are ready to deal with fre-

quent and unavoidable changes.

•Moving a developer from one task to an-

other can be difficult, if the developer is not

familiar with the new one.

GL8 Inter-team coordination

and communication

• Having clear and stable instru-

ments, tools, and protocols for com-

munication and coordination among

different teams permits to easily

communicate and focus on develop-

ment activities.

• The chosen tools may be not the optimal

ones for all the needs or users.

GL9 Intra-team coordination

and communication

•Allowing development teams to se-

lect the development, communica-

tion, and coordination instruments

for the intra-team work permits them

to work in their comfort zone.

• Some certification standards require the

use of only certified tools during all activ-

ities of the software life cycle. In these

cases, only a limited set of certified tools

should be chosen.

• It can be difficult to retrieve the informa-

tion at a later time if no specific tools are

used.

• The freedom to choose the instruments

is beneficial in the short term but can be

chaotic in the long term and in big compa-

nies.

Table 9: Benefits and risks of the guidelines on the development process.

62

The software certification process: lessons learned and guidelines

Guideline Benefits Risks

GL10 Define a trace-

ability system

• It is important to properly manage

traceability from the initial phases of

the project.

• The traceability system might require tuning

and adaptation during the entire development.

• When the traceability system is not properly

defined, some people will not follow it, and it

will become useless.

GL11 Use visual and

graphical notations

• Graphical notations might facili-

tate the communication among team

members with different background

and knowledge.

• Focus modeling on the most important parts,

otherwise the return on investment may be ques-

tionable.

GL12 Precise require-

ments and reverse engi-

neering

• Requirements are important to

guide the development and valida-

tion phase.

•Writing precise requirements may require a lot

of time for complex systems.

• If people not experienced in the field are

involved, writing precise requirements upfront

could be difficult.

GL13 Define an archi-

tecture upfront

• A clear identification of compo-

nents and interfaces might help de-

velopment teams to work indepen-

dently and in parallel.

• It can be difficult to define all the components

upfront since sometimes the need for a new com-

ponent emerges during the development.

GL14 Limit the upfront

architecture to stable de-

cisions

• An architecture description can

be used to create a common under-

standing across sites while preserv-

ing each team’s identity.

• The upfront architecture can become obsolete

and misaligned with the implementation.

GL15 Update the archi-

tecture

• This enables to enrich the upfront

architecture with aspects emerging

during development and update the

architecture accordingly.

• Development team members should interact

with software architects, as some emerging as-

pects may be not seen by them.

GL16 Exploit communi-

ties of practices

• Community of practices (CoP)

enables architects to reason about

changes and to reduce assumptions

that can become inconsistencies.

• When the CoP is not clearly connected to the

management team, it will become less effective

and will only play the role of knowledge dissem-

ination.

GL17 Isolate safety-

critical parts

• The isolation of safety-critical fea-

tures in specific components or mod-

ules permits to limit the validation

and certification activities.

• It could result in creating a single point of fail-

ure, which should be avoided.

63

Andrea Bombarda

GL18 Use state ma-

chines in specifications

• State machines are used in various

domains and are a good instrument

to easily communicate complex be-

haviors.

• In general, only limited parts of a system can

be modeled using state machines.

• Consider the artifact as a living object, since

it will require to be changed during the develop-

ment.

GL19 Use state ma-

chines for code genera-

tion

• The use of executable state ma-

chines promotes modifiability, main-

tainability, and understandability.

• Some certification standards may require the

use of certified tools for developers, and generat-

ing code from state machines can be inapplicable

in this case.

GL20 Different pro-

gramming languages

•When the use of different program-

ming languages does not create in-

tegration problems, e.g., when the

code is deployed on different hard-

ware components, it would be bene-

ficial to allow developers to use fa-

miliar languages.

• It allows using a language that fits

better with the specific needs (e.g,

to avoid using C for GUI program-

ming).

• Some certification standard requires the certifi-

cation of the compiler to be used by developers.

In this case, using different programming lan-

guages should be avoided.

• If coding guidelines are followed, one should

assure that they are available for all the chosen

programming languages.

• Using various programming languages might

also make code review activities more difficult.

GL21 Coding standards

and guidelines

• Coding standards are often re-

quired by safety standards and, in

general, promote the quality of the

code.

• Following coding standards may slow-up the

development process if developers are not used

to them.

GL22 Continuous inte-

gration and unit testing

• CI tools and automatic testing in-

struments enable various teams to

work in parallel without breaking the

code, and permit to avoid the big

bang integration problem.

• For complex systems it may be difficult to ini-

tially set up the continuous integration environ-

ment.

GL23 Focus on testing

activities

• Safety-critical components are

those that require major attention.

Parts of the system that are not crit-

ical can follow classic quality man-

agement recommendations.

•The usability of a system is affected also by non-

safety-critical components, thus focusing only on

the critical ones may reduce it.

64

The software certification process: lessons learned and guidelines

GL24 Role of emulators • Simulators and emulators can

speed up development and valida-

tion, but, integration, system, and ac-

ceptance testing are unavoidable.

• Simulators may be slightly different from the

real environment (e.g., noises and interferences

can be difficult to be simulated) and testing using

them can be not completely reliable.

Table 10: Benefits and risks of the guidelines on the development phases.

3.5 Conclusions

In this chapter, I presented the reengineering process me and my research team needed to apply in

order to make the MVM safe and fitting to the requirements of the medical software certification

standards (see Sect. 1.2 for more details). This process led us to derive some lessons learned that can

be useful and should be considered before starting the development of a medical device. To make

these lessons learned more applicable, this chapter also presents some more prescriptive guidelines,

which are given for medical systems, but can be easily extended to all the safety-critical software.

The most important take-away message from this experience is that injecting all the activities needed

to certify a medical device after it has already been produced is very difficult and time-consuming. In

fact, very often the certification effort is not limited only to paper work but requires refactoring and

reengineering the device in a complex way. Thus, developing the medical software in a way coherent

with the certification standards from the beginning is always the best choice. Therefore, in the next

chapters, I will present methods (mainly model-based) that can be used from the beginning in order

to comply with the requirements of certification standards and to produce documentation during the

development process.

65

Part II

Model-based systems engineering for PEMS

Chapter 4. Abstract State Machines for MBSE

In Chapter 3, I have presented the lessons me and my research team learned during the development

of a real medical device, namely the MVM. From those lessons learned, we have derived a set of

guidelines to be considered for speeding-up the development process, while still remaining compliant

to the standards required for medical software certification.

In the guidelines, I have highlighted the importance of structuring the development process in a

way that traceability is assured, software requirements are specified before starting the actual software

implementation, and formal notations (such as state machines) are used. For this reason, in this chapter,

the use of Model-Based System Engineering (MBSE) and, in particular, of Abstract State Machines

are presented for dealing with the development and the safety assurance process of PEMS. MBSE

methods allow developers to guarantee a defined level of quality, since verification and validation

activities are straightforward, and, moreover, using a model-based approach allows one to produce

documentation (useful for the certification of medical devices – see Sect. 1.2) in an easier manner.

The work presented in this chapter is based on [7] and [30] and is structured as follows. Sect. 4.1

introduces the use of MBSE techniques for PEMS. Then, Sect. 4.2 presents the ASMETA framework,

based on Abstract State Machines, which can be used for performing MBSE activities during the

development process of PEMS. The use and functionalities of the framework during the design time

are presented in Sect. 4.3, while Sect. 4.4 explains how ASMETA can be applied at development-time

for automatically generating code from models. Finally, Sect. 4.5 presents the use of the ASMETA

framework for runtime simulation at operation time, and Sect. 4.6 concludes the chapter.

4.1 Introduction

Failures of safety-critical systems, such as medical devices, could have potentially large and catas-

trophic consequences, such as human hazards or even loss of human life (see Sect. 1.1.1 for some

example) [119]. To ensure safe operation and avoid dangerous consequences of system failure, med-

ical safety-critical systems need development methods and processes that lead to provably correct

systems. Rigorous development processes require the use, for example, of formal methods, which can

guarantee, thanks to their mathematical foundation, model preciseness, and properties assurance.

A particular aspect of medical devices is that the use of formal methods can be more challenging

since “system safety” is not only “software safety” but may depend on the use of the software within

its untrusted and unreliable environment, which may include a possible patient. However, even in

69

Andrea Bombarda

Stakeholders

Requirements
Evolution

Design
Development Operation

Modeling
V&V

Model-based
code generation
System-model
conformance
checking

Models@run.time
Collect additional
knowledge
Runtime V&V

Figure 18: Safety assurance MBSE process during system’s life cycle.

these cases, developers and testers should be sure that the developed systems comply with their

specifications. Since this process may be difficult to be carried out, automatic techniques based on

formal models are classically used by developers.

This approach is commonly referred to in the literature as Model-based systems engineering (MBSE),

i.e., the formalized application of modeling to support system requirements, design, analysis, verifi-

cation, and validation activities, beginning in the conceptual design phase (modeling) and continuing

throughout the development and later phases of the life cycle. Fig. 18 outlines this process, showing

the three main phases of the Design, Development, and Operation of a system life cycle. In particular,

the following phases are identified:

• During the design phase, systems models are created, verified, and validated;

• During the system development phase, models, which have been already validated and verified,

are eventually used to derive correct-by-construction code/artifacts of the system and/or to check

that the developed system conforms to its models;

• During the operation phase, models introduced at design-time are optionally executed in tandem

with the system to perform analysis at runtime.

Throughout this assurance process, stakeholders and system developers jointly derive and integrate

new evidence and arguments for analysis (Δ); system requirements and models can eventually be

adapted according to the knowledge collected. Hence, requirements and models evolve accordingly

throughout the system life cycle.

This safety assurance process requires the availability of formal approaches with specific characteristics

in order to cover all the three identified phases: models should be possibly executable for high-

70

Abstract State Machines for MBSE

level design validation and enriched with properties verification mechanisms; models should be

operational-based in order to support easily code generation from them and model-based testing

activities; state-based methods are suitable for co-simulation between model and code and for checking

state conformance between model state and code state at runtime. In principle, different methods and

tools can be used in all the three phases; however, the integrated use of different tools around the

same formal method is much more convenient than having different tools working on input models

with their own languages and writing several translators. For this reason, this chapter and all the

experiments on MBSE presented in this book are entirely based on the ASMETA1 framework, which

is introduced and detailed in the following sections.

4.2 The ASMETA framework

This section recalls the origin of the ASMETA project [17] and the basic concepts of the ASM method

on which it is based. The tools composing the ASMETA framework will also be presented under the

light of the safety assurance process.

The ASMETA project started in 2004 with the goal of overcoming the lack of tools supporting the ASM

formalism. At that time, the formal approach had already shown to be widely used for the specification

and verification of a number of software systems and in different application domains [44]; however,

ASMs were not considered suitable for practical use, since there was a lack of tools supporting them.

The main goal of the ASMETA project was to develop a textual notation for encoding ASM models,

by exploiting the Model-driven Engineering (MDE) approach [157], to develop an abstract syntax

of a modeling language for ASMs [90] in terms of a metamodel, and to derive from it a user-facing

textual notation to edit ASM models. Then, from the ASM metamodel and by exploiting the runtime

support for models and model transformation facilities of the open-source Eclipse-based environment,

ASMETA has been progressively developed till now as an Eclipse-based set of tools for ASM model

editing, visualization, simulation, validation, property verification, and model-based testing [13].

In order to support a variety of analysis activities on ASM models, ASMETA is integrated with different

external tools, such as the NuSMV2 model checker for performing property verification, and SMT

solvers (e.g., Yices3) to support correct model refinement verification and runtime verification. For

this purpose, ASMETA mainly supports a black-box model composition strategy based on semantic

mapping, i.e., ASM models are automatically transformed to be compatible with the input formalism

1ttps://asmeta.github.io/
2https://nusmv.fbk.eu/
3https://yices.csl.sri.com/

71

ttps://asmeta.github.io/
https://nusmv.fbk.eu/
https://yices.csl.sri.com/

Andrea Bombarda

of the target tool, the analysis is performed by the tool, and then the analysis results are lifted back to

the ASM level.

4.2.1 Background concepts for Abstract State Machines

The computational model at the base of the ASMETA framework is that of the Abstract State Machines

(ASMs) formal method, which was originally introduced by Yuri Gurevich as Evolving Algebras [96].

ASMs are mainly based on two concepts:

• ASM states, which replace unstructured FSM control states with algebraic structures, i.e.,

domains of objects, together with functions and predicates defined on them.

• ASM location, defined as a pair (function-name, list-of-possible-parameter-values), which rep-

resents the ASM concept of the basic object container, and the couple (location, value) is a

memory unit.

Note that, given the two definitions above, an ASM state can be viewed as a set of abstract memory

units.

State transitions are performed by firing transition rules, which represents a modification of the

interpretation of functions from one state to the next, and therefore they change the value of specific

locations. Location updates are given as assignments of the form loc := 𝑣, where 𝑙𝑜𝑐 is a location and

𝑣 its new value. They are the basic units of rules construction and can be combined for building more

complex rules. By a limited but powerful set of rule constructors, location updates can be combined

to express other forms of machine actions as: guarded/conditional actions (if-then, switch-case),

simultaneous parallel actions (par and forall), sequential actions (seq), and non-deterministic

actions (choose).

Functions that are not updated by rule transitions are considered as static. On the other hand, the

functions that are updated are defined as dynamic, and distinguished in monitored (read by the machine

and modified by the environment), controlled (read and written by the machine), shared (read and

written by the machine and its environment).

An ASM computation (or run) is defined as a finite or infinite sequence 𝑆0, 𝑆1, . . . , 𝑆𝑛, . . . of states

of the machine, where 𝑆0 is the initial state and each 𝑆𝑛+1 is obtained from 𝑆𝑛 by firing the set of

all transition rules invoked by a unique main rule, which can be seen as the starting point of the

computation.

72

Abstract State Machines for MBSE

It is also possible to specify state invariants as first-order logic formulas that must be true in each

computational state. A set of safety assertions can be specified as model invariants, and a model state

is safe if state invariants are always satisfied.

ASMs allow modeling different computational paradigms, from a single agent to distributed multiple

agents. In particular, a multi-agent ASM is a family of pairs (𝑎,ASM(𝑎)), where each 𝑎 of a predefined

set Agent executes its own machine ASM(𝑎), specifying the agent’s behavior, and contributes to

determine the next state by interacting synchronously or asynchronously with the other agents.

ASMs offer several advantages over other automata-based formalisms: (1) due to their pseudo-code

format, they can be easily understood by practitioners and can be used for high-level programming;

(2) they offer a precise system specification at any desired level of abstraction; (3) they are executable

models, so they can be co-executed with system low-level implementations [153]; (4) model refinement

(see Sect. 4.3.1 for more details) is an embedded concept in the ASM formal approach; it allows for

facing the complexity of system specifications by starting with a high-level description and then

proceeding step-by-step by adding further details till a desired level complexity and completeness has

been reached; (5) ASMs support the concept of ASM modularization, i.e., they allow for defining

an ASM without the main firing rule, which facilitates model scalability and separation of concerns,

so tackling the complexity of big systems specification; (6) they support synch/async multi-agent

compositions, which allows for modeling distributed and decentralized software systems [15].

4.2.2 ASMETA toolset

Fig. 19 gives an overview of the ASMETA tools by showing their use to support the different activities

of the safety assurance process, e.g., for medical devices.

At design-time, ASMETA allows for using a number of tools for model editing and visualization (the

modeling language AsmetaL, its editor AsmetaXt and compiler AsmetaC, and the model visualizer

AsmetaVis for graphical visualization of ASM models), model validation (e.g., interactive or random

simulation by the simulator AsmetaS, animation by the animator AsmetaA, scenario construction using

the Avalla language, and validation by the validator AsmetaV), and verification (e.g., static analysis

by the model reviewer AsmetaMA, proof of temporal properties by the model checker AsmetaSMV,

proof of correct model refinement process by AsmRefProver).

At development-time, ASMETA supports automatic code and test case generation from models (the

code generator Asm2C++, the unit test generator ATGT, and the acceptance test generator AsmetaBDD

for complex system scenarios). The code automatically generated can be used in a variety of embedded

systems (e.g., Arduino).

73

Andrea Bombarda

DESIGNDESIGN

OPERATIONOPERATION

DEVELOPMENTDEVELOPMENT

Metamodel
AsmM

Modelling

Visualizer
AsmetaVis

Refinement prover
AsmRefProver

ASM 0 ASM 1
ASM
final

Code Generator
Asm2C++

C++ Code

Abstract Unit Test Generator
ATGT

Model Validation

Model
Verification

Model Checker
AsmetaSMV

Model Reviewer
AsmetaMA

Simulator
AsmetaS

C++ Unit test

Animator
AsmetaA

Validator
AsmetaV

Scenarios

Behaviour-Driven Development
scenario generator

AsmetaBDD

Ecore

Java API Runtime Simulator
AsmetaS@run.time

Runtime Monitor
CoMA

Modelling Language
Avalla

Modeler

Compiler
AsmetaC

Modelling Language
AsmetaL

Editor
AsmetaXt

Figure 19: ASMETA tool-set.

Finally, at operation-time, ASMETA supports runtime simulation (with the simulator As-

metaS@run.time) and runtime monitoring (using the tool CoMA).

The analysis techniques and associated tooling strategies supported by ASMETA are described in

more detail in the next sections.

4.3 ASMETA @ design-time

System design is the first activity of the MBSE process supported by ASMETA. During this phase,

users can model the desired system using the AsmetaL language and refine every model, which can

be visualized graphically and analyzed with several tools for verification and validation.

4.3.1 Modeling

Starting from the functional requirements, ASMETA allows the user to model the system by using,

if needed, model composition and refinement. Furthermore, models can be visualized through the

AsmetaVis tool. As an example, the MVM case study (see Chapter 2 for more details) is used to

show the ASMETA functionalities in the following.

74

Abstract State Machines for MBSE

Modeling language

System requirements are modeled in ASMETA using the AsmetaL language and the AsmetaXt editor.

Listing 4.1 shows a preliminary example of the abstract AsmetaL model of the MVM, in which only

the PCV mode is implemented (see Chapter 2 for further details on ventilation modes). The model,

identified by a name after the keyword asm, is structured into four sections:

• The header, where the signature (functions and domains) is declared, and the external signature

is imported (see the description of the modularization technique below);

• The body, where transitions rules, possible concrete domains and derived functions are defined;

• A main rule, which defines the starting point of the machine;

• The initialization, where a default initial state (among a set of possibile states) is defined.

As previously described in Sect. 4.1, each AsmetaL rule can be defined by using a set of rule

constructors to express the different machine action paradigms.

Modularization

ASMETA supports the mechanisms of modularization and information-hiding, by exploiting the

module notation. In fact, when requirements are complex or when separation of concerns is desired,

users can organize the model in several ASM modules and join them, by using the import statement

(see Listing 4.1), into a single main one (also defined as machine). The main asm is declared as asm,

it imports the other modules and may access to functions, rules, and domains declared within the

sub-modules. Indeed, every ASM module may contain definitions of domains, functions, invariants,

and rules, while the ASM machine is a module that additionally contains an initial state and the main

rule, representing the starting point of the execution.

Modeling time with ASMETA

From our experience, of which the work presented in this book is an important part, ASMETA can

be effectively used for modeling real-world PEMS. However, many real systems, especially those in

the safety-critical and medical domains, rely on time constraints. For this reason, in the ASMETA

framework, the TimeLibrary4 (see Listing 4.2) has been introduced. It contains the basic constructs

necessary to handle time features in ASMETA specifications: i) monitored functions to manage the

time in different time units (nanoseconds, milliseconds, seconds, minutes, and hours); ii) an abstract

domain Timer useful to introduce user-defined timers; iii) some functions and rules to operate on

4https://github.com/asmeta/asmeta/blob/master/asm_examples/STDL/TimeLibrary.asm

75

https://github.com/asmeta/asmeta/blob/master/asm_examples/STDL/TimeLibrary.asm

Andrea Bombarda

asm MVM0
import StandardLibrary

signature:
// TIMER
enum domain Timer = {TIMER INSPIRATION DURATION MS,

TIMER EXPIRATION DURATION MS,
TIMER TRIGGERWINDOWDELAY MS}

domain MyTime subsetof Integer
// DOMAINS
enum domain States = {STARTUP, SELFTEST,

VENTILATIONOFF, PCV INSPIRATION, PCV EXPIRATION,
OFF}

enum domain Modes = {PCV}
enum domain ValveStatus = {OPEN , CLOSED}
// FUNCTIONS
dynamic monitored poweroff: Boolean
dynamic monitored startupEnded: Boolean
dynamic monitored selfTestPassed: Boolean
dynamic monitored resume: Boolean
dynamic monitored startVentilation: Boolean
dynamic monitored stopVentilation: Boolean
dynamic monitored mode: Modes
dynamic monitored pawGTMaxPinsp: Boolean
dynamic monitored dropPAW ITS PCV: Boolean
dynamic controlled time: MyTime
dynamic controlled stopVentilationRequested: Boolean
dynamic controlled state: States
dynamic controlled iValve: ValveStatus
dynamic controlled oValve: ValveStatus
controlled start: Timer−> MyTime
static durationTIMER INSPIRATION DURATION MS : MyTime
static durationTIMER EXPIRATION DURATION MS: MyTime
static durationTIMER TRIGGERWINDOWDELAY MS : MyTime
derived expiredTIMER INSPIRATION DURATION MS : Boolean
derived expiredTIMER EXPIRATION DURATION MS: Boolean
derived expiredTIMER TRIGGERWINDOWDELAY MS : Boolean

definitions:
domain MyTime = {0:600}
function durationTIMER INSPIRATION DURATION MS = 20
function durationTIMER EXPIRATION DURATION MS = 40
function durationTIMER TRIGGERWINDOWDELAY MS = 10
function expiredTIMER INSPIRATION DURATION MS = (time >=

start(TIMER INSPIRATION DURATION MS) +
durationTIMER INSPIRATION DURATION MS)

function expiredTIMER EXPIRATION DURATION MS = (time >=
start(TIMER EXPIRATION DURATION MS) +
durationTIMER EXPIRATION DURATION MS)

function expiredTIMER TRIGGERWINDOWDELAY MS = (time >=
start(TIMER TRIGGERWINDOWDELAY MS) +

durationTIMER TRIGGERWINDOWDELAY MS)
macro rule r reset TIMER($t in Timer) = start($t) := time

// RULE DEFINITIONS
rule r startupEnded = state := SELFTEST
rule r ventOffRequested = stopVentilationRequested := true
rule r ventOffPCV = par

state := VENTILATIONOFF
stopVentilationRequested := false

endpar
rule r ventOffFT = state := VENTILATIONOFF
rule r turnOff = par

iValve := CLOSED
oValve := OPEN
state := OFF

endpar
rule r PCVinsp = par

state := PCV INSPIRATION

iValve := OPEN
r reset TIMER[TIMER INSPIRATION DURATION MS]

endpar
rule r PCVinspOValve = par

r PCVinsp[]
oValve := CLOSED

endpar
rule r PCVexp = par

state := PCV EXPIRATION
oValve := OPEN
r reset TIMER[TIMER EXPIRATION DURATION MS]
r reset TIMER[TIMER TRIGGERWINDOWDELAY MS]

endpar
rule r PCVexpIValve = par

r PCVexp[]
iValve := CLOSED

endpar

// MAIN Rule
main rule r Main = par

time:= time+1
if poweroff then r turnOff[]
//if stop ventilation is requested and current state is expiration
//go to state VENTILATIONOFF immediately
else

if state=PCV EXPIRATION and (stopVentilationRequested or
stopVentilation) then

r ventOffPCV[]
else par

//if ventilation stop is requested and ventilation is on, store
//the stop request in the function stopVentilationReq.
if stopVentilation then

if state!=PCV EXPIRATION and state!=STARTUP and
state!=SELFTEST and state!=VENTILATIONOFF
then r ventOffRequested[] endif endif

//transition from startup to selftest
if state = STARTUP then

if startupEnded then r startupEnded[] endif endif
//transition from selftest to ventilation off
if state = SELFTEST then

if (selfTestPassed or resume) then r ventOffFT[] endif
endif

//start ventilation, in PCV mode
if state = VENTILATIONOFF then

if startVentilation then
if mode = PCV then r PCVinspOValve[] endif endif

endif
//transition from inspiration to expiration
if state = PCV INSPIRATION then

if expiredTIMER INSPIRATION DURATION MS then
if mode = PCV then r PCVexpIValve[] endif

else if pawGTMaxPinsp then r PCVexpIValve[] endif
endif endif

if state = PCV EXPIRATION then
if expiredTIMER EXPIRATION DURATION MS then

r PCVinspOValve[]
else

if expiredTIMER TRIGGERWINDOWDELAY MS then if
dropPAW ITS PCV then r PCVinspOValve[]
endif endif endif endif endpar endif endif
endpar

default init s0:
function time = 0
function state = STARTUP
function iValve = CLOSED
function oValve = OPEN
function stopVentilationRequested = false
function start($t in Timer) = 0

Listing 4.1: AsmetaL specification for the MVM case study.

76

Abstract State Machines for MBSE

module TimeLibrary
import StandardLibrary
export ∗
signature:

abstract domain Timer
enum domain TimerUnit={NANOSEC,

MILLISEC, SEC, MIN, HOUR}
monitored mCurrTimeNanosecs: Integer
monitored mCurrTimeMillisecs: Integer
monitored mCurrTimeSecs: Integer
monitored mCurrTimeMins: Integer
monitored mCurrTimeHours: Integer
controlled start: Timer−> Integer
controlled duration: Timer −> Integer
controlled timerUnit: Timer −> TimerUnit
derived currentTime : Timer−> Integer
derived expired: Timer −> Boolean

definitions:

function currentTime($t in Timer) = if (timerUnit($t)=NANOSEC) then
mCurrTimeNanosecs
else if (timerUnit($t)=MILLISEC) then mCurrTimeMillisecs
else if (timerUnit($t)=SEC) then mCurrTimeSecs
else if (timerUnit($t)=MIN) then mCurrTimeMins
else if (timerUnit($t)=HOUR) then mCurrTimeHours
endif endif endif endif endif

function expired($t in Timer) = (currentTime($t) >= start($t) + duration($t))

macro rule r reset timer($t in Timer) = start($t) :=
currentTime($t)

macro rule r set duration($t in Timer, $ms in Integer) =
duration($t) := $ms

macro rule r set timer unit($t in Timer, $unit in TimerUnit) =
timerUnit($t) := $unit

Listing 4.2: ASMETA TimeLibrary.

timers, like checking if a desired amount of time is passed, resetting and starting a timer, and setting

the timer duration and time unit. The implemented solution allows users to use different time units

in the same ASM specification, and it guarantees consistency between them during model simulation.

Moreover, this mechanism ensures that in a defined state, all time functions refer to the same time

instant, no matter what time unit is used. A simple example using the time monitored functions is

shown in Listing 4.3, representing a clock displaying at each step the current hours, minutes, and

seconds.

asm simpleClock
import TimeLibrary

signature:
controlled clockHours: Integer
controlled clockMins: Integer
controlled clockSecs: Integer

definitions:
main rule r main =

par
clockHours:=mCurrTimeHours mod 24
clockMins:=mCurrTimeMins mod 60
clockSecs:=mCurrTimeSecs mod 60

endpar

Listing 4.3: Time example - return current time.

Measuring the absolute time is useful but, often, systems require that actions are executed if a desired

amount of time is passed. For this purpose, timers are available in the TimeLibrary, too. After having

declared a timer, users can reset it through the rule r reset timer, change its duration with the rule

r set duration, or its time unit using the rule r set timer unit.

Refinement

The modeling process of an ASM is usually based on model refinement [42]: the designer starts with

a high-level description of the system and proceeds through a sequence of more detailed models, each

introducing, step-by-step, design decisions and details. In order to adopt a correct refinement process,

at each refinement level, the model must be proved to be a correct refinement of the more abstract one.

77

Andrea Bombarda

ASMETA supports a special case of 1-n refinement, consisting in adding functions and rules in a way

that one step in the ASM at a higher level can be performed by several steps in the refined model.

Indeed, a refinement is considered correct if any behavior (i.e., run or sequence of states) in the

refined model can be mapped to a run in the abstract model. To automatically prove the correctness

of the model refinement process, users can exploit the AsmRefProver tool [12], which is based

on a Satisfiability Modulo Theories (SMT) solver. When executing this tool, one can specify two

refinement levels and ensure that an ASM specification ASM𝑖 is a correct refinement of a more abstract

one ASM𝑖−1. Then, AsmRefProver confirms whether the refinement is correctly performed with two

different outputs: Initial states are conformant and Generic step is conformant.

Listing 4.4 shows an excerpt of the refinement for the MVM case study (see Listing 4.1) in which the

PSV mode is introduced. Thus, the behavior of the system modeled in Listing 4.1 is preserved and

expanded during the refinement process.

Modeling by refinement allows users to add to the model additional requirements of increasing

complexity only when the developer has gained enough confidence in the basic behaviors of the

modeled system. This can be done by alternating modeling and testing activities, as presented in [28],

with different refinement levels.

Visualization

Model visualization is a good way for people to communicate and get a common understanding of the

modeled system. ASMETA supports model visualization by a visual notation defined in terms of a

set of construction rules and schema that give a graphical representation of an ASM and its rules [9].

The graphical information is represented in a visual graph in which nodes represent syntactic elements

(like rules, conditions, rule invocations) or states, while edges represent bindings between syntactic

elements or state transitions. The AsmetaVis tool can perform two types of visualization: basic

visualization, which shows the syntactic structure of the model and returns a visual tree obtained by

recursively visiting the ASM rules; semantic visualization, which exploits visual patterns that permit

to capture some behavioral information as control states.

4.3.2 Validation and verification

Once the AsmetaLmodel is available, the user can take advantage of the tools offered by the ASMETA

framework to perform validation and verification activities.

78

Abstract State Machines for MBSE

asm MVM1

import StandardLibrary
import CTLlibrary
import LTLlibrary

signature:
// TIMER
enum domain Timer = {TIMER INSPIRATION DURATION MS,

TIMER EXPIRATION DURATION MS,
TIMER MAX INSP TIME PSV, TIMER MIN EXP TIME PSV,
TIMER TRIGGERWINDOWDELAY MS,
TIMER MIN INSP TIME MS}

domain MyTime subsetof Integer

// DOMAINS
enum domain States = {STARTUP, SELFTEST, VENTILATIONOFF,

PCV INSPIRATION, PCV EXPIRATION, PSV INSPIRATION,
PSV EXPIRATION, OFF}

enum domain Modes = {PCV, PSV}
enum domain ValveStatus = {OPEN, CLOSED}

// FUNCTIONS
dynamic monitored flowDropPSV: Boolean
dynamic monitored dropPAW ITS PSV: Boolean
[...]
static durationTIMER MAX INSP TIME PSV: MyTime
static durationTIMER MIN EXP TIME PSV: MyTime
static durationTIMER MIN INSP TIME MS: MyTime
derived expiredTIMER MAX INSP TIME PSV: Boolean
derived expiredTIMER MIN EXP TIME PSV: Boolean
derived expiredTIMER MIN INSP TIME MS: Boolean

definitions:

[...]

rule r ventOffPSV =
par

state := VENTILATIONOFF
stopVentilationRequested := false

endpar

rule r PSVinsp = par

state := PSV INSPIRATION
iValve := OPEN
r reset TIMER[TIMER MAX INSP TIME PSV]
r reset TIMER[TIMER MIN INSP TIME MS]

endpar

rule r PSVinspOValve =
par

r PSVinsp[]
oValve := CLOSED
r reset TIMER[TIMER MAX INSP TIME PSV]

endpar

rule r PSVexp =
par

state := PSV EXPIRATION
oValve := OPEN
r reset TIMER[TIMER MIN EXP TIME PSV]
r reset TIMER[TIMER TRIGGERWINDOWDELAY MS]

endpar

rule r PSVexpIValve =
par

r PSVexp[]
iValve := CLOSED

endpar

rule r PSVexpIValveFromPCV =
par

r PSVexp[]
iValve := CLOSED

endpar

// MAIN Rule
main rule r Main =

[...]

default init s0:
function time = 0
function state = STARTUP
function iValve = CLOSED
function oValve = OPEN
function stopVentilationRequested = false
function start($t in Timer) = 0

Listing 4.4: Example of a refined AsmetaL specification for the MVM.

Simulation

Simulation is the first validation activity that allows for checking the AsmetaLmodel behavior during

its development, and it is supported by the AsmetaS tool [14]. Given a model, at every step, the

simulator computes the update set based on the theoretical definitions given in [44] and constructs the

model run. The simulator supports two types of simulation: random and interactive. In the former,

it automatically assigns values to monitored functions, randomly choosing their values from their

codomains. In the latter, instead, the user is requested to insert the value of monitored functions and,

in case of input errors, a message invites the user to insert again the function value. Similarly, in the

case of invariant violation or inconsistent updates, the simulation is interrupted, and an error message

is shown in the console.

79

Andrea Bombarda

Figure 20: Simulator settings in Eclipse preferences.

Simulation of ASMETA specification with time features ASMETA supports three different mech-

anisms to handle time during simulation if the TimeLibrary is used (see Sect. 4.3.1):

1. Use java time: the time is read from the machine hosting the simulation;

2. Ask user: the user sets the value for the time at each step as normal monitored functions;

3. Auto increment: The time is automatically increased at each step by a predefined value.

The first mechanism allows the user to run the specification without inserting the value of the functions

representing the time because their value is obtained from the Java 8 Date/Time API Instant.now()

and automatically assigned to them. However, especially if the specification requires long time

intervals, like hours, or very short time intervals, like nanoseconds, if the real time is used during the

simulation, it may be unfeasible for the user to check what happens at specific instants of time. In this

case, the second mechanism is most suitable: the user specifies the time unit to which he wants to run

the specification and inserts the desired time value when required. Note that if the specification uses

more than one time function with different time units, the others are automatically derived starting

from the one inserted by the user. Finally, in case the user wants to execute the specification and

automatically increment the time by a predefined value delta at each step, the third approach can be

used. The user has to define the time step and time unit; then the system automatically increments

the time of the chosen delta value at each running step. Even in this case, if time functions have other

time units compared to the one set by the user, they are automatically derived. The desired mechanism

can be set in the ASMETA→ Simulator preferences from the Window menu in Eclipse, as shown in

Fig. 20.

Animation

The main disadvantage of the simulator is that its interface is only textual, and this sometimes makes

it difficult to follow the model computation. For this reason, ASMETA embeds a model animator,

AsmetaA [36], providing the user with complete information about all locations and using colors,

tables, and figures over simple text to convey information about states and their evolution. This tool

helps the user to follow the model computation and understand how the system state changes at every

step.

80

Abstract State Machines for MBSE

Figure 21: Animation of the MVM using AsmetaA.

Since the animator runs the simulator in the background, it also supports interactive and random

animation. In the interactive mode, the insertion of input functions is pursued through different dialog

boxes depending on the type of function to be inserted. If the function value is not in its codomain, the

animator keeps asking until an acceptable value is inserted. In random mode, the monitored function

values are automatically and randomly assigned.

With complex models, running one random step at a time may be tedious; for this reason, the user

can also specify the number of steps to be performed, and the tool performs the random simulation

accordingly. In case of invariant violation, or an inconsistent update, a message is shown in a

dedicated text box and the animation is interrupted. Once the user has animated the model, the tool

allows exporting the model run as a scenario, so that it can be re-executed whenever desired. Fig. 21

shows the animation of the initial steps of the MVM.

Scenario-based validation

Both AsmetaS and AsmetaA tools require the user to execute the AsmetaL model step by step,

everytime the model has to be validated. Instead, with scenario-based validation, the user can write a

scenario, i.e., a description of external actions and reactions of the system [55] that can be executed

whenever needed to check the model behavior. Typical uses of scenarios are regression or classical

unit testing activities.

The scenarios are written in the Avalla language and executed using the AsmetaV tool. Each scenario

is identified by its name and must load the ASM to be tested. Then, the user may specify different

commands depending on the operation to be performed:

• The set command updates monitored or shared function values that are supplied by the user as

input signals to the system;

• Commands step and step until represent the reaction of the system, which can execute one

single ASM step and one ASM step iteratively until a specified condition becomes true;

81

Andrea Bombarda

scenario test1
load MVM0.asm

check iValve = CLOSED;
check expiredTIMER EXPIRATION DURATION MS = false;
check start(TIMER TRIGGERWINDOWDELAY MS) = 0;
check start(TIMER EXPIRATION DURATION MS) = 0;
check durationTIMER INSPIRATION DURATION MS = 20;
check durationTIMER EXPIRATION DURATION MS = 40;
check time = 0;
check durationTIMER TRIGGERWINDOWDELAY MS = 10;
check expiredTIMER TRIGGERWINDOWDELAY MS = false;
check stopVentilationRequested = false;
check start(TIMER INSPIRATION DURATION MS) = 0;
check oValve = OPEN;
check state = STARTUP;
check expiredTIMER INSPIRATION DURATION MS = false;
set poweroff := false;
set startupEnded := false;
set stopVentilation := false;
step
check time = 1;
set poweroff := false;
set startupEnded := false;
set stopVentilation := false;
step

Listing 4.5: Example of Avalla scenario for the MVM case study.

• The check command is used to inspect property values in the current state of the underlying

ASM.

Listing 4.5 shows an example of the Avalla scenario for the MVM case study. To simulate scenarios,

AsmetaV exploits the simulator. Moreover, during the simulation, AsmetaV captures any check

violation and, if none occurs, it finishes with a “PASS” verdict (“FAIL” otherwise). Moreover, the

tool collects information about the coverage of the AsmetaL model. In particular, it keeps track of all

the rules that have been called and evaluated, and it lists them at the end.

Users can exploit modularization even when building scenarios. Indeed, it is possible to define

blocks, i.e., sequences of set, step, and check, that can be recalled using the execblock when

writing other scenarios that foresee the same sequence of Avalla commands.

Model review

During the definition of a formal model, a developer may introduce some errors that are not related

to a wrong specification of the requirements, but are due to carelessness, forgetfulness, or limited

knowledge of the formal method. For example, a developer may use a wrong function name, forget

to properly guard an update, and so on. A common error in the development of ASM is inconsistent

update, i.e., when a location is simultaneously updated to two different values by two rules that are

executed in parallel [43]. Such kind of error may occur (especially in complex models) because

the developer does not properly guard all the updates. Other types of errors done using ASMs are

82

Abstract State Machines for MBSE

overspecifying the model, i.e., adding model elements that are not needed or writing rules that can

never be triggered.

These types of errors can be captured automatically by performing a static analysis of the model. This

is the aim of the AsmetaMA tool [11], which performs automatic review of ASM models. It checks the

presence of seven types of errors by using suitable meta-properties specified in CTL and verified using

the model checker AsmetaSMV (see the next subsection for details about AsmetaSMV). In particular,

the following meta-properties are checked:

P1 No inconsistent update is ever performed;

P2 Every conditional rule is complete;

P3 Every rule can eventually fire;

P4 No assignment is always trivial5;

P5 For every domain element 𝑒 there exists a location which has value 𝑒;

P6 Every controlled function can take any value in its co-domain;

P7 Every controlled location is updated and every location is read.

Model checking

ASMETA provides model checking support using the tool AsmetaSMV [10] that translates an ASM

specification into a model of the symbolic model checker NuSMV [61], which is used to perform

the verification. Being NuSMV a finite state model checker, the only limitation of AsmetaSMV is the

finiteness of the number of ASM states: only finite domains can be used, and adding elements at

runtime to a domain is not supported.

When using AsmetaSMV, the user does not need to know how to translate the model into the NuSMV

format: it is possible to specify directly in the ASM model the Computation Tree Logic (CTL) and

Linear Temporal Logic (LTL) properties defined over the ASM signature. Listing 4.6 shows CTL and

LTL properties specified for the MVM study. The CTL property, for example, checks that when the

ventilation is not active, the output valve is open and the in valve is closed.

In order to better understand the verification results, the tool allows users to simulate the returned

counterexample: a translator takes as input the counterexample given by NuSMV when a property is not

verified and produces an Avalla scenario. Listing 4.7 shows the counterexample of a violation of an

LTL property by a faulty version of the ASM specification of the MVM case study; the corresponding

Avalla scenario is reported in Listing 4.8.

5An assignment is trivial in ASM if the location is updated to the value that it already has.

83

Andrea Bombarda

// When ventilation is off, out valve is open and in valve is closed
CTLSPEC ag(state=MAIN REGION VENTILATIONOFF implies (iValve=CLOSED and oValve=OPEN))

// Once turned off, the state doesn’t change anymore
LTLSPEC g(state=OFF implies g(state=OFF))

Listing 4.6 Specification of temporal properties in the AsmetaL model.

−− specification G iValve = CLOSED is false
−− as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample

−> State: 1.1 <−
iValve = CLOSED
time = 0
start(TIMER INSPIRATION DURATION MS) = 0
state = MAIN REGION STARTUP
poweroff = false
stopVentilationRequested = false
stopVentilation = false
pawGTMaxPinsp = false
start(TIMER EXPIRATION DURATION MS) = 0
dropPAW ITS PCV = false
start(TIMER TRIGGERWINDOWDELAY MS) = 0
startVentilation = false
resume = false
[...]
mode = PCV

−> State: 1.2 <−
time = 1
startupEnded = true
expiredTIMER TRIGGERWINDOWDELAY MS = true

−> State: 1.3 <−
time = 2
state = MAIN REGION SELFTEST
selfTestPassed = true
startupEnded = false
expiredTIMER INSPIRATION DURATION MS = true

−> State: 1.4 <−
time = 3
state = MAIN REGION VENTILATIONOFF
startVentilation = true
selfTestPassed = false

−> State: 1.5 <−
iValve = OPEN
time = 4
start(TIMER INSPIRATION DURATION MS) = 3
state = MAIN REGION PCV R1 INSPIRATION
poweroff = true
startVentilation = false
expiredTIMER INSPIRATION DURATION MS = false
expiredTIMER EXPIRATION DURATION MS = true

−> State: 1.6 <−
iValve = CLOSED
time = 5
state = OFF
poweroff = false
expiredTIMER INSPIRATION DURATION MS = true

−> State: 1.7 <−
[...]

−− Loop starts here
−> State: 1.61 <−

time = 60
−> State: 1.62 <−

Listing 4.7 Counterexample in AsmetaSMV.

scenario mvmtest
load MVM 0.asm

check iValve = CLOSED;
check time = 0;
check start(TIMER INSPIRATION DURATION MS) = 0;
check state = MAIN REGION STARTUP;
check stopVentilationRequested = false;
check start(TIMER EXPIRATION DURATION MS) = 0;
check start(TIMER TRIGGERWINDOWDELAY MS) = 0;
set startVentilation = false;
set resume := false;
set selfTestPassed := false;
set startupEnded := false;
set expiredTIMER TRIGGERWINDOWDELAY MS := false;
set expiredTIMER INSPIRATION DURATION MS := false;
set expiredTIMER EXPIRATION DURATION MS := false;
[...]
step

check time = 1;
set startupEnded := true;
set expiredTIMER TRIGGERWINDOWDELAY MS := true;
step

check time = 2;
check state = MAIN REGION SELFTEST;
set selfTestPassed := true;
set startupEnded := false;
set expiredTIMER INSPIRATION DURATION MS := true;
step

check time = 3;
check state = MAIN REGION VENTILATIONOFF;
set startVentilation := true;
set selfTestPassed := false;
step

check iValve = OPEN;
check state = MAIN REGION PCV R1 INSPIRATION;
check time = 4;
check start(TIMER INSPIRATION DURATION MS) = 3;
set poweroff := true;
set startVentilation := false;
set expiredTIMER INSPIRATION DURATION MS := false;
set expiredTIMER EXPIRATION DURATION MS := true;
step

check iValve = CLOSEDM
check time = 5;
check state = OFF;
set poweroff := false;
set expiredTIMER INSPIRATION DURATION MS := true;
step

[...]

Listing 4.8 Executable counterexample in Avalla.

AsmetaSMV can be used to verify the functional correctness of the specified system, and as a back-end

tool for other activities supported in ASMETA, e.g., model review.

84

Abstract State Machines for MBSE

4.4 ASMETA @ development-time

Once the AsmetaL model is available and verified, the user can automatically generate abstract tests,

C++ code, and C++ unit tests. This is an important feature of the ASMETA framework, especially in

the context of this book, since the derived code preserves all the properties that have been verified in

the ASM model. In this way, if the specification has been correctly evaluated, verified and validated,

the generated code is correct-by-construction.

4.4.1 Model-based test generation

Model-based testing [168] is a popular testing approach in which tests are derived, in an automatic

manner, from formal models. The technique is based on the consideration that the model is an abstract

representation of the System Under Test (SUT), from which it is possible to generate both the test

inputs and the expected output (so, tackling the oracle problem of software testing [18]). Abstract tests

are generated starting from the model and then translated into concrete tests for the SUT. Coverage

criteria over the model are used to define test goals. A typical approach for generating tests that

achieve these goals is to use model checkers [84]: a test goal is translated into a suitable temporal

property (called trap property), whose counterexample (if any) is the test that covers that test goal.

More details on how to apply this approach will be given in Chapter 5.

ASMETA integrates the ATGT tool [89] which allows performing model-based test generation using

the NuSMV model checker. The generation is guided by coverage criteria defined or adapted for

ASMs [88], such as rule coverage, parallel rule coverage, MCDC, etc. For example, the rule coverage

criterion requires that for every transition rule 𝑟𝑖 there exists at least one state in a test in which 𝑟𝑖

fires, and another state in a test in which 𝑟𝑖 does not fire. Finally, the abstract tests generated with

ATGT can be later translated into concrete test cases for the specific implementation. Indeed, the test

concretization process may be difficult and needs to be customized for every system under test.

4.4.2 Model-based code generation

According to best practices in model-driven engineering, the implementation of a system should be

obtained from its model through a systematic model-to-code transformation, since this allows the

proved safety properties to be maintained. Thanks to Asm2C++, given the AsmetaLmodel of the SUT,

the C++ code is automatically generated [38]. This is done by performing a series of steps:

• the AsmetaL specification is parsed and converted into an instance of the ASMETA metamodel

(AsmM);

85

Andrea Bombarda

• a model-to-text transformation, exploiting Xtext in Eclipse, is applied to translate the model into

C++ code.

This procedure generates two files: header (.h) and source (.cpp). The former contains the interface

of the source file, the translation of the ASM domains declaration and definition, and functions and

rules declaration. The latter contains the rules implementation, the functions/domains initialization,

and the definitions of the functions. Listing 4.9 reports an excerpt of the translation in C++ of the

MVM specification.

As described in Sect. 4.2.1 an ASM run consists in the execution of the main rule and, consequently,

in the update of the locations. For this reason, in C++ the ASM step is implemented by two methods:

• r Main(), that corresponds to the translations of the ASM main rule;

• fireUpdateSet(), which updates the locations to the next state value.

Given the translation of an AsmetaL specification in C++, the code generation process can be easily

adapted for a specific platform. ASMETA supports the translation of code in Arduino format (see

Sect. 5.3 for a detailed description of how to derive the MVM code for Arduino from the AsmetaL

model), which is compatible with C++, cheap, and easily accessible. In particular, once the C++ code

has been generated, the user is required to perform three additional steps:

• HW configuration and integration: the mapping between the ASM functions and the Arduino

input / output pins, and other hardware-specific settings must be defined. The first draft of the

mapping is automatically generated, but user intervention is required to set all monitored and

controlled functions to the correct hardware pins.

• ASM runner generation: Asm2C++ automatically generates a .ino file that contains the loop()

function to run the translation of the ASM on Arduino. It iteratively executes the following

functions: getInputs() — reads data from the input devices like sensors; mainRule() —

contains the behavior described in the AsmetaLmodel; fireUpdateSet()— updates the state

at the end of each loop; and setOutputs()— sets the output values like the current state of

light-emitting diode (LED).

• Merging all the generated files: all the files previously generated have to be merged and uploaded

on the Arduino board.

4.4.3 Unit test generation

If the C++ code is available (either automatically generated or not) and the user wants to test it by using

a model-based approach, C++ unit tests can be automatically generated starting from the AsmetaL

model [37]. Test generation can be performed by exploiting two different mechanisms. The first

86

Abstract State Machines for MBSE

// MVM0.h automatically generated from ASMETA2CODE
#ifndef MVM0 H
#define MVM0 H

#include <string.h>
#include <iostream>

#include <vector>
#include <set>
#include <map>
#include <list>
#include <boost/tuple/tuple.hpp>
using namespace std;
#define ANY String
#define UNDEF NULL

/∗ DOMAIN DEFINITIONS ∗/
namespace MVM0Namespace{

enum States {STARTUP, SELFTEST, VENTILATIONOFF,
PCV INSPIRATION, PCV EXPIRATION, OFF};

enum Modes {PCV};
enum ValveStatus {OPEN, CLOSED};

}
using namespace MVM0;

class MVM0 : public virtual TimeLibrary{

/∗ DOMAIN CONTAINERS ∗/
const set<States> States elems;
const set<Modes> Modes elems;
const set<ValveStatus> ValveStatus elems;

public:
/∗ FUNCTIONS ∗/
bool poweroff[2];
bool startupEnded[2];
bool selfTestPassed[2];
bool resume[2];
bool startVentilation[2];
bool stopVentilation[2];
Modes mode[2];
bool pawGTMaxPinsp[2];
bool dropPAW ITS PCV[2];
bool stopVentilationRequested[2];
States state[2];
ValveStatus iValve[2];
ValveStatus oValve[2];
[...]

/∗ RULE DEFINITION ∗/
void r startupEnded();
void r ventOffRequested();
void r ventOffPCV();
void r ventOffFT();
void r turnOff();
void r PCVInsp();
void r PCVInspOValve();
void r PCVExp();
void r PCVExpIValve();
void r Main();

MVM0();
void initControlledWithMonitored();
void getInputs();
void setOutputs();
void fireUpdateSet();

};

// MVM0.cpp automatically generated from ASM2CODE
#include ”MVM0.h”

using namespace MVM0Namespace;

// Conversion of ASM rules in C++ methods
void MVM0::r startupEnded(){

state[1] = SELFTEST;
}

void MVM0::r ventOffRequested(){
stopVentilationRequested[1] = true;

}

void MVM0::r ventOffPCV(){
{ // par

state[1] = VENTILATIONOFF;
stopVentilationRequested[1] = false;

} // endpar
}

void MVM0::r ventOffFT() {
state[1] = VENTILATIONOFF;

}

void MVM0::r turnOff() {
{ // par

iValve[1] = CLOSED;
oValve[1] = OPEN;
state[1] = OFF;

} // endpar
}

[...]

void MVM0::r Main(){
[...]

}

// Function and domain initialization
MVM0::MVM0(){

//Static domain initialization
States elems:{STARTUP, SELFTEST, VENTILATIONOFF,

PCV INSPIRATION, PCV EXPIRATION, OFF;};
Modes elems:{PCV;};
ValveStatus elems:{OPEN,CLOSED;};

// Function initialization
state[0] = state[1] = STARTUP;
iValve[0] = iValve[1] = CLOSED;
oValve[0] = oValve[1] = OPEN;
[...]

}

// initialize controlled functions that contains monitored functions in
the init term

void MVM0::initControlledWithMonitored(){
}

// Apply the update set
void MVM0::fireUpdateSet(){

startupEnded[0] = startupEnded[1];
selfTestPassed[0] = selfTestPassed[1];
startVentilation[0] = startVentilation[1];
[...]

}

Listing 4.9: Excerpts of the header and source file automatically generated from the AsmetaL model for
the MVM case study.

87

Andrea Bombarda

BOOST AUTO TEST SUITE(MVM0Test)
BOOST AUTO TEST CASE(my test 0){

// instance of the SUT
MVM0 ventilator;
// state
// set monitored variables
ventilator.poweroff[1] = false;
[...]
BOOST CHECK(ventilator.state[0]==STARTUP);
// call main rule
ventilator.r Main();
ventilator.fireUpdateSet();
[...]

}
[...]
BOOST AUTO TEST END();

Listing 4.10: Example of C++ Boost unit test.

#include ”catch.hpp”

TEST CASE(”my test 0”, ”my test 0”){
// instance of the SUT
MVM0 ventilator;
// state
// set monitored variables
ventilator.poweroff[1] = false;
[...]
REQUIRE(ventilator.state[0]==STARTUP);
// call main rule
ventilator.r Main();
ventilator.fireUpdateSet();
[...]

}
[...]

Listing 4.11: Example of C++ Catch2 unit test.

approach consists in running the AsmetaS random simulation for a defined number of steps specified

by the tester, and in translating the generated state sequence into a C++ unit test. On the contrary, the

second approach is based on translating the abstract tests generated by ATGT (see Sect. 4.4.1) into C++

unit tests. In both cases, the unit tests can be written using the Boost or Catch2 test frameworks.

An example of the generated unit test is reported in Listing 4.10, if the Boost library is used. Initially,

the test suite is registered by using the BOOST AUTO TEST SUITE(...) macro. Moreover, the

definition of the test suite ends with the macro BOOST AUTO TEST END(). Note that each test suite

can be composed of one or more test cases, each one declared using the macro BOOST AUTO TEST -

CASE(...).

On the other hand, Listing 4.11 shows the same test suite if the Catch2 library is used. Unlike the code

with Boost, Catch2 does not require the start and end of the test suite to be specified. Every test case

is declared with a TEST CASE(testName,tags) macro.

4.5 ASMETA @ operation-time

In Sect. 4.3.2 formal validation and verification techniques for ASMETA have been presented. These

techniques aim at identifying and solving problems at design time. However, the state space of a

system under specification is often too large or partially unknown at design time, such as for PEMS

with uncertain behavior of humans in the loop (either doctors or patients). This aspect makes complete

assurance impractical or even impossible to pursue completely at design time. For this reason, runtime

assurance methods can be useful since they take advantage of the fact that variables that are free at

design time are, instead, bound at runtime; so, as an alternative to verifying the complete state space,

runtime assurance techniques can be focused on checking the current state of a system.

88

Abstract State Machines for MBSE

With ASMETA, the developer can use two types of runtime analysis techniques: runtime simulation

and runtime monitoring. Both approaches consider the model as a digital twin of the real system

and exploit it as oracle of the correct behavior of the system. In particular, the former exploits the

twin execution to prevent misbehavior of the system in case of unsafe model behavior, while the latter

exploits the twin execution to check the correctness of the system behavior w.r.t. the model behavior.

In this book, ASMETA is never applied at operation-time. However, more details on this use of the

framework are available in [7] and an example of its application to PEMS is presented in [39].

4.6 Conclusion

In this chapter, I have presented an overview of the ASMETA model-based analysis approach and the

associated tooling for the safety assurance problem of PEMS, using ASMs as the underlying analysis

formalism and complying with all activities required by the certification standards (see Sect. 1.2).

ASMETA is an active open-source academic project. Over the years, it has been improved with new

techniques and tools to face the upcoming new challenging aspects of modern systems. In accordance

with the topic of this book, in the next chapter, I will present some application scenarios in which

ASMETA and its tools have been used for the safety assurance of medical systems, such as for a

pill-box, the MVM (previously described in Chapter 2) and the PHD protocol.

89

Chapter 5. Applying the ASMETA rigorous process to medical

case studies

In this chapter, I present the application of MBSE techniques to real medical systems and software. In

particular, the ASMETA framework (previously introduced in Chapter 4) is applied for test and code

generation, validation, and verification in three different case studies: the e-Pix medicine reminder,

the MVM (see Chapter 2) and the PHD medical communication protocol. The activities presented

aim to be compliant with those required by the IEC 62304 [64] standard and FDA guidelines [83] for

software validation, as presented in Sect. 1.2 of this book.

This chapter is based on the work published in [25–29] and is structured as follows. Sect. 5.1 introduces

the activities that can be carried out on medical devices by exploiting the ASMETA framework, while

in Sect. 5.2 the case studies on which these activities are performed are introduced, namely the e-Pix

pill box, the MVM, and the PHD protocol. Then, Sect. 5.3 tackles the problem of generating code from

the ASMETA specification of the systems analyzed, while Sect. 5.4 presents the approach that can

be used to derive tests to be executed on the actual medical system from the ASMETA specification.

Finally, Sect. 5.5 concludes the chapter.

5.1 Introduction

The development of medical software and systems must adhere to certification standards, in order

to ensure the safety and reliability of each device interacting with human beings. In Sect. 1.2, I

have presented the two main standards for medical software, namely IEC 62304 [64] and the FDA

guidelines [83]. In general, both documents require the software to be tested and verified at each

development step, and developed through a well-documented software life cycle. Furthermore, in

Chapter 4, I have presented the ASMETA framework and the activities that it supports during the

development of safety-critical systems.

The idea underlying this chapter is that by using the ASMETA framework and its tools, one can fulfill

the majority of the activities required by certification standards.

In the following, I map the two main documents (IEC 62304 and FDA guidelines) to the ASM-based

development process using the ASMETA framework. Tab. 11 reports the mapping of ASMETA

activities to those required by Section 5 of the IEC 62305 [64] standard, which is focused on the

characteristics of the software development process.

91

Andrea Bombarda

Step Activity description ASMETA mapping
5.1 Define a life cycle model and

plan all procedures.

ASMs provide a precise, iterative, and incremental life-cycle

model, based on model refinement. With ASMs, developers

can perform modeling, validation, verification, and conformance

checking.
5.2 Define and document func-

tional and non-functional soft-

ware requirements.

System requirements can be defined using the ASM notation, a

mathematical model that can also be analyzed and checked before

the implementation. However, only functional requirements can

be natively modeled with ASM, so non-functional ones should be

analyzed with complementary techniques.
5.3 Specification of the software

architecture from the software

requirements, risk-control ac-

tivities and verification.

Verification of software requirements can be carried out through-

out the ASM development process using the property verification

tool AsmetaSMV. Risk control activities can be carried out by ver-

ifying the required functional safety properties and performing

critical scenario-based tests written in Avalla.
5.4 Refine the software architec-

ture into software units.

The software refinement can be obtained by means of the model re-

finement mechanism, typical of the ASMETA approach. The cor-

rectness of refinement can be proved by using the ASMRefProver

tool.
5.5-

5.7

Software implementation and

testing at the unit, integration,

and system levels.

With the ASMETA development process, the actual code can be

obtained using the automatic translator Asm2C++ on the last step

of model refinement. Since verification and validation activities

should be carried out at model-level, the code obtained with the

automatic translator is correct by construction. However, the de-

veloper may change something in the generated code (since some

of the aspects may not be representable with the ASM formalism),

so the ASM process cannot fully cover these development steps.

Even when the implementation is already available and the model

has been written only for verification and validation purposes, tests

can be derived from the ASM and executed on the real system.
5.8 Demonstration, by the device

manufacturer, that the soft-

ware has been validated and

verified.

If the ASM process is used, the demonstration that the software has

been validated and verified is straightforward, since V&V activi-

ties are continuous activities during the entire process. Moreover,

these activities can be reexecuted at any time since they are auto-

matically performed on the ASM models.
Table 11: Mapping between IEC 62304 and ASMETA activities.

92

Applying the ASMETA rigorous process to medical case studies

The presented mapping shows how all points are covered, at least partially, by activities composing

the ASM-based development lifecycle.

Guideline description ASMETA mapping

A documented software requirements

specification should provide a baseline

for both V&V.

In ASM, the software requirements specification is written using

a formal model (or a chain of models, for complex systems),

that can be used for performing V&V activities by using the

ASMETA tool set.

Developers should use a mixture of

methods and techniques to prevent and

detect software errors.

In ASM, safety properties can be proved at every refinement

level, using the AsmetaSMV tool. If developers specify correctly

the properties, errors can be easily detected when a property

cannot be demonstrated (or it has been demonstrated to be false).

Furthermore, specification errors can be revealed even using

scenario-based testing.

Software V&V should be planned and

conducted during all the software life

cycle.

The ASMETA V&V process can be applied to each model,

and the activities can be integrated either in the V model or in

the agile software development life cycles. In particular, it is

possible to insert V&V activities in the modules design, coding,

and unit testing phases, both at the model and code level.

Software V&V processes should be ex-

ecuted through the use of procedures.

In ASM, V&V activities are supported by precise procedures de-

fined for each tool of the ASMETA framework. These activities

can be re-executed when needed, since they are automatically

performed.

Software V&V should be re-

established upon any software

change

In ASM, if software changes do not affect the model, testers

must rerun unit tests (which can be generated from the ASM

model) on the changed software and verify if the behavior is

still correct. On the contrary, in case the software changes have

effects on the model, V&V activities can be executed at the

model level.

93

Andrea Bombarda

Validation coverage should be based on

software complexity and safety risks

Tools embedded into the ASMETA framework allow producing

a report on coverage (in terms of rules) during validation. This

information can be used by the designer to estimate whether

the validation activity is commensurate with the risk associated

with the use of the software.

V&V activities should be carried out

using the quality assurance precept of

“independence of review”

This aspect is implicit in ASMETA since V&V activities are

executed with unambiguous mathematical-based techniques.

The device manufacturer has flexi-

bility in choosing how to apply the

V&V principles contained into the

FDA guidelines

All the ASMETA V&V activities can be executed at the discre-

tion of the manufacturer, because they can be executed indepen-

dently of each other.

Table 12: Mapping between FDA guidelines and ASMETA activities.

On the other hand, the FDA guidelines [83] accept the standard IEC 62304 and push even further for

the integration of software life cycle management and risk management activities. Tab. 12 reports the

mapping of ASMETA activities to those required by the FDA guidelines. As well as for IEC 62304,

the FDA guidelines can be easily mapped to the ASMETA principles and activities.

After having described the mapping between certification standards and the ASMETA framework, in

this chapter, ASMETA and its tools are exploited for modeling, validation, verification, and test and

code generation for medical devices.

5.2 Case studies

MBSE activities have been applied to a variety of systems, both in the medical domain and in other

domains. However, in this book, I present the activities carried out for three different case studies in

the domains of PEMS, namely, MVM, e-Pix and PHD communication protocol. The first case study

has been extensively discussed and presented in Chapter 2. Thus, in this section, I present the two

remaining case studies by giving more details about their functioning and scope.

5.2.1 The e-Pix case study

Adherence to pharmacological therapy [51] is one of the most well-known problems in the medical

field. In fact, sometimes, patients do not adhere to therapy because they do not remember to take the

medicine, or do not remember if they have already taken it. For these reasons, some patients may have

94

Applying the ASMETA rigorous process to medical case studies

the need to adopt a system that can help them in following the prescribed therapy. Recently, pill boxes

have been proposed on the market. They contain pills and divide them according to scheduled doses

of medications. The aim of a pill box is to help the user to prevent/reduce medication errors because

once the pills are in the correct section, the user only has to remember to take them at the right time.

The first versions were simply multi-compartmental boxes, where each compartment was filled with

the corresponding medicine. They may have one section for each day, or, in the case of the most com-

plicated versions, multiple sections corresponding to different times of the day. With the introduction

of technology in the medical field, even pill boxes have evolved and are integrated with electronic

components in order to provide alerts to patients when the time of a medicine comes. They are usually

provided with a memory, where the list of pills with the therapy schedules is saved and, at the right

time, they notify the user. Different types of notifications can be used, e.g., sound/light signals, or

pop-up notifications on a smartphone.

The activities discussed in this chapter have been carried out on a pill box, called e-Pix, developed using

Arduino1 that a local company asked to re-engineer. The need for reengineering comes from the fact

that the company wanted to certify its product w.r.t. the FDA guidelines [83] and IEC regulation [64]

and, because of that, needed to be sure it works properly. In the following, some requirements (even

not directly related to software certification) and properties of the e-Pix device are reported:

• Each compartment of e-Pix contains a unique type of unpackaged pills;

• Each compartment has a sensor capable of signaling the opening of the related drawer, and a

red LED used to indicate which pill has to be taken. The LED turns on until the patient opens

the compartment;

• When the pill time has passed, and the set timeout has expired, the red LED starts to blink for a

defined period of time. In this way, e-Pix attracts the patient’s attention;

• e-Pix has an embedded display that shows log messages;

• If a patient takes the pill but forgets to close the drawer, the red LED starts to blink for a fixed

period of time;

• The prescription file can be loaded into e-Pix by transferring it using the integrated Bluetooth

communication functionalities. The file contains, for each pill, the identifier of the drawer in

which it is contained, its name, and the time at which it has to be taken (expressed as the number

of seconds passed since 01/01/1970). An example of this file is reported in Listing 5.1.
1https://www.arduino.cc/

95

Andrea Bombarda

{
‘‘patient” : ‘‘patient name”,
‘‘pills” : [

{ ‘‘compartment” : ‘‘compartment number”,
‘‘name” : ‘‘pillName”,
‘‘time consumption” : [‘‘t1”, ‘‘t2”, ...],

},
{...}

]
}

Listing 5.1: Example of the JSON file containing the prescriptions.

5.2.2 The IEEE 11073 PHD protocol case study

The IEEE 11073-20601 [102] standard defines a communication protocol that allows personal health-

care devices defined as “Agents”, which are normally portable, energy-efficient, and have limited

computing capacity (such as weighing scales, blood glucose monitors, and blood pressure monitors),

to exchange information with devices with more computing resources, defined as “Managers” (such

as mobile phones, set-top boxes, and personal computers). The information exchanged is basically

measured health data that can be transmitted to healthcare professionals for different purposes, e.g.,

for remote health monitoring or health advising.

The PHD IEEE 11073 standard defines both the data exchange protocol and the necessary data models

to be used during the communication between two devices. The messages exchanged are called

APDUs, are encoded using the ASN.1 format, and should support at least the MDER (Medical Device

Encoding Rules) standard. IEEE 11073 requires communication to have one reliable primary virtual

channel and some additional secondary virtual channels. The message types are divided into four

different categories:

• messages used during the association procedure: aare (Association Request), aarq (Associa-

tion Response), rlre (Association Release Response), rlrq (Association Release Request), abrt

(Association Abort);

• messages related to the confirmed service mechanism: roiv-* (Remote Operation Invoke mes-

sages): roiv-cmip-confirmed-action, roiv-cmip-confirmed-event-report, roiv-cmip-confirmed-

set; and rors-* (Reception of Response messages): rors-cmip-confirmed-action, rors-cmip-

confirmed-event-report, rors-cmip-get;

• messages used when fault or abnormal conditions occur: roer (Reception of Error Result), rorj

(Reception of Reject Result);

• messages related to the unconfirmed service mechanism: roiv-cmip-action, roiv-cmip-event-

report, roiv-cmip-set.

96

Applying the ASMETA rigorous process to medical case studies

Disconnected

Connected

Transport
disconnect
indication

Transport
connect

indication

Unassociated

Disassociating

+entry / TxAssocRelReq

TxAssocAbort

R
xAssocAbort

R
xAssocR

elR
sp

R
xAssocR

elR
eq/

TxAssocR
elR

sp

Associating

+entry / LookupConfig

R
xAssocR

eq

R
xAssocAbort

or TxAssocAbort

TxAssocR
sp

(rejected)

Associated
assocRelReq

Operating

TxAssocAbort

RxAssocAbort

RxAssocRelReq/
TxAssocRelRsp

TxA
sso

cR
sp

(acce
pted)

Configuring

Checking Config

Waiting for ConfigTxAssocRsp
(accepted-unknown-config)

TxConfigEventReportRsp
(accepted-config)

R
xC

onfigEventR
eportR

eq

TxC
onfigEventR

eportR
sp

(unsupported-config)

Figure 23: State machine of the IEEE 11073 PHD Manager: input messages are identified by the prefix
Rx and output messages are identified by the prefix Tx (when no input message is associated to an output,
it means that the transition is generated by an internal event).

Figure 24: An example sequence of data exchange using the PHD protocol.

The behavior of the PHD protocol, in the case of a manager device, is described by the state machine

in Fig. 23, which is composed of seven states. To better understand the behavior of the protocol and

how a device moves from one state to another, Fig. 24 reports an example scenario of a weighting

scale. The weighting scale (which acts as agent) sends an association request message to the manager

97

Andrea Bombarda

containing device configuration information. Then, the manager checks the received information: if

the manager recognizes the agent configuration (checking config internal state), it sends a response

certifying the association acceptance, and both devices enter the Operating state. Suppose now that the

weighting scale is ready to communicate the measured information: the agent sends the measured data

to the manager using a Confirmed Event Report APDU, and, if the message is received correctly by the

manager, the manager responds with the acknowledgment. Finally, when the agent has communicated

all the measures, it requests to release the association; the manager responds to this request and both

devices now enter the Unassociated state.

5.3 From ASMETA specifications to embedded code

Starting from the ASMETA specifications, Asm2C++ allows users to obtain a C++ code that can be

embedded in the actual device or in Arduino. The main advantage of this approach is that ASMETA

specifications can be validated and verified and, therefore, the C++ code obtained is correct-by-

construction. This approach is based on the following iterative process:

1. Model the system as an Abstract State Machine;

2. Validate and verify the model;

3. If the model has proved to be correct, then start refining it by adding more details;

4. Prove that the refinement has been done correctly, such that all the verified properties are still

verified;

5. Repeat the two previous steps until all the relevant aspects have been modeled;

6. When the final model is available, convert it into C++ code.

In the following, the depicted process is applied to two different case studies, namely the e-Pix and

the MVM, from the ASMETA specification to the Arduino code.

5.3.1 The e-Pix case study

In this section, the ASMETA process, from specification to code, is applied to the e-Pix case study

(previously presented in Sect. 5.2.1). For each phase, here I report only some example. The full

specifications, scenarios, and code are available online at https://foselab.unibg.it/asmeta/

PillboxASM.zip.

Modeling by refinement

As commonly done in the ASM-based development process, the e-Pix has been modeled starting from

a simple model and then applying step-wise refinement. From one refinement step to the next, some

98

https://foselab.unibg.it/asmeta/PillboxASM.zip
https://foselab.unibg.it/asmeta/PillboxASM.zip

Applying the ASMETA rigorous process to medical case studies

controlled and monitored functions have been added, mainly representing compartments and time

management mechanisms: at level 0 the time is represented in an abstract way, it is managed through

a controlled variable at levels 1 and 2, and with a monitored function at the final level.

In the following, I report the main characteristics of each refinement level and, as an example, analyze

how the switching ON of the red LED when the time of a pill comes has been modeled.

• Level 0: this level models only a single pill, with a single prescription, and no compartments.

The time is managed by a simple Boolean monitored function takeThePill, which becomes true

when the pill has to be taken. A similar approach has been used to represent all timeouts (e.g., to

manage the change in the color of the LED), by using another Boolean function timeDiffOver600

(we consider the timeouts being 10 minutes). The following AsmetaL rules manage the behavior

of the red LED that is turned on when a pill needs to be taken:

main rule r Main =
[...]

if redLed = OFF and takeThePill then
r pillToBeTaken[] endif

if redLed = ON and not timeDiffOver600 and
opened and not openSwitch then

r pillTaken compartmentOpened[] endif

[...]

rule r pillToBeTaken =
par

redLed := ON
outMess := TAKE PILL

endpar
rule r pillTaken compartmentOpened =

par
redLed := OFF
outMess := NONE

endpar

• Level 1: the main addition at this level has been an improvement in time management. In

fact, the Boolean function has been substituted with the Natural function systemTime, which is

controlled by the system and increased at each machine step. Other aspects, such as the number

of pills, prescriptions, or compartments, remain unchanged w.r.t. the previous level. To manage

the assumption of the pill, a new Boolean function, requestSatisfied, identifies if the pill has

already been taken or not. This refinement level also adds possible output and log messages,

which are taken from an enumerative domain OutMessages. The following AsmetaL rules

manage the behavior of the red LED that is turned on when a pill has to be taken, depending on

systemTime:

99

Andrea Bombarda

main rule r Main =
[...]
if redLed = OFF and (time consumption<=systemTime
and not requestSatisfied) then

r pillToBeTaken[]
endif
[...]

rule r pillToBeTaken =
par

if redLed != ON then
compartmentTimer := systemTime endif
redLed := ON
outMess := TAKE PILL

endpar

• Level 2: the second refinement level introduces three compartments, each with a single type

of pill. Other features are similar to the previous level: a single deadline is used for each

pill, the output and log messages come from the same enumerative domain OutMessages, the

timer systemTime is managed by the system and takes values in a bounded range. Since many

compartments need now to be controlled, the rules managing the behavior of the red LED, that

is switched on when a pill has to be taken, now change as follows:

main rule r Main =
[...]
if redLed($compartment) = OFF and

(time consumption($compartment)<=systemTime and not requestSatisfied($compartment)) then
r pillToBeTaken[$compartment]

endif
[...]

rule r pillToBeTaken($compartment in Compartment) =
par

if redLed($compartment) != ON then compartmentTimer($compartment) := systemTime endif
redLed($compartment) := ON
if ($compartment=compartment1) then

outMess($compartment) := TAKE TYLENOL
else if ($compartment=compartment2) then

outMess($compartment) := TAKE ASPIRINE
else

outMess($compartment) := TAKE MOMENT
endif endif

endpar

• Level 3: this refinement level includes all the features specified by system requirements:

– all three compartments have been modeled;

– the systemTime is monitored from the machine and updated by the environment (its man-

agement can be configured by users as presented in Sect. 4.3.1);

– log and out messages can be any string;

100

Applying the ASMETA rigorous process to medical case studies

– a list of time prescription (stored in the function time consumption) can be assigned to

each compartment.

The guard that makes the red LED turn on when it is time to take the pill has been modified

w.r.t. the previous levels because the model now manages more prescriptions for each pill.

Considering time consumption the list of prescriptions, the correct item in the sequence, i.e.,

the current time threshold to be considered, is selected with the function drugIndex. Therefore,

for the compartment 𝑑, when systemTime passes the function time consumption in position

drugIndex(d), the pill in 𝑑 should be taken.

main rule r Main =
[...]

if redLed($compartment) = OFF and
(at(time consumption($compartment),drugIndex($compartment))<systemTime) then

r pillToBeTaken[$compartment]
endif
[...]

rule r pillToBeTaken($compartment in Compartment) =
par

if redLed($compartment) != ON then
compartmentTimer($compartment) := systemTime endif

redLed($compartment) := ON
outMess($compartment) := ”Take ” + name($compartment)

endpar

Refinement proof

AsmRefProver can prove the correctness of the model refinement process by exploiting the Satisfi-

ability Modulo Theories (SMT). It takes as input two different models, representing two refinement

levels of the same system, and allows for ensuring that an ASM specification is a correct refinement

of a more abstract one.

Since AsmRefProver maps refined functions to abstract ones with the same name, in the e-Pix case

study, it has been necessary to introduce some derived functions that represent predicates over the

abstract or refined states. For example, in the first refinement step, to allow AsmRefProver to prove

the correctness of the refinement, two derived functions have been added:

• takeThePill: indicates if the patient has to take a pill;

• timeDiffOver600: becomes true when the patient has forgotten to take the pill within a certain

time.

Formally, they are defined as follows:

101

Andrea Bombarda

Figure 25: Simulation steps with the animator AsmetaA at the last refinement level for the e-Pix case
study.

function takeThePill = (time consumption<=systemTime)
function timeDiffOver600 = (systemTime−compartmentTimer>tenMinutes)

Validation

During validation activities, the user can analyze the ASMETA specification using the simulator

AsmetaS, the animator AsmetaA, and the model advisor AsmetaMA. The animator is the tool that is

generally more used, since it provides a graphical interface which is more readable to the user during

model execution.

Fig. 25 reports some of the simulation steps using the animator AsmetaA: after the system initialization,

when the time is controlled by the ASM and only one pill in the first compartment is available, the

red LED turns ON when it is time to take the pill (𝑠𝑦𝑠𝑡𝑒𝑚𝑇𝑖𝑚𝑒 > 𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) and turns to

BLINKING when the timeout has passed; then, when the compartment is closed, the red LED turns

OFF; in the meantime, the message 𝑜𝑢𝑡𝑀𝑒𝑠𝑠 shown on the display changes accordingly.

Scenario-based testing

In the scenario-based testing activity, the behavior of e-Pix has been checked against the expected

one by simulating all possible states and transitions between them. As introduced in Sect. 4.3.2, the

scenarios are written in the Avalla language and executed through the validator AsmetaV. It checks

if, at each step, the machine runs as expected and allows one to evaluate the coverage of each scenario.

In particular, for this case study, it was verified that the coverage obtained in terms of the rules of the

ASM models was 100%. This is an important result, since it allows users to increase the confidence

in the correctness of the written model.

An excerpt of a scenario for the e-Pix case study is shown in Listing 5.2. Initially, all the compartments

are closed and, after an ASM step, the red LED is off, and no messages are shown. When the time

to take the pill is reached (“step until” command), the state changes, the red LED turns on, and the

message shows which pill the patient has to take.

102

Applying the ASMETA rigorous process to medical case studies

// Setting−up the initial state
set openSwitch(comp1) := false;
set openSwitch(comp2) := false;
set openSwitch(comp3) := false;

step

check redLed(comp1) = OFF;
check outMess(comp1) = NONE;
check logMess(comp1) = NONE;

// Time to take the pill in comp1
step until systemTime = 2;

check redLed(comp1) = ON;
check outMess(comp1) = TAKE TYLENOL;
check logMess(comp1) = NONE;

Listing 5.2: Example of Avalla scenario for the e-Pix case study.

Property verification

Once the modeler is sufficiently confident that the model correctly reflects the intended requirements,

heavier techniques can be used for property verification. In this case study, the following four CTL

(Computational Tree Logic) properties have been identified:

1. If the pill has to be taken, the red LED must light up;

2. If the patient does not take the pill or the compartment has to be closed, the red light has to

blink;

3. The red light has to change status after 10 minutes if the patient does not take the pill;

4. If the patient takes the pill and closes the compartment, the red light turns off.

After having defined the CTL properties, the AsmetaSMV tool translates the ASM specifications into

SMV models, which are verified using the NuSMV2 model checker.

Note that the same property may have a different way of being expressed from a refinement level to the

next one. For example, Tab. 13 reports the first property for all models, while the others are available

online in the replication package.

In this case, the presented property is different from one model to the other because the time has

been managed differently: initially, it has been modeled with a monitored function, then with the

function systemTime controlled by the system and increased at each machine step. Furthermore,

another difference is due to the fact that in the last refinement step shown (step 2), more compartments

have been modeled and, for this reason, the property has been verified over each compartment.
2http://nusmv.fbk.eu/

103

http://nusmv.fbk.eu/

Andrea Bombarda

Ref. step CTL Property

0 ag((takeThePill and redLed = OFF) implies ax(redLed = ON))
1 ag((takeThePill and not requestSatisfied and redLed = OFF) implies ax(redLed = ON))
2 (forall $d in Compartment with ag((time consumption($d)¡systemTime and not request-

Satisfied ($d) and opened($d) and not(openSwitch($d)) and not(redLed($d)= OFF) and
not(systemTime-compartmentTimer($d)¿=tenMinutes)) implies ax(redLed($d)= OFF)))

Table 13: The first property in different refinement levels.

Unfortunately, it is not possible to test the property on Level 3 because the model contains unlimited

domains (such as natural numbers and strings) that are not supported by the NuSMV model checker. In

this case, other model checkers, such as NuXMV should be used. However, the support of ASMETA

for NuXMV is still under development.

C++ code generation

After having modeled, verified, and validated the e-Pix ASMETA specification, its C++ code can be

generated by exploiting the Asm2C++ tool. In fact, e-Pix is a prototype of an Arduino-based medical

device and is composed of the following components:

• Arduino Mega 2560;

• 3 reed switches, used to signal the opening of each compartment;

• 3 red LEDs to indicate the state of each compartment;

• 1 LCD to show output messages;

• 1 DS3231 timer module to get the current time;

• Arduino Bluetooth module, used to allow the communication with external devices and to

receive the JSON file containing the drug prescriptions from the patient’s smartphone;

• Arduino SD card reader, used to read and write on the SD card storing the JSON prescription

and log files;

• Several potentiometers and resistors;

Asm2C++ generates, from the last ASM refinement level, the following files: I) the ino, which contains

the execution policy to run an ASM on Arduino (see Listing 5.3); II) the a2c and the hw.cpp files

that contain hardware information; III) the h and cpp files, which contain the translation of the ASM

model into C++ code.

The a2c configuration file is used to link each ASM function to the physical pins of Arduino and

is automatically generated. However, user intervention is needed since it is necessary to fill in the

mappings with those corresponding to the hardware configuration (see Listing 5.4). Finally, Asm2C++

104

Applying the ASMETA rigorous process to medical case studies

#include”pillbox.h”
void setup(){
}

pillbox ePix;

void loop(){
ePix.getInputs();
ePix.r Main();
ePix.fireUpdateSet();
ePix.setOutputs();

}

Listing 5.3: Example of the ino file containing the implementation of ASM execution for e-Pix.

{
”arduinoVersion”: ”MEGA2560”,
”stepTime”: 0,
”bindings”: [
{

”mode”: ”DIGITAL”,
”function”: ”redLed(comp1)”,
”pin” : ”D1”

},
{

”mode”: ”DIGITAL”,
”function”: ”redLed(comp2)”,
”pin” : ”D2”

},
[...]

]
}

Listing 5.4: Example of the a2c configuration file.

#include ”pillbox.h”
#include <Arduino.h>
void pillbox::getInputs(){

openSwitch[comp1] = (digitalRead(7) == HIGH);
[...]
systemTime = analogRead(A1)∗(double)(1.0/1024.0);

}
void pillbox::setOutputs(){

if(redLed[1][comp1] == OFF)
digitalWrite(1, LOW);

else
digitalWrite(1, HIGH);

if(redLed[2][comp1] == OFF)
digitalWrite(2, LOW);

else
digitalWrite(2, HIGH);

[...]
}

Listing 5.5: Example of the hw.cpp file.

generates the hw.cpp file, which contains the C++ code used to read the inputs and set the outputs

(see Listing 5.5).

5.3.2 The MVM case study

As previously done for the e-Pix case study, in the following, the ASM-based development process

is applied to the MVM case study (see Chapter 2 for further details on the device), starting from the

ASM specification to the C++ code. In this case, even if the real device was already available, the

experiments have been carried out on a prototype, based on Arduino, that has been developed in order

to conduct experiments on mechanical ventilators. Note that the presented activity has been performed

only on a sub-component of the MVM, namely the controller, which is the most important part for

the device functioning since it manages the passage between ventilation states.

105

Andrea Bombarda

main rule r Main =
par

if state = STARTUP then r startup[] endif
if state = SELFTEST then r selftest[] endif
if state = VENTILATIONOFF then r ventilationoff[] endif
if state = PCV STATE then r runPCV[] endif
if state = PSV STATE then r runPSV[] endif

endpar

Listing 5.6: Main rule for the first refinement level of the MVM.

Modeling by refinement

As done for the e-Pix, also the MVM has been modeled starting from a simple model capturing

basic behaviors and then applying step-wise refinement. From one refinement level to the other, new

functionalities have been added.

In the following, I report the main characteristics of each refinement level and some excerpts from the

ASMETA specification representing the newly added functionalities.

• Level 0: this first level introduces the main phases of the MVM functioning. In this model, at the

end of the startup and self-test phases, the ventilator moves into the ventilation off state. Then,

upon user’s request, the device can start ventilating either in PCV or PSV. The main rule of this

model is reported in Listing 5.6. The controller specifies the transitions among the ventilator

states by assigning the corresponding value to the state variable. The rule to be executed is then

chosen, depending on the state.

• Level 1: this refinement level adds details to the inspiration and expiration phases in both the

PCV and PSV modes. Listings 5.7 and 5.8 show, respectively, the refinement of the rules

used to perform PCV and PSV ventilation. In this case, both the rules have been split into

two different sub-rules: one for the inspiration and one for the expiration. During PCV, the

transition between inspiration and expiration is controlled by the duration of each phase decided

by the physician (when the timers timerInspirationDurPCV, in the case of inspiration, and

timerExpirationDurPCV, in the case of expiration, expire). When timerInspirationDurPCV

runs out (Listings 5.7 line 12), the controller moves to the PCV expiration phase (line 15).

However, if the physician has set respirationMode to PSV, the MVM starts the expiration in

PSV mode by executing the rule r PSVStartExp (line 17). If the stop of ventilation is requested

(function stopRequested) during the inspiration phase, the function stopVentilation is set, and

the stop is actually performed only during the expiration phase (line 9). When the MVM is in

PCV expiration, the ventilator moves to PCV inspiration after timerExpirationDurPCV expires.

106

Applying the ASMETA rigorous process to medical case studies

rule r runPCV =
par

if phase = INSPIRATION then r runPCVInsp[] endif
if phase = EXPIRATION then r runPCVExp[] endif

endpar

rule r runPCVInsp =
par

if not stopVentilation then
if stopRequested then stopVentilation := true endif

endif
if expired(timerInspirationDurPCV) then

par
if respirationMode = PCV then

r PCVStartExp[]
endif
if respirationMode = PSV then

par
state := PSV STATE
r PSVStartExp[]

endpar
endif

endpar
endif

endpar

rule r runPCVExp =
if stopVentilation then r stopVent[]
else if stopRequested then r stopVent[]
else if expired(timerExpirationDurPCV) then

r PCVStartInsp[]
endif endif endif

rule r PCVStartInsp =
par

phase := EXPIRATION
iValve := CLOSED
oValve := OPEN
r reset timer[timerInspirationDurPCV]

endpar

Listing 5.7: PCV management for the second level
of refinement of the MVM.

rule r runPSV =
par

if phase = INSPIRATION then r runPSVInsp[] endif
if phase = EXPIRATION then r runPSVExp[] endif

endpar

rule r runPSVInsp =
par

if not stopVentilation then
if stopRequested then stopVentilation := true endif

endif
if (expired(timerMinInspTimePSV) and flowDropPSV)

or expired(timerMaxInspTimePSV) then
r PSVStartExp[]

endif
endpar

rule r runPSVExp =
if stopVentilation then r stopVent[]
else if stopRequested then r stopVent[]
else if expired(timerMinExpTimePSV) then

par
if respirationMode = PCV then

par
state := PCV STATE
r PCVStartInsp[]

endpar
endif
if respirationMode = PSV then

r PSVStartInsp[] endif
endpar endif endif endif

rule r PSVStartInsp =
par

phase := EXPIRATION
iValve := CLOSED
oValve := OPEN
r reset timer[timerMinExpTimePSV]
r reset timer[timerMaxInspTimePSV]

endpar

Listing 5.8: PSV management for the second level
of refinement of the MVM.

On the contrary, during PSV, the transition from inspiration to expiration occurs when the

airflow drops below a defined threshold flowDropPSV (Listings 5.8 at line 13) and the minimum

inspiration time has passed or when the maximum inspiration time set by the doctor runs

out. Instead, the transition from expiration to inspiration is performed after the expiration of

timerMinExpTimePSV (line 21). As for the PCV mode, the stop of ventilation can be performed

only during expiration. In addition, the physician can change the mode from PSV to PCV

without interrupting ventilation, when in the expiration phase (line 23), if the patient’s condition

requires additional support.

• Level 2: this refinement level introduces the inspiratory pause, the expiratory pause, and the

recruitment maneuver, which can be manually requested by the physician. Listings 5.9 and 5.10

show how these three functions have been modeled, respectively, for the PCV and PSV mode.

107

Andrea Bombarda

rule r runPCV =
par [...]

if phase = INPAUSE then r runInPause[] endif
if phase = RM then r runRm[] endif
if phase = EXPAUSE then r runExPause[] endif

endpar

rule r runPCVInsp = [...]
if expired(timerInspirationDurPCV) then
par

if respirationMode = PCV then
if cmdInPause then

r InPause[]
else

if cmdRm then r rm[]
else r PCVStartExp[]

endif
endif endif
if respirationMode = PSV then

par
state := PSV STATE
r PSVStartExp[]
r resetApneaBackup[]

endpar
endif

endpar
endif [...]

rule r runPCVExp = [...]
if expired(timerExpirationDurPCV) then

if cmdExPause then
r exPause[]

else
r PCVStartInsp[]

endif
endif
[...]

Listing 5.9: PCV management for the third level
of refinement of the MVM.

rule r runPSV =
par [...]

if phase = INPAUSE then r runInPause[] endif
if phase = RM then r runRm[] endif
if phase = EXPAUSE then r runExPause[] endif

endpar

rule r runPSVInsp = [...]
if (expired(timerMinInspTimePSV) and flowDropPSV)

or expired(timerMaxInspTimePSV) then
if cmdInPause then r InPause[]
else if cmdRm then r rm[]
else r PSVStartExp[] endif endif
endif [...]

rule r runPSVExp = [...]
if expired(timerApneaLag) then r runApnea[]
else if expired(timerMinExpTimePSV) then

par
if respirationMode = PCV then

par
state := PCV STATE
r PCVStartInsp[]

endpar
endif
if respirationMode = PSV then

if cmdExPause then r ExPause[] endif
endif

endpar
endif endif [...]

rule r runApnea =
par

state := PCV STATE
r PCVStartInsp[]
apneaBackupMode := true

endpar

Listing 5.10: PSV management for the third level
of refinement of the MVM.

The inspiratory pause is required when cmdInPause is set (see Listing 5.9 at line 12 and

Listing 5.10 at line 11). In this case, both valves are closed for the entire duration of the pause.

The recruitment maneuver is required when the cmdRm is set (see Listing 5.9 at line 15 and

Listing 5.10 at line 12). When this functionality is enabled, the lungs are filled with oxygen and

medical air, the output valve is closed, and the input valve is opened to allow air to flow into the

alveoli. Finally, the inspiratory pause is required when the cmdExPause is set (see Listing 5.9

at line 31 and Listing 5.10 at line 27). Furthermore, when the MVM ventilates in PSV mode,

if a new breath is not detected within the expiry of timerApneaLag (Listing 5.10 at line 35),

the ventilator automatically switches to PCV mode from the inspiration phase. This behavior is

needed to avoid apneas.

• Level 3: this last refinement level introduces the transition from inspiration to expiration and

vice versa, when the pressure changes due to spontaneous breathing. The new behavior has been

108

Applying the ASMETA rigorous process to medical case studies

rule r runPCVInsp =
[...]

if expired(timerInspirationDurPCV) then
[...]

else if pawGTMaxPinsp then
r PCVStartExp[]

endif endif

rule r runPCVExp =
[...]

if expired(timerExpirationDurPCV) then
[...]

else if expired(timerTriggerWindowDelay)
and dropPAW ITS then

r PCVStartInsp[]
endif endif [...]

Listing 5.11: PCV management for the fourth re-
finement level of the MVM.

rule r runPSVInsp =
[...]

if (expired(timerMinInspTimePSV) and flowDropPSV) or
expired(timerMaxInspTimePSV) then

[...]
else if pawGTMaxPinsp then

r PCVStartExp[]
endif endif

rule r runPSVExp =
[...]

if expired(timerTriggerWindowDelay)
and dropPAW ITS then

r PSVStartInsp[]
else if expired(timerApneaLag) then

[...]

Listing 5.12: PSV management for the fourth re-
finement level of the MVM.

modeled by extending the rules r runPCVInsp and r runPCVExp as shown in Listing 5.11, and

r runPSVInsp and r runPSVExp as shown in Listing 5.12. In this way, when the MVM is in

expiration and detects, after an instant of time (a trigger window here modeled with the timer

timerTriggerWindowDelay), a sudden pressure drop below the trigger sensitivity threshold

(monitored function dropPAW ITS - Listing 5.11 at line 15 and Listing 5.12 at line 13), the

ventilator moves directly to the inspiration phase. On the other hand, the transition from

inspiration to expiration is automatically performed when the inspiratory pressure goes beyond

the maximum threshold set by the doctor (function pawGTMaxPinsp - Listing 5.11 at line 5 and

Listing 5.12 at line 6).

Refinement proof

As already explained for the e-Pix case study, the automatic refinement proof has been carried out

using the AsmRefProver tool. While for the e-Pix some internal activity was managed in a different

way from one refinement level to the other, and thus it was necessary to add derived functions mapping

refined behavior on the abstract one, for the MVM this was not necessary. In fact, refinements have

been performed in a way that a specific function has always been implemented completely at a single

refinement level.

Validation

With validation activities, the user can analyze the ASMETA specification using the simulator As-

metaS, the animator AsmetaA, and the model advisor AsmetaMA. Fig. 26 shows some simulation step

using the animator AsmetaA. After completing the startup and self-test, the ventilator is in the ventila-

109

Andrea Bombarda

Figure 26: Simulation steps of the PCV mode with the animator AsmetaA for the MVM case study.

tion off state. In this case, as expected, the input valve is closed and the output valve is opened. When

the start ventilation command is sent to the ventilator, and the PCV mode is selected, the ventilation

starts in PCV mode with the inspiration phase, and the valves are moved to the expected position:

the input valve is opened and the output valve is closed. After the inspiration duration, the ventilator

moves to the expiration phase: the input valve is closed while the output valve is opened.

Scenario-based testing

In the scenario-based testing activity, the behavior of the MVM has been checked against the expected

one by simulating all the possible states and transitions between them. As introduced in Sect. 4.3.2,

the scenarios have been written in the Avalla language and executed using the validator AsmetaV.

This tool checks if, at each step, the machine runs as expected by using the check commands.

An excerpt of a scenario for the MVM case study is shown in Listing 5.13. In this scenario, after

having succeeded in the startup and self test, the MVM starts to ventilate in PCV mode. The main

purpose of the scenario in the example is to verify that the valves are correctly set during inspiration

and expiration.

Property verification

Once the validation and scenario-based testing have been performed, the property verification activity

has been carried out. In this case study, LTL (Linear Temporal Logic) properties have been used. In

particular, through the refinement steps, the properties in Tab. 14 have been written, translated into

SMV, and verified. Note that the property “Valves are never both open or closed at the same time”

has ben changed from level 0 and 1 (first row of the table) to the next ones (last row of the table). In

110

Applying the ASMETA rigorous process to medical case studies

check state = STARTUP;
set startupEnded := true;
step
check state = SELFTEST;
set selfTestPassed := true;
step
check state = VENTILATIONOFF;
set startVentilation := true;
set respirationMode := PCV;
step
check state = PCV STATE;
check oValve = CLOSED;
check phase = INSPIRATION;
check iValve = OPEN;

check state = PCV STATE;
check oValve = CLOSED;
check phase = INSPIRATION;
check iValve = OPEN;
step
check state = PCV STATE;
check oValve = OPEN;
check phase = EXPIRATION;
check iValve = CLOSED;
step
check state = PCV STATE;
check oValve = OPEN;
check phase = EXPIRATION;
check iValve = CLOSED;

Listing 5.13: Example of Avalla scenario for the MVM case study in PCV mode.

Level Property Description SMV Property

0, 1 Valves are never both open or closed at
the same time.

not f(iValve=oValve)

0, 1,
2, 3

When ventilation is off, the output valve
is open and the input valve is closed.

g(state=VENTILATIONOFF implies
(iValve=CLOSED and oValve=OPEN))

2, 3 Valves can be both closed when the
MVM is in inspiratory or expiratory
pause.

g(((phase=INPAUSE or phase=EXPAUSE) and
(state = PCV STATE or state = PSV STATE)) im-
plies (iValve=CLOSED and oValve=CLOSED))

2, 3 Valves are never both open or closed
outside the inspiratory and expiratory
pauses.

g((iValve=CLOSED and oValve=CLOSED)
implies ((not ((phase=INSPIRATION or
phase=EXPIRATION or phase=RM) and (state
= PCV STATE or state = PSV STATE)))) or
(not (state = VENTILATIONOFF or state =
STARTUP or state = SELFTEST)))

Table 14: Properties verified for the MVM case study.

fact, after the inspiratory and expiratory pauses have been introduced, the first property has become

too general and does not hold anymore.

C++ code generation

As in the e-Pix case study, for the MVM case study, the C++ code has been generated starting from

the ASMETA specification thanks to the functionalities offered by the Asm2C++ tool. The system

analyzed is a prototypical version of the real MVM, and it is built using Arduino with the following

components:

• Arduino Uno, which executes the state machine;

• 3 LEDs used to communicate the status of the input and output valves and the apnea alarm;

• A 1602 LCD display, which shows the current state;

111

Andrea Bombarda

ASMETA spec
.asm

C++ code
.h & .cpp

HW config
.a2c

HW integration
.cpp

ASM runner
.ino Arduino project

Automatic code
generation

ASM runner
generation

HW
configuration
generation

HW integration

Merge

Figure 27: C++ code generation process.

[...]
void MVMController::r runPCVInsp(){

if (!stopVentilation[0]){ ... }
if (expired(timerInspirationDurPCV)){

if ((respirationMode == PCV)){
if (cmdInPause){

r InPause();
} else if (cmdRm){

r rm();
} else {

r PCVStartExp();
}

}
} else if (pawGTMaxPinsp)

r PCVStartExp();
}

void MVMController::r runPCVExp(){
if (stopVentilation[0]){

r stopVent();
} else if (stopRequested){

r stopVent();
} else if (expired(timerExpirationDurPCV)){

if (cmdExPause){
r exPause();

}else{
r PCVStartInsp();

}
} else if (expired(timerTriggerWindowDelay) &

dropPAW ITS){
r PCVStartInsp();

}
} [...]

Listing 5.14: Example of the .cpp file for the MVM.

• 9 buttons, which simulate all the monitored functions contained in the ASM, namely the functions

dropPAW ITS, pawGTMaxPinsp, cmdRm, cmdInPause, cmdExPause, flowDropPSV, respi-

rationMode, stopRequested, startupEnded, selfTestPassed, and startVentilation.

They represent both user input and external breathing events.

The process followed to obtain the code to embed in the Arduino device is depicted in Fig. 27.

Starting from the last model refinement, the Asm2C++ tool generates two different files: a .h and a .cpp

file. They contain the translation of the ASM model as a C++ class, with its methods corresponding to

the ASM rules. An example of the content of the .cpp file is reported in Listing 5.14, which reports the

C++ translation of the two rules used for managing the PCV inspiration and expiration. Then, Asm2C++

automatically generates an .a2c file, which is used for binding each ASM function to the physical

pins of Arduino. It must be manually completed by the user, who has to insert the correspondence

between Arduino physical pins, depending on the hardware configuration, and functions defined in the

ASM model. An example of this file is reported in Listing 5.15: input and output valves are mapped

on digital output pins, while the monitored functions are used to set if the current phase is finished or

not (e.g., startupEnded and selfTestPassed) are read using digital input pins.

112

Applying the ASMETA rigorous process to medical case studies

{
”arduinoVersion”: ”UNO”,
”stepTime”: 0,
”bindings”: [
{

”mode”: ”DIGITALOUT”,
”function”: ”iValve”,
”pin”: ”D8”

},

{
”mode”: ”DIGITALOUT”,
”function”: ”oValve”,
”pin”: ”D7”

}, {
”mode”: ”DIGITALIN”,
”function”: ”startupEnded”,
”pin”: ”A5”

},

{
”mode”: ”DIGITALIN”,
”function”: ”selfTestPassed”,
”pin”: ”A4”

},

[...]

}

Listing 5.15: Example of the .a2c configuration file for the MVM.

#include ”MVMController.h”

void MVMController::getInputs(){
startupEnded = (digitalRead(A5) == HIGH);
selfTestPassed = (digitalRead(A4) == HIGH);
[...]

}
void MVMController::setOutputs(){

if (iValve[0] != iValve[1]){
if(iValve == OPEN)

digitalWrite(8, LOW);

else
digitalWrite(8, HIGH);

}
if (oValve[0] != oValve[1]){

if(oValve == OPEN)
digitalWrite(7, LOW);

else
digitalWrite(7, HIGH);

}
[...]

}

Listing 5.16: Extract of the hw.cpp file containing hardware-specific functions.

After having manually completed the .a2c file with the correct mappings, Asm2C++ generates two

additional files: the hw.cpp and the .ino. The former implements the method related to the reading of

inputs, getInputs(), and the one related to the writing of outputs, setOutputs() (see Listing 5.16).

The latter contains the execution policy allowing one to run the ASM on Arduino. It cyclically performs

four operations:

• getInputs(), which reads the inputs through digital and analog pins;

• r main(), which represents the main rule of the ASM and executes all the rule allowing the

changes of state;

• setOutput(), which sends the output values through the physical Arduino pins to the output

components;

• fireUpdateSet(), which updates the values of controlled functions to be used in the next

state.

The complete simulation, with the code generated by Asm2C++ and uploaded to the Arduino-based

circuit (see Fig. 28), has been executed by simulating the patient with its digital twin based on a

simple lung model [54]. A complete simulation example is available at the following link: https:

//youtu.be/a3fhqLpYVMI.

113

https://youtu.be/a3fhqLpYVMI
https://youtu.be/a3fhqLpYVMI

Andrea Bombarda

Figure 28: The Arduino version of the MVM.

5.4 Model-based Testing with ASMETA

In the previous section, I have presented how a system can be developed from scratch, starting from

its ASMETA specification. However, in some cases, the final implementation of the system may be

already available and testers only need a guide on how to test the system, or simply need a way to

automatically generate tests. For this purpose, model-based testing (MBT) is usually adopted. It

consists of writing a formal model of the system and, then, deriving from it a test suite composed of

abstract tests that have to be concretized in order to be executable on the real system.

As introduced in Sect. 4.4.1, ASMETA integrates the ATGT tool, which performs model-based test

generation by exploiting the NuSMV model checker. In particular, ATGT builds some test predicates

representing particular conditions that must be covered in order to satisfy the following coverage

criteria:

• Basic rule: it requires that for every rule 𝑟𝑖 there exists at least one test sequence for which 𝑟𝑖

fires at least once, and there exists at least one test sequence for which 𝑟𝑖 does not fire at least

once.

• Complete rule: it requires that for every conditional rule 𝑟𝑖, the guard is true in at least one state

of a test sequence and an update performed by 𝑟𝑖 is not trivial.

• Update rule: it requires that for every function update 𝑓 := 𝑡 there exists at least one test

sequence for which the update is performed and it is not trivial.

114

Applying the ASMETA rigorous process to medical case studies

• Rule guard: it requires that for every rule there exists a test in which the rule does not fire and

the value 𝑣 of some location that would be updated by the rule to 𝑣𝑟 is different from the value

it would be updated to in case the rule had fired.

• MCDC: it requires that every guard in every rule is tested according to the (masking) MCDC

criterion.

• Combinatorial interaction: it requires that for every 𝑡-tuple of monitored locations (with limited

domain), every combination of their possible values is tested in at least one state in a test

sequence.

• All criteria: it requires all the above criteria.

In the following, I present the application of the model-based testing approach to two different medical

systems, namely, the MVM (in its original version, which is currently running on the real devices

marketed, developed using the Yakindu SCT tool) and the PHD protocol. In particular, for each case

study, I report the phases of modeling, test generation, test concretization, and test execution with

coverage evaluation.

5.4.1 Applying MBT to the MVM case study

As presented in Chapter 2, an important part of the MVM, now used and sold worldwide, is its

controller, which receives operator inputs from the GUI, communicates with valve controllers, serial

interfaces, and other sub-components, and sends them commands. It has been developed mainly using

the Yakindu SCT tool, which allows users to draw the state machine that represents the behavior of

the system and automatically generate the C++ code. In this section, I present how MBT activities

based on the ASMETA framework can be carried out in order to test the Yakindu implementation of

the MVM state machine. The process workflow is depicted in Fig. 29 and is analyzed below.

Modeling and V&V

The modeling activity has been performed as presented in Sect. 5.3.2. All models have been checked

with the V&V activities previously described. Performing exhaustive and correct V&V is important,

since generating tests from a faulty model may lead testers to think that the implementation is incorrect,

while, indeed, it is not.

115

Andrea Bombarda

ATGT
Test Case

Generator with
Model Checker

Abstract TestsASM
Specification Test Optimizer

Optimized
Abstract Tests

Avalla to
GoogleTest

Concretized
GoogleTest

Abstract Tests to
Avalla

Avalla tests

Test executor
Test results

+
Code coverage

C code

Figure 29: MBT process for the MVM case study.

Criteria #Tps
Timeout 10 minutes Timeout 40 minutes

#Tests #Time- Generation #Tps %Tps #Tests #Time- Generation #Tps %Tps
outs time [min] covered covered outs time [min] covered covered

Basic rule 72 13 29 345 43 60% 24 11 773 61 85%
Complete rule 2 0 0 0 2 100% 0 0 0 2 100%
Rule guard 124 1 60 601 64 52% 1 27 1080 97 78%
Rule update 89 0 52 520 37 42% 0 25 1000 64 72%
MCDC 148 10 55 581 93 63% 9 24 997 124 84%
2-Wise 420 77 0 1 420 100% 73 0 1 420 100%

All criteria 853 101 196 2048 659 77% 107 87 3852 768 90%

Table 15: Comparison between different criteria for automatic test cases generation.

Test generation

The test generation process is carried out using the ATGT tool. It starts from the ASM specifications,

which have been validated and verified, and exploits the NuSMV counterexample generation.

In this case study, the abstract tests are stored in Avalla format. Furthermore, test generation has been

executed using the monitoring optimization: when a test sequence 𝑡𝑠 is generated for a test predicate

that has not yet been covered, the algorithms check if 𝑡𝑠 accidentally covers other test predicates and

skips the other test predicates already covered. In this way, the test generation process is sped up.

Note that test generation using the model checker can be a time-expensive activity, even if monitoring

is used. For this reason, a timeout has been added: for every test predicate 𝑡 𝑝 to be covered, the model

checker is interrupted if it reaches the timeout before producing a test, either because the test that

covers 𝑡 𝑝 exists but the model checker is unable to find it, or because 𝑡 𝑝 is unfeasible, i.e., there is no

test that covers it and the trap property is actually true. Unfortunately, ATGT is not able to distinguish

the two cases by proving the unfeasibility of the test predicates.

Tab. 15 reports the comparison in terms of test predicates, number of generated tests, number of

timeouts (or infeasible predicates), generation time, and number of test predicates covered for each

coverage criterion using two different timeouts of 10 and 40 minutes. The results obtained confirm that

116

Applying the ASMETA rigorous process to medical case studies

scenario
check apneaAlarm = false;
check iValve = CLOSED; ...
set respirationMode := PCV; ...
step
check apneaAlarm = false;
check iValve = CLOSED; ...
set respirationMode := PCV; ...
step
check iValve = OPEN; ...

Listing 5.17: Original scenario.

scenario
check apneaAlarm = false;
check iValve = CLOSED; ...
set respirationMode := PCV; ...
step ...

set respirationMode := PCV; ...
step
check iValve = OPEN; ...

Listing 5.18: Check Opt.

scenario
check apneaAlarm = false;
check iValve = CLOSED; ...
set respirationMode := PCV; ...
step ...

step
check iValve = OPEN;

Listing 5.19: Set Opt.

the higher the timeout, the higher the total number of covered test predicates (from 77% with timeout

10 minutes to 90% with timeout 40 minutes). The same behavior can be observed for the total number

of tests generated and the generation time. Each coverage criterion, from 10 to 40 minutes of timeout,

increases the number of tps covered except for Complete Rule and 2-Wise. The first does not generate

any tests, because of monitoring optimization, since all tps are already covered by tests generated

with Basic Rule. The second covers all the available tps for both values of timeout. Furthermore, for

2-Wise, there is a small difference in terms of the number of tests generated (which is greater with a

shorter timeout). This is because of the lower timeout, fewer tests are generated before trying to cover

2-Wise, so more tps will result uncovered, and they will need more tests.

Test optimization

After having generated abstract tests, before their concretization, there may be the necessity to optimize

them. Optimizations do not change the semantics of the tests, but improve the readability and

translatability of the abstract tests to the concrete ones. In the experiments presented in this section,

the following optimizations have been applied:

1. Check optimization: it removes unchanged controlled locations. In fact, if a controlled location

in state 𝑠𝑖 has not changed w.r.t. state 𝑠𝑖−1, the corresponding check is useless and can be

removed, if present. For example, in Listing 5.17, the check command on the location iValve is

repeated, so it is possible to remove the second one (see Listing 5.18).

2. Set optimization: it aims at removing set commands on monitored variables in state 𝑠𝑖−1 if they

are not actually asked to compute the update set for state 𝑠𝑖. For this reason, this optimization is

based on automatically processing the scenario and keeping the set commands only if the values

of the set functions are actually used by the ASM simulator to compute the update set. For

example, in Listing 5.18, the second instance of set respirationMode = PCV is removed in

Listing 5.19 since it is useless.

117

Andrea Bombarda

From the experiments carried out, the average number of check and set commands per state in

the scenarios generated without optimization is, respectively, 37 and 15. By applying the check

optimization technique, the optimized scenarios have an average of 11.22 check per state, while by

applying the set optimization the average of set per state became 3.31. This reduction in commands

allows for a consistent reduction in the length of each test case and, thus, in the time required for

testing systems. In addition, having shorter test cases facilitates the task of pinpointing possible bugs.

Test concretization

To make abstract tests executable in Yakindu, they have been concretized using the GoogleTest

framework. The code that converts scenarios to GoogleTests is available online at: https://

github.com/asmeta/mvm-asmeta/tree/master/mvm-scenario-converter. In particular, the

concretization process consists in the following three consecutive steps:

1. Mapping of ASMETA functions to state machine variables: The first step for tests concretization

is the mapping of ASMETA functions to state machine variables. For this purpose, a JSON

configuration file is automatically generated and filled with all the functions set or checked in

the Avalla scenarios. Then, the mapping has to be performed manually by the user. For each

function, the JSON file contains:

• asmName, which is the name that the function assumes in the ASMETA specification;

• cName, i.e., the name of the function in the C++ code;

• commandType, specifying the type of function, chosen between IN EVENT (representing

events raised by the user), VAR (representing internal fields of the state machine), OPERA-

TION (representing function interacting with hardware components), STATE (representing

the state of the state machine), and TBD (the default type, TBD functions are ignored during

test concretization, but are used only in the ASMETA model).

An example of the content of the JSON file is reported in Listin 5.20. The function startVenti-

lation is IN EVENT since it is raised by the user. mode is VAR because it represents an internal

field of the state machine, and iValve is an OPERATION function, because it interacts with

hardware components, i.e., the input valve. Functions used only in the ASMETA model but not

in the C++ code (e.g. time) are set to be ignored (TBD type).

2. Hardware mocking: Considering that the MVM state machine directly interacts with hardware,

during test concretization, it has to be mocked. For this reason, mocking classes have been writ-

ten using the same interface as the real classes of hardware components. Then, the mocking file

118

https://github.com/asmeta/mvm-asmeta/tree/master/mvm-scenario-converter
https://github.com/asmeta/mvm-asmeta/tree/master/mvm-scenario-converter

Applying the ASMETA rigorous process to medical case studies

[{ ”asmName”: ”startVentilation”,
”cName”: ”startVentilation”,
”commandType”: ”IN EVENT”

},{ ”asmName”: ”time”, ”cName”: ”time”,
”commandType”: ”TBD”

},{ ”asmName”: ”iValve”,

”cName”: ”defaultMock−>getInValveStatus”,
”commandType”: ”OPERATION”

},{ ”asmName”: ”state”, ”cName”: ”state”,
”commandType”: ”STATE”

},{ ”asmName”: ”mode”, ”cName”: ”mode”,
”commandType”: ”VAR”}]

Listing 5.20: JSON file for function mapping.

set mode := PSV;
set startVentilation := true;
step
check time = 3;
check oValve = CLOSED;
check iValve = OPEN;
check state =

MAIN REGION PSV R1 INSPIRATION;

sm−>setMode(PSV);
sm−>raiseStartVentilation();
runner−>proceed time(100);

EXPECT EQ(valveMock−>getOutValveStatus() , CLOSED);
EXPECT EQ(valveMock−>getInValveStatus() , OPEN);
EXPECT TRUE(sm−>isStateActive(

MAIN REGION PSV R1 INSPIRATION));

Listing 5.21: Test concretization from an Avalla scenario fragment to a GoogleTest test case.

is automatically included in the test suite by the scenario concretization process. The complete

mocking file for the MVM case study is available online at https://github.com/asmeta/

mvm-asmeta/blob/master/mvm-scenario-converter/additional_files/mock.c.

3. GoogleTest code generation: After having mocked the hardware and configured the mapping be-

tween ASMETA and C++ files, the concretization can be completed by generating a GoogleTests

test suite. Considering that the MVM has been developed as a cycle-based state machine, with

a cycle duration of 100𝑚𝑠, the translation of the step Avalla command has been done by

replacing it with the Yakindu command proceed time(100). The other Avalla commands are

concretized as explained in Tab. 16.

Listing 5.21 shows a test concretization example of an Avalla scenario. In particular, IN -

EVENT functions (such as startVentilation) are raised only when they are set to true in the

Avalla scenario, while VAR functions, such as mode, are set in the GoogleTest test case when

there is a corresponding set in the Avalla scenario and checked when there is a corresponding

check in the scenario. OPERATION functions, such as iValve, are converted into method

Function type Set Check

STATE // EXPECT_TRUE(sm->isStateActive([stateName]))

IN EVENT sm->raise[cName]() //

VAR sm->set[cName]([value]) EXPECT_EQ(sm->get[cName](),[value])

OPERATION [cName]([value]) EXPECT_EQ([cName](),[value])

Table 16: Translation rules between Avalla and GoogleTest instructions (sm is the generic name used to
indicate the state machine object in Yakindu).

119

https://github.com/asmeta/mvm-asmeta/blob/master/mvm-scenario-converter/additional_files/mock.c
https://github.com/asmeta/mvm-asmeta/blob/master/mvm-scenario-converter/additional_files/mock.c

Andrea Bombarda

Criteria
Timeout 10 minutes Timeout 40 minutes

Statement Cov. Branch Cov. Function Cov. Statement Cov. Branch Cov. Function Cov.

Basic rule 65.69% 63.48% 59.46% 80.97% 81.32% 79.05%
Complete rule 65.69% 63.48% 59.46% 80.97% 81.32% 79.05%
Rule guard 66.19% 63.91% 60.47% 81.48% 81.74% 80.07%
Rule update 66.19% 63.91% 60.47% 81.48% 81.74% 80.07%
MCDC 70.24% 69.85% 65.54% 81.48% 81.74% 80.07%
2-Wise 70.24% 69.85% 65.54% 81.98% 82.17% 81.08%

All criteria 70.24% 69.85% 65.54% 81.98% 82.17% 81.08%

Table 17: Coverage reached using different timeouts and coverage criteria.

calls. If there is a check in the Avalla scenario on an OPERATION function, a check is also

performed in the GoogleTest test case. Finally, the STATE function represents the active state

of the machine.

Test execution

Having concretized the abstract tests, they have been used for testing the C++ code of the MVM

controller. Tab. 17 reports the incremental coverage, in terms of statements, branches, and functions,

reached by the tests automatically generated using 10 and 40 minutes of timeout. The results obtained

confirm the observations made after Tab. 15: increasing the timeout leads to an increment of the

covered test predicates and, consequently, of the code coverage. Note that the coverage in Tab. 17

increased from one criterion to the next, except for Complete rule and Rule update, for which no

significant test is generated. This means that no criterion could have been skipped, since all the

criteria contribute to increasing the coverage.

Even when the higher timeout is used, full coverage of the MVM code has not been obtained. This is

reasonable since, starting from the code automatically generated by Yakindu SCT, many parts of the

code are only used by Yakindu itself and cannot be mapped to external calls. However, the coverage

reached in this case is higher than that reached during the development of the MVM itself. In fact,

unit testing of the MVM controller was not mandatory in order to obtain the safety certification since

the component was not classified in class C (see Sect. 1.2.1). For this reason, only a few tests were

written manually, and those obtained with the process described in this section are an important asset,

both for usability testing and integration/system testing that, indeed, is mandatory for each medical

device, regardless of its safety class.

120

Applying the ASMETA rigorous process to medical case studies

Specification of SUT
and its interaction

with the environment/
other parties

ASM model for
SUT

ATGT

Automatic from
coverage

Manual for
validation

Test Executor

Avalla scenarios

SUT
implementation

Legend

Tester

Developer

Automatic
tool

Figure 30: MBT process for the PHD case study.

5.4.2 Applying MBT to the PHD protocol case study

In this section, I present how MBT activities based on the ASMETA framework can be carried out in

order to test the manager part of Antidote 2.13, an open-source implementation of the PHD protocol

(previously presented in Sect. 5.2.2). The Antidote source code is written in C and composed of

the following source folders: api, asn1, communication, dim, resources, specializations, trans, and

util. In order to focus the testing process solely on the manager, the functionalities contained in the

communication module have been further split into two folders: agent and manager.

The process workflow is presented in Fig. 30. As previously done for the MVM case study, the

ASMETA specification is derived from the system requirements specification. Then, using the ATGT

tool, abstract tests are derived in the Avalla format. Normally, abstract tests need to be concretized.

However, in this case, Antidote can be tested directly with a test executor capable of interpreting

Avalla files, so the test concretization and test execution phases coincide.

Note that, in this case study, the approach is different from the one presented for the MVM. In fact,

for the MVM a refinement approach has been used for writing models and, then, the tests have been

generated from the last refinement level. Instead, for the PHD case study, I present an alternative

approach called RATE (Refinement And Test Execution), which is based on alternating refinement,

test generation, and test execution in order to gather, from the coverage reached, information about the

parts in the code that are missing in the model. In this way, by using a gray-box approach, the model

can evolve to be more adherent to the implementation. Furthermore, this approach can be used when

reverse engineering is needed to derive requirements from the implementation.

Data useful for replicating the results shown in this section are available online at https://github.

com/asmeta/RATE/tree/main/Case_studies/PHD_Protocol.

3https://github.com/signove/antidote

121

https://github.com/asmeta/RATE/tree/main/Case_studies/PHD_Protocol
https://github.com/asmeta/RATE/tree/main/Case_studies/PHD_Protocol
https://github.com/signove/antidote

Andrea Bombarda

Modeling

In the following, I present 6 refinement steps that have been made in the case study of the PHD

protocol. For each of them, simulation, animation, scenario-based testing, refinement proof, and

verification activities have been performed, in order to verify the correctness of the behavior modeled

w.r.t. the official specification [102]. The complexity of the refinement levels increases from one level

to the other, as well as the number of rules contained in each model.

• Level 0 - Main manager transitions: In this first level, only three states have been modeled:

Disassociating, Unassociated, and Operating. The transition from one state to the next one

and the response depend on the current state and the message received. Listing 5.22 reports a

fragment of ASM0 written using the AsmetaL language. The signature of ASM0 contains three

functions: status, transition, and message. The transition function models the type

of request to be sent to the manager, and is defined as a monitored function since its value can

be controller by external factors or entities, e.g., by the agent. The status function represents

the current state of the manager, while the message represents the response from the manager.

Both functions are defined as controlled, since their value is managed by the ASM model.

• Level 1 - Remote operation management: In the first level of refinement, messages used

for remote operation management (rx roiv, rx rors, rx rorj) have been added. Moreover,

since not all messages can be used in every state, an invariant for each state has been added, to

guarantee that only messages valid for each state can be sent by the agent. This is a simplification

that allowed testing the system incrementally, by isolating regular and exceptional behaviors.

Listing 5.23 reports a fragment of ASM1 written in the AsmetaL language, which extends the

possible messages and introduces the invariants.

• Level 2 - PHD configuration management: This level of refinement adds the states modeling

the exchange of configutation between devices working with the PHD protocol: CheckingConfig

and WaitingForConfig. Furthermore, the transitions, messages, and rules related to the newly

added states are modeled by ASM2.

• Level 3 - Error management: All rors messages related to error management were not yet

modeled by the previous level of refinement. Therefore, in the fourth model ASM3, the rors

message and its subtypes (rors-*) have been added. From the protocol specification, it can be

noticed that these messages trigger a relevant part of the protocol between the states Disassociat-

ing and Unassociated, and within the states Operating, CheckingConfig, and WaitingForConfig.

122

Applying the ASMETA rigorous process to medical case studies

asm PHD0
import StandardLibrary

signature:
// DOMAINS
enum domain Status = {UNASSOCIATED, OPERATING, DISASSOCIATING}
enum domain Transition = {REQ ASSOC REL, REQ ASSOC ABORT, RX RLRE, RX ABRT, RX AARQ,

RX AARQ ACCEPTABLE AND KNOWN CONFIGURATION, RX AARE,
RX RLRQ}

enum domain Message = {MSG NO RESPONSE, MSG RX AARE, MSG RX ABRT, MSG RX RLRQ,
MSG RX RLRE}

// FUNCTIONS
controlled status: Status
monitored transition: Transition
controlled message: Message

definitions:
rule r Unassociated =

switch transition
case REQ ASSOC REL:

par
status := UNASSOCIATED
message := MSG NO RESPONSE

endpar
case REQ ASSOC ABORT:

[...]
rule r Operating =
switch transition

[...]
rule r Disassociating =

switch transition
[...]

main rule r Main = par
if (status = UNASSOCIATED) then
r Unassociated[]

endif
if (status = OPERATING) then

r Operating[]
endif
if (status = DISASSOCIATING) then

r Disassociating[]
endif

endpar

// INITIAL STATE
default init s0:

function status = UNASSOCIATED

Listing 5.22: ASMETA specification of ASM0, specifying the main PHD manager transitions.

123

Andrea Bombarda

asm PHD1
import StandardLibrary

signature:
// DOMAINS
[...]
enum domain Transition = {REQ ASSOC REL, REQ ASSOC ABORT, RX RLRE, RX ABRT, RX AARQ,

RX AARQ ACCEPTABLE AND KNOWN CONFIGURATION, RX AARE, RX RLRQ, RX ROIV,
RX ROER, RX RORJ}

enum domain Message = {MSG NO RESPONSE, MSG RX AARE, MSG RX ABRT, MSG RX RLRQ,
MSG RX RLRE, MSG RX PRST}

[...]

definitions:
[...]

INVAR (status = DISASSOCIATING) implies (transition = RX RLRE or transition = REQ ASSOC ABORT
or transition = RX AARQ or transition = RX AARE or transition = RX RLRQ
or transition = REQ ASSOC REL or transition = RX ABRT or transition = RX ROIV
or transition = RX ROER or transition = RX RORJ)

INVAR (status = OPERATING) implies (transition = REQ ASSOC REL or transition = REQ ASSOC ABORT
or transition = RX AARQ or transition = RX AARE or transition = RX RLRQ or transition = RX RLRE
or transition = RX ABRT or transition = RX ROER or transition = RX RORJ or transition = RX ROIV)

INVAR (status = UNASSOCIATED) implies (transition = REQ ASSOC REL or transition = REQ ASSOC ABORT
or transition = RX AARE or transition = RX RLRQ or transition = RX RLRE
or transition = RX ABRT or transition = RX AARQ ACCEPTABLE AND KNOWN CONFIGURATION)

[...]

Listing 5.23: ASMETA specification of ASM1, introducing the remote operation management.

Moreover, this level of refinement introduces two particular sequences of transitions in the

model, which, according to the protocol specification [102], have to be managed differently:

1. When the manager is in the WaitingForConfig state and receives from the agent a message

rx roiv confirmed event report, it should move to the CheckingConfig state. How-

ever, the internal handling of this transition is different depending on whether the state

WaitingForConfig was entered, with a transition from the state Unassociated or from the

state CheckingConfig. In the former case, no configuration similar to the one transmitted

by the agent is present in the manager pool of configurations, and so, additional functions

that ask for configuration attributes are used. In the latter case, a similar configuration was

previously transmitted, and thus the configuration is already in the memory of the Antidote

manager.

2. The behavior of the message rx roiv confirmed event report, when causing a loop

in the CheckingConfig state, is different if executed right after another same message that

brought the manager from the state WaitingForConfig to the CheckingConfig state. In

this case, additional functions handling the new measurement received from the agent are

executed.

124

Applying the ASMETA rigorous process to medical case studies

asm PHD4
import StandardLibrary

signature:
// DOMAINS
[...]
enum domain Transition = {REQ ASSOC REL, REQ ASSOC ABORT,

RX AARQ ACCEPTABLE AND KNOWN CONFIGURATION,
RX AARQ ACCEPTABLE AND UNKNOWN CONFIGURATION,
RX AARQ UNACCEPTABLE CONFIGURATION, RX AARE, RX RLRQ,
RX RLRE, RX ABRT, RX ROIV CONFIRMED EVENT REPORT, RX ROIV, RX ROER, RX RORJ,
REQ AGENT SUPPLIED UNKNOWN CONFIGURATION, RX RORS,
REQ AGENT SUPPLIED KNOWN CONFIGURATION,
RX RORS CONFIRMED ACTION, RX RORS CONFIRMED SET, RX RORS GET, RX AARQ,
RX AARQ INVALID, RX AARQ EXTERNAL}

[...]

definitions:
[...]

Listing 5.24: ASMETA specification of ASM4, introducing protocol and configuration management.

• Level 4 - Protocol and configuration management: During connection, an agent may try to use

a wrong protocol-id or with an unknown (or external) configuration, which is identified with a

specific protocol-id value (0xFFFF). For this reason, as shown in Listing 5.24, ASM4 models

the message rx aarq with two additional variants, respectively, with an invalid protocol-id

and an external protocol-id.

• Level 5 - Invalid messages management: This refinement level removes the invariants previ-

ously defined in order to limit the messages received by the manager to those valid. In fact, the

official IEEE specification [102] of the PHD requires managers to deal with invalid messages,

too, and, when a manager receives a message that is not defined in its current state, it must reply

with an abort message.

• Level 6 - Invalid invoke-id management: One of the aspects that were not yet captured by

the ASM specification was the dependence of the manager’s behavior based on the invoke id

contained in each APDU. For example, if the manager is in WaitingForConfig and receives

rors-*, roer, or rorj messages, it can produce no response if invoke id is valid or an

abort otherwise. To manage this particular behavior, as shown in Listing 5.25, ASM6 has an

additional monitored function invokeIdValid that is combined with the transition function

to establish if the message must be sent with valid or invalid invoke id.

Test Generation

Starting from the ASM specification, tests have been generated using the criteria presented in Sect. 5.4

for each refinement level. For the Combinatorial interaction criteria, 𝑡 = 2 and 𝑡 = 3 have been used.

125

Andrea Bombarda

asm PHD6
import StandardLibrary

signature:
// DOMAINS
[...]

// FUNCTIONS
controlled status: Status
monitored transition: Transition
controlled message: Message
monitored invokeIdValid: Boolean
[...]

definitions:
[...]
rule r Waiting For Config =

switch transition
[...]
case RX ROER:

if invokeIdValid = true then
par

status := WAITING FOR CONFIG
message := MSG NO RESPONSE

endpar
else

par
status := UNASSOCIATED
message := MSG RX ABRT

endpar
endif
[...]

Listing 5.25: ASMETA specification of ASM4, introducing protocol and configuration management.

However, since 2-Wise and 3-Wise are performed only considering the monitored functions, only with

the last refinement level (which has two monitored functions), the former is effective, while the latter

has not produced any test predicate. More details on the test sequences obtained, their length and the

number of steps are reported in Tab. 18. Furthermore, in order to compare sequences automatically

generated by ATGT and manual testing, manually written Avalla scenarios have also been used.

Test concretization and execution

As previously mentioned, for the PHD protocol case study, the test executor is able to deal with

Avalla files, so the test concretization and test execution phases coincide. In particular, at every step,

the test executor sends a suitable message to the Manager, checks the response, and the target state.

To perform the test execution, the ProTest tool, originally presented in [182] and modified for dealing

with Avalla files, has been used. It acts as an agent by interacting with the manager implementation

that is executed on the server side. It builds the messages, sends them to the manager, and checks the

conformance of the response received from it. Moreover, it integrates gcov4 which allows users to

evaluate the coverage of the performed tests, and to check which statements are not covered.
4https://gcovr.com

126

https://gcovr.com

Applying the ASMETA rigorous process to medical case studies

Refinement Test generation
strategy

Test sequences Code coverage # Test
predicates# steps

sequences min max total avg statement function branch

ASM0

Basic rule 21 1 4 62 2.95 34.1% 54.3% 22.8% 45
Complete rule 3 1 4 8 2.67 32.6% 51.8% 23.2% 3
Rule update 21 1 4 64 3.05 35.6% 54.3% 23.8% 42
Rule guard 22 1 4 66 3.00 35.6% 54.3% 24.1% 66

MCDC 21 1 4 62 2.95 35.6% 54.3% 24.6% 48
2-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0
3-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0

All criteria 24 1 4 71 2.96 35.6% 54.3% 24.1% 204
manual 1 34 34 34 34.00 35.6% 54.3% 27.0% //

ASM1

Basic rule 27 1 4 83 3.07 42.1% 67.1% 27.8% 57
Complete rule 3 1 4 8 2.67 33.2% 53.0% 21.8% 3
Rule update 27 1 4 85 3.15 43.6% 67.1% 29.2% 54
Rule guard 27 1 4 85 3.15 43.6% 67.1% 29.2% 84

MCDC 27 1 4 83 3.07 43.6% 67.1% 25.0% 60
2-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0
3-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0

All criteria 31 1 4 95 3.06 43.6% 67.1% 29.2% 258
manual 1 46 46 46 46.00 43.6% 67.1% 29.2% //

ASM2

Basic rule 56 1 4 182 3.25 58.2% 76.8% 37.5% 115
Complete rule 5 1 4 15 3.00 39.5% 55.5% 25.3% 5
Rule update 56 1 5 187 3.34 58.2% 76.2% 31.9% 110
Rule guard 60 1 5 203 3.38 58.2% 76.2% 38.8% 170

MCDC 56 1 4 182 3.25 60.9% 77.4% 39.8% 120
2-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0
3-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0

All criteria 68 1 5 230 3.38 58.2% 76.2% 38.8% 520
manual 5 11 33 104 20.80 58.2% 72.2% 39.0% //

ASM3

Basic rule 71 1 4 234 3.30 63.5% 79.9% 42.6% 141
Complete rule 5 1 4 15 3.00 42.3% 61.0% 28.4% 5
Rule update 69 1 5 235 3.41 60.8% 78.7% 41.6% 136
Rule guard 75 1 5 259 3.45 60.8% 78.7% 41.6% 209

MCDC 68 1 4 222 3.26 60.8% 78.7% 41.6% 146
2-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0
3-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0

All criteria 86 1 5 298 3.47 60.8% 78.7% 41.6% 637
manual 5 11 38 121 24.20 61.1% 78.7% 42.0% //

ASM4

Basic rule 69 1 4 222 3.22 63.9% 79.9% 43.0% 145
Complete rule 5 1 4 15 3.00 39.8% 57.9% 25.3% 5
Rule update 71 1 5 239 3.37 61.2% 78.7% 41.6% 140
Rule guard 78 1 5 267 3.42 61.2% 78.7% 41.6% 215

MCDC 69 1 4 222 3.22 61.2% 78.7% 42.0% 150
2-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0
3-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0

All criteria 88 1 5 301 3.42 61.2% 78.7% 41.6% 655
manual 5 14 38 124 24.80 64.0% 79.9% 43.0% //

ASM5

Basic rule 83 1 4 272 3.28 64.0% 79.9% 43.1% 157
Complete rule 5 1 4 15 3.00 41.4% 59.1% 26.0% 5
Rule update 82 1 5 277 3.38 61.3% 78.7% 42.2% 152
Rule guard 90 1 5 307 3.41 61.3% 78.7% 42.2% 233

MCDC 96 1 4 316 3.29 64.0% 79.9% 43.1% 294
2-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0
3-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0

All criteria 117 1 5 400 3.42 64.0% 79.9% 43.1% 841
manual 5 15 41 135 27.00 64.0% 79.9% 43.1% //

ASM6

Basic rule 95 1 4 307 3.23 64.2% 79.9% 43.8% 169
Complete rule 5 1 4 15 3.00 40.4% 59.8% 26.6% 5
Rule update 93 1 5 310 3.33 64.2% 79.9% 43.8% 176
Rule guard 103 1 5 347 3.37 64.2% 79.9% 43.8% 257

MCDC 109 1 4 356 3.27 64.2% 79.9% 43.8% 318
2-Wise 28 1 3 61 2.18 35.1% 54.3% 24.8% 44
3-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0

All criteria 134 1 5 446 3.33 64.2% 79.9% 43.8% 969
manual 7 12 41 159 22.71 64.2% 79.9% 43.8% //

Table 18: Coverage results for each refinement/test generation strategy applied to the PHD protocol case
study. The coverage values in bold represent the highest coverage reached at that refinement level.

127

Andrea Bombarda

Tab. 18 presents the coverage reached for each level of refinement in the PHD case study with all

testing criteria. It can be seen that the code coverage obtained with the tests generated from ASM0 is

very similar for all test generation strategies (around 35% for statement coverage, 54% for function

coverage, and 23% for branch coverage) except for combinatorial-based methods, since, as mentioned

before, no tests are generated by 2-Wise and 3-Wise criteria. In the first step of refinement (ASM1)

the coverage increases as expected, as well as for the one in ASM2, because the ASM models have

been improved by adding remote operation management and configuration management. For the other

refinement levels, from ASM3 to ASM6, the coverage slowly increases since most of the main aspects

of the protocol (which represent the majority of statements and functions in the Antidote code) were

already captured by ASM2. Note that full coverage has not been reached, even with the last level of

refinement ASM6. Analyzing the uncovered statements, it can be seen that they are mainly related

to dead code (such as functions declared with an empty body or never used), or negative use cases

(exceptions), often regarding internal configurations of the manager.

To evaluate the effectiveness of the proposed approach, manual testing has been performed with

manually writtenAvalla scenarios. The main revealed differences between manual tests and generated

tests are the average sequence length and the number of test sequences (see Tab. 18). In fact, when

automatic test generation is used, test predicates are used to automatically generate test sequences,

and a single sequence mainly covers a single test predicate. On the contrary, with manual tests, the

length of test sequences is higher, but their number is lower: users tend to cover more test predicates

in each scenario.

Even if the total number of sequences in manual testing is significantly lower than the other criteria (in

some refinement level also more than 90% lower), the coverage is, in general, equal or only slightly

lower than the automatic test generation with the highest coverage. On the basis of the outcomes and

considering the great effort required for writing tests manually, it can be concluded that automatic test

generation can substitute the manual tests since it guarantees the same coverage with lower effort by

the user. Moreover, with manual tests, one can miss covering a specific behavior, make a mistake in

test writing, or in defining the test oracle.

Finally, the proposed approach has been revealed to be successful, since by applying MBT guided by

coverage information, as presented in this section, several faults have been found and fixed in a new

release of the protocol5:

5https://github.com/fmselab/antidote3

128

https://github.com/fmselab/antidote3

Applying the ASMETA rigorous process to medical case studies

• The official IEEE 11073-20601 specification requires the use of rx abrt as response for the

sequence “Unassocciated + req assoc abort”. However, the tests generated from ASM0

have highlighted that the original Antidote implementation used “no response” instead.

• The sequence “checking config + rx aarq→ rx abrt” caused a transition mismatch when

executing tests derived from ASM1. By checking the code, three transitions for sub-types of

the event rx aarq * were implemented, but the case where the rx aarq message is received

in state checking config was missing. This means that the manager did not respond to the

message rx aarq itself. Since the IEEE specification requires “rx abrt” as a response when an

unexpected message is received by the manager, the transition “checking config + rx aarq

→ unassociated + rx abrt” has been added to the fixed version of the Antidote manager

state table.

• The sequence “disassociating + rx rors→ unassociated + rx abrt” caused a response

mismatch when executing tests derived from ASM3. Indeed, the answer given by the manager

was “no response” if a valid invoke-id was provided, but the IEEE specification always

requires “rx abrt” as response for this message.

• The Antidote manager did not check the invoke-id contained into the “rx roer” and “rx rorj”

messages. Indeed, the official IEEE specification requires “rx abrt” as a response to these

two messages when the invoke-id is invalid, and “no response” otherwise. The bug has been

revealed while executing tests derived from the last refinement level (ASM6).

In conclusion, the presented approach has allowed testers not only to decrease the effort required to test

complex medical systems such as the PHD protocol, but also to identify some faults and conformance

errors in the open-source Antidote implementation.

5.5 Conclusion

In this chapter, I have presented how the ASMETA framework can be easily applied to medical

systems to increase their quality and reliability. In fact, as explained in Sect. 5.1, all activities required

by the main standard for medical software certification can be easily mapped to the activities and

functionalities offered by ASMETA.

The main directions in which the ASM-based development process and ASMETA in general can aid

developers are the development of correct-by-construction code and model-based testing activities.

129

Andrea Bombarda

When there is no existing code, the developer can start modeling the system using the AsmetaL

language. Then, he/she can verify and validate the modeled systems using several tools embedded in

the ASMETA framework (AsmetaS, AsmetaA, AsmetaV, and AsmetaSMV). Finally, after the model

has been verified, the developer can derive the code for the actual device from the ASM specification

using the Asm2C++ tool. This process has been successfully applied and tested for two different

medical case studies, namely the e-Pix and the MVM. The first is a smart pill box, which has been

developed by a local company and is based on Arduino. By applying the ASMETA-based development

process, we have been able to fully cover all the activities required by medical software certification

authorities: starting from a formal specification, obtained through several refinements, we have proved

the necessary safety properties of the device, and we have generated automatically the source code to

be embedded on the Arduino. The second device, presented in detail in Chapter 2, is a mechanical

ventilator, developed for COVID-19, I contribute to the developing and certification process. Even

if the ASMETA process has not been applied during the actual development of the product, in this

section I have shown how it could have been, in principle, applied for the development of such a

complex medical device. As for the e-Pix case study, also in this case, starting from the formal

specifications we have been able to obtain a correct-by-construction source code.

On the other hand, when the system code is already available and testers want guidance in generating

test cases, a model-based approach can be chosen. In this case, after the tester has written the system

specification using the AsmetaL language, and performed V&V activities on it, abstract tests can be

derived thanks to the ATGT tool. The obtained tests can then be concretized and executed against

the implementation of the medical system under test. This process has been applied to the MVM

and to the PHD protocol case study. For the MVM case study, I have shown how one can apply

model-based testing by generating, from the formal specification, test cases that can be concretized as

Google Tests. These tests have been executed against the software which currently runs on the real

MVM in production. In this way, we have been able to increase the code coverage w.r.t. the one we

previously reached during the development of the device. Instead, for the PHD protocol case study (a

protocol allowing the communication between medical devices) I have presented a different approach,

called RATE: starting from the already existing source code, the ASMETA model has been obtained

by identifying which part of the source code were not covered. With this approach, by looking which

part were missing in the model and by implementing them in the model in a way compliant to the

system specifications, a failing test represents behaviors wrongly implemented. Finally, by applying

the ASMETA framework under different perspectives, in both cases, the coverage obtained has been

satisfactory and, moreover, the applied process has allowed to discover bugs or conformance errors.

130

Chapter 6. Combinatorial testing for complex PEMS

In the previous chapter, the application of model-based techniques to PEMS case studies exploiting

the ASMETA framework has been presented. However, testers may need to deal with complex

medical systems that have several inputs and outputs, and testing them extensively may be unfeasible.

Moreover, bugs may be revealed only by precise combinations of a few inputs. For these reasons,

this chapter introduces the combinatorial testing strategy and shows how it can be applied to the

MVM (previously presented in Chapter 2) and PHD protocol (previously analyzed in Chapter 5) case

studies, to investigate how it can contribute in aiding testers while working with highly configurable

and complex systems by reducing the number of test cases.

This chapter is based on the work presented in [31–35] and is structured as follows. Sect. 6.1

introduces the general concepts of combinatorial interaction testing, while Sect. 6.2 explores how it

can be applied when sequences of inputs have to be tested in a combinatorial way. Sect. 6.3 presents

a method, a set of heuristics, and a formula for comparing combinatorial generators when testers have

to choose the best one for the specific application scenario. Finally, Sect. 6.4 tackles the advantages

and limits of parallelizing combinatorial test generation combining multithread with Multi-valued

Decision Diagrams or SMT solvers, and Sect. 6.5 concludes the chapter.

6.1 Introduction

Combinatorial interaction testing (CIT) has been an active area of research for many years and

has proven to be very effective for testing complex systems, especially for those with several input

parameters, such as medical systems.

Combinatorial testing is based on the idea that not every parameter contributes to every fault, and

most faults are caused by interactions between a relatively small number of parameters [114]. Studies

conducted by NIST from 1999 to 2004 showed that combinatorial testing is more efficient at detecting

faults than conventional methods: it has proved to have a fault detection equal to exhaustive testing

while reducing the test suite size 20 to 700 times. Suppose that you want to test a system with 7

switches that can be either ON or OFF. If exhaustive testing is used, 27 = 128 test cases are needed.

However, if one decides to test only the interaction between pairs of parameters (strength 𝑡 = 2), 8

tests are enough. Furthermore, if constraints restricting input combinations are added to the system

under test, the number of test cases may be even further reduced.

131

Andrea Bombarda

Combinatorial testing can be considered a particular type of model-based testing. In fact, when

working with combinatorial testing, testers need to define a constrained combinatorial model in which

the parameters, their bounds, and the constraints are defined.

Definition 1 (Constrained Combinatorial Model). Let 𝑃 = {𝑝1, ..., 𝑝𝑛} be a set of 𝑛 parameters, where

every parameter 𝑝𝑖 assumes values in the domain 𝐷𝑖 = {𝑣𝑖1, . . . , 𝑣
𝑖
𝑜𝑖
}. Let 𝐷 be the set of all 𝐷𝑖, i.e.,

𝐷 = {𝐷1, . . . , 𝐷𝑛} and 𝐶 = {𝑐1, ..., 𝑐𝑚} be the set of constraints over the parameters 𝑝𝑖 and their

values 𝑣𝑖
𝑗
. We say that 𝑀 = (𝑃, 𝐷,𝐶) is a Constrained Combinatorial Model.

Listing 6.1 shows an example of a constrained combinatorial model written in CTWedge [87] for the

MVM case study (see Chapter 2). In particular, a combinatorial model reports:

• the list of parameters, which represent the inputs, outputs, or configurations of the system under

test. In CTWedge, the parameters can be enumerative, Boolean, or integer ranges;

• the list of constraints, which are expressed as logical formulas, and limit the possible configu-

rations.

A test can be valid if and only if it does not violate any constraint; otherwise, it is defined as invalid.

The same concept of validity applies to tuples: a tuple 𝑡 𝑝 is valid (or feasible or coverable) if there

exists a valid test that covers 𝑡 𝑝. Otherwise, a tuple is invalid or unfeasible. For example, considering

the model in Listing 6.1, the tuple

𝑡 𝑝 = {𝑁𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒 = 𝑂𝐹𝐹, 𝑃𝑜𝑤𝑒𝑟𝑂 𝑓 𝑓 = 𝑓 𝑎𝑙𝑠𝑒}

is not valid since it violates the first constraint. After having defined what a combinatorial model is

and what the validity of a test is, it is possible to define the concept of valid test suite as follows.

Definition 2 (Valid Test Suite). Let 𝑀 = (𝑃, 𝐷,𝐶) be a constrained combinatorial model. Given a

combinatorial test suite 𝑇𝑆, we say that 𝑇𝑆 is valid if all tests 𝑡𝑠𝑖 ∈ 𝑇𝑆 are valid, i.e., they do not

violate any constraint in 𝐶.

After having verified that a test suite is valid, it is important to further investigate about its completeness,

meaning that all feasible tuples of values for parameters must be covered. Formally:

Definition 3 (Complete Test Suite). Let 𝑀 = (𝑃, 𝐷,𝐶) be a constrained combinatorial model. Given

a combinatorial test suite 𝑇𝑆 and being 𝑡 the strength for test generation, we say that 𝑇𝑆 is complete if

any valid duple 𝑡 𝑝 of size 𝑡 is covered by at least a test in 𝑇𝑆.

132

Combinatorial testing for complex PEMS

Model MVM

Parameters:

State : {OFF, STARTUP, SELF TEST, VENTILATION OFF, PCV INSP, PCV EXP, PSV INSP, PSV EXP}
NextState : {OFF, STARTUP, SELF TEST, VENTILATION OFF, PCV INSP, PCV EXP, PSV INSP, PSV EXP}
InValve : {OPEN CLOSE}
OutValve : {OPEN CLOSE}
Mode: {PCV PSV}
PowerOff : Boolean
SelfTestPassed: Boolean
StartupEnded: Boolean
StartVentilation: Boolean
InspTimePassed: Boolean
ExpTimePassed: Boolean
StopVentilation: Boolean
Resume: Boolean

Constraints:

NextState = OFF <=> PowerOff
NextState = SELF TEST <=> (State = STARTUP AND StartupEnded)#
SelfTestPassed <=> State = SELF TEST
Resume <=> State = SELF TEST
StartupEnded <=> State = STARTUP
(State = SELF TEST AND (SelfTestPassed OR Resume)) => NextState = VENTILATION OFF
(InValve = OPEN AND OutValve = CLOSE) OR (InValve = CLOSE AND OutValve = OPEN)
(InValve = OPEN <=> (State = PSV INSP OR State = PCV INSP)) AND (OutValve = OPEN <=> (State = PSV EXP OR State

= PCV EXP)) #
(State = VENTILATION OFF AND Mode=PCV AND StartVentilation) => NextState = PCV INSP
(State = VENTILATION OFF AND Mode=PSV AND StartVentilation) => NextState = PSV INSP
(State = PSV INSP AND Mode=PSV AND InspTimePassed) => NextState = PSV EXP
(State = PCV INSP AND Mode=PCV AND InspTimePassed) => NextState = PCV EXP
(State = PCV EXP AND Mode=PCV AND ExpTimePassed) => NextState = PCV INSP
(State = PSV EXP AND Mode=PSV AND ExpTimePassed) => NextState = PSV INSP
(State = PSV INSP AND Mode=PCV AND InspTimePassed) => NextState = PCV EXP
(State = PCV INSP AND Mode=PSV AND InspTimePassed) => NextState = PSV EXP
(State = PCV EXP AND Mode=PSV AND ExpTimePassed) => NextState = PSV INSP
(State = PSV EXP AND Mode=PCV AND ExpTimePassed) => NextState = PCV INSP
(StopVentilation => (State = PCV EXP OR State = PSV EXP)) => NextState = VENTILATION OFF
(InspTimePassed AND NOT ExpTimePassed) OR (ExpTimePassed AND NOT InspTimePassed)
PowerOff <=> (NOT SelfTestPassed AND NOT StartupEnded AND NOT StartVentilation AND NOT InspTimePassed AND

NOT ExpTimePassed AND NOT StopVentilation AND NOT Resume) #
SelfTestPassed <=> (NOT PowerOff AND NOT StartupEnded AND NOT StartVentilation AND NOT InspTimePassed AND

NOT ExpTimePassed AND NOT StopVentilation AND NOT Resume) #
StartupEnded <=> (NOT PowerOff AND NOT SelfTestPassed AND NOT StartVentilation AND NOT InspTimePassed AND

NOT ExpTimePassed AND NOT StopVentilation AND NOT Resume) #
StartVentilation <=> (NOT PowerOff AND NOT SelfTestPassed AND NOT StartupEnded AND NOT InspTimePassed AND

NOT ExpTimePassed AND NOT StopVentilation AND NOT Resume) #
InspTimePassed <=> (NOT PowerOff AND NOT SelfTestPassed AND NOT StartupEnded AND NOT StartVentilation AND

NOT ExpTimePassed AND NOT StopVentilation AND NOT Resume) #
ExpTimePassed <=> (NOT PowerOff AND NOT SelfTestPassed AND NOT StartupEnded AND NOT StartVentilation AND

NOT InspTimePassed AND NOT StopVentilation AND NOT Resume) #
StopVentilation <=> (NOT PowerOff AND NOT SelfTestPassed AND NOT StartupEnded AND NOT StartVentilation AND NOT

InspTimePassed AND NOT ExpTimePassed AND NOT Resume) #
Resume <=> (NOT PowerOff AND NOT SelfTestPassed AND NOT StartupEnded AND NOT StartVentilation AND NOT

InspTimePassed AND NOT ExpTimePassed AND NOT StopVentilation) #

Listing 6.1: Example of a combinatorial model for the MVM case study.

133

Andrea Bombarda

6.2 Combinatorial sequence testing

Combinatorial testing is generally applied by taking into account the inputs of a system. However, for

event-driven software, the inputs to be considered are events. Moreover, in such systems, there may be

constraints on the events that can be used as input during testing. For example, a SUT may require that

a given event read appears after another event open, and if a test does not meet this constraint, the test

is invalid and cannot be applied (see Def. 2). These constraints are based on temporal precedences

and are not normally supported by regular combinatorial test generators.

In this section, I present a method that can be applied to generate test sequences with combinatorial

coverage for Finite State Machines (FSMs), which are commonly used for representing event-driven

systems, such as the PHD protocol (previously discussed in Sect. 5.2.2) [172]. This approach is known

as combinatorial sequence testing (CST) [113] and supports FSMs in the form of Mealy machines,

which are a rather general implementation of FSMs.

6.2.1 Finite State Machines

Finite State Machines (FSMs) are commonly used for modeling event-driven software. In particular,

the most used ones are Mealy machines, since they allow one not only to manage states and input

events, but also output events.

Definition 4 (Mealy machine). A Mealy machine 𝐹 is a 6-tuple (𝑆, 𝑠0, Σ,Λ, 𝑇, 𝐺) in which:

• 𝑆 is a finite set of states;

• 𝑠0 ∈ 𝑆 is the initial state of the machine 𝐹;

• Σ is a finite set that represents the input alphabet;

• Λ is a finite set representing the output alphabet;

• 𝑇 : 𝑆 × Σ → 𝑆 is the transition function that maps pairs of a state and an input symbol to the

corresponding next state;

• 𝐺 : 𝑆 × Σ → Λ is the output function that maps pairs of a state and an input symbol to the

corresponding output symbol.

In practice, FSMs and Mealy automata may not be complete. In fact, certain inputs may not be

defined in some states. For this reason, the definition of FSM can be extended by adding the notion of

incompleteness.

Definition 5 (Complete and incomplete FSM). Given an FSM 𝐹 (𝑆, 𝑠0, Σ,Λ, 𝑇, 𝐺) we say that 𝐹 is

a complete machine iff for all 𝑠 ∈ 𝑆 and for all 𝑒 ∈ Σ the transition function 𝑇 (𝑠, 𝑒) and the output

function 𝐺 (𝑠, 𝑒) are defined. On the contrary, we say that 𝐹 is a incomplete machine iff there exist

134

Combinatorial testing for complex PEMS

𝑠0start 𝑠1 𝑠2

𝑎/0

𝑏/1

𝑐/0

Figure 31: Example of Mealy machine. On the arrows, the pair 𝑖𝑛𝑝𝑢𝑡/𝑜𝑢𝑡𝑝𝑢𝑡 is reported.

a state 𝑠 ∈ 𝑆 and an event 𝑒 ∈ Σ for which the transition function 𝑇 (𝑠, 𝑒) is not defined (neither is

𝐺 (𝑠, 𝑒)).

For example, Fig. 31 represents an incomplete machine, because the transition function𝑇 is not defined

for the input symbols 𝑏 and 𝑐 in the state 𝑠0, for the input symbol 𝑎 in the state 𝑠1, and for the symbols

𝑎, 𝑏, and 𝑐 in the state 𝑠2.

6.2.2 Combinatorial sequence testing of FSMs

In classical combinatorial testing, testers are interested in covering the interaction among a fixed set of

inputs, each with a given set of possible values. Instead, in combinatorial sequence testing (CST) [113]

of FSMs, it is necessary to focus on covering the interaction of inputs taken from a unique set (the

input alphabet) but provided to the system under test in different orders.

This difference requires the redefinition of “test” as a sequence of inputs of variable length. In the

proposed approach, a test is a finite sequence of events 𝑡𝑠 = (𝑒1, 𝑒2, . . . , 𝑒𝑛) all belonging to the input

alphabet Σ. Then, a test suite composed of all tests 𝑡𝑠𝑖 is created so that the desired combinatorial

coverage of the input combinations is reached.

Definition 6 (Combinatorial sequence coverage). We say that a test suite achieves the 𝑡-way combina-

torial sequence coverage iff for any tuple of 𝑡 inputs there exists a test sequence in which these 𝑡 inputs

occur in any possible order (allowing interleaving extra inputs among the elements of the tuple).

As previously explained, most event-driven software can be represented using incomplete FSMs since,

in some states, some events cannot be fired. This assumption implicitly defines some constraints on

the FSM, meaning that only some test sequences are valid, while others are not. For this reason, as

for a single test case (see Def. 2), the validity of a test sequence has to be defined.

Definition 7 (Valid test sequence). Given an FSM 𝐹 (𝑆, 𝑆0, Σ,Λ, 𝑇, 𝐺) as per Def. 4, let 𝑡𝑠 =

(𝑒1, 𝑒2, . . . , 𝑒𝑛) be a test sequence composed of a sequence of 𝑛 events. Assume that 𝑡𝑠𝑖 is the

list of events in 𝑡𝑠 starting from 𝑒1 to 𝑒𝑖 and 𝑠(𝑡𝑠𝑖) is the state reached starting from the initial state 𝑠0

applying all events in 𝑡𝑠𝑖. We call 𝑡𝑠 a valid test sequence if and only if, for all 𝑒𝑖 ∈ 𝑡𝑠, 𝑒𝑖 can be fired

starting from the state 𝑠(𝑡𝑠𝑖−1), i.e., 𝑇 (𝑠(𝑡𝑠𝑖−1), 𝑒𝑖) and 𝐺 (𝑠(𝑡𝑠𝑖−1), 𝑒𝑖) are both defined.

135

Andrea Bombarda

When it comes to the generation of test sequences, the most common approach is the one that

extends classical combinatorial testing algorithms in order to generate SCAs [113]. However, the

main limitation of this approach is that all sequences must be composed of the same number of steps.

Instead, in the automata-based approach presented in this book, it is possible to have tests with different

lengths. This is a more realistic way to test systems, since not all user interactions are equal or of the

same duration.

Considering that every test is a permutation of events, first, I introduce the concept of automata

representing a 𝑡-wise permutation of 𝑡 events.

Definition 8 (𝑇-wise automaton). Given a permutation 𝑝 of t events (𝑒1, 𝑒2, . . . , 𝑒𝑡), the automaton

A built as in Fig. 32 is called the 𝑡-wise automaton. We call automaton(p) the function that builds

the 𝑡-wise automaton that represents the tuple 𝑝.

start

∗
𝑒1

∗
𝑒2

∗
𝑒𝑡

∗

Figure 32: Example of an automaton representing the sequence (𝑒1, 𝑒2, . . . , 𝑒𝑡).

Note that a 𝑡-wise automatonA can be used to check whether a sequence 𝑡𝑠 covers the tuple represented

by A: if 𝑡𝑠 is accepted by A, then the tuple is covered; otherwise, it is not.

6.2.3 Algorithm for CST

The automata-based algorithm for CTS is based on the concept of 𝑇-wise automaton. In fact, it

is possible to perform logical and mathematical operations between automata: if we consider the

automaton A1 covering the tuple 𝑡 𝑝1 and the automaton A2 covering the tuple 𝑡 𝑝2, their intersection

A1 ∩ A2 (if not empty) covers both 𝑡 𝑝1 and 𝑡 𝑝2.

In this way, the CST problem is solved by Algorithm 1. It implements a one-test-at-the-time test

generator. First, the algorithm builds an empty automaton 𝐴, then tries to randomly add as many

𝑡-wise automata as possible. This process is commonly known in the literature as collecting: multiple

𝑡-wise automata are collected in a unique automaton. When the automaton cannot be modified by

adding any other 𝑡-wise automaton, any string that can be derived from 𝐴 represents a test that covers

all the permutations from which the 𝑡-wise automaton is built. In Algorithm 1, this operation is

performed by the function string(A) which returns the shortest string accepted by the automaton 𝐴.

Note that since some users may prefer to obtain shorter test sequences and others may prefer longer

ones, when setting the algorithm, the user is required to set the maximum number 𝑁 of automata to

be collected together.

136

Combinatorial testing for complex PEMS

Algorithm 1 Algorithm for test generation.
Require: 𝐼 the set of events
Require: 𝑡 the strength of the tests
Require: 𝑁 the max number of tuples for each test sequence
Ensure: 𝑇𝑆 the test suite for CST
𝑇 ← t-permutations of 𝐼
𝑇𝑆 ← ∅
𝑖 ← 0
𝐴← empty automaton
while 𝑇 ≠ ∅ do

𝑝 ← a random element in 𝑇

𝑎 ← 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑜𝑛(𝑝)
if 𝑎 ∩ 𝐴 ≠ ∅ then

𝐴← 𝑎 ∩ 𝐴

𝑇 ← 𝑇 − {𝑝}
𝑖 ← 𝑖 + 1
if 𝑖 ≥ 𝑁 then

AddTest(𝑇𝑆,𝐴)
𝑖 ← 0

end if
end if

end while
AddTest(𝑇𝑆,𝐴)

procedure AddTest(𝑇𝑆,𝐴)
𝑇𝑆 ← 𝑇𝑆 + 𝑠𝑡𝑟𝑖𝑛𝑔(𝐴)
𝐴← empty automaton

end procedure

However, this standard algorithm may generate invalid test sequences, as no information about the

system and its constraints is considered. Therefore, in the following section, three different approaches

to repair invalid tests are analyzed:

• Reject not valid (REJ): if a sequence contains an event that is invalid at the time it is applied,

the whole sequence is rejected.

• Stop at error (STP): if a sequence contains an event that is invalid at the time it is applied, the

sequence is executed only until the error is reached. The following events are not tested.

• Skip error (SKP): if a sequence contains an event that is invalid at the time it is applied, the

single event is skipped and the following events are executed.

137

Andrea Bombarda

Algorithm 2 Algorithm for test generation.
Require: 𝐼 the set of events
Require: 𝐹 the finite state machine
Require: 𝑡 the strength of the tests
Require: 𝑁 the max number of tuples for each test sequence
Ensure: 𝑇𝑆 the test suite for CST

1: 𝑇 ← t-permutations of 𝐼
2: 𝑇𝑆 ← ∅
3: 𝑖 ← 0
4: 𝐴← 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑜𝑛(𝐹) ⊲ init A with the FSM automaton
5: while 𝑇 ≠ ∅ do
6: 𝑝 ← a random element in 𝑇

7: 𝑎 ← 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑜𝑛(𝑝)
8: if 𝑎 ∩ 𝐴 ≠ ∅ then
9: 𝐴← 𝑎 ∩ 𝐴

10: 𝑇 ← 𝑇 − {𝑝}
11: 𝑖 ← 𝑖 + 1
12: if 𝑖 ≥ 𝑁 then
13: AddTest(𝑇𝑆,𝐴)
14: 𝑖 ← 0
15: end if
16: else if 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑜𝑛(𝐹) ∩ 𝑎 = ∅ then ⊲ 𝑝 is infeasible
17: 𝑇 ← 𝑇 − {𝑝}
18: end if
19: end while
20: AddTest(𝑇𝑆,𝐴)
21:
22: procedure AddTest(𝑇𝑆,𝐴)
23: 𝑇𝑆 ← 𝑇𝑆 + 𝑠𝑡𝑟𝑖𝑛𝑔(𝐴)
24: 𝐴← 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑜𝑛(𝐹) ⊲ init A with the FSM automaton
25: end procedure

How to generate only valid test sequences

In practice, one may want to generate from the beginning only valid tests without the need of repairing

them. For this reason, Algorithm 1 can be modified as reported in Algorithm 2. In this new version

of the generation algorithm, called CNST, 𝑡-wise automata are collected not starting from an empty

automaton, but from the one that accepts only valid sequences of inputs for the FSM under test (lines

4 and 24). The operation is exemplified in Fig. 33.

If the FSM of the system under test does not accept a given tuple, this means that the tuple is infeasible

(it clashes with the constraints of the system). This screening is done by the algorithm at line 16:

it checks if a tuple 𝑡 𝑝 that cannot be collected with the current automaton can instead be collected

with the automaton containing only the constraints of the FSM (𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑜𝑛(𝐹)). If not, the tuple is

infeasible.

138

Combinatorial testing for complex PEMS

start 0
0

1

1

0
0

10
1

(a) Automaton of the system.

start

∗
1
∗

0
∗

(b) Automaton of the pair 1 − 0.

start 0
0

1
1

0

0

1

0

00

1

0
1

0

1

(c) Intersection among the two previous automata.

Figure 33: Intersection process among automata for the pattern recognition system.

Algorithm 3 Monitoring.
1: procedure AddTest(𝑇𝑆,𝐴,𝑇)
2: test← 𝑠𝑡𝑟𝑖𝑛𝑔(𝐴)
3: for all 𝑡 ∈ 𝑇 do
4: if 𝑖𝑠𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 (𝑡𝑒𝑠𝑡, 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑜𝑛(𝑡)) then
5: 𝑇 ← 𝑇 − {𝑡}
6: end if
7: end for
8: 𝑇𝑆 ← 𝑇𝑆 + test
9: 𝐴← 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑜𝑛(𝐹)

10: end procedure

Monitoring

To further optimize test generation, a commonly adopted technique is monitoring (previously intro-

duced in Sect. 5.4.1). It consists in checking if a test generated for a set of tuples accidentally covers

other tuples as well. Algorithm 3 shows how monitoring works: once a test is generated, all tuples

that are not yet covered are checked against the new test. If a new tuple is accidentally covered, it is

discarded. Note that, as previously done for the t-wise automaton, to check if a tuple is covered by a

test, it is possible to verify whether the automaton representing that tuple accepts the test sequence.

One may argue that applying monitoring could slow down the process. However, while the collecting

procedure shown in Algorithm 2 can be expensive, since it requires the operation of intersection

among automata, the monitoring is generally much faster, since acceptance is easily computed.

139

Andrea Bombarda

Automata per test sequence (𝑁) 10
Transitions 65
States 5
Events 23
Event pairs 529
Valid event pairs 484
Event triples 12,167
Valid event triples 10,648

Table 19: PHD benchmark characteristics.

M
on

ito
ri

ng

M
et

ho
d

#
Se

q.
M

ax
.L

en
.

M
in

.L
en

.
Av

g.
Le

n.

To
t.

Le
n.

#
Va

lid
Se

q.

#
C

ov
.p

ai
rs

#
C

ov
.s

ta
te

s
#

C
ov

.t
ra

ns
.

G
en

.t
[𝑠

]

NO CNST 41 20 11 17 708 41 484 5 51 428.40
NO SKP 45 20 2 15 693 0 270 5 39 135.60
NO REJ 45 19 2 15 701 0 0 0 0 144.24
NO STP 45 20 2 15 692 0 49 2 12 150.80

YES CNST 41 21 15 17 723 41 484 5 51 474.92
YES SKP 45 20 2 15 686 0 271 5 39 185.08
YES REJ 45 18 2 15 695 1 1 1 2 131.00
YES STP 45 18 2 15 701 0 55 3 16 168.05

Table 20: Method evaluation (pairwise testing).

6.2.4 Method evaluation

In this section, the proposed approach is evaluated and applied to a real medical case study: the

PHD protocol (see Sect. 5.2.2). More details about the characteristics of the PHD protocol and on

how the CST algorithm has been configured are reported in Tab. 19. Furthermore, the evaluation

has been carried out by performing 10 times each experiment, in order to reduce the possible non-

determinism. The average results, obtained on a computer with 14 GB of RAM and an Intel® Core™

i5-750 CPU, are reported in Tab. 20. The code generating the test sequences is available at https://

github.com/fmselab/FiniteStateMachineCombinatorial, and has been implemented using

the dk.brics.automaton [136] Java library.

In the following, several aspects about the impact of the proposed approach and its configuration

parameters are discussed in detail.

140

https://github.com/fmselab/FiniteStateMachineCombinatorial
https://github.com/fmselab/FiniteStateMachineCombinatorial

Combinatorial testing for complex PEMS

Method % Valid Seq. % Pairs Cov. % States Cov. % Transitions Cov.

CNST 100.00 100.00 100.00 77.65
SKP 3.92 55.50 100.00 62.94
REJ 2.94 0.86 27.50 5.88
STP 1.96 12.52 75.00 28.24

Table 21: Evaluation of the results obtained with different generation methods for the PHD case study.

Sequence generation time with the CNST method

Observing the generation time, it is evident that the CNST method is the slowest, as the generation

of the sequences in accordance with the constraints of the FSM requires more time than repairing

the sequences. In fact, building the intersection among automata is time-consuming since they must

contain the entire system constraints from the beginning (instead of starting from the empty automaton).

However, CNST leads to better results in terms of coverage, as discussed in the following.

Coverage and valid sequences with CNST method

Table 21 reports the result of the coverage reached in the case of the PHD protocol with the sequences

generated by all the methods presented before. The results obtained confirm that the CNST method,

which generates test sequences following the constraints imposed by the FSM of the system, leads to

better (or equal) results than the other reparation approaches:

• The percentage of valid sequences is higher. With other methods, in many cases, no valid

sequences are produced. In those cases, the user must repair the sequences (with one of the

three proposed approaches - SKP, REJ, or STP) to still perform the testing activity;

• The overall coverage (event pairs, states, and transitions) is higher or the same for CNST

compared to the one obtained with other methods because all sequences that are generated by

the algorithm can be executed on the system, as they contain only valid events.

Note that the value of covered pairs is computed only over the number of feasible ones, since some of

them may not be possible to be covered due to the constraints of the system.

Impact of monitoring

Observing the results in Tab. 20, it can be seen that the test suites obtained when using monitoring and

methods that involve the repair of the sequences generally have better or equal coverage (number of

pairs covered) than those that do not use monitoring. This is reasonable because, without monitoring,

141

Andrea Bombarda

(a) With the SKP method. (b) With the STP method.

Figure 34: Number of pairs covered with different values of the parameter 𝑁 .

the algorithm produces more sequences that can fail, and, in some cases, when the test sequence is

invalid, its execution must be halted before its termination.

Furthermore, in these experiments, the monitoring optimization has shown not to be time consuming,

as only a little overhead is added in some cases. For this reason, it can be concluded that the application

of monitoring is always a good choice.

Correlation between the number of covered pairs and 𝑁

When test sequences need to be repaired, the number of pairs covered by the generated test suite

is influenced by the value chosen for the parameter 𝑁 (number of automata per batch). In fact, as

shown in Fig. 34a, for the SKP repair method, the number of pairs covered has a growing trend with

increasing 𝑁 . This is justified by the fact that, when long sequences are generated, more pairs are

included in each. Therefore, considering that the events that cannot be covered are skipped, more pairs

are covered by fewer test sequences. On the other hand, Fig. 34b shows that for the STP repair method,

the number of covered pairs has a decreasing trend with the growth of 𝑁: having longer sequences

means that, when an invalid event is reached, the execution of the whole sequence is stopped and

more events are not executed. A similar behavior can be observed when using REJ. In contrast, if the

CNST method is chosen, the number of pairs covered remains constant when 𝑁 varies, since all pairs

in a test sequence always satisfy all constraints. In conclusion, for the SKP method, a higher 𝑁 can

improve coverage, while for STP and REJ, the shorter the better.

Correlation between generation time and 𝑁

Testers may arbitrarily choose the value of 𝑁 (number of automata to be collected in each test

sequence) depending on the generation and repairment method chosen, but experiments show that the

sequence generation time increases exponentially with the increment of 𝑁 . In fact, the intersection

142

Combinatorial testing for complex PEMS

(a) With the STP method. (b) With the CNST method.

Figure 35: Sequence generation time [𝑠] with different values for the parameter 𝑁 .

of 𝑁 automata usually requires much more time than the intersection of 𝑁 − 1 automata, especially

when higher values of 𝑁 are used.

This behavior is reflected by Fig. 35a that shows the correlation between generation time and 𝑁 when

test sequences are generated without taking into account the constraints (in the example, the STP

method is used). Furthermore, even when the CNST method is used, experiments show that the

correlation between 𝑁 and the generation time is exponential (see Fig. 35b). However, increasing 𝑁

leads to smaller test suites, as shown below, so users should decide the value of 𝑁 taking into account

this trade-off.

Comparison between automata-based generation method and SCAs

Common approaches for CST are based on sequence covering arrays (SCAs). In order to validate the

effectiveness of the proposed method, in the following, the proposed approach is compared with the one

using SCAs (using the tool provided by [141]). To gather more results and investigate the applicability

with a strength greater than 𝑡 = 2, the tests used in this section to evaluate the automata-based approach

are obtained using 3-wise testing (see Tab. 22).

SCAs generators only perform permutations of 𝑛 events, thus they do not consider the constraints of

the system. For this reason, in order to compare the results of the approach proposed with the one

generating SCAs, test sequences need to be repaired. Moreover, since the standard approach with

SCAs produces sequences all of the same length (equal to the number of events considered), test

sequences are shorter than those obtained with the automata-based method presented in this section.

These two aspects combine and, as a consequence, the generation time is shorter when using SCA:

computing all the permutations is less complex than computing the intersection among automata,

especially if it is performed without considering the constraints. Also, repairing test sequences does

not increase the generation time as CNST does.

143

Andrea Bombarda

M
on

ito
r.

M
et

ho
d

𝑁 #
Se

q.

M
ax

.L
en

.

M
in

.L
en

.

Av
g.

Le
n.

To
t.

Le
n.

#
Va

lid
Se

q.

#
C

ov
.t

ri
ad

s

#
C

ov
.s

ta
te

s

#
C

ov
.t

ra
ns

.

G
en

.t
[𝑠

]

NO CNST 6 1,775 22 10 15 28,076 1,775 10,648 5 65 538.37
NO SKP 6 1,521 22 12 16 25,198 0 7,075 5 65 981.22
NO REJ 6 1,521 21 12 16 25,178 0 0 0 0 827.73
NO STP 6 1,521 22 12 16 25,277 0 1,298 5 42 881.79

YES CNST 6 1,775 23 11 15 28,032 1,775 10,648 5 65 7475.46
YES SKP 6 1,521 21 12 16 25,159 0 7170 5 65 7754.58
YES REJ 6 1,521 21 12 16 25,165 0 0 0 0 7329.89
YES STP 6 1,521 21 11 16 25,194 0 1,263 5 39 7109.64

Table 22: Method evaluation (3-wise testing).

M
et

ho
d

Va
lid

Se
q.

Tr
ia

ds
C

ov
.

St
at

es
C

ov
.

Tr
an

s.
C

ov
.

Av
g.

C
ov

Automata-based CNST 100.00% 100.00% 100.00% 95.29% 98.43%

Automata-based SKP 0.06% 66.77% 100.00% 95.29%
REJ 0.06% 0.07% 25.00% 5.88% 51.10%
STP 0.06% 12.00% 92.50% 62.35%

SCAs SKP 2.17% 26.44% 85.00% 57.65%
REJ 2.17% 0.00% 15.00% 2.35% 29.03%
STP 2.17% 0.15% 50.00% 24.17%

Table 23: Comparison between SCAs and automata-based method (3-wise testing).

Tab. 23 shows the summary of the comparison between the coverage obtained by the automata-based

method and the one by SCAs (with different repairing procedures). The results confirm that the former

performs better than the latter in every aspect analyzed (except for the time). The only aspect in which

the SCA-based method outperforms the automata-based one is the percentage of valid sequences

(when CNST is not used). However, this is not an unexpected result since SCAs generate fewer test

sequences. All the results obtained show that the automata-based method is overall better than the

SCAs one, and it is confirmed by the paired t-test [178] with:

• 𝐻0: the two methods perform in the same way, in terms of coverage

• 𝛼 = 0.05

• 𝑡 = 3.8507

• 𝑝𝑣𝑎𝑙𝑢𝑒 = 0.004873

144

Combinatorial testing for complex PEMS

The statistical test ends with 𝑝𝑣𝑎𝑙𝑢𝑒 < 𝛼, so the null hypothesis can be rejected and, since the test value

𝑡 > 0 it is confirmed that the automata-based method performs better than SCAs. This is an important

result, especially when CST is applied to safety-critical devices (such as in the medical domain), as

higher coverage can lead to higher-quality products and to a greater number of possible bugs revealed.

6.3 Comparing combinatorial test generators

Since combinatorial testing has proven to be very effective in a variety of systems, new combinatorial

test generators are proposed every year. These tools exploit different algorithms to generate tests.

However, if a limited amount of resources is available, testers may need a measure to define which

tool should be preferred for generating tests. Benchmarking combinatorial test generators in a fair

and effective way is a difficult task, and there is no well-established methodology or environment

for generator comparison yet. In the following, I present some complexity measures for comparing

combinatorial models, a formula for computing the cost of using a specific test generator, and a

benchmarking environment that can be used during the preliminary phases of testing in order to

evaluate the impact of tools on the cost of testing and to guide the choice on the most suitable one.

6.3.1 Model complexity measures

Each combinatorial model may have different complexity due to multiple parameters and constraints.

Several complexity measures have been proposed in the literature. Among them, the most used are

the following:

• Number of parameters: having more parameters means having more combinations to check.

• Size: it represents the total number of distinct tests (valid and invalid) that can be generated,

corresponding to the product of the cardinalities of all domains. Having more possible combi-

nations involves a higher complexity in terms of execution time.

• Number of constraints: more constrained models may need more constraint checks, which

complicate the test generation procedure.

• Number of logical operators in the constraints: CIT models may have many simple constraints

or a few constraints that are composed of several logical operators. Thus, this definition of

model complexity is not limited only to the number of constraints but considers their complexity

as well, computed as the sum of the number of logical operators.

145

Andrea Bombarda

Besides the measures given above, two more measures that refer only to the semantics of the models

can be used:

• Tuple Validity Ratio: given a strength 𝑡, it represents the fraction of valid 𝑡-tuples over the total

number of 𝑡-tuples. One way to compute the ratio is to enumerate all the tuples and check if

they are valid or not. To check the validity of a tuple, any constraint or logical solver may be

used.

• Test Validity Ratio: it is intended as the fraction of valid tests over the total number of possible

tests. It can be computed by enumerating all tests and checking whether they are valid or not.

In practice, this may require an exponential time with the size of the problem, and it is not

doable for large models. However, the literature reports a better way that does not require the

enumeration of the tests and is based on the use of Multi-valued Decision Diagrams [91] that

can compute the number of valid models in a very efficient way.

6.3.2 Computing the cost of test generators

In practice, it is not trivial to identify the best generator. In fact, since test generation for CIT is a

multi-objective problem, it must take into account both time and test suite size. Indeed, sometimes,

generators can generate a lot of tests in less time or generate a small but still complete test suite in

hours of computation.

For this reason, a formula for cost estimation must consider three different parameters, as proposed by

the cost model in [93]:

𝑐𝑜𝑠𝑡 = 𝑡𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑖𝑚𝑒𝑔𝑒𝑛 + size · 𝑡𝑖𝑚𝑒𝑡𝑒𝑠𝑡 (6.1)

The cost is equal to the total testing time, composed by the 𝑡𝑖𝑚𝑒𝑔𝑒𝑛 used by the generators to generate

test suites and the product between the 𝑠𝑖𝑧𝑒 of the test suite and the average 𝑡𝑖𝑚𝑒𝑡𝑒𝑠𝑡 required to perform

a single test on the SUT. This cost model can be used as a method to evaluate a tool with respect to

another.

Note that testers may need to consider other aspects beside the cost. For example, some tools may not

be able to manage a specific constrained combinatorial model (e.g., because it uses expressions not

supported by the generator, such as relational expressions). In this case, only the generators capable of

handling the model must be considered, and, between them, the least expensive one should be chosen

by the testers.

146

Combinatorial testing for complex PEMS

Feature: # models

Parameters
all with the same cardinality 5
only booleans 4
with also enumeratives 18
with also integers 33

Constraints
without constraints 22
as forbidden tuples 33
in Clausal Normal Form 25
containing relational operators (>, <, etc.) 6

Table 24: Summary of the benchmarks features.

6.3.3 A benchmarking environment for CIT tools

To allow testers to evaluate combinatorial test generators, the CTWedge environment [87] has been

extended and refactored, to facilitate the addition of new generator tools. In this way, users can test

the available tools against several benchmark examples and define which is the best for the application

scenario.

Benchmarks

In the benchmarking environment integrated into CTWedge, 196 test models have been collected.

Some benchmark models were already embedded in CTWedge as example models (previously taken

from [93,107,146,147,160]), others have been collected from the PICT GitHub page 1, and others have

been extracted from the collection used in [167]. Note that the scenarios are not referred specifically

to the medical software domain, but their complexity is distributed in a way that conclusions drown

from them are applicable to every application domain.

In order to obtain a fair comparison, all the gathered models that were not written in the CTWedge

language have been translated, both in an automatic and manual manner. Benchmark models vary

greatly in terms of number of variables, number of constraints, total size, and tuple and test validity

ratios. Moreover, even in terms of relevant features (see Tab. 24), models differ significantly. Note that

a model can exhibit more than one feature, while others none of them. By using these benchmarks,

and possibly additional ones, test teams may try the available generators on models that are more

similar to the one of the system to be tested and extract measures useful for defining which tool is the

best fit for the specific application scenario.

1https://github.com/microsoft/pict

147

https://github.com/microsoft/pict

Andrea Bombarda

CTWedge

(Language)

Util IDE

Generators

Web UI

Benchmarks

ACTS

CAgen

CASA

Medici

PICT

Figure 36: Refactored architecture of CTWedge for benchmarking integration.

How to integrate new CIT generators

To make the integration of new generators into the benchmarking environment easier, the internal

architecture of CTWedge has been deeply refactored (Fig. 36), by exploiting Eclipse extension points,

made available by the Eclipse plugin development environment. The benchmarking framework already

integrates the following CIT generators:

• ACTS (Automated Combinatorial Testing for Software), developed by NIST [181].

• CASA (Covering Arrays by Simulated Annealing), which generates combinatorial test suites

using simulated annealing [92];

• CAGen (Covering Array Generation), developed by SBAresearch [173];

• Medici (Multi-valuEd Decision diagrams for Combinatorial Interaction Testing), developed by

University of Bergamo [91];

• PICT (Pairwise Independent Combinatorial Testing), developed by Microsoft. [134].

However, additional generators may be added using the procedure explained in the following.

Each generator must extend the class ICTWedgeTestGenerator, implement the method getTest-

Suite(...), and extend the ctwedge.util.ctwedgeGenerators extension point2. The getTest-

2More detailed information about how to integrate new generators are available at https://github.com/fmselab/
ctwedge/wiki

148

https://github.com/fmselab/ctwedge/wiki
https://github.com/fmselab/ctwedge/wiki

Combinatorial testing for complex PEMS

Suite(...) method must return the generated test suite for a defined model, together with the required

generation time.

This way of extending the benchmarking environment allows for a loosely coupled structure: the

benchmarking environment does not need modifications when new generators are added, since they

are automatically discovered by Eclipse as new plugins. For this reason, each generator must be

implemented as an Eclipse plugin managed with Maven. As an additional requirement, each generator

needs to also include a translator from CTWedge grammar to its own one or, at least, shall support

CTWedge as input format.

After having integrated a generator (or chosen an already available one), the benchmark can be

executed by the functionalities in the package ctwedge.generator.benchmarks, and, in particular,

in the class BenchmarkTest. This class exploits the Eclipse extension point extended by all generators

(i.e., ctwedge.util.ctwedgeGenerators) to discover all generators that have been defined in the

environment and check the test suite sizes and generation times for each generator on each benchmark

model.

Validation and test suite checking activities

The proposed benchmarking framework provides completeness and validity checks, suitable for veri-

fying if a tool generates test suites that violate the properties described in Sect. 6.1. These APIs are

contained in the package ctwedge.util.validation and, in particular in the SMTTestSuiteVal-

idator class that implements the validation functionalities by exploiting an SMT solver. Given a test

suite TS, the main functionalities offered by the validation APIs are as follows:

• isValid(), returning whether the test suite satisfies all the constraints contained in the CIT

model;

• howManyTestsAreValid(), which counts how many tests contained in the test suite are valid;

• isComplete(), which checks the completeness of the test suite by verifying if some valid

combination of parameters is not covered by the test suite;

• howManyTuplesCovers(), returning the number of tuples covered by all the tests in the test

suite.

6.4 Parallelizing combinatorial test generation

Taking into account the cost function for the generation of combinatorial test suites (Formula 6.1), the

cost of choosing a specific tool can be reduced if the test suite 𝑠𝑖𝑧𝑒 or generation 𝑡𝑖𝑚𝑒𝑔𝑒𝑛 is reduced.

149

Andrea Bombarda

CIT Model Tuples Generator
Thread Tuple

Buffer

Test Builder
Thread 1

Test Builder
Thread 2

Test Builder
Thread n

 Test Context 1

 Test Context 2

 Test Context 3

 Test Context m

X1

X2

X3

Xm

Figure 37: Structure of the tools for multi-thread combinatorial test generation.

In fact, the time for executing a single test, 𝑡𝑖𝑚𝑒𝑡𝑒𝑠𝑡 , depends on the system to be tested, and it can not

be modified by varying the test generator.

Although reducing test suite size may be difficult (since it requires the implementation of new algo-

rithms, which have to be more effective than IPO-G [117], that has proved to be the cutting-edge tool),

reducing the generation time is easier. For this reason, in this section, I present two similar approaches

that exploit multi-thread, different underlying representations, and aim to speed up the test generation

process. Both approaches are based on the structure shown in Fig. 37 and explained in general in the

following. Then, a specific description of the process, which depends on the internal implementation,

is given in Sect. 6.4.1 and Sect. 6.4.2.

In the multi-threaded approach, all the tuples to be covered are generated, exploiting the Cartesian

product, by a single thread from a CIT model (such as the one of the MVM case study in Listing 6.1)

and stored in a shared buffer with limited capacity (40 tuples in our experiments, but it can be

configured by the user). Then, when the shared buffer is fully filled, the tuple generation thread stops

and waits until a new free slot is available. This implementation allows avoiding storing all tuples at

the same time, and thus guarantees a consistent saving in memory utilization, especially for complex

combinatorial models, in which the number of tuples can be significantly high.

When at least a tuple is available in the tuple buffer, 𝑛 Test Builder threads (where 𝑛 can be automatically

selected by the tool depending on the hardware architecture or specified by the user) start to consume

each tuple 𝑡 𝑝𝑖. The tuples are consumed exploiting several Test Contexts, which are continuously

updated as each tuple is managed by a single Test Builder thread.

Definition 9 (Test context). Let 𝑃 = {𝐼, 𝐶} be a combinatorial problem, where 𝐼 = {𝑥𝑖, 𝑣𝑖} is a set

of parameters (each 𝑥𝑖 with the set of possible values 𝑣𝑖) and 𝐶 is the set of constraints. We call

𝑇𝐶 = ⟨𝐴, 𝑋𝑇𝑆⟩ a test context for a combinatorial problem 𝑃, where 𝐴 is a list of assignments of some

150

Combinatorial testing for complex PEMS

parameters 𝑝𝑖 to one of their possible values 𝑣𝑖, 𝑗 and 𝑋𝑇𝑆 is the structure used for the management of

the combinatorial problem 𝑃, its constraints, and the assignments committed to the context so far.

As reported in Def. 9, each test context 𝑇𝐶 is embedded with a list of assignments 𝐴, that represents

a partial test case 𝑇 , together with the structure containing all the information about the model

(parameters and constraints) and the test itself. The process that updates a test context is repeated until

it is complete, i.e., it represents a complete test case, that is obtained when the list of assignments 𝐴

includes all the parameters of the model. Given a test context 𝑇𝐶, a tuple 𝑡 𝑝 can be:

• implied, if all assignments of the tuple 𝑡 𝑝 are already contained in the assignments 𝐴, i.e., the

possible partial test case 𝑇 ;

• compatible, if the tuple 𝑡 𝑝 contains only assignments that are not in conflict with those of the

test context 𝑇𝐶, i.e., in the test 𝑇𝐶, each parameter contained in the tuple 𝑡 𝑝 is still not valorized

or has an equal value, and 𝑡 𝑝 does not clash with the constraints of the combinatorial problem;

• uncoverable, if the assignments contained in the tuple 𝑡 𝑝 clash with the constraints of the

combinatorial problem.

The presented approach is implemented by Algorithm 4, and it is iteratively repeated for all the tuples

and, at the end, a test is extracted from every test context (see Algorithm 5).

6.4.1 pMEDICI: exploiting MDDs for combinatorial test generation

In this section, I present the pMEDICI tool, which implements the structure shown in Fig. 37 by using

Multi-valued Decision Diagrams (MDDs) as the underlying structure in each test context.

Background on MDDs

The tool presented in this section exploits decision diagrams, as defined in the following.

Definition 10 (Decision diagram). A decision diagram is a graph that represents a function 𝑓 : 𝐷 → 𝐵

where 𝐷 = 𝐷1 × · · · × · · ·𝐷𝑛 and 𝐵 is the Boolean domain, i.e., 𝐵 = {𝐹,𝑇}.

Typically, a decision diagram is used to evaluate the truth value of a function 𝑓 when applied to

variables 𝑥1, · · · , 𝑥𝑛. If all domains 𝐷𝑖 are binary, then we use Binary Decision Diagrams (BDDs)

to represent Boolean functions. Multivalued Decision Diagrams (MDDs), instead, extend BDDs by

allowing every variable to have a different domain with a different number of elements. It is important

for each MDD to respect the following properties:

• only two terminal nodes must be present, which are labeled as F and T;

151

Andrea Bombarda

Algorithm 4 Tuple consumption procedure.
Require: TupBuffer, the buffer containing the tuple already produced and ready to be consumed
Require: 𝑇𝐶, the list of all the test contexts
Require: 𝑀𝐶 , the CIT model

⊲ Extract the tuple from the tuple buffer
1: 𝑡 𝑗 ← TupBuffer.𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝐹𝑖𝑟𝑠𝑡 ()

⊲ Try to find a test context that implies the tuple
2: 𝑡𝑐 ← 𝑓 𝑖𝑛𝑑𝐼𝑚𝑝𝑙𝑖𝑒𝑠(𝑇𝐶, 𝑡 𝑗)
3: if 𝑡𝑐 is not 𝑁𝑈𝐿𝐿 then
4: 𝑡 𝑗 .𝑠𝑒𝑡𝐶𝑜𝑣𝑒𝑟𝑒𝑑 ()
5: return
6: end if

⊲ Try to find a test context which is compatible with 𝑡 𝑗
7: 𝑡𝑐 ← 𝑓 𝑖𝑛𝑑𝐶𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒(𝑇𝐶, 𝑡 𝑗)
8: if 𝑡𝑐 is not 𝑁𝑈𝐿𝐿 then
9: 𝑡𝑐.𝑢𝑝𝑑𝑎𝑡𝑒𝑇𝐶 (𝑡 𝑗)

10: 𝑡 𝑗 .𝑠𝑒𝑡𝐶𝑜𝑣𝑒𝑟𝑒𝑑 ()
11: return
12: end if

⊲ Create a new empty test context
13: 𝑡𝑐 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑇𝑒𝑠𝑡𝐶𝑜𝑛𝑡𝑒𝑥𝑡 (𝑀𝐶)
14: 𝑡𝑐.𝑎𝑑𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠(𝑀𝐶 .𝑔𝑒𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠𝐿𝑖𝑠𝑡 ())
15: if 𝑡𝑐.𝑖𝑠𝐶𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒(𝑡 𝑗) then
16: 𝑡𝑐.𝑢𝑝𝑑𝑎𝑡𝑒𝑇𝐶 (𝑡 𝑗)
17: 𝑡 𝑗 .𝑠𝑒𝑡𝐶𝑜𝑣𝑒𝑟𝑒𝑑 ()
18: else
19: 𝑡 𝑗 .𝑠𝑒𝑡𝑈𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 ()
20: end if
21: return

• every non-terminal node must be labeled by an input variable 𝑥𝑖 and must have |𝐷𝑖 | outgoing

labeled edges, i.e., one per each possible value of the domain;

• every variable must appear only once in the MDD, in any path from the root to a terminal node;

Given these properties, an MDD can select which values of the domain 𝐷 are accepted by the function

𝑓 (i.e., which values lead to the terminal node T). In fact, if the values 𝑥1, . . . , 𝑥𝑛 for the variables in

𝐷 are selected by 𝑓 , then 𝑓 (𝑥1, . . . , 𝑥𝑛) = 𝑇 , otherwise 𝑓 (𝑥1, . . . , 𝑥𝑛) = 𝐹.

Typically, among MDDs, unary operations can be performed (complement, or a computation of

cardinality that represents the number of all possible paths leading to the terminal node T). The

cardinality value of an MDD can be used to check the consistency between boolean functions. In fact,

152

Combinatorial testing for complex PEMS

Algorithm 5 Tests collection.
Require: 𝑇𝐶, the list of all the test contexts
Require: 𝑇ℎ𝑟𝑒𝑎𝑑𝑠, the list of all the test builder threads
Require: 𝑇𝑢𝑝𝐵𝑢𝑖𝑙𝑑𝑒𝑟, the thread building the tuples
Ensure: 𝑇𝑆, the vector containing the test cases

⊲ Join all the threads
1: for each 𝑡ℎ𝑟𝑒𝑎𝑑 ∈ 𝑇ℎ𝑟𝑒𝑎𝑑𝑠 do
2: 𝑡ℎ𝑟𝑒𝑎𝑑. 𝑗𝑜𝑖𝑛()
3: end for
4: 𝑇𝑢𝑝𝐵𝑢𝑖𝑙𝑑𝑒𝑟. 𝑗𝑜𝑖𝑛()

⊲ Gather all the tests generated by the test contexts
5: for each 𝑡𝑐 ∈ 𝑇𝐶 do
6: 𝑇𝑆.𝑎𝑑𝑑 (𝑡𝑐.𝑔𝑒𝑡𝑇𝑒𝑠𝑡 ())
7: end for

if 𝑓1(𝑥) and 𝑓2(𝑥) are inconsistent, the intersection between the MDDs representing the two functions

is empty, for all the values of 𝑥. This is one of the properties exploited for generating combinatorial

test suites with MDDs. Furthermore, with MDDs, the most classical binary operations such as union,

intersection, and difference can be performed.

In particular, since MDDs can represent logic functions, operations among MDDs are equivalent to

logical operations:

• given an MDD 𝑀 representing the function 𝑓 , the complement ¬𝑀 represents the function ¬ 𝑓 ;

• the union between two MDDs 𝑀1 ∪ 𝑀2 represents the function 𝑓1 ∨ 𝑓2;

• the intersection between two MDDs 𝑀1 ∩ 𝑀2 represents the function 𝑓1 ∧ 𝑓2.

How to deal with combinatorial models with MDDs

As previously introduced, MDDs allow for the expression of Boolean functions. Hence, an MDD can

be used to handle the boolean function computing the validity of the assignments to each parameter in

a combinatorial model. In fact, if ignoring the constraints, a combinatorial model with 𝑛 parameters,

each one with cardinality 𝑝𝑖, can be easily represented using an MDD 𝑀𝑇𝑆 with 𝑛 non-terminal nodes

(each one associated with the name of the corresponding parameter) and with 𝑝𝑖 outgoing labeled

edges for all the parameters except the last one, which has only one edge connected to the terminal

node 𝑇 - since each assignment is valid if constraints are ignored. Fig. 38 represents an example of

MDD 𝑀𝑇𝑆 modeling a simple combinatorial model with only three parameters, each with two possible

values and without constraints. Every path from the root to the terminal T is a syntactically correct

153

Andrea Bombarda

P1 P2 P3 T
v1, v2 v3, v4 true, false

Figure 38: Example of MDD for a simple combinatorial model.

P1 P2 P3 T

F

v2

v1

v3, v4 true

false

Figure 39: MDD structure when a constraint is included.

assignment of values to the parameters. Thus, from the MDD 𝑀𝑇𝑆 all tests that can be derived, i.e.,

all possible paths from the start to the terminal node, are valid tests. On the contrary, if also the

constraints are considered, some path will lead to the terminal note F (i.e. those that will violate the

constraints).

Every constraint can be represented as a Boolean formula containing the operators ¬,∨,∧ and the

equality between the parameters and their values. Therefore, each constraint can be represented by an

MDD that models its truth function. In particular, the intersection between the MDD that models the

parameters 𝑀𝑇𝑆 and the MDDs derived from each constraint is a new MDD that accepts only valid

tests that comply with all constraints. For example, Fig. 39 shows how the MDD in Fig. 38 evolves

when the constraint (P3 = true AND P1 = v2) is included.

Note that when a tuple needs to be added to an MDD, it can be considered as a “new constraint”, so

the operation previously described (intersection between the MDD representing the tuple and the one

representing the system) can be performed. As I will discuss later in detail, pMEDICI builds the tests

incrementally, by collecting suitable tuples in order to obtain valid tests: the intersection computation

is iteratively repeated, in all the test contexts, for all the tuples.

The pMEDICI tool

pMEDICI3 takes advantage of the concepts previously explained to generate combinatorial test suites.

It integrates mddlib4, by the Consortium for Logical Models and Tools, which is the only open-source

Java library that natively supports MDDs and allows the computation of logical operations between

them.

3pMEDICI is available online at https://github.com/fmselab/ct-tools/tree/main/pMEDICI
4https://github.com/colomoto/mddlib

154

https://github.com/fmselab/ct-tools/tree/main/pMEDICI
https://github.com/colomoto/mddlib

Combinatorial testing for complex PEMS

The structure of the tool is shown in Fig. 37, where each 𝑋𝑖 is, in this case, the MDD internal to each

test context. Considering the MDD, and the process shown in Algorithm 4, given a tuple 𝑡 𝑗 to be

handled by a test builder thread in pMEDICI:

• if the thread finds a test context 𝑡𝑐𝑖 in which the tuple 𝑡 𝑗 is already implied, 𝑡 𝑗 is consumed and

marked as covered;

• if a thread finds a test context 𝑡𝑐𝑖 in which the tuple 𝑡 𝑗 is compatible, 𝑡 𝑗 is handled by 𝑡𝑐𝑖, which

updates its MDD structure by computing the intersection between the current MDD and the one

corresponding to the tuple 𝑡 𝑗 . Then, 𝑡 𝑗 is consumed, and marked as covered;

• if a thread can not find a test context 𝑡𝑐𝑖 in which the tuple 𝑡 𝑗 is compatible or implied, a new

test context is created together with its MDD structure that initially contains only the constraints

of the combinatorial model. If 𝑡 𝑗 is compatible with the newly created test context, the tuple is

consumed and marked as covered; otherwise, it means that the tuple is not compatible with the

constraints, so it is marked as uncoverable and skipped.

During the test building procedure, pMEDICI adopts several optimizations:

• Test context selection: the threads building the tests can select the test context according to

some policies (for instance, by giving precedence to those having some relations with the tuple

to be added). In particular, in pMEDICI, test contexts are ordered in such a way that the first

to be considered is the one that has the highest cardinality of the MDD (number of possible

paths from the first parameter to the true leaf) after the addition of the considered tuple. The

experiments carried out confirmed that this technique allows the tool to create fewer tests with

higher variability. However, ordering the test contexts has proved not to be as time-effective

as expected when working on models with a lot of parameters or constraints, since the time

required for the ordering process overpass that of the test generation algorithm. For this reason,

the optimization can be disabled by the user.

• Test context management: in multi-thread applications, the synchronization of threads while

using shared objects is paramountly important. In the case of pMEDICI, test contexts are

shared between test builder threads, so they need to be handled in mutual exclusion. However,

only write instructions (insertion of a new tuple and intersection computation) are critical, so

pMEDICI can be configured to lock the test contexts only when writing. Experiments carried

out on this optimization have highlighted that if this optimization is active, the size of the test

suites is consistently reduced. This optimization can be disabled by the user.

155

Andrea Bombarda

• Management of the constraints: test contexts could optimize the storage of constraints, or in

case there are none, simplify the process. In pMEDICI, MDDs are not actually used by test

contexts if no constraint is present in the combinatorial model. In that case, only the list of

assignments 𝐴 is updated. In this way, the tool avoids the computation of the intersection among

MDDs (which is the most expensive operation in terms of time), and this allows saving time.

Limitations

The pMEDICI tool has some limitations that are directly related to the use of MDDs. Limits are

mainly due to constraint management. In fact, pMEDICI is not able to deal with models containing

constraints with:

• Arithmetical operators, such as +, −, · and /;

• Comparisons between parameters, such as 𝑝1 = 𝑝2 or 𝑝1 ≠ 𝑝2;

• Relational expression between parameters, or between a parameter and a value, such as 𝑝1 > 2.

Although in principle MDDs could also deal with arithmetic and variable comparison by converting

the constraints to pure Boolean expressions, in practice it is not easy to be done and risks generating

constraints with exponential length. In addition, using MDDs requires each constraint in the combi-

natorial model to be converted in RPN (Reverse Polish Notation), which may decrease the readability

of the models.

Results and comparison with ACTS

In this section, I present the results obtained when generating test suites for the MVM case study

(whose combinatorial model is shown in Listing 6.1) using pMEDICI and compare them with those

obtained with ACTS. Note that it is a rather simple model and only represents limited features of the

system. For example, no numerical configuration parameters and their bounds are modeled since, as

presented before, pMEDICI cannot deal with constraints containing relational expressions.

Tab. 25 shows the results obtained when comparing pMEDICI and ACTS in the MVM case study.

They have been obtained on a PC with Windows 11, Intel i7-3770 with 3.4 GHz, 8 threads, and 32

GB RAM. Note that the results reported in Tab. 25 are the average of 10 executions.

For the analyzed case study, the test suites obtained always have 8 tests in all configurations and for

all tools. However, for other combinatorial models, pMEDICI has generally demostrated to produce

larger test suites than ACTS. This is the price of having multiple threads working on test generation,

since more test contexts (and test cases) may be created. More details about these experiments are

available in [33].

156

Combinatorial testing for complex PEMS

Optimizations
N Threads TC Selection TC Management Size Time [ms]

pMEDICI 1 NO NO 8 178
1 NO YES 8 171
1 YES NO 8 180
1 YES YES 8 175
2 NO NO 8 175
2 NO YES 8 168
2 YES NO 8 173
2 YES YES 8 174
4 NO NO 8 90
4 NO YES 8 84
4 YES NO 8 95
4 YES YES 8 87
8 NO NO 8 78
8 NO YES 8 72
8 YES NO 8 80
8 YES YES 8 76

ACTS 1 - - 8 2939

Table 25: Comparison between pMEDICI and ACTS in the MVM case study.

On the other hand, pMEDICI always produces test suites in a significantly shorter time than ACTS.

The time reduction, when pMEDICI is used instead of ACTS, is in most cases greater than 97%. It

can be concluded that the use of pMEDICI for complex systems, such as PEMS, allows for faster test

generation and a consistent reduction in the cost of testing. In this way, more time resources may be

available for the testing process and better-quality devices may be obtained.

In terms of the number of threads, the results obtained show that increasing the number of threads

(up to the limit of the threads supported by the CPU architecture) allows for decreasing the test suite

generation time. Note that other experiments have shown that, on models with fewer parameters and

constraints than the MVM, it is not always a good choice to increase the number of threads, as having

more threads means adding coordination effort (which may be useless for simple models). More

details about these experiments are available in [33].

Finally, for the MVM case study, the most effective optimization has proven to be related to text

context management. On the other hand, using the test context ordering does not allow for reaching

the same results. In fact, the analyzed model has too many parameters and constraints, and the effort

required to order the test context list overpasses that of the test generation itself.

157

Andrea Bombarda

6.4.2 KALI: exploiting SMT solvers for combinatorial test generation

In Sect. 6.4.1, I have presented a tool that implements the structure described in Fig. 37 and manages

the constraints and tests using MDDs. However, despite the overall optimal performance shown in the

experiments performed in the MVM case study, pMEDICI still has many limitations due to MDDs.

For this reason, in this section, I present KALI, which substitutes the MDD with an SMT solver and

allows for managing all types of constraints and parameters.

Background on SMT solvers

Satisfiability modulo theories (SMT) are commonly used for generalizing, by using first-order formu-

las, Boolean satisfiability (SAT) and several additional features, such as equality reasoning, arithmetic,

fixed-size bit-vectors, arrays, quantifiers, and other first-order theories. These theories are handled

by an SMT solver, which is a tool for deciding the satisfiability (or validity) of formulas in one or

more theories. In research, SMT solvers are used for several tasks, e.g., the extended static checking,

predicate abstraction, test case generation, theorem proving, and bounded model checking over infinite

domains, to mention a few.

Many solvers are available in the literature, such as Yices [73], Z3 [69], SMTInterpol [60] and

MathSAT5 [62]. All these solvers are capable not only of checking if a formula is satisfied or not but

also of generating a model that satisfies the SMT formula represented in context. For this reason, SMT

solvers are commonly used, as is done in KALI, for test generation [144]: after having represented all

the parameters and constraint in the SMT context, the model generated by the SMT solver is the valid

test we are looking for.

How to represent CIT models, constraints, tuples, and tests with SMT

In the following, the encoding of parameters, constraints, and tuples in the SMT solver is described.

• Parameters encoding: When an SMT logical context is defined, the parameters of a combi-

natorial problem can be represented as variables in that context. However, since not all SMT

solvers support the same type of variables, the translation from combinatorial parameters to

SMT variables has to be done accordingly to the type:

– Boolean parameters are represented as simple SMT Boolean variables;

– Integer ranges are represented as SMT integer variables. Nevertheless, in combinatorial

problems the concept of “integer” is not defined as in SMT: only ranges are allowed.

158

Combinatorial testing for complex PEMS

For this reason, when converting a range to an SMT variable, an additional constraint

specifying the lower and upper bounds of the range must be added. For example, if a range

is defined in the combinatorial model as P1 : [0 .. 3], in addition to the P1 integer

variable, the following constraint is added: 𝑃1 ≥ 0 AND 𝑃1 ≤ 3;

– Enumerative parameters are the most critical ones since not all the SMT solvers support

them. In order to propose a solution that can be adapted to all SMT solvers, KALI converts

each enumeration into a set of SMT Boolean variables and adds a set of constraints

assuring that only one of the possible Boolean variables must be true. This process is

generally defined as flattening [97]. For example, if an enumeration is defined in the

combinatorial model as P2 : {v1 v2 v3}, it is translated into three different SMT

Boolean variables P2v1, P2v2, and P2v3. In addition, the following constraint are added

to the SMT context: P2v1 <=> (not P2v2 and not P2v3), P2v2 <=> (not P2v1

and not P2v3), and P2v3 <=> (not P2v1 and not P2v2).

• Model constraints: The constraints of a combinatorial problem can easily be mapped to

the SMT constraints, exploiting the previously defined variables. In particular, a combinatorial

model may contain different types of constraints, such as relational, mathematical, or comparison

operators (between parameters or values) in general propositional formulas. All these types of

constraints can be easily represented with operations between variables and values defined in

an SMT context.

• Tuples: Given a tuple 𝑡 𝑝, it can be represented in the logical context of SMT by simply adding

a new constraint that limits the values of the parameters included in the tuple to the same

values specified. For example, a tuple 𝑡 𝑝 = ⟨𝑃1, 𝑣1⟩⟨𝑃2, 𝑣2⟩ is translated in the following SMT

constraint 𝑃1 = 𝑣1 AND 𝑃2 = 𝑣2.

Note that the mapping proposed between combinatorial models and SMT solvers resolves all the

limitations of the approach proposed by pMEDICI in Sect. 6.4.1:

• Arithmetical operators are supported as part of formulas by all SMT solvers;

• The comparison between parameters is translated into a comparison between SMT variables;

• Relational expressions are supported by all SMT solvers when defining formulas.

For this reason, KALI (like all other tools based on SMT solvers) can deal with all types of combina-

torial model, parameters, and constraints that can be present in a combinatorial problem.

159

Andrea Bombarda

The KALI tool

The KALI tool takes advantage of the concepts previously explained to generate combinatorial test

suites. It integrates the java-smt library5 and is available at https://github.com/fmselab/ct-

tools/tree/main/KALI/code.

The structure of the tool is shown in Fig. 37, where each 𝑋𝑖 is, in this case, the logical SMT

context assigned to each test context. Considering the process implemented by KALI and shown in

Algorithm 4, given a tuple 𝑡 𝑗 to be handled by the test builder threads:

• the function findImplies at line 2 extracts from the list of all test contexts 𝑇𝐶 the first test

context 𝑡𝑐 𝑗 that already implies the considered tuple 𝑡 𝑝𝑖, if it is present. Then, if 𝑡𝑐 𝑗 is found,

𝑡 𝑝𝑖 is consumed and marked as covered;

• the function findCompatible at line 7 extracts from the list of all test contexts 𝑇𝐶 the first

test context 𝑡𝑐 𝑗 which is compatible with the tuple 𝑡 𝑝𝑖 (i.e., the tuple does not clash with the

assignments already committed to the test context and with the constraints of the combinatorial

model), if it is present. Then, if 𝑡𝑐 𝑗 is found, 𝑡 𝑝𝑖 is handled by 𝑡𝑐 𝑗 , which updates its internal

SMT logical context, consumes 𝑡 𝑝𝑖, and marks the tuple as covered;

• if no test context 𝑡𝑐 𝑗 in which the tuple 𝑡 𝑝𝑖 is compatible or implied is found, a new test

context is created. It is initialized by the function createTestContext (line 13) which builds

a new logical context for SMT and creates all the variables and constraints of the combinatorial

problem in 𝑡𝑐 𝑗 . After creating the new test context, if 𝑡 𝑝𝑖 is compatible with it, the tuple is

consumed, added to the context, and marked as covered; otherwise, it means that the tuple is

not compatible with the constraints, it is marked as uncoverable and skipped, and the empty test

context is discarded.

Since KALI shares the same structure as pMEDICI and only substitutes the MDDs with SMT solvers,

during test generation the same optimizations are available. Additionally, KALI implements a fourth

optimization which allows the user to select the order in which the tuple generator thread generates

the tuples. The available ordering options are:

• IN ORDER SIZE DESC (OD), which first generates the tuples starting from the parameters as-

suming the highest number of values;

• IN ORDER SIZE ASC (OA), which first generates the tuples starting from the parameters assum-

ing the lowest number of values;

5https://github.com/sosy-lab/java-smt

160

https://github.com/fmselab/ct-tools/tree/main/KALI/code
https://github.com/fmselab/ct-tools/tree/main/KALI/code
https://github.com/sosy-lab/java-smt

Combinatorial testing for complex PEMS

N Threads Size Time [ms]

KALI 8 8 2082
pMEDICI 8 8 72
ACTS 1 8 2939

Table 26: Comparison between KALI, pMEDICI, and ACTS on the MVM case study.

• RANDOM (RD), which shuffles the list of parameters before starting the tuple generation process;

• AS DECLARED (AD), which considers the parameters in the order in which they are declared

within the combinatorial model. This is the same approach used by pMEDICI.

Results and comparison with pMEDICI and ACTS

After having described KALI, its implementation, and the optimizations that are embedded in the

tool, this section presents the results obtained when applying KALI to the MVM case study reported

in Listing 6.1.

Tab. 26 reports these results and the comparison with those obtained with the best configuration of

pMEDICI and ACTS in the MVM case study. They have been obtained on a PC with Windows

11, Intel i7-3770 with 3.4 GHz, 8 threads, and 32 GB RAM. Note that, like the ones presented for

pMEDICI, the results reported in Tab. 26 are the average of 10 executions. Moreover, for KALI, here,

I report only the results obtained with the best configuration possible (the same number of threads

as the one supported by the CPU, the SMTInterpol solver, the ordering optimization for test contexts

enabled, the OD parameter ordering, and locking the test contexts only when needed for writing).

Experiments that have been carried out to identify this configuration are reported in [35].

The results obtained confirm that using multi-thread for the MVM case study allows for reducing the

test suite generation time (KALI is faster than ACTS), and it does not influence the test suite size.

However, in other experiments, KALI has generally shown to produce larger test suites than ACTS

and pMEDICI (see experiments in [35]), and not to be the best performing even in terms of test suite

generation time. Indeed, also in the MVM case study, using pMEDICI is always the best choice.

The performance of KALI is deeply influenced by the powerful but heavy structure of the SMT solvers

that underlie the tool. In fact, the experiments clearly indicate that using the approach implemented

by KALI comes with a price. However, we can identify two main advantages w.r.t. other tools and

algorithms:

• pMEDICI outperforms KALI, but it cannot handle complex constraints that cannot be repre-

sented in MDDs, as previously reported. In fact, the MVM model reported in Listing 6.1 is

161

Andrea Bombarda

a simplified version of the mechanical ventilator. In practice, other aspects that parameterize

the behavior of the mechanical ventilator should be included in the combinatorial model. For

example, a more realistic model should include, among others, the following parameters:

InspiratoryPressure: [0 .. 100]
MaxInspPressure : [0 .. 100]

These two parameters represent the inspiratory pressure set by the doctor and the maximum

inspiratory pressure that cannot be exceeded without triggering an alarm. For this reason, an

additional constraint should be added:

InspiratoryPressure <= MaxInspPressure

In this case, pMEDICI could not have been used, since it is not able to deal with the added

constraint, while ACTS or KALI can deal with it. Given its multi-thread nature, KALI performs

better than ACTS on this model.

• ACTS supports a large set of constraints, and it is very efficient. However, ACTS and similar

approaches build the whole test suite by adding a parameter one by one, and this means that no

test is complete until the generation is finished. KALI, instead, uses a one-test-at-a-time strategy,

and after a short period of time, a test case is already available. This makes approaches like

KALI more suitable for online testing [171], where test execution begins during test generation.

In this case, having tests immediately available can reduce the time required to discover faults

and can drive test generation to improve the fault detection capability.

6.5 Conclusion

In this chapter, I have presented the concepts of Combinatorial Interaction Testing (CIT) and how

this test generation strategy can be applied to medical systems. As reported in the literature, and

proved also in the MVM case study in this chapter, the use of combinatorial testing can aid testers in

decreasing the number of test cases needed to identify the same number of faults.

CIT is usually used to test systems by varying the input values. However, in this chapter, I have pre-

sented an approach, based on automata, that exploits combinatorial testing in order to test event-based

systems and builds test sequences composed of events that are sequentially executed. Typical examples

of event-based systems in the medical domain are all protocols that are used for communication among

medical devices. Sect. 6.2 reports the application of the combinatorial automata-based approach for

sequence generation to the PHD protocol case study and demonstrates how it allows for reaching a

162

Combinatorial testing for complex PEMS

higher coverage w.r.t. the one obtained with methods classically adopted for sequence testing based

on SCAs.

Furthermore, the research of a method for benchmarking combinatorial test generators (now embedded

into the CTWedge environment) has permitted identifying a function defining the cost of adopting a

specific test generator instead of another. By considering this function, in order to reduce the cost

of test generation, multi-threaded techniques have been presented in Sect. 6.4 and implemented in

the pMEDICI and KALI tools. The former uses MDDs for managing constraints and combinatorial

models, while the latter substitutes MDDs with SMT solvers, in order to overcome the limitations of

MDDs while handling particular types of constraints. The results obtained, presented in this chapter,

have shown how the generation time of the test suite can be significantly reduced when using KALI

or pMEDICI instead of cutting-edge tools such as ACTS on rather complex medical systems such as

the MVM. For this reason, since a consistent saving in time is obtained, the additional time may be

used to further investigate and improve the quality of the software products.

163

Part III

Robustness for AI-based medical software

Chapter 7. Neural network robustness

In the previous chapters, good software engineering principles have been outlined, and model-based

methods have been analyzed to investigate their applicability to PEMS. However, recent medical

software and devices, such as PEMS, are even more dependent on AI components, which allow

the estimation of medical quantities or the diagnosis of pathologies. Thus, assessing the safety and

reliability of these components, such as neural networks (NNs), used for medical purposes is of

paramount importance, as well as trying to increase their dependability.

Normally, software testing and good software engineering practices (such as those described in the

previous chapters) can be used for regular software if the safety of the device embedding the software

has to be ensured. However, even when considering the guidelines presented in Chapter 3, having

an NN-based system may change the way in which the activities have to be performed. For example,

considering a medical device embedding a NN, it could be a good choice to isolate it into a separate

component, which does not depend on others, and to test it independently. Anyway, classical testing

approaches used for standard software are not suitable when NNs are present in a system, because

the behavior of a NN can not always be properly forecasted and, moreover, it may be difficult even to

define test goals which may include uncertainty [77]. Nevertheless, the basic idea behind the testing

remains the same: the software should be robust enough when dealing with not-correct inputs. Thus,

NN-based medical software should be validated as well as regular software, and, in this chapter, I will

present the approaches I devised for this purpose.

This chapter is based on the work published in [3–6] and is structured as follows. Sect. 7.1 presents the

general state of the art on neural network robustness. In Sect. 7.2, I present the background concepts

on which the proposed definition of robustness, introduced in Sect. 7.3, is based. In Sect. 7.4, a tool

for automatically computing the robustness of a neural network and a method to minimize the time

required for its computation are presented. Sect. 7.5 presents methods suitable for increasing the

robustness of a neural network. Finally, Sect. 7.6 presents how robustness relates to medical devices

and their certification, while Sect. 7.7 concludes the chapter.

7.1 State of the art on neural network robustness

Testing machine learning models has recently become a hot topic that has been defined over several

properties, e.g., correctness, robustness, and fairness [183]. However, as previously introduced, it is

difficult to test machine learning applications using software testing techniques originally designed

167

Andrea Bombarda

for code [152]. For this reason, most of the research work focuses on analyzing behavioral properties

(such as robustness) for neural networks instead of trying to “test” them as done for the code.

Most of the papers regarding the robustness of neural networks focus on the adversarial examples, i.e.,

inputs specifically created with the aim of fooling a neural network, resulting in the misclassification

or misinterpretation of a given input. Normally, these inputs are indistinguishable from the human

eye, but can cause the network to fail to correctly interpret them. A well-known example is the one

in Fig. 40: if a small noise, not visible to the human eye, is added to an image of a panda, the neural

network used for classifying the pictures changes its classification into a gibbon. Adversarial examples

can be created using different types of attack, called adversarial attacks, e.g. the fast gradient sign

method attack, which is a white-box attack whose goal is to ensure misclassification. A common

approach in assessing the robustness of a NN w.r.t. adversarial examples is the one presented in [175]

where a theoretical analysis of this type of robustness is given. The authors propose a method to find

the key reasons why an adversarial example can fool a classifier and consider these oracles during

the network training phase to make it immune to that specific kind of adversarial example. Another

typical approach for evaluating adversarial robustness is the one proposed by [78], where adversarial

examples are simulated by using semi-random noise, which has been shown to generalize adversarial

examples in a simple way.

Note that in some application scenarios, such as in the medical domain, adversarial examples are

unlikely to occur [123] and so different types of robustness should be used. Moreover, Carlini and

Wagner [56] demonstrate that some of the most recent techniques used to increase the robustness w.r.t.

adversarial examples can be easily fooled with other adversarial generation techniques. Thus, when

developing an NN, especially for safety-critical domains, it is of paramount importance to evaluate

and increase the robustness for plausible alterations as well, depending on the application domain, as

proposed in this chapter.

In the literature, other papers investigating the robustness of neural networks without considering

adversarial examples are available, but none of them proposes a formal definition of robustness

as, instead, is presented in this chapter. For example, a study of CNN robustness to appearance

variability in biomedical images is presented [166]. The authors introduce a new type of layer, called

neighborhood similarity layer (NSL), to improve the robustness w.r.t. changes in the appearance of

objects that are not well represented by the training data. In [41], CNN-Cert, a general framework

capable of certifying the robustness of general convolutional neural networks, is presented. It is able

to deal with CNNs composed of convolutional layers, max-pooling layers, batch normalization layers,

residual blocks, as well as general activation functions. A methodology similar to that used in this

168

Neural network robustness

Figure 40: Adversarial examples.

Figure 41: Typical structure of a Convolutional Neural Network.

chapter is used in image manipulation detection [111], but, also in this case, a formal definition of

robustness has not been introduced.

7.2 Background concepts

In this section, basic concepts useful for understanding the idea of neural network robustness are

presented.

7.2.1 Types of neural networks typically used in PEMS

Artificial Neural Networks (ANNs) are used in many critical tasks in the medical domain, among

which classification or estimation. For example, Convolutional Neural Networks (CNNs) can be used

to analyze medical images, e.g., coming from medical exams, with the aim of diagnosing possible

diseases. An example of a CNN is shown in Fig. 41: through convolutional and subsampling

layers, parts of an input are analyzed to identify relevant features. On the other hand, Multilayer

Perceptrons (MLPs) can be used when a medical quantity (such as blood oxygen pressure or patterns

in the respiration waveforms) needs to be estimated or predicted. This can happen when no sensor

measuring the quantity exists or when the quantity needs to be derived from other data. Fig.42 shows

an example of the structure of an MLP.

169

Andrea Bombarda

O
ut
pu

ts

Output
Layer

Hidden
Layer

Input
Layer

In
pu

ts

Figure 42: Typical structure of a Multilayer Perceptron.

In this chapter, ANNs trained to be used as classifiers, i.e., to assign a label (taken from a set of

possible categories) to an input (e.g., an image, a sound, a text, etc.) or as estimators are analyzed. If

we consider a generic ANN that receives an input 𝑡 ∈ 𝑃, where 𝑝 is the input space, the two types of

neural network can be defined as follows:

Definition 11 (Classifier). A classifier 𝐶 for inputs 𝑡 can be seen as a function that assigns a label 𝑙 to

an input 𝑡 ∈ 𝑃, i.e., 𝐶 (𝑡) = 𝑙.

Definition 12 (Estimator). An estimator 𝐸 for inputs 𝑡 can be seen as a function that computes the

output 𝑜 for each 𝑡 ∈ 𝑃, i.e., 𝐸 (𝑡) = 𝑜.

7.2.2 Accuracy and errors

As previously introduced, in the medical domain, an NN can be used as an estimator or a classifier. In

both cases, the networks’ results are subject to errors or misclassifications. In general, the lower the

error or misclassification, the higher the quality of the NN.

In particular, if the NN is used as a classifier, its quality can be measured in terms of accuracy:

Definition 13 (Accuracy). The accuracy of a classifier 𝐶 w.r.t. a set of inputs 𝑃 is defined as the ratio

of correctly evaluated inputs in 𝑃, i.e.,

acc(𝐶, 𝑃) = |{𝑡 ∈ 𝑃 | 𝐶 (𝑝) = label(𝑝)}|
|𝑃 |

where label gives the correct evaluation of an input 𝑡.

On the other hand, if the NN is used as an estimator/predictor, the main approaches to evaluate its

performance are Mean Squared Error (MSE) and Mean Absolute Error (MAE). The former represents

the average of the squared difference between the target value and the value estimated by the model;

since it squares the residuals, it penalizes even small errors, leading to an overestimation of how bad

170

Neural network robustness

the model is. The latter is the absolute difference between the target value and the value estimated

by the model. Given this definition, MAE is more robust to outliers and does not penalize errors as

much as MSE [177]. However, since the MAE scale is the same as the data being measured, its value

is absolute, and it is difficult to easily understand the relative error. For this reason, when analyzing

the performance of an estimator, it is better to use Mean Absolute Percentage Error (MAPE), i.e., the

percentage equivalent of MAE.

Definition 14 (MAPE). Considering an input set of size 𝑛, where 𝑦𝑖 is the real value of the input 𝑡 and

�̂�𝑖 is the estimated value of the same input, MAPE is defined as follows:

MAPE =
100%
𝑛

𝑛∑︁
𝑖=1

∥𝑦𝑖 − 𝑦𝑖∥
𝑦𝑖

NN estimators can be compared using MAPE under nominal conditions (MAPE0), which is calculated

on the test set. Note that the MAPE metric, as warned in [98], is not applicable in problems where the

real value of 𝑦𝑖 is close to or equal to zero, because it results in very large numbers.

7.2.3 Alterations

When ANNs are used in practice, normally, they work in an environment that may be subject to

unexpected external factors. For example, if CNNs are used for classifying medical images, it may

happen that the inputs they are given are slightly different from those we may obtain under nominal

conditions. In fact, the camera used for their acquisition might produce out-of-focus images or with a

higher/lower brightness. The same may happen if an NN is used for estimation: the input signals may

be disturbed by unforeseen electromagnetic interferences.

In particular, it is plausible that given a NN (either used as an estimator/predictor or as a classifier),

by altering an input 𝑡, the trustworthiness of the response of the network will change and it will likely

decrease when the alteration level increases. Therefore, the accuracy of the classifier or MAPE of

the estimator also depend on the “quality” of the inputs used during their training and testing. For

example, Fig. 43 shows how the accuracy of a NN classifier diminishes when changing the brightness

of the images given as inputs. How can we define and measure the robustness of a NN used in the

medical field when an alteration occurs, considering that, as presented in Sect. 7.1, the one w.r.t.

adversarial examples is not meaningful while using NNs in healthcare processes? First, here, I define

what can be considered an alteration.

Definition 15 (Alteration). An alteration of type 𝐴 of an input 𝑡 is a transformation of 𝑡 that mimics

the possible effect on 𝑡 when a problem occurs in reality during its acquisition or in its elaboration. In

171

Andrea Bombarda

Figure 43: Accuracy change when brightness is altered in the inputs given to a CNN for medical image
classification.

the following, I identify with 𝑃𝐴𝑙 the set of data obtained by altering all the input data in 𝑃 with an

alteration of type 𝐴 of level 𝑙 ∈ [LA,UA], where [LA,UA] is the range of plausible alteration levels of

type 𝐴.

In some application domains, alterations can occur randomly at any level 𝑙 ∈ [LA,UA], while, for

other types of applications, some alteration levels may be more likely to occur than others. To reflect

this characteristic of alterations, it is possible to define the alteration probability as follows.

Definition 16 (Alteration Probability). Given an alteration of type 𝐴, the probability of the alteration

𝐴, identified as 𝑝𝐴, is the probability distribution of the alteration levels having as support the interval

[𝐿𝐴,𝑈𝐴].

The most common examples of probability distributions for alterations are as follows:

• Uniform probability: all the alteration levels are equally probable, as shown in Fig. 44a and

formally defined as:

𝑝𝐴 (𝑥) =

1

𝑈𝐴 − 𝐿𝐴

𝐿𝐴 ≤ 𝑥 ≤ 𝑈𝐴

0 otherwise

• Linear probability: lower alteration levels are more probable than higher levels, as shown in

Fig. 44b. It is formally defined as:

𝑝𝐴 (𝑥) =

2

(𝑈𝐴 − 𝐿𝐴)2
· (𝑈𝐴 − 𝑥) 𝐿𝐴 ≤ 𝑥 ≤ 𝑈𝐴

0 otherwise

However, other types of probability function can also be used, such as truncated normal or half-normal

distributions, depending on the application domain.

172

Neural network robustness

(a) Uniform probability. (b) Linear probability.

Figure 44: Examples of functions describing the probability 𝑝𝐴 of an alteration level 𝐴.

Note that the alteration probability can also be used to specify the “importance” the user wants to give

to a level of alteration. For instance, a uniform probability is more likely to be used for systems that

should be equally resilient to all levels of an alteration within a given interval. On the other hand, a

linear probability can be preferred when the system is not critical, and it is more important to perform

better on lower alterations than on the higher ones.

7.3 The general concept of NN robustness

Having presented in Def. 15 what here is considered an alteration, in the following I introduce the

concept of robustness for NNs, both for estimators and classifiers. In both cases, the idea is that

the quality measure (accuracy for classifiers and MAPE for estimators) should stay above a defined

threshold for the highest number of alteration intensities possible.

7.3.1 Robustness for classifiers

When it comes to classifiers, as explained above, it is possible to measure their quality using their

accuracy. In particular, given an alteration 𝑎𝐴, the robustness of a NN classifier can be defined as

follows.

Definition 17 (Robustness for NN classifiers). LetΘ be a threshold representing the minimum accepted

accuracy. The robustness of a classifier 𝐶 w.r.t. alteration of type 𝐴 in the range [LA,UA] (using a set

of inputs 𝑃) is defined as the percentage of the alteration values for which the accuracy is greater than

173

Andrea Bombarda

Figure 45: Robustness computation for a classifier where a brightness alteration is applied as per Fig. 43.

Θ. Formally:

rob𝐴 (𝐶, 𝑃) =
∫ UA

LA
𝐻 (acc(𝐶,𝑃𝐴𝑖)−Θ)𝑑𝑖

UA−LA
· 100% where 𝐻 (𝑥) =

1, 𝑥 ≥ 0

0, 𝑥 < 0

Fig. 45 shows the robustness of a classifier w.r.t. brightness alteration with Θ = 80%.

In most cases, accurately computing the robustness using this formula (where 𝐻 is also known as

the Heaviside function) is very difficult. In fact, the accuracy function is not known a priori and,

therefore, should be computed for all alteration levels 𝑙 in [LA,UA], which could be many, if not

infinite. Moreover, computing the accuracy of the network 𝐶 when a single alteration level 𝐴𝑙 is

applied to the set 𝑃, requires considerable effort, so a method is necessary to select suitable alterations

to reduce the computation time.

A naive solution is to uniformly sample in [LA, UA] and compute the accuracy only for the points

sampled. In this case, it is possible to count how many points (𝑛acc) the accuracy is acceptable,

relatively to the total number of points sampled 𝑛. Formally:

Definition 18 (Uniform robustness). Given 𝑛 equi-distributed points SP = {𝑙1, . . . , 𝑙𝑛} sampled in the

interval [LA,UA], the uniform robustness is defined as:

robA(𝐶, 𝑃) =
𝑛acc

𝑛
· 100% =

|{𝑙 ∈ SP | acc(𝐶, 𝑃𝐴𝑙) ≥ Θ}|
|SP| · 100% (7.1)

Note that the previous definitions use accuracy to compute the robustness of a classifier. However, the

definitions could be adapted to use recall, precision, or F1-score, depending on the context.

The limits of the uniform robustness definition

Robustness, as defined in Def. 18, may still require a lot of computational power and time to be

evaluated, especially when the levels to be applied for each alteration are many. In fact, be 𝑛 the

number of alteration levels to be applied for an alteration 𝐴, 𝑘 the number of inputs, and 𝑡𝐴 the time

174

Neural network robustness

0.0 0.2 0.4 0.6 0.8 1.0
Alteration level

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

A
cc

u
ra

cy

real accuracy threshold sampled points

Figure 46: Error in robustness computation using a low number of uniformly distributed sampled points.

required to apply the alteration A to a single input, the total time required to perform robustness

analysis is:

𝑡𝑡𝑜𝑡𝐴 = 𝑛 × 𝑘 × 𝑡𝐴 (7.2)

For example, if we consider 𝑛 = 1000, 𝑘 = 1000, and 𝑡𝐴 = 0.1𝑠𝑒𝑐, the total time required to compute

the robustness will be approximately 28 hours.

Several approaches can be used to decrease the time required for robustness analysis. Among them,

the easiest and most effective ones are the followings:

• Reduction of the value 𝑛, i.e., the number of levels sampled for the alteration A. This is a viable

solution but has some drawbacks, especially when analyzing networks whose accuracy varies

a lot. For example, Fig. 46 shows the points evaluated when uniform sampling of an accuracy

function is performed with 𝑛 = 10. Using Def. 18, a robustness of robA(𝐶, 𝑃) = 100% would be

calculated. Nonetheless, the real value of the robustness corresponding to the analyzed accuracy

function is significantly lower (≃ 50%).

• Adaptive selection of the points to be sampled (possibly not uniformly), as usually done for

values in software testing. In fact, while testing a regular program, choosing the correct input

parameters and the correct values is challenging because different inputs or values may lead to

different bug discoveries. However, as in software testing, sampling some inputs is required,

since exhaustive testing cannot be performed. This approach will be presented and discussed in

Sect. 7.4.2.

175

Andrea Bombarda

Robustness and adversariability

As presented in Sect. 7.1, current research papers on neural network robustness mainly focus on

adversarial robustness. However, in this chapter, only plausible alterations are considered for com-

puting the robustness of NN classifiers. How does the robustness proposed in this chapter relate to

the one w.r.t. adversarial robustness? In order to investigate this relation, here I discuss the notion

of adversariability, in the case of classifiers for medical images. Nevertheless, similar considerations

can be extended to other types of neural networks and inputs as well.

Unlike alterations (as defined in Def. 15), the generation of adversarial examples does not directly

provide a measure of the difference between the starting input and the modified one. Therefore, the

definition of adversariability is based on the classical definition of structural similarity index taken

from [52] and defined as follows.

Definition 19 (Structural similarity index). The structural similarity index between the two images 𝑝

and 𝑞 is defined as:

𝑆(𝑝, 𝑞) =
(2𝜇𝑝𝜇𝑞 + 𝑐1) (2𝜎𝑝𝑞 + 𝑐2)
(𝜇2

𝑝 + 𝜇2
𝑞 + 𝑐1) (𝜎2

𝑝 + 𝜎2
𝑞 + 𝑐2)

∈ [0, 1]

where 𝜇𝑝 and 𝜇𝑞 are the averages of the pixel values in 𝑝 and 𝑞, 𝜎2
𝑝 and 𝜎2

𝑞 are the variances of 𝑝 and

𝑞, 𝜎𝑝𝑞 is the covariance of 𝑝 and 𝑞, 𝑐1 and 𝑐2 are two constants, and 𝑆(𝑝, 𝑞) = 1 when 𝑝 and 𝑞 are

identical.

Let ADVEX(𝐶, 𝑝) be the set of all adversarial examples generated by a given technique for a classifier

𝐶 and be 𝑝 an input image. ADVEX(𝐶, 𝑝) is empty only if 𝑝 cannot be modified in a way to mislead

𝐶 or the generation technique of ADVEX is not powerful enough. Every technique can generate

many adversarial examples. For example, if an image is manipulated for obtaining an adversarial

example, higher levels of manipulation will likely lead to other adversarial examples as well. Among

all adversarial examples, the concept of adversariability is defined over the most adversarial one:

Definition 20 (Most adversarial example). Let𝐶 be a binary classifier, and 𝑝 be an correctly classified

image, that is, 𝐶 (𝑝) = label(𝑝). The most adversarial example is defined as the most similar image

to 𝑝 that is misclassified (if it exists), formally:

pae = arg max
𝑝′∈ADVEX(𝐶,𝑝)

𝑆(𝑝, 𝑝′)

Note that ADVEX(𝐶, 𝑝) may be empty. In this case, we say that pae does not exist.

Using Def. 19 and 20, it is possible to define the adversariability, i.e., the vulnerability w.r.t. adversarial

examples, as follows.

176

Neural network robustness

Definition 21 (Adversariability). Let 𝐶 be a binary classifier and 𝑃 be a set of inputs. The adversari-

ability of 𝐶 is defined as the percentage of input 𝑝 ∈ 𝑃 correctly evaluated for which there exists an

adversarial example pae, weighted by the similarity index between 𝑝 and pae. Formally:

adv(𝐶, 𝑃) =
∑

𝑝∈CE 𝑆(𝑝, pae)
|CE | ∈ [0, 1]

where 𝑆 is equal to the similarity index 𝑆 if the adversarial example pae exists, 0 otherwise; and

CE = {𝑝 ∈ 𝑃 | 𝐶 (𝑝) = label(𝑝)} is the subset of 𝑃 of correctly classified inputs.

Higher adversariability values mean that the classifier 𝐶 is more vulnerable to adversarial examples.

Note that adversarial examples pae that are more similar to the original image 𝑝 (i.e., those having

higher similarity index 𝑆(𝑝, pae)) are those that contribute the most to the adversariability: indeed, they

represent the most insidious cases in which an imperceptible modification misleads the classification.

7.3.2 Robustness for estimators

When dealing with estimators, their quality is usually measured using MAPE. In fact, it can be logical

to consider that, when an alteration is applied, the MAPE of the estimator will change and, in particular,

it may increase when the level of the alteration applied increases. However, different values of MAPE

can be more or less acceptable, depending on the criticality of the task performed by the NN and the

precision required by the requirements of the system. Therefore, the tolerance to the NN error can be

defined as follows:

Definition 22 (Tolerance). Let Θ be a threshold representing the maximum MAPE value accepted by

the system requirements and MAPE𝐴 (𝑥) the error value when an alteration 𝐴 of level 𝑥 is applied to

the input data. The desired tolerance for the error MAPE𝐴 (𝑥) is a function TolMAPE𝐴
(𝑥) such that:

TolMAPE𝐴
(𝑥) = 1 for MAPE𝐴 (𝑥) = 0

0 ≤ TolMAPE𝐴
(𝑥) ≤ 1 for 0 < MAPE𝐴 (𝑥) ≤ Θ

TolMAPE𝐴
(𝑥) = 0 for MAPE𝐴 (𝑥) > Θ

The type of tolerance function can be chosen by users depending on the application domain. In the

following, two examples of tolerance functions are described:

• Uniform tolerance: all the different values of MAPE𝐴 (𝑥) are tolerated in an equal way, as shown

in Fig. 47a. It is formally defined as:

TolMAPE𝐴
(𝑥) = 𝐻 (Θ −MAPE𝐴 (𝑥))where 𝐻 (𝑘) =

1, 𝑘 ≥ 0

0, 𝑘 < 0

177

Andrea Bombarda

TolMAPE(x)

MAPE(x)
0 Θ

1

(a) Uniform tolerance.

TolMAPE(x)

MAPE(x)
0 Θ

1

(b) Linear tolerance.

Figure 47: Examples of functions describing the tolerance.

The intuition is that, as long as MAPE is below or equal to the threshold Θ, the tolerance is

maximum, otherwise it is 0.

• Linear tolerance: lower values of MAPE𝐴 (𝑥) are more tolerated than higher values, as shown

in Fig. 47b. It is formally defined as:

TolMAPE𝐴
(𝑥) = max (Θ −MAPE𝐴 (𝑥), 0)

Θ

Given the tolerance function Tol, the alterations 𝐴 and their probability 𝑝𝐴, the robustness for NN

estimators is defined as follows.

Definition 23 (Robustness of NN estimators). Let E be an NN estimator under evaluation, MAPE𝐴 (𝑥)

be the value of the error done by E when an alteration 𝐴 of level 𝑥 is applied to the input data, 𝑝𝐴 (𝑥) the

probability of the alteration, and TolMAPE𝐴
(𝑥) the tolerance for MAPE values of the selected network.

The robustness robA(𝐸) ∈ [0, 1] of E w.r.t. alterations of type 𝐴 in the range [LA,UA] is formally

defined as:

robA(𝐸) =
∫ 𝑈𝐴

𝐿𝐴

TolMAPE𝐴
(𝑥) · 𝑝𝐴 (𝑥) 𝑑𝑥 · 100% (7.3)

Intuitively, the robustness can be seen as the sum (integral) of all the errors the network commits when

all possible alterations are applied. Alterations are weighted by their probability and errors by the

specified tolerance.

Note that the robustness depends on the type of tolerance and probability chosen. For example, it is

possible to define the following sub-types of robustness:

• UL robustness: It is obtained when uniform probability (any alteration level is equally likely)

and linear tolerance (lower errors are preferable) are chosen. In particular, the following formula

178

Neural network robustness

computes the robustness:

robUL
A (𝐸) =

∫ 𝑈𝐴

𝐿𝐴
max (Θ −MAPE𝐴 (𝑥), 0) 𝑑𝑥

Θ · (𝑈𝐴 − 𝐿𝐴)
· 100%

This definition of robustness evaluates the ratio between the striped red area and the gray one in

Fig. 48a. It can be used for systems where, for higher alteration values, large MAPE values are

acceptable, while, for lower alteration values, the smaller the MAPE, the better.

• LU robustness: It is obtained when linear probability and uniform tolerance are chosen. In

particular, the following formula computes the robustness:

robLU
A (𝐸) =

∫ 𝑈𝐴

𝐿𝐴
𝐻 (Θ −MAPE𝐴 (𝑥)) · (𝑈𝐴 − 𝑥) 𝑑𝑥

1
2 · (𝑈𝐴 − 𝐿𝐴)2

· 100% =∫
𝑥∈[𝐿𝐴,𝑈𝐴] |𝑀𝐴𝑃𝐸 (𝑥)<Θ

(
Θ · 𝑈𝐴 − 𝑥

𝑈𝐴 − 𝐿𝐴

)
𝑑𝑥

1
2
· Θ · (𝑈𝐴 − 𝐿𝐴)

· 100%

This definition of robustness evaluates the ratio between the area of the striped red region and

the area of the gray triangle in Fig. 48b. The definition is suitable for systems where it is crucial

to respect the threshold Θ along the entire alteration interval [𝐿𝐴,𝑈𝐴], in particular for low (and

more likely) levels of alteration.

• UU robustness: It is obtained when uniform probability and uniform tolerance are used:

robUU
A (𝐸) =

∫ 𝑈𝐴

𝐿𝐴
𝐻 (Θ −MAPE𝐴 (𝑥)) 𝑑𝑥
Θ · (𝑈𝐴 − 𝐿𝐴)

· 100%

This definition computes the ratio between the lengths of the red and gray lines in Fig. 48c. UU

robustness is suitable for systems where it is crucial to respect the threshold Θ throughout the

alteration interval [𝐿𝐴,𝑈𝐴], regardless of the probability of alteration, such as in the case of

medical devices.

• LL robustness: It is obtained when linear probability and linear tolerance are used:

robLL
A (𝐸) =

∫ 𝑈𝐴

𝐿𝐴
max(Θ −MAPE𝐴 (𝑥), 0) · (𝑈𝐴 − 𝑥) 𝑑𝑥

1
2
· Θ · (𝑈𝐴 − 𝐿𝐴)2

· 100%

Higher levels of alteration, which have a greater impact on the input data, may lead to higher

values of MAPE. However, in some systems, these alteration levels may be less probable than

the lower ones, and users may be less worried about some high error in very rare cases. Thus,

179

Andrea Bombarda

Ua

Θ

La

M
A

P
E

Alteration Level

(a) UL robustness.

Ua

Θ

La

M
A

P
E

Alteration Level

(b) LU robustness.

Ua

Θ

La

M
A

P
E

Alteration Level

(c) UU robustness.

Figure 48: Graphical representation of different types of robustness.

LL robustness is suitable for these kinds of system, when the user does not want to penalize

too much high error values for the highest alteration levels. Note that it is difficult to provide a

graphical interpretation of LL robustness as done for the other types of robustness.

7.3.3 Properties of the robustness measure

The robustness definition, either for classifiers or estimators, guarantees the following properties:

1. the robustness of a model 𝑀 is always between 0 and 1, i.e., 0 ≤ robA(𝑀) ≤ 1;

2. if a network has always zero error, its robustness is 1, i.e., robA(𝑀) = 1 if ∀𝑥 ∈ [LA,UA],

MAPE𝐴 (𝑥) = 0 in the case of estimators, or ∀𝑥 ∈ [LA,UA], acc(𝐶, 𝑃𝐴𝑖) = 100% in the case of

classifiers. Note that the condition is sufficient but not necessary, i.e., the robustness can also

be 1 for systems in which the error is greater than 0 for some alteration level (e.g., in estimators

when uniform tolerance is used and the error is never greater than Θ);

3. if a network has an error always greater than the specified threshold Θ, its robustness is 0:

robA(𝑀) = 0 if ∀𝑥 ∈ [𝐿𝐴,𝑈𝐴], MAPE𝐴 (𝑥) > Θ in the case of estimators, or if ∀𝑥 ∈ [𝐿𝐴,𝑈𝐴],

acc(𝐶, 𝑃𝐴𝑖) < Θ in the case of classifiers.

7.4 Tools and algorithms for robustness estimation of NN classifiers

As explained in Sect. 7.3, computing the robustness of a NN is a viable technique to analyze its

quality. However, computing this measure may take a long time, especially in the case of classifiers,

since the classification process is normally more expensive than the estimation one (for example, it

may need to deal with pictures instead of numbers). Moreover, configuring an environment allowing

the robustness analysis can be a complex activity since it requires the definition of alterations, the

computation of the robustness formula, etc. Thus, in the following, I introduce ROBY, a software

allowing the automatic computation of robustness for NN classifiers, and ASAP, a technique aiming

at reducing the time required for robustness estimation, without losing estimation precision.

180

Neural network robustness

data set
+ labels model

alterations

environment
definition

pre
processing

robustness
analysis

threshold

robustness

graphs

Figure 49: ROBY workflow.

7.4.1 ROBY

In this section, I present ROBY, a Python tool for ROBustness analYsis. The tool has been engineered

so that it can be used, with minimal effort, by different users in different domains and for different

types of data when dealing with classifiers. A user must only specify:

• the location of the test data set;

• a labeling function or a label list, allowing the tool to retrieve the correct classification of the

test input data;

• which alterations have to be applied to input data (either the standard ones provided by the tool,

or custom-made);

• where to run the robustness computation (either locally or on Google Colab).

As a result, ROBY computes the robustness measure for the different alterations and produces plots

that visualize how the accuracy changes when the alterations are applied. In this way, users may

observe which are the most critical alteration levels and intervene directly on them. ROBY evaluates

the robustness as reported in Def. 18. The tool is available at https://github.com/fmselab/roby

and can also be installed using the pip package manager. Before using ROBY, users must make sure

that their system satisfies some requirement:

• The model must represent a classifier and must be written in a format supported by Keras, i.e.,

HDF5 or SavedModel;

• All the inputs in the test data set must be previously labeled and must be expressible in the

np.ndarray format, a rather general format in which images, audio, text, and video can be

represented;

• Each alteration must be expressible as an input modification between a minimum and maximum

threshold.

181

https://github.com/fmselab/roby

Andrea Bombarda

Fig. 49 shows the workflow to follow when using ROBY to analyze the robustness of an NN classifier.

In particular, the following activities need to be performed by the user:

1. Supply a data set, together with the labels (possibly given as a function, labeler, that is

applicable to each input data and gives as output the correct label) and a model. Data sets and

models can be stored either on the local hard drive (if the robustness computation is performed

locally) or on Google Drive (if the computation is performed on Google Colab);

2. Define the environment that may optionally include, besides the input data together with their

labels and the model, also the pre-processing function;

3. Select suitable alterations among those provided by ROBY or define new ones in accordance

with the domain;

4. Specify the desired threshold Θ to be used for computing the robustness;

5. Run ROBY which computes the robustness measure and produces plots showing how the

accuracy of the model changes w.r.t. different levels of alterations.

How to use ROBY in custom domains

Each domain may have different thresholds, alterations, and data-type to be considered. For this

reason, ROBY allows users to define a method to load the data set, a method to adapt to different

data formats, and another method to assign labels to input data. Moreover, users can define custom

alterations and use them to evaluate the robustness of the NN under analysis with ROBY. These

extension points are better detailed below.

• Data loading: ROBY works for ANNs used as classifiers receiving np.ndarray input data.

Users can create a custom testing environment EnvironmentRTest by giving either the paths

for all input data or a list of data already in array format. In the former case (when paths are

given), the user must specify the way to be used to convert the file data into the np.ndarray

format by declaring a reader(file name) function.

• Data labeling: correct labels for input data can be given with a list of all labels or by using a

labeler function. In the former case, the list must be of the same size as the data set, while

in the latter case, the user has to define a function that receives input data and returns a string

representing the real label for the selected input.

• Custom alterations: ROBY has an embedded abstract class Alteration that can be easily

extended to create custom alterations. When extending the abstract class, the user is requested

182

Neural network robustness

to implement the functions name(), to return the name of the alteration, and apply al-

teration(data, alteration level). Given the input data in np.ndarray, the function

apply alteration returns the data (still in the same format) with the applied alteration of the

desired level. Moreover, ROBY supports the definition of AlterationSequence, which can

be used to represent an alteration caused by the composition of multiple alterations.

• Pre-processing: In some domains, ANNs could have been trained with data of shapes, sizes,

or formats different from those used for testing. For these reasons, during the declaration of

the testing environment EnvironmentRTest, users can specify an additional pre-processing

function. It is applied to each input data, after an alteration is applied, before its recognition

by the ANN. Typical pre-processing functions are used when there is the need to remove, e.g.,

white borders from images, resize or extract a relevant part from the input, or clip the volume

of an audio track.

7.4.2 The ASAP algorithm

In order to tackle the limitations of the uniform sampling approach (previously explained in Sect. 7.3.1),

here I present the ASAP (Adaptive SAmpling by Parabolic estimation) algorithm to automatically select

the points where to evaluate the accuracy. It is based on the assumption that the best points to select

would be those in which the accuracy curve intersects the threshold Θ. However, since the analytical

form of the accuracy function is not known a priori and it is not possible to compute these intersections,

users should try to select points as close as possible to Θ. ASAP is based on a parabolic approximation

of the accuracy curve: once the user has computed the accuracy for two alteration levels 𝐴 and 𝐵,

the real accuracy curve between 𝐴 and 𝐵 will be included in the area between two parabolas passing

through the points 𝐴 and 𝐵, and having concavity depth respectively +�̂� and −�̂� (see Fig. 50), i.e.,

with equation 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 with 𝑎 = ±�̂�. If there is an intersection between the area marked in

Fig. 50 and the threshold Θ, and the distance between 𝐴 and 𝐵 is sufficiently large (I will discuss later

what can be considered “sufficiently large”), then the accuracy of the middle point 𝑀 between 𝐴 and

𝐵 has to be computed. After that, the point 𝑀 is added to the sample set and the procedure is applied

recursively to the two intervals [𝐴, 𝑀] and [𝑀, 𝐵]. In this way, the number of points evaluated is

adaptively determined and depends both on the value of the parameter �̂� and on the behavior of the

accuracy function. Intuitively, the higher the value of �̂�, the higher the number of alteration levels

evaluated by the algorithm. For this reason, users should choose the �̂� value based on the precision

required and on the time available for robustness analysis.

Algorithm 6 describes how the approximation method works. It recursively considers two alteration

183

Andrea Bombarda

Figure 50: Area in which the real accuracy curve between 𝐴 and 𝐵 will be likely included, identified by
two parabolas with concavity depth ±�̂�.

(a) 𝐴 is above 𝑦 =Θ and 𝐵 under
𝑦 =Θ.

0.0 0.2 0.4 0.6 0.8 1.0
Alteration level

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

A
cc

u
ra

cy

threshold sampled points

(b) The parabola with concavity
depth �̂� intersects with 𝑦=Θ.

(c) The parabola with concavity
depth -�̂� does not intersect with 𝑦=Θ.

Figure 51: Different positions of points during recursive accuracy evaluation.

levels 𝑥𝐴 and 𝑥𝐵 in [LA,UA], and evaluates the accuracy of the model in them, using the function

getAccuracy that applies the selected level of alteration (lines 2-3) to the test set TS.

Then, ASAP checks, by using the function parabIntsct (line 4), whether at least one of the two

parabolas passing for the two points 𝑥𝐴 and 𝑥𝐵 intersects the threshold. A sufficient condition is that

the two accuracy values are opposite w.r.t. the threshold Θ (see an example in Fig. 51a): this is

checked at line 11. If this is not the case, i.e., both accuracy values are above or below the threshold

Θ (see examples in Figs. 51b-51c), the algorithm computes the parabolas passing for 𝐴 and 𝐵 and

having concavity depth ±�̂�, using the parabola function (line 14). Note that given the concavity depth

�̂�, the coefficients 𝑏 and 𝑐 must also be calculated. They are obtained by solving the following system

of equations (where 𝑎 = ±�̂� is fixed by the user):

𝑎 · 𝑥𝐴2 + 𝑏 · 𝑥𝐴 + 𝑐 = acc𝐴

𝑎 · 𝑥𝐵2 + 𝑏 · 𝑥𝐵 + 𝑐 = acc𝐵

184

Neural network robustness

Algorithm 6 ASAP: Adaptive SAmpling by Parabolic estimation.
Require: 𝑥𝐴 the first alteration level
Require: 𝑥𝐵 the second alteration level
Require: TS the test set including all the input data (e.g. images)
Require: Θ the threshold to be used for robustness analysis
Require: �̂� the concavity depth parameter to be used by ASAP
Require: 𝑚𝑖𝑛𝑆𝑡𝑒𝑝 the minimum step between two alteration levels
Require: 𝐶 the CNN to be analyzed
Ensure: 𝑅𝐸𝑆 the list of sampled points with their accuracy values

1: procedure Eval(𝑥𝐴, 𝑥𝐵, TS, Θ, �̂�, 𝑚𝑖𝑛𝑆𝑡𝑒𝑝, 𝑅𝐸𝑆, 𝐶)
2: acc𝐴 ← getAccuracy(TS, 𝑥𝐴, 𝐶,RES) ⊲ Get the accuracy in 𝐴

3: acc𝐵 ← getAccuracy(TS, 𝑥𝐵, 𝐶,RES) ⊲ Get the accuracy in 𝐵

⊲ Check whether the parabolas with concavity depth ±�̂� intersect Θ
4: intersected←parabIntsct(𝑥𝐴, acc𝐴, 𝑥𝐵, acc𝐵, �̂�, Θ) ∨ parabIntsct(𝑥𝐴, acc𝐴, 𝑥𝐵, acc𝐵, -�̂�, Θ)

⊲ Estimate accuracy in the two sub-intervals if they are not too close
5: if intersected ∧ 𝑥𝐵 − 𝑥𝐴 ≥ minStep then
6: Eval(𝑥𝐴, 𝑥𝐴+𝑥𝐵

2 , TS, Θ, �̂�, minStep, RES, 𝐶)
7: Eval(𝑥𝐴+𝑥𝐵2 , 𝑥𝐵, TS, Θ, �̂�, minStep, RES, 𝐶)
8: end if
9: end procedure

10: function parabIntsct(𝑥𝐴, acc𝐴, 𝑥𝐵, acc𝐵, a, Θ)
⊲ Check whether 𝐴 and 𝐵 are opposite w.r.t. Θ

11: if (acc𝐴 − Θ) · (acc𝐵 − Θ) < 0 then
12: return true
13: end if

⊲ Compute the parabola and its vertex
14: b, c← parabola(𝑥𝐴, acc𝐴, 𝑥𝐵, acc𝐵, 𝑎)
15: (𝑥𝑣, 𝑦𝑣) = (− 𝑏

2·𝑎 ,−
𝑏2−4·𝑎·𝑐

4·𝑎)
16: return (𝑥𝐴 ≤ 𝑥𝑣 ≤ 𝑥𝐵) ∧ ((𝑎𝑐𝑐𝐴 − Θ) · (𝑦𝑣 − Θ) < 0)
17: end function

18: function getAccuracy(TS, 𝑥, 𝐶, RES)
19: if ¬RES.𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑥) then
20: acc𝑥 ← ComputeAccuracy(TS, 𝑥, 𝐶)
21: RES.𝑎𝑝𝑝𝑒𝑛𝑑 (⟨𝑥, acc𝑥⟩) ⊲ Save the obtained results
22: else
23: acc𝑥 ← RES.𝑔𝑒𝑡 (𝑥)
24: end if
25: return acc𝑥
26: end function

Then, the parabola vertex 𝑉 (𝑥𝑣, 𝑦𝑣) is calculated (line 15). The method verifies that the parabola is in

the area of interest (line 16), by checking that: (i) 𝑥𝑣 ∈ [𝑥𝐴, 𝑥𝐵] (first operand of the conjunction), and

(ii) the parabola intersects the threshold Θ, i.e., 𝑦𝑣 is opposite to acc𝐴 w.r.t. Θ (second operand). This

process is repeated for both 𝑎 = �̂� and 𝑎 = −�̂�.

185

Andrea Bombarda

(a) Uniform sampling - Linear function. (b) ASAP - Linear function.

(c) Uniform sampling - Irregular function.

0.0 0.2 0.4 0.6 0.8 1.0
Alteration level

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

u
ra

cy

real accuracy threshold sampled points

(d) ASAP - Irregular function.

Figure 52: Examples of robustness computation using synthetic functions.

Finally, if one of the two parabolas intersects the threshold and the sampled points are not too close

(line 5), the computation is recursively repeated in the intervals [𝑥𝐴, 𝑥𝑀] and [𝑥𝑀 , 𝑥𝐵] (lines 6-7),

where 𝑥𝑀 is the average alteration level between 𝑥𝐴 and 𝑥𝐵. Note that the user must choose the

value 𝑚𝑖𝑛𝑆𝑡𝑒𝑝 coherently, taking into account possible time constraints, in order to obtain a correct

robustness estimation.

In this way, a set of sampled points is obtained, each with the corresponding accuracy: RES =

{⟨𝑙1, acc1⟩, . . . , ⟨𝑙𝑛, acc𝑛⟩}. Starting from RES, the robustness is computed by generalizing the

formula in Def. 18 as follows:

robA(𝐶, 𝑃) =
∑𝑛

𝑗=2 𝐻 (acc 𝑗 − Θ) · (𝑙 𝑗 − 𝑙 𝑗−1)
UA − LA

· 100%

Example of robustness computation using ASAP

Fig. 52 reports the effect of ASAP on two different synthetic functions. In particular, in Fig. 52a,

the robustness calculation is performed by using uniform sampling with 50 equidistributed alteration

levels, and a robustness of 38.8% is obtained, while in Fig. 52b only 15 levels are used by ASAP

(with �̂� equal 256) and a robustness of 39.06% is obtained. Since the curve is generated synthetically,

the real robustness can be computed, and it turned out to be 40.00%. Note that the two results are

186

Neural network robustness

very close to each other and also close to the real robustness. In this particular case, ASAP is able to

perform even better than the normal approach with uniform sampling, despite fewer sampled points

being used.

The same behavior can be observed by comparing Fig. 52c, where robustness 77.9% is obtained by

uniform sampling with 𝑛 = 50, with Fig. 52d, where ASAP uses only 34 alteration levels (focused

in the area near the threshold value instead of uniformly distributed ones), obtaining a robustness of

81.2%. Note that even in this case the two results are close and that the real robustness associated

with the accuracy plot shown in Fig. 52c and Fig. 52d is 80.4%. This shows that ASAP uses fewer

alteration levels, so it saves time but still provides an accurate approximation of the robustness.

Maximum error estimation of the computed robustness

ASAP exploits a parabola-based approximation of the accuracy curve for a neural network, so the

estimation provided may be subject to errors. However, it provides theoretical guarantees regarding the

maximum error that it can make in computing the robustness. To define this, pairs of two consecutive

points 𝑝 𝑗 and 𝑝 𝑗+1 must be selected from RES, so that the parabolas passing from them with concavity

depth ±�̂� intersect the threshold Θ, i.e.,

IP =

(𝑙 𝑗 , 𝑙 𝑗+1)

�����
⟨𝑙 𝑗 , acc 𝑗 ⟩, ⟨𝑙 𝑗+1, acc 𝑗+1⟩ ∈ RES∧©«
parabIntsct(𝑙 𝑗 , acc 𝑗 , 𝑙 𝑗+1, acc 𝑗+1, �̂�,Θ)∨

parabIntsct(𝑙 𝑗 , acc 𝑗 , 𝑙 𝑗+1, acc 𝑗+1,−�̂�,Θ)
ª®¬

Intuitively, each pair of points 𝑝 𝑗 and 𝑝 𝑗+1 identifies the points between which at least one of the

two parabolas with concavity depth ±�̂� intersects Θ, and, therefore, also the real accuracy curve may

intersect, but ASAP has quit sampling because the two points have alteration levels sufficiently close

w.r.t. to the chosen 𝑚𝑖𝑛𝑆𝑡𝑒𝑝.

Under the assumption that the user has chosen an appropriate value for �̂�, the error that ASAP can

commit only comes from the intervals identified in IP. This intuition is formalized by the following

theorem.

Theorem 1. Let 𝐶 be a CNN and 𝐴 an alteration defined in the range [LA,UA]. Let robA be the

robustness computed for 𝐶 and 𝐴 by ASAP using a given �̂�. Let rob𝑂
𝐴

be the real robustness value.

Under the assumption that �̂� is a suitable parameter, i.e., the real accuracy curve is included in the

areas of two parabolas with concavity depth �̂� (see Fig. 50), the maximum error of the computed

187

Andrea Bombarda

robustness has a guaranteed upper bound defined as follows:

|robA − rob𝑂𝐴 | ≤ 𝜀A with 𝜀A =

∑︁
(𝑙 𝑗 ,𝑙 𝑗+1)∈IP

(𝑙 𝑗+1 − 𝑙 𝑗)

|UA − LA |
(7.4)

Proof. The error in robustness computation is due to the cases in which the real curve crosses the

threshold line but ASAP fails to find the exact intersection point. Let’s consider where this can happen

by considering all the sub-intervals [𝑙 𝑗 , 𝑙 𝑗+1] of the points in RES:

• if (𝑙 𝑗 , 𝑙 𝑗+1) ∉ IP, then the parabolas with concavity depth ±�̂� do not intersect the threshold.

Since, by the assumption of the theorem, �̂� is a suitable parameter, the real curve is included in

the computed parabolas, and so it also does not intersect the threshold. So, no contribution of

error in robustness computation comes from these points.

• if (𝑙 𝑗 , 𝑙 𝑗+1) ∈ IP, then we can distinguish two cases:

– the two points are opposite w.r.t. the threshold line. So, the real curve intersects the

threshold line, but in an unknown point that does not belong to RES.

– the two points are both below or above the threshold: ASAP ignores the possible intersec-

tion of the real curve with the threshold line since, for ASAP, the sampled points are close

enough.

In both cases, the maximum absolute error is 𝑙 𝑗+1 − 𝑙 𝑗 .

Therefore, the total error in the robustness estimation is given by the sum of errors for all pairs of

points in IP. Hence, the upper bound of the error is as defined in Eq. 7.4. □

7.5 How to improve the robustness of a NN

After having analyzed the robustness of a NN one may want to apply techniques allowing the improve-

ment of the network in terms of its robustness w.r.t. plausible alterations, in particular in safety-critical

systems (as in the PEMS domain) which should be as robust as possible.

Obviously, the first applicable solution is to create a more complex CNN, which is able to guarantee

higher robustness; however, this solution could be too costly and, moreover, the designer does not have

any hint on how to modify the network in order to increase its robustness. Therefore, in the following,

I consider additions to the training data or automatic extensions of the network that do not require the

intervention of the designer since they do not require the development of a new NN.

Note that a good technique should not only improve robustness, but also not degrade the classification

of the unaltered input; therefore, while trying to enhance robustness, one should also check the

accuracy of the retrained network.

188

Neural network robustness

7.5.1 Data augmentation

Data augmentation is a wide and well-known subject [169], including a suite of techniques that

increase the size and quality of the training data set. Using data augmentation, the NN has to be

retrained with a new training set composed of the original training set and additional data that can be

created starting from the original ones, so that the network performance, obtained after the retraining

process, is enhanced.

Since data augmentation is proposed here as a method for increasing the robustness of a NN, the new

training set may be created in two different ways, depending on the network type and on the application

domain:

• With recombined data: the idea of this approach is to create new input data (virtual) by

recombining existing ones (real) [71].

• With altered data: the idea behind this approach is that the robustness of a NN w.r.t. plausible

alterations (as per Def. 15) may be increased by adding in the training set a certain number of

inputs that have been altered with the same alterations under test.

Data augmentation has been shown to be very effective in the literature. However, it requires complete

retraining of the whole network, which has been performed using a large number of input data. Thus,

a lot of time should be spent in order to apply this technique.

7.5.2 Incremental learning

Data augmentation contributes to enhancing the robustness performance of a network, but requires

the retraining of the original network with a larger set of inputs, including the altered ones. Thus,

to reduce the training effort and increase the generalization of the network at the same time, other

techniques may be used. In particular, a different approach, known as incremental learning is suitable

in most cases, as it allows one to improve the performance of the model without retraining the entire

network. In the literature, it is performed whenever new samples are available, by adjusting what has

been learned according to them. This method has been designed to work as an online technique, but

in the analysis presented in this book, it has been adapted (as previously suggested by [161]) to be

used as an offline approach.

This approach adds knowledge to an existing NN without modifying it in order to improve its perfor-

mance. For this reason, a new NN composed of two sub-networks (as shown in Fig. 53) is created:

one sub-NN represents the original network, and the other one the new and non-previously trained

189

Andrea Bombarda

Input data

Original model output

New model output

Original Model

New Model

0.5

0.5

Output

Figure 53: Incremental learning technique.

network (but still with the same network structure as the original one). During the retraining phase,

only the new sub-network is trained using the new altered data set; the outputs of the two networks

are then used in the loss function computation and to update the weights in the new sub-network.

In this way, a new network that is capable of classifying new inputs using the support information

provided by the original one is obtained. After the retraining phase, the inference of an input vector

uses both networks: the final estimation is obtained by averaging the estimations of both models (the

original and the new one). This approach has the advantage of avoiding the retrain of the whole system

but only a part of it, and of using a limited data set composed of only altered input data. This led

to a shorter training time than the one required for the data augmentation technique. Moreover, the

original network is not modified; this is an advantage, as modifications are sometimes not possible if

the model is read-only or available only as a black box. Furthermore, keeping the original network

unaltered is more likely to maintain the same performance on unaltered data.

7.6 Robustness in medical devices

As introduced in Sect. 1.2, the certification process for medical devices and systems must follow a

set of standards and activities. However, these standards may be difficult to be applied to AI-based

medical software, as their behavior is difficult to be predicted and tested. Despite this, nowadays,

many medical devices based on AI algorithms are certified by competent authorities [20], but a lack of

clarity on the approval of AI/ML-based medical devices and algorithms characterizes the certification

process. From the information available on the already certified AI-based medical software, it can be

noticed that the FDA approves AI-based medical systems in three cases:

i) AI algorithms have shown to be at least as safe and effective as another similar legally marketed

product (which normally does not rely on AI);

ii) Critical algorithms with high impact on humans are pre-market approved, then the FDA deter-

mines if the device’s safety and effectiveness are supported by satisfactory scientific evidence;

190

Neural network robustness

iii) Novel medical devices which offer adequate safety and effectiveness are approved after performing

a risk-based assessment.

Although no robustness assessment is currently formally required, the companies producing medical

devices embedding AI components may include the robustness results as part of risk-assessment

documentation because they allow evaluating how the model resists to input perturbations.

7.7 Conclusion

In this chapter, a general discussion about the robustness of NNs used in the medical domain, either for

classification or estimation, is presented. Previous attempts of evaluating the robustness of NNs are

present in the literature, but they mainly focus on adversarial robustness. However, in some domains

(such as the medical one), adversarial attacks are unlikely to occur, and, for this reason, other measures

should be used in such fields. Thus, the proposed formulas exploit a quality measure (MAPE in the

case of estimators, or accuracy in the case of classifiers) to evaluate how the network under analysis

is able to tolerate input perturbations without degrading its performance. Moreover, in this chapter, I

have also presented two different methods suitable for increasing the robustness of a network. They

are based on adding data to the training set, or on automatic modifications of the network without

requiring any re-design of the network structure. Note that the concepts presented are rather general

and can be applied even to other domains.

As explained in Sect. 7.6, robustness is one of the candidate solutions for assessing the quality of

PEMS during their certification process. For this reason, in the next chapter, I will present how these

concepts are applied to real-world medical case studies, such as a system for classifying medical

images coming from breast-cancer exams and a system for estimating the blood 𝑝𝑂2 during medical

surgeries.

191

Chapter 8. Applying robustness computation and improvement

to PEMS

In this chapter, the robustness computation presented in Chapter 7 is applied to real medical case

studies. In particular, in Chapter 7, the definition of robustness w.r.t. plausible alteration has been

given for NN estimators and classifiers. Here, I present the use of the formula and tools previously

described in the case of:

• A CNN used as a classifier, for medical images of histological examinations for breast cancer

diagnosis;

• An MLP used as an estimator, to monitor the pO2 level during surgeries.

Both cases can be classified as safety-critical systems and, in particular, they represent (on their own

or in part) examples of PEMS. For this reason, their safety and reliability must be proven, and the

robustness measure can contribute to increasing the confidence in the correct behavior of the two

systems, even in real situations where input may be disturbed by external factors (see Sect. 7.6 for

further details).

This chapter is based on the work published in [3,5,6] and is structured as follows. Sect. 8.1 presents

the description of the breast cancer case study, defines the alterations that have been considered for

robustness analysis, presents the robustness results and the improvements obtained with the application

of the methods presented in the previous chapter. Sect. 8.2 introduces the pO2 estimation case study,

presents the alterations considered for the MLP estimator, and describes the results of the robustness

analysis and improvement processes. Finally, Sect. 8.3 concludes the chapter.

8.1 The breast cancer case study

In this section, I present the application of the robustness computation and improvement process to

a Convolutional Neural Network (CNN) used to classify images coming from histological exams for

breast cancer diagnosis.

8.1.1 Case study description

Breast cancer (especially invasive ductal carcinoma - IDC) is one of the main causes of cancer death

in women (∼ 12% in 2019) and one of the most diagnosed cancers (1/3 of all cancers) [47]. The

diagnoses for this disease are made by analyzing images of the histological features of tissue or cells

removed with surgery or biopsy. These images are collected using a microscope and examined by

193

Andrea Bombarda

(a) Benign examples. (b) Malignant examples.

Figure 54: Example of images contained in the database used for the analysis.

pathologists to make a decision about the benignity or malignancy of the suspected cancer. For the

analyses presented in this section, a publicly available data set of histological images [151] has been

used: it consists of 162 images of tissues acquired at 40×, from which a total of 277, 524 labeled

patches of 50 × 50 pixels were extracted. Among them, 198, 738 are benign samples and 78, 786 are

malignant. Fig. 54 reports examples of both malignant and benign samples.

For performing this classification, physicians may be aided by automated systems based on CNNs.

The CNN analyzed, in the following referred as 𝐶0, is supposed to identify whether the input image

comes from a patient with IDC or not. It has been implemented using Python and the Keras library.

The structure of the chosen CNN has been inspired by [154] that describes a CNN for breast cancer

identification. The first layer in 𝐶0 is a convolutional layer, with 32 filters, and 3× 3 kernels, followed

by a rectified linear unit (ReLU) activation function. Then, a batch normalization layer, a max-pooling

layer, and a dropout of 0.3 are inserted to prevent overfitting. After these layers, a double couple of

convolutional layers (64 filters, with 3×3 kernels) and ReLU activation functions are used. To further

prevent over-fitting, another batch normalization layer followed by a max-pooling layer is present. The

last block of layers is composed of a fully-connected layer with ReLU activation, a batch normalization

with a drop-out of 0.5, and a sigmoid classifier.

𝐶0 has 63, 106 parameters and its training requires 2ℎ 08𝑚. The available 277, 524 input images

have been divided as follows: 147, 415 images have been used as training set 𝑇𝑅𝐶0 , 63, 178 images

have been used as validation set 𝑉𝐴𝐶0 , while 66, 931 images compose the test set 𝑇𝐸𝐶0 . With this

subdivision, 𝐶0 has achieved an accuracy of 86, 46% on the test set 𝑇𝐸𝐶0 .

Alterations

In order to investigate the robustness of the CNN 𝐶0, the most common alterations that can occur

when working with digital images in the medical sector have been considered:

194

Applying robustness computation and improvement to PEMS

ID Alteration LA UA ×n

GN Gaussian noise 0 200 40
JC JPEG Compression 0% 100% 40
VT Vertical translation −4𝑝𝑥 +4𝑝𝑥 40
HT Horizontal translation −4𝑝𝑥 +4𝑝𝑥 40
BA Blur addition 0𝑝𝑥 2𝑝𝑥 40
BV Brightness variation −50% +50% 40
ZO Zoom 100% 200% 40

Table 27: Alteration values used for robustness analysis of breast cancer classification.

• Horizontal translation and Vertical translation: these alterations may occur when micro-

scopic slides are incorrectly placed, or placed in a way that was not captured by the pictures

used to train the network;

• Brightness variation: it may occur when different microscopes, having different lamps, are

used for image acquisition;

• Zoom: images may be acquired using different levels of zoom. In this way, specific features

may have different sizes w.r.t. the one seen during the training of the network;

• Gaussian noise: it simulates the possible effect of a wrong manipulation of the microscopic

slide (e.g., too much dye has been used for contrast) [58]. During the robustness analysis, the

variance 𝜎2 has been altered accordingly with the alteration level;

• Blur addition: it may occur due to a small movement of the microscope that acquires the

images, causing a loss of focus. For this alteration, a variation of the radius 𝑟 of the added blur

has been considered;

• JPEG compression: it may occur when images are transferred in a lossy manner. This alteration

has been applied by varying the compression value 𝑞.

More details about the lower and upper bound for each alteration (LA and UA) and the number of

uniformly sampled points for each type of alteration (×𝑛) are reported in Tab. 27.

8.1.2 Robustness evaluation

In this section, I present the results of the robustness evaluation performed with ROBY (previously

presented in Sect. 7.4.1) on the CNN 𝐶0 under analysis, using the previously presented alterations,

which are already embedded in the tool.

195

Andrea Bombarda

𝐶0 𝐶𝐷𝐴 𝐶𝐿𝐷𝐴 𝐶𝐼𝐿 𝐶𝐿𝐼𝐿

ID Rob. Rob. Δ Rob. Δ Rob. Δ Rob. Δ

GN 19.5% 100.0% 80.5% 100.0% 80.5% 34.1% 14.6% 34.1% 14.6%
JC 87.8% 97.6% 9.8% 97.6% 9.8% 90.2% 2.4% 90.2% 2.4%
VT 100.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0%
HT 100.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0%
BA 63.4% 100.0% 36.6% 100.0% 36.6% 100.0% 36.6% 100.0% 36.6%
BV 17.1% 61.0% 43.9% 87.8% 70.7% 17.1% 0.0% 24.4% 7.3%
ZO 100.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0%

AVG 69.7% 94.1% 97.9% 77.3% 78.4%

Table 28: Robustness for the classifier for breast cancer diagnosis.

To evaluate the robustness of 𝐶0, a threshold Θ = 80% has been chosen. Using the uniform robustness

formula presented in Def. 18 in Chapter 7, ROBY automatically produces the robustness results as

in Tab. 28. They confirm the invariance property of CNNs with respect to geometric transforma-

tions [118] (i.e., the classification does not change when some particular geometric transformations

are applied): indeed,𝐶0 has a robustness of 100% in both translations and zoom. In general, the results

show that the classifier 𝐶0 was not robust w.r.t. plausible alterations, since its average robustness is

69.7%.

Fig. 55 shows how the accuracy of𝐶0 varies when each alteration is applied. Apart from the alterations

achieving 100% robustness, it can be noticed that some of the other alterations (e.g., JC) maintain the

accuracy value greater than Θ for most of their alteration interval, leading to higher robustness values.

For other alterations (e.g., GN), instead, the accuracy is lower than Θ for most of the alteration levels,

so the robustness is lower.

8.1.3 Robustness improvement

As presented in Sect. 7.5, once the robustness of a NN has been assessed, one may try to improve

it by using different techniques, mainly based on adding specific inputs to the training set or adding

parallel network components. In this section, the results obtained with the application of the previously

presented techniques are reported.

Data augmentation

Using data augmentation (DA) consists in retraining the entire network using both original and altered

pictures. This process is time-consuming, especially if every alteration needs to be applied to each

input, for all its alteration levels between LA and UA. Based on this consideration, DA has been applied

196

Applying robustness computation and improvement to PEMS

(a) HT: Horizontal Translation (px). (b) VT: Vertical Translation (px).

(c) BV: Brightness Variation (%). (d) ZO: Zoom (%).

(e) GN: Gaussian Noise (𝜎2). (f) BA: Blur Addition (𝑟).

(g) JC: JPEG Compression (𝑞).

Figure 55: Accuracy modification using the altered data input over the CNN 𝐶0.

using only 4 alteration levels for the alterations having positive and negative values (VT, HT, and BV)

and 2 levels for all the other alterations. In this way, a total of 2, 526, 281 input images have been

obtained.

The new classifier 𝐶𝐷𝐴 has required 14ℎ 54𝑚 to be trained and has reached an accuracy of 86.57%

on the same test set used for the original classifier 𝐶0. This result shows that the accuracy has not

increased significantly but, on the contrary, the robustness w.r.t. alterations has greatly improved (see

Tab. 28), both in terms of single alteration (e.g., in the case of Gaussian noise, the robustness has

passed from 19.5% to 100.0%) and in terms of average robustness, which now is 94.1%.

The changes in accuracy obtained by applying the alterations of type 𝐴 (only for the alterations that

lead to a robustness less than 100% with the original CNN 𝐶0) are reported in Fig. 56, as well as the

comparison with the original accuracy curves. For most of the alterations, it is possible to observe

197

Andrea Bombarda

(a) BV: Brightness Variation (%). (b) GN: Gaussian Noise (𝜎2).

(c) BA: Blur Addition (𝑟). (d) JC: JPEG Compression (𝑞).

Figure 56: Accuracy modification using the altered data input over the CNN 𝐶𝐷𝐴.

that the accuracy improves more for larger alteration levels than for smaller ones. This may be due to

the fact that CNN retraining does not gain enough additional knowledge from small alterations, while

it can learn better larger alteration values as they are more distinguishable.

Limited data augmentation

The main disadvantage of the DA technique is that the training process is very time-consuming.

Therefore, exploiting the CNNs invariance properties, a “limited” version (LDA) may be used: it is

possible to use augmented images only for the alterations that lead to a robustness less than 100% on

the original classifier 𝐶0. In particular, the classifier 𝐶𝐿𝐷𝐴 has been obtained by training the original

one with images on which only alterations leading to a robustness less than 100% on 𝐶0: BV, GN,

BA, and JC. In this way, 2,316,523 images have been obtained.

The new classifier 𝐶𝐿𝐷𝐴 has required 13ℎ 39𝑚 to be trained and has reached an accuracy of 86.64%

on the same test set used for the original classifier 𝐶0. This result shows that the accuracy has not

increased significantly, but, on the contrary, the robustness w.r.t. alterations has greatly improved (see

Tab. 28), both in terms of single alteration (e.g., in the case of Gaussian noise, the robustness has

passed from 19.5% to 100.0%) and in terms of average robustness, which now is 97.9%. Furthermore,

the performance of 𝐶𝐿𝐷𝐴 is even better than that of 𝐶𝐷𝐴: this may be due to the fact that the retraining

process focuses only on the weaknesses of the network. The changes in accuracy obtained by applying

the alterations of type 𝐴 (only for the alterations that lead to a robustness less than 100% with the

original CNN 𝐶0) are reported in Fig. 56, as well as the comparison with the original accuracy curves.

198

Applying robustness computation and improvement to PEMS

(a) BV: Brightness Variation (%). (b) GN: Gaussian Noise (𝜎2).

(c) BA: Blur Addition (𝑟). (d) JC: JPEG Compression (𝑞).

Figure 57: Accuracy modification using altered data input over the CNN 𝐶𝐿𝐷𝐴.

Incremental learning

Using offline incremental learning (IL) consists in adding a copy of the original network in parallel

to 𝐶0 and training it only using altered input data. In this way, the new network is composed of two

branches: one that is more focused on “original” and unaltered data, and one that is able to deal with

altered inputs. Then, the result of the entire network 𝐶𝐼𝐿 = 𝐶0 | |𝐶𝑃𝑎𝑟 is given by the combination

(using a max layer) of the outputs of 𝐶0 and 𝐶𝑃𝑎𝑟 .

The parallel network retraining has been performed using only the 2, 315, 688 images obtained by

applying the alterations to the original ones in the input set, and no unaltered data have been used. In

particular, as for DA, only 4 alteration levels have been used for alterations with positive and negative

values (VT, HT, and BV) and 2 levels for all other alterations. The new classifier 𝐶𝐼𝐿 has required

13ℎ 26𝑚 to be trained and has reached an accuracy of 87.10% on the same test set used for the original

classifier 𝐶0, which is higher than those previously obtained.

The robustness results obtained with 𝐶𝐼𝐿 are reported in Tab. 28. For all alterations, 𝐶𝐼𝐿 offers better

or equal robustness w.r.t. 𝐶0, but for GN, JC, and BV the techniques based on the classic version of

data augmentation (DA or LDA) perform better.

The accuracy changes obtained by applying the alterations of type 𝐴 (only for the alterations that

lead to a robustness less than 100% with the original CNN 𝐶0) are reported in Fig. 58, as well as the

comparison with the original accuracy curves.

199

Andrea Bombarda

(a) BV: Brightness Variation (%). (b) GN: Gaussian Noise (𝜎2).

(c) BA: Blur Addition (𝑟). (d) JC: JPEG Compression (𝑞).

Figure 58: Accuracy modification using the altered data input over the CNN 𝐶𝐼𝐿 .

Limited incremental learning

Like the data augmentation technique, incremental learning can be applied in a “limited” version (LIL).

For this purpose, the parallel network has been trained using only the 2, 105, 930 images obtained by

applying the selected alterations (BV, GN, BA, and JC) leading to a robustness lower than 100% on

𝐶0.

The new classifier 𝐶𝐿𝐼𝐿 has required 12ℎ 02𝑚 to be trained and reached an accuracy of 86.51% on

the same test set used for the original classifier 𝐶0, a value lower than that obtained with the full

version of incremental learning. However, limiting the input alterations in the training set only to

those most critical for the CNN (ad for the LDA technique) allows obtaining better performance than

the one achieved with the regular IL technique (see Tab. 28), even if the LDA technique leads to

higher robustness in average and for all alterations. The changes in accuracy obtained by applying the

alterations of type 𝐴 (only for the alterations that lead to a robustness less than 100% with the original

CNN 𝐶0) are reported in Fig. 59, as well as the comparison with the original accuracy curves.

8.1.4 Final considerations

Table 291 reports a brief summary of the main relevant information about the four methods presented

in the previous subsections. From these results, the best solution is to retrain the whole model using

the LDA technique because it leads to a very high resulting average robustness using fewer input

images than the standard DA. Nevertheless, in both methods, the training phase requires a lot of time

1Experiments have been run on a server with 264GB of RAM and a Intel® Xeon® E5-2620 CPU.

200

Applying robustness computation and improvement to PEMS

(a) BV: Brightness Variation (%). (b) GN: Gaussian Noise (𝜎2).

(c) BA: Blur Addition (𝑟). (d) JC: JPEG Compression (𝑞).

Figure 59: Accuracy modification using the altered data input over the CNN 𝐶𝐿𝐼𝐿 .

𝐶 Input size Train. time Accuracy Avg rob. Adversariability

𝐶0 210,593 2h08m 86.46% 69.7% 0.38
𝐶𝐷𝐴 2,526,281 14h54m 86.57% 94.1% 0.64
𝐶𝐿𝐷𝐴 2,316,523 13h39m 86.64% 97.9% 0.39
𝐶𝐼𝐿 2,315,688 13h26m 87.10% 77.3% N/A
𝐶𝐿𝐼𝐿 2,105,930 12h02m 86.51% 78.4% N/A

Table 29: Summary of the main information of all the methods used to improve the robustness of a CNN.

(also considering that the data set considered is medium-small). Even the use of the incremental

learning technique can lead to an improvement of the robustness of our CNN and, also in this case, the

application of the limitation technique can slightly improve the performances in terms of both training

time and average robustness.

In general, the networks obtained with all the methods suitable for increasing the robustness seem

to perform better than the original one, especially for higher alteration levels. This is reasonable

because including an image that is only slightly altered in the input set does not give enough increase

of knowledge to the network to significantly improve the accuracy at a certain level of alteration.

Adversariability

Tab. 29 also reports the summary of the adversariability data for the classifiers 𝐶 for which it is

possible to compute it. Note that it is not possible to define “the most adversarial example” as in

Def. 20 for networks used with offline incremental learning, since an input that can be adversarial for

a part of the net may be not adversarial for the other.

201

Andrea Bombarda

The computed adversariability does not appear to be correlated with robustness: good adversariability

values are obtained for both 𝐶0 and 𝐶𝐿𝐷𝐴 that are very different in robustness. This seems to confirm

that the testing based on plausible alterations (aiming at increasing robustness) is complementary to

that based on adversarial examples (aiming at reducing adversariability); however, further experiments

with other case studies are needed to generalize the results.

8.2 The PO2 estimation case study

In this section, I present the application of the robustness computation and improvement process to a

Multilayer Perceptron (MLP) used to estimate the pO2 level in the blood of patients. The described

project has been a collaboration with an industrial partner working in the field of producing medical

devices incorporating AI components.

8.2.1 Case study description

In medical practice, constantly evaluating the right value of the partial pressure of oxygen (pO2) in the

blood is very important, especially during surgery or for patients with critical conditions. Normally,

the pO2 level is computed by observing the blood fluorescence. In fact, when exposed to a bright

pulse, the blood responses with a fluorescence that can be described (or better “approximated”) by a

biexponential function defined as follows:

fluorescence(𝑡) = 𝐴 · (𝑒−𝐵1𝑡 − 𝑒−𝐵2𝑡) (8.1)

where 𝐴, 𝐵1, and 𝐵2 are parameters that characterize the response, and 𝑡 is the time that has passed

from the moment in which the light pulse was applied. Note that the parameters 𝐴, 𝐵1, and 𝐵2 have

been demonstrated to depend on the current level of pO2 and on blood temperature. An example of

this curve (experimentally taken) is shown in the center of Fig. 60. Using a spotlight to illuminate the

blood and a probe to measure the response to the bright pulse, it is possible to estimate the parameters

𝐴, 𝐵1, and 𝐵2 and then produce an estimation of the pO2 level. However, finding the best biexponential

curve (i.e., finding the fittest parameter values) is very challenging, and it proved to be unfeasible by

the microcontroller that the industrial partner had chosen to use in the sensor, since the complexity of

the estimation is very high and needed more computational power.

For this reason, the company decided to deploy on the microcontroller an MLP (Multilayer Perceptron),

previously trained for the estimation of pO2. An overview of the MLP-based sensor is shown in Fig. 60.

202

Applying robustness computation and improvement to PEMS

Blood flow

Spotlight

Probe

MLP

pO2
level

pO2
level at

37°
Blood

temperature

TextText

pO2
sensor

Figure 60: Overview of the MLP-based sensor for pO2 estimation.

The deployed MLP takes as input a limited number of blood fluorescence samples obtained in response

to the bright pulse and the blood temperature to estimate the values of the pO2 at two temperatures:

at the current temperature and at 37 ◦C. In particular, the MLP uses the mean values of the curve

computed in the intervals [50, 60], [90, 110], [190, 210], [340, 360], and [620, 640]. The MLP has

6 neurons in the input layer, 12 neurons in the first hidden layer, 10 neurons in the second hidden

layer, and 2 neurons in the output layer, giving as output the estimation of the pO2 value at the current

temperature and the prediction of pO2 value at 37 ◦C (see Fig. 60). Sigmoid activation functions are

used by all neurons. During training, validation, and testing, the company used a data set composed of

21, 650 curves like the one in the center of Fig. 60. The curves have been sampled using 16 different

types of probes and 178 different spotlights. For each input sample, the true values of pO2 at the two

temperatures (i.e., current and 37 ◦C) were given by blood analysis using a precision measurement

instrument. As usual in machine learning, 60% of the data set has been used for the training phase,

20% for the validation phase, and 20% for the testing phase.

Alterations

In a real scenario, the data to be processed by the MLP can be altered w.r.t. their nominal shape,

as defined by Def. 15. For example, the MLP under analysis has been trained on data that describe

how pO2 changes in time, but in practice, the MLP can be affected in its estimations by variations in

acquisition time, due to clock offsets or to a cut of the communication between the sensor and the

processing unit. For this reason, in this case study, the industrial partner has asked to consider the

following alterations:

203

Andrea Bombarda

• Cut of the curve end: it consists in “cutting” the end of the curve obtained in response to the

spotlight pulse (see Fig. 61a). This alteration mimics a real situation revealed during testing

activities by the industrial partner in which a disruption, failure, or anomalous system behavior

leads to a loss of the final part of the curve during its acquisition. From the analyses conducted

by the industrial partner, it has been noticed that only cuts in the last range significantly affect

the prediction of MLP, i.e., in [620, 640]. The alteration is implemented by choosing a 𝑡 in that

range and setting the response to zero after 𝑡.

• Clock offset: it represents the difference of time calculation in different systems (see Fig. 61b).

This may happen when the microprocessor of the acquisition system is not properly configured

or there is a delay in signal generation. In the analyses presented in this section, a maximum

offset of 30 ms has been used, since it turned out to be a value that guarantees a clock delay

greater than the maximum width of the intervals considered as input by the analyzed system.

• Cut of the peak: it aims at representing a cut in the peak of the curve, which simulates

saturation events (see Fig. 61c). This is a common phenomenon in electronics, where a signal

cannot exceed a specific range of values, due to problems in the acquisition chain or source

voltage drops. In these cases, high values of the curve are set to a threshold instead of their

original values. The signals analyzed for this case study have a maximum amplitude of 4000

RFU (Relative Fluorescence Units). So, to cover only the relevant and possible values, a cut

starting from 1300 RFU to 4000 RFU has been applied.

• Amplification: it simulates the effect of using different probes and spotlights on the measure-

ment of the same blood sample (see Fig. 61d). In fact, from domain analyses, it has been shown

that changing the probes or spotlights (with others made by different manufacturers) slightly

amplifies the response curve, even if the real pO2 value remains the same. For this reason, in

the robustness analysis of the MLP, amplifications up to 200% of the original amplitude have

been tested.

• Attenuation: it represents the opposite of the amplification, i.e., the signal is attenuated by using

different probes and/or spotlights (see Fig. 61e). The two alteration types have been evaluated

separately since the industrial partner wanted to highlight potential differences between the two.

For this alteration, attenuation values up to 50% of the original amplitude have been used.

• Gaussian noise: it simulates the noises that are common for electronic signals (see Fig. 61f). In

this case study, Gaussian noise with a standard deviation in the range between 0 (i.e., the absence

204

Applying robustness computation and improvement to PEMS

ID Alteration 𝐿𝐴 𝑈𝐴 × n

CC Cut of the curve end 620 ms 640 ms 21
CO Clock offset 0 ms 30 ms 31
CP Cut of the peak 1300 RFU 4000 RFU 271
AM Amplification (scale) 100 % 200 % 11
AT Attenuation (scale) 50 % 100 % 6
GN Gaussian noise 0 50 51

Table 30: Alterations values used for robustness analysis of the pO2 estimator.

(a) Cut of the curve end. (b) Clock offset. (c) Cut of the peak.

(d) Amplification. (e) Attenuation. (f) Gaussian Noise.

Figure 61: Typical alteration examples for the pO2 estimation case study.

of noise) and 50 (i.e., the maximum value leading to an acceptable and plausible signal-to-noise

ratio) has been generated.

More details about the lower and upper bounds for each alteration (LA and UA) and the number of

uniformly sampled points for each type of alteration (×𝑛) are reported in Tab. 30

8.2.2 Robustness evaluation

In Def. 23 in Chapter 7, the idea of robustness for NN estimators was presented. It is based on the

choice of probability for each considered alteration and tolerance for the MAPE. For this reason, the

first activity performed was the discussion with the industrial partner about which type of probability

and tolerance functions should have been used in this case study. The industrial partner has decided

to select UU robustness. The choice of uniform probability is motivated by the fact that, in medical

applications, sensors should be robust against any alteration level, regardless of the probability of

the alteration, since even a very rare alteration level may cause terrible consequences. On the other

hand, the choice of uniform tolerance is motivated by the industrial partner, according to physicians

205

Andrea Bombarda

Algorithm 7 Algorithm for robustness analysis.
Require: curves raw, the set of fluorescence curves obtained in response to the bright pulse
Require: targets, the true values of pO2
Require: 𝑀 , the model trained to estimate pO2 values
Require: alteration, the applied alteration
Require: a levels, the list of 𝑛 levels uniformly distributed in the range of the chosen alteration, i.e.,
[𝐿𝐴,𝑈𝐴]

Require: prob, the probability distribution of the alteration to be applied
Require: Tol, the desired tolerance function
Require: intervals, the list of intervals on which the mean values have to be computed (i.e., [50, 60],
[90, 110], [190, 210], [340, 360], [620, 640])

Ensure: rob res, the computed robustness value

⊲ For each level of alteration
1: for all 𝑙 ∈ a levels do

⊲ Apply the alteration level to all the input curves
2: alt curves← alteration.apply(curves raw, 𝑙)
3: for all 𝑐 ∈ alt curves do

⊲ Compute the mean values in the intervals
4: meanValues← compMeanValues(𝑐, intervals)

⊲ Compute estimations for altered data
5: pred.𝑎𝑑𝑑 (𝑀.estimate(meanValues))
6: end for

⊲ Compute errors
7: MAPE[𝑙] = compute mape(pred, targets)
8: end for
9: rob res← Robustness(MAPE, prob, Tol, a levels)

10: return rob res

who consider any error below the selected threshold Θ safe for the intended medical practice. More

specifically, the industrial partner, after a careful study, has set the maximum accepted MAPE Θ to

10%, a value that physician experts considered safe.

After having decided on the type of robustness to be computed, Algorithm 7 has been executed.

Analysis is carried out on a model 𝑀 , for each alteration with uniformly distributed values in an

interval a levels, each with a probability described by the probability distribution prob (in this case,

the uniform function). Moreover, the tolerance function Tol (in this case, the uniform function) has to

be specified. For each alteration level 𝑙 (line 1), the algorithm performs the following instructions:

• Starting from curves raw, new altered fluorescence curves are generated (line 2), by applying

the defined level 𝑙 of the alteration;

• For each generated curve, the algorithm extracts the mean values in the five intervals of interest

(line 4);

• The mean values are used as input for computing the pO2 estimation (line 5);

206

Applying robustness computation and improvement to PEMS

(a) CC - current T (b) CC - 37 ◦C (c) CO - current T

(d) CO - 37 ◦C (e) CP - current T (f) CP - 37 ◦C

(g) AM - current T (h) AM - 37 ◦C (i) AT - current T

(j) AT - 37 ◦C (k) GN - current T (l) GN - 37 ◦C

Figure 62: MAPE variation during robustness analysis.

• The pO2 results are used to compute the MAPE (line 7) for the defined level 𝑙 of the alteration;

• After having gathered all the partial MAPE values, the function Robustness (line 9) computes

the robustness by solving the integral according to Def. 23.

Tab. 31 reports the results obtained by executing Algorithm 7 on the original network. From the results

obtained, it is possible to highlight that some alteration is more critical than others. In particular, the

alteration for which the robustness of the NN estimator should be improved more is the cut of the

curve end (CC). Furthermore, from the comparison between the robustness of the estimation of pO2

at the current temperature and the one at 37 ◦C, the results show that there are no relevant differences.

The changes in MAPE obtained when alterations are applied to the test set are reported in Fig. 62,

together with the nominal MAPE (𝑀𝐴𝑃𝐸0) and the upper bound Θ used to calculate the robustness.

207

Andrea Bombarda

Original DA-RD DA-AD Incremental learning
Rob [%] Rob [%] Δ Rob [%] Rob [%] Δ Rob [%] Rob [%] Δ Rob [%]

Alteration pO2 pO2 37 ◦C pO2 pO2 37 ◦C pO2 pO2 37 ◦C pO2 pO2 37 ◦C pO2 pO2 37 ◦C pO2 pO2 37 ◦C pO2 pO2 37 ◦C

CC 14.3 14.3 19.1 19.1 4.8 4.8 28.6 28.6 14.3 14.3 14.3 19.1 0.0 4.8
CO 87.1 83.9 87.1 83.9 0.0 0.0 87.1 87.1 0.0 3.2 87.1 87.1 0.0 3.2
CP 82.9 82.6 83.7 83.7 0.8 1.1 83.3 84.1 0.4 1.5 83.7 83.7 0.8 1.1
AM 81.8 72.7 54.5 54.5 -27.3 -18.2 90.9 72.7 9.1 0.0 100.0 100.0 18.2 27.3
AT 66.7 66.7 66.7 66.7 0.0 0.0 100.0 100.0 33.3 33.3 100.0 83.3 33.3 16.4
GN 86.3 80.4 78.4 84.3 -7.9 3.9 78.4 84.3 -7.9 3.9 88.2 84.3 1.9 3.9

AVG 69.8 66.8 64.9 65.4 78.0 76.1 78.9 76.2

Table 31: Robustness w.r.t. alterations for the networks retrained with the three approaches.

Training MAPE0 [%]
Model curves pO2 pO2 37 ◦C

Original 12,990 3.70 3.35
DA-RD 14,677 3.08 3.08
DA-AD 19,485 3.11 3.06
IL 6,495 3.32 3.20

Table 32: MAPE0 of the original network and the retrained ones.

8.2.3 Robustness improvement

After having calculated the robustness for the pO2 estimator, the industrial partner asked to find a

way (if existing) to improve the robustness of his MLP model, with only minimal changes in the

architecture of the system. As presented in Sect. 7.5, techniques based on data augmentation or

incremental learning may be suitable for this purpose. Thus, in this section, three different methods

are examined: (A) Data augmentation with recombined data; (B) Data augmentation with altered data;

(C) Incremental learning.

Summary data from the analyses are reported in Tab. 31 and Tab. 32, and are discussed in more detail

in the following.

Data augmentation with recombined data

As explained previously (see Sect. 7.5.1), the use of data augmentation consists in retraining the entire

network using additional data in order to enhance the performance of the NN estimator. In the case

study under analysis, it has been observed that there exist many curves that, although they represent

the same labeled pO2 true value, differ in shape, mainly due to differences in temperature and types of

probes and/or spotlights. For this reason, the idea at the basis of data augmentation with recombined

data (DA-RD) is to create new input curves in two different ways: by averaging two curves with

out-of-range estimation errors (i.e., higher than 10%), and by averaging a curve with a high estimation

208

Applying robustness computation and improvement to PEMS

error with one with a low error. In both cases, the curves that have been averaged have the same target

values of pO2. The intent is to capture new intermediate curves with a known true value of pO2.

With the available data (1141 samples with high estimation error), 546 new data have been generated

by the first method and additional 1141 data with the second one, obtaining a new data set composed

of 1687 samples that have been added to the original data set and used to retrain the MLP of the

industrial partner.

The results in Tab. 31 show that the average robustness obtained when applying DA-RD is lower than

the one of the original network, both for the pO2 at the current temperature and at 37 ◦C: the robustness

w.r.t. the majority of the alterations slightly increases (or remains equal), while for the amplification

and Gaussian noise alteration it has significantly decreased. Nevertheless, from the results reported

in Tab. 32, it can be seen that this technique has reduced 𝑀𝐴𝑃𝐸0, compared to that of the network

trained with the original data.

At the end of the day, this has proven not to be a very good solution, but it was not a surprise since,

by using this technique, no new data that could mimic possible unexpected alterations were added.

Data augmentation with altered data

The second proposed retraining approach considers the fact that the robustness definition is given w.r.t.

plausible alterations. Therefore, unlike the previous approach, data augmentation can be performed

with altered data (DA-AD), using a retraining approach that explicitly targets alterations and adds

altered data during the training phase. However, as usual, data augmentation may take a long time,

so only alteration levels that cause a variation of 𝑀𝐴𝑃𝐸 lower than 5% have been used to create new

input data. In this way, a new training data set 1.5 times greater than the original has been obtained.

Tab. 32 shows that the use of DA-AD contributes to the decrease in nominal MAPE, so it improves

performance on unaltered data, both for pO2 at current temperature and at 37 ◦C. Moreover, results in

Tab. 31 confirm that using DA-AD leads to higher average robustness (13% more than the one obtained

with the original network) and increases the robustness w.r.t. specific alterations even more than 33%

(see AT alteration). Nevertheless, the retraining process requires more time since it is performed using

nearly 7, 000 additional input data. Note that the only alteration for which robustness has decreased

is Gaussian noise during the estimation of pO2 at the current temperature. It can be conjectured that

this is due to the noise that is, by definition, randomly distributed, and so increasing the robustness

w.r.t. this kind of alteration may be very difficult: including in the training set input data subject to

Gaussian noise may lead the network to focus only on the specific noise instances, while others may

be made more difficult to be tolerated.

209

Andrea Bombarda

Incremental learning

DA, in all its different variants, contributes to improving the robustness performance of a network,

but requires retraining of the original network with a larger set of inputs, and this may require a lot of

time. Thus, in order to reduce the learning time and increase the network generalization at the same

time, incremental learning (IL), as presented in Sect. 7.5.2, has been applied.

This approach has the advantage of avoiding the retraining of the entire system but only a part of it,

using a limited data set composed of only altered input data. This led to a shorter training time than

the one required for the DA-AD technique, since only the altered data are used to train the new part.

The results in Tab. 31 show that the average robustness obtained when applying IL is the highest, and

more than 13% better than the original network. Also, if one wants to consider specific alterations,

the robustness has increased up to 33%, and no decrease has been obtained (differently from DA-AD,

for which some decrease has been observed). Note that 𝑀𝐴𝑃𝐸0, instead, is slightly higher than the

one obtained with DA-AD (see Tab. 32), but still better than the original network one.

These results show that IL can combine the advantages of the original network, i.e., focusing only on

relevant input features, and those of the data augmentation, i.e., guaranteeing higher robustness w.r.t.

the standard-trained network.

8.2.4 Final considerations

In the solution proposed to the industrial partner, the user needs to select the probability of the

alterations of interest. Although the probabilities in this case study were known, in some different

application scenarios, they may be unknown, and this can make it difficult to apply the formula

for robustness computation. In these cases, interpreting probability as a function that describes the

“importance” (or weight) of each alteration level is a viable solution.

From the experiments with the three robustness improvement techniques (see Sect. 8.2.3), it can be

noticed that, for most alterations, the robustness is not 100% even after the robustness improvement

process. This shows that obtaining optimal robustness by simply retraining may not be possible. In

this case, by looking at the final robustness results, the industrial partner has understood which are

the most critical alterations that can still affect the network and has planned to adopt countermeasures

from an electronic point of view. For example, they have experimented that the impact of Gaussian

noise may be reduced by improving the cables’ shielding or by amplifying the acquired signal so that

the noise is less relevant.

Finally, the industrial partner has detected a significant improvement in the performance of the NN

estimator after the described process and, among all the techniques presented, has decided to use

210

Applying robustness computation and improvement to PEMS

incremental learning, as it increases robustness and decreases the nominal MAPE (i.e., 𝑀𝐴𝑃𝐸0),

while saving time w.r.t. regular data augmentation.

8.3 Conclusion

In this chapter, the robustness estimation process for both a medical image classifier and a pO2

estimator has been presented. This process exploits the formulas introduced in Chapter 7 and applies

them to real medical case studies, where domain-specific alterations are more likely to occur than the

most investigated adversarial examples.

In both case studies, robustness computation has allowed improving the performance of the NN, for

both unaltered and altered inputs. In breast cancer classification, after having applied the robustness

analysis and computation, robustness and nominal accuracy increased. The same results can be

observed in the case of the pO2 estimator: applying methods to increase the robustness has allowed

the industrial partner not only to improve robustness itself in the presence of alterations but also to

decrease 𝑀𝐴𝑃𝐸0 under nominal and unaltered conditions.

In conclusion, evaluating and improving robustness has proven to be a good option when it comes

to increasing the quality and reliability of a NN, which is useful not only when dealing with altered

and unforeseeable inputs, but also with “regular” data. This has been confirmed by the industrial

partner, which now includes this evaluation process in its current pipeline when developing ML-based

solutions.

211

Conclusions and Future Work

In this book, the problem of developing safe and reliable medical software and systems has been

tackled. In particular, starting from the state of the art, empirical guidelines have been presented.

They are derived from the experience acquired in the field during the development of a real medical

device, namely the MVM ventilator, during the first wave of COVID-19 in Italy. These guidelines

propose a software development process based on a mixture between the classical V-model and more

recent agile techniques.

During the course of the proposed development process, producing documentation and performing

V&V activities is paramountly important, as it is required by the device certification standards, but

also because it promotes the quality of the products. In this book, I have presented a method,

based on a formal and mathematical notation, that exploits the ASMETA framework to represent the

specifications of the system. After having verified and validated the abstract specifications, users can

exploit them for generating correct-by-construction code. In this book, this technique has been applied

to the MVM case study and to a prototype of a pill box produced by a local company. Moreover, if the

code of the system is already available, abstract specifications can be used for performing model-based

testing on the actual system: test cases are generated starting from the system’s model, together with

their oracle, and applied to the real system. This technique has been applied to the MVM case study

and the IEEE PHD protocol [102] and has led to an important increase in code coverage and to the

discovery of bugs or conformance faults.

If model-based testing is adopted, testers may not have the time to perform exhaustive tests (which,

sometimes, is not feasible). For this reason, guidance is needed on how to select test cases. In this

book, I have presented how testers may apply Combinatorial Interaction Testing in order to reduce

the number of test cases to be performed without losing in fault detection capability. Moreover, to

optimize the test generation process, two tools for combinatorial test generation have been presented.

Experiments reported in this book on the MVM case study show that, by using them, the time for test

suite generators can be reduced by more than 97%. This is a positive result, since if fewer time is

needed for test generation, more time can be spent on testing execution, and more bugs are likely to

be discovered.

However, model-based testing or code generation from ASM models may not always be applicable,

especially when medical devices embed AI-based components. However, there is no well-established

method for assessing the quality of this kind of medical device. Even regulations do not succeed in

213

Andrea Bombarda

indicating a way to ensure their quality and reliability. In this book, I have proposed the computation

of robustness for neural networks. It evaluates how a NN-based system can resist to input perturbation

without changing (under a reasonable limit) its behavior. This approach has been tested in two

different real systems, i.e., a CNN used for breast cancer diagnosis and an MLP used for the estimation

of the blood 𝑝𝑂2 during surgeries. In both cases, the definition of robustness has been shown to be

applicable, and the methods devised to enhance the robustness performance of the NNs have led to

improved results.

Note that all methodologies and techniques presented in this book have been devised to comply with

the main standards available for this field, namely IEC 62304 [64] and the FDA Guidelines [83].

In Chapter , I reported five different research questions that have guided the work presented and that

have been addressed in this book. In the following, some final considerations and remarks are made

about each of them.

• RQ1: State of the art in software quality - In Chapter 1, I have presented the concept

of software quality, which is a broader concept and is not limited only to medical devices.

In practice, software systems are considered to be of good quality if they comply with their

specifications. When it comes to medical systems, software quality assurance is subject to

several steps that developers and system producers must follow throughout the life cycle. In this

case, international certification standards and regulations (e.g., IEC 62304 [64] and the FDA

general principles [83]) must be fulfilled. In addition, other standards for the specific medical

device should be analyzed.

• RQ2: Guidelines for the development process - In Chapter 3, I have presented the experience

gained during the development of the MVM ventilator. Through this experience, several

lessons learned and guidelines, to be considered especially when working on a safety-critical

system under emergency, have been outlined. The major contribution of this chapter is the

software development process, which includes both the classical V-Model and agile aspects, in

order to combine the flexibility given by agile (useful to reduce the time-to-market) with the

documentation required both in the V-model and for medical software certification. Moreover,

other aspects are addressed by the proposed guidelines, e.g., the importance of testing, the need

of a coordination team, the gain structuring the software in different modules, with the isolation

of safety-critical components, etc.

• RQ3: Using ASMs for the development of medical systems - In Chapters 4 and 5, I have

presented, respectively, the ASMETA framework and its application to real medical case studies,

214

Conclusions

such as MVM, the e-Pix pill box, and the PHD protocol. The use of ASMETA has allowed the

research team to write formal specifications of the systems under analysis, verify and validate

them, and, finally, to obtain executable source code or unit test cases. Note that ASMETA has

been shown to comply with current regulations on medical software certification (see Sect. 5.1)

and to allow users to fulfill to the majority of the activities required. Moreover, the software

quality (i.e., the compliance with the system specifications) is ensured when deriving source

code from ASM specification, since the verified properties at the model level are maintained even

at code level. Thus, the ASMETA framework allows for obtaining a correct-by-construction

code. Even using ASMETA for model-based testing has shown to be effective, since it avoids

errors that human beings can make while writing tests manually and has allowed the discovery

of several bugs or conformance faults on both the MVM and PHD protocol.

• RQ4: Using CIT for testing medical software - In Chapter 6, I have presented the Combinato-

rial Interaction Testing technique and two tools for generating test suites achieving the intended

combinatorial coverage. This technique has been proven to be optimal when exhaustive testing

cannot be performed, especially for systems with a high number of inputs and outputs, such

as medical systems. In fact, CIT allows testers to reduce the number of tests to be performed

without reducing the fault detection capability. However, generating this kind of test suites may

be time-expensive, so in this book two tools exploiting multi-threading have been proposed.

Through experiments on the MVM case study, the former, pMEDICI, has been shown to be the

best performing, especially in terms of generation time. However, it cannot deal with relational

and other types of complex constraint, so the KALI tool has been introduced.

• RQ5: How to validate AI-based medical software - In Chapters 7 and 8, I have presented,

respectively, the robustness measure for neural networks and its application to two different

medical case studies, i.e., a CNN used for breast cancer diagnosis and an MLP used for the

estimation of blood 𝑝𝑂2 during surgeries. Despite international standards and regulations on

medical software certification being not yet updated for AI-based medical devices, certification

authorities certify medical software relying on AI components under certain guarantees that

they perform as good as other devices which do not employ AI. In addition, a risk-assessment

activity is required for them. The proposed robustness measure can be used in the context of risk

assessment, as confirmed by the industrial partner that has participated in the research activity

on MLP for the estimation of blood 𝑝𝑂2. Furthermore, measuring the robustness has been

proven to be effective not only for evaluating the performance of a NN, but also to guide its

215

Andrea Bombarda

enhancement through the proposed methodology (based on data augmentation or incremental

learning).

Future work

The work presented in this book can be further extended in several directions. For this reason, in

the following, I report some of the future work that can be investigated and motivate why they are

important for increasing the process of quality assurance of medical devices:

• During the development of the MVM ventilator (see Chapter 2), one of the main problems

has been the difficulty in testing software that needs to interact with humans and the external

environment without actually having them. This limitation has been highlighted in this book

in Chapter 3 and a guideline on it has been reported in Sect. 3.4.2. Since MVM has proved to

be an important and exhaustive case study, it could be used for further investigation on several

techniques. However, a complete and configurable digital twin [165] should be developed to

make MVM software more easily developed and tested. Note that the usefulness of a digital

twin is also motivated by the work of the community of Models-at-runtime, in which this

kind of twin is also used during the operation of the device. Indeed, it can be exploited not only

for device testing but also to be executed together with the actual system to check its correct

behavior and to forecast possible future critical conditions.

• Additional work may be done on the MVM ventilator (see Chapter 2) in order to increase its

usability. In particular, some of the other ventilators on the market implement an adaptive

ventilation strategy which is used for defining automatically the ventilation parameters based

on patient’s condition. This will allow to reduce the possible errors made by physicians and to

increase the “ventilation comfort” for patients subject to mechanical ventilation.

• In Chapters 4 and 5, I have shown how ASMETA (and, in general, the ASM formalism) can

be applied to medical systems to satisfy most of the requirements of certification standards.

However, there is still an important aspect that has not yet been implemented and managed by

the ASMETA framework. In particular, a common problem in the development of medical

software is that the uncertainties of the system and its environment should be considered [75].

For example, a patient under mechanical ventilation may change his condition with a known or

unknown probability, the backup battery of a medical system may fail with a known probability,

etc. Thus, ASMETA should be extended with probabilistic features in order to model and

develop systems under some uncertainties.

216

Conclusions

• In Chapter 7, I have presented the novel concept of robustness that can be used when dealing

with medical software embedding NNs. It has been tested and approved by an industrial partner

on a real system and has been shown to be effective in evaluating the quality of the estimations

or predictions made by a NN. However, in medical systems, not all errors are the same: telling

a patient that he is affected by a disease when it is not true is not the same as telling him that he

is healthy while he is not. For this reason, additional measures should be considered in order to

weight more errors that are more critical.

• In Chapter 7, I have presented a way to speed up the robustness computation (see Sect. 7.4.2),

which is based on the parabolic approximation of the accuracy curve. However, the proposed

method has been shown to work well under the assumption that the parameter �̂� is chosen

coherently with the system to be analyzed, but there is no guide available on how to choose its

value. For this reason, as future work, heuristics or more detailed guidance should be defined

in order to make the ASAP approach more usable in practice.

217

List of Figures

Figure 1: Activities within and outside the scope of the IEC 62304 standard. 10

Figure 2: Schematic of the MVM ventilator system (light blue box) with the connection to

the patient. 21

Figure 3: A view of the inside of the MVM. 22

Figure 4: Respiratory cycle during PCV ventilation. 23

Figure 5: Respiratory cycle during PSV ventilation. 24

Figure 6: The high-level MVM software architecture. 26

Figure 7: The MVM GUI. 26

Figure 8: The Yakindu State Machine for the MVM controller. 27

Figure 9: Schematics of the pressure controller of the MVM. 28

Figure 10: Example waveforms from the breathing simulator with the MVM in PCV mode. . 31

Figure 11: Example waveforms from the breathing simulator with the MVM in PSV mode. . 31

Figure 12: Research Methodology. 37

Figure 13: MVM software development process. 40

Figure 14: Excerpt of the task list. 42

Figure 15: Detailed MVM software architecture. 47

Figure 16: Importance of the lessons learned. 52

Figure 17: How do you agree/disagree with the GL? . 61

Figure 18: Safety assurance MBSE process during system’s life cycle. 70

Figure 19: ASMETA tool-set. 74

Figure 20: Simulator settings in Eclipse preferences. 80

Figure 21: Animation of the MVM using AsmetaA. 81

Figure 23: State machine of the IEEE 11073 PHD Manager: input messages are identified by

the prefix Rx and output messages are identified by the prefix Tx (when no input

message is associated to an output, it means that the transition is generated by an

internal event). 97

Figure 24: An example sequence of data exchange using the PHD protocol. 97

Figure 25: Simulation steps with the animator AsmetaA at the last refinement level for the

e-Pix case study. 102

219

Andrea Bombarda

Figure 26: Simulation steps of the PCV mode with the animator AsmetaA for the MVM case

study. 110

Figure 27: C++ code generation process. 112

Figure 28: The Arduino version of the MVM. 114

Figure 29: MBT process for the MVM case study. 116

Figure 30: MBT process for the PHD case study. 121

Figure 31: Example of Mealy machine. On the arrows, the pair 𝑖𝑛𝑝𝑢𝑡/𝑜𝑢𝑡𝑝𝑢𝑡 is reported. . 135

Figure 32: Example of an automaton representing the sequence (𝑒1, 𝑒2, . . . , 𝑒𝑡). 136

Figure 33: Intersection process among automata for the pattern recognition system. 139

Figure 34: Number of pairs covered with different values of the parameter 𝑁 142

Figure 35: Sequence generation time [𝑠] with different values for the parameter 𝑁 143

Figure 36: Refactored architecture of CTWedge for benchmarking integration. 148

Figure 37: Structure of the tools for multi-thread combinatorial test generation. 150

Figure 38: Example of MDD for a simple combinatorial model. 154

Figure 39: MDD structure when a constraint is included. 154

Figure 40: Adversarial examples. 169

Figure 41: Typical structure of a Convolutional Neural Network. 169

Figure 42: Typical structure of a Multilayer Perceptron. 170

Figure 43: Accuracy change when brightness is altered in the inputs given to a CNN for

medical image classification. 172

Figure 44: Examples of functions describing the probability 𝑝𝐴 of an alteration level 𝐴. . . . 173

Figure 45: Robustness computation for a classifier where a brightness alteration is applied as

per Fig. 43. 174

Figure 46: Error in robustness computation using a low number of uniformly distributed

sampled points. 175

Figure 47: Examples of functions describing the tolerance. 178

Figure 48: Graphical representation of different types of robustness. 180

Figure 49: ROBY workflow. 181

Figure 50: Area in which the real accuracy curve between 𝐴 and 𝐵 will be likely included,

identified by two parabolas with concavity depth ±�̂�. 184

Figure 51: Different positions of points during recursive accuracy evaluation. 184

Figure 52: Examples of robustness computation using synthetic functions. 186

220

List of Figures

Figure 53: Incremental learning technique. 190

Figure 54: Example of images contained in the database used for the analysis. 194

Figure 55: Accuracy modification using the altered data input over the CNN 𝐶0. 197

Figure 56: Accuracy modification using the altered data input over the CNN 𝐶𝐷𝐴. 198

Figure 57: Accuracy modification using altered data input over the CNN 𝐶𝐿𝐷𝐴. 199

Figure 58: Accuracy modification using the altered data input over the CNN 𝐶𝐼𝐿 200

Figure 59: Accuracy modification using the altered data input over the CNN 𝐶𝐿𝐼𝐿 201

Figure 60: Overview of the MLP-based sensor for pO2 estimation. 203

Figure 61: Typical alteration examples for the pO2 estimation case study. 205

Figure 62: MAPE variation during robustness analysis. 207

221

List of Tables

Table 1: IEC 62304 software development process – Activities required by each safety class. 10

Table 2: Acceptable ranges for the measured breathing parameters of interest. 30

Table 3: Parameters used to test the MVM response to increase in 𝐹𝑖𝑂2. 33

Table 4: Summary of the effort required for each phase. 37

Table 5: Experts overview. The column year stands for “Years of experience in the devel-

opment of critical software”. The IDs with asterisk are experts interviewed. 39

Table 6: MVM software units and their safety classifications. 46

Table 7: Lines of code of the MVM software units. 49

Table 8: Mapping between lessons learned and guidelines for developing medical software

under emergency. 54

Table 9: Benefits and risks of the guidelines on the development process. 62

Table 10: Benefits and risks of the guidelines on the development phases. 65

Table 11: Mapping between IEC 62304 and ASMETA activities. 92

Table 12: Mapping between FDA guidelines and ASMETA activities. 94

Table 13: The first property in different refinement levels. 104

Table 14: Properties verified for the MVM case study. 111

Table 15: Comparison between different criteria for automatic test cases generation. 116

Table 16: Translation rules between Avalla and GoogleTest instructions (sm is the generic

name used to indicate the state machine object in Yakindu). 119

Table 17: Coverage reached using different timeouts and coverage criteria. 120

Table 18: Coverage results for each refinement/test generation strategy applied to the PHD

protocol case study. The coverage values in bold represent the highest coverage

reached at that refinement level. 127

Table 19: PHD benchmark characteristics. 140

Table 20: Method evaluation (pairwise testing). 140

Table 21: Evaluation of the results obtained with different generation methods for the PHD

case study. 141

Table 22: Method evaluation (3-wise testing). 144

Table 23: Comparison between SCAs and automata-based method (3-wise testing). 144

223

Andrea Bombarda

Table 24: Summary of the benchmarks features. 147

Table 25: Comparison between pMEDICI and ACTS in the MVM case study. 157

Table 26: Comparison between KALI, pMEDICI, and ACTS on the MVM case study. . . . 161

Table 27: Alteration values used for robustness analysis of breast cancer classification. . . . 195

Table 28: Robustness for the classifier for breast cancer diagnosis. 196

Table 29: Summary of the main information of all the methods used to improve the robustness

of a CNN. 201

Table 30: Alterations values used for robustness analysis of the pO2 estimator. 205

Table 31: Robustness w.r.t. alterations for the networks retrained with the three approaches. . 208

Table 32: MAPE0 of the original network and the retrained ones. 208

224

List of Listings

4.1 AsmetaL specification for the MVM case study. 76

4.2 ASMETA TimeLibrary. 77

4.3 Time example - return current time. 77

4.4 Example of a refined AsmetaL specification for the MVM. 79

4.5 Example of Avalla scenario for the MVM case study. 82

4.9 Excerpts of the header and source file automatically generated from the AsmetaL

model for the MVM case study. 87

4.10 Example of C++ Boost unit test. 88

4.11 Example of C++ Catch2 unit test. 88

5.1 Example of the JSON file containing the prescriptions. 96

5.2 Example of Avalla scenario for the e-Pix case study. 103

5.3 Example of the ino file containing the implementation of ASM execution for e-Pix. . 105

5.4 Example of the a2c configuration file. 105

5.5 Example of the hw.cpp file. 105

5.6 Main rule for the first refinement level of the MVM. 106

5.7 PCV management for the second level of refinement of the MVM. 107

5.8 PSV management for the second level of refinement of the MVM. 107

5.9 PCV management for the third level of refinement of the MVM. 108

5.10 PSV management for the third level of refinement of the MVM. 108

5.11 PCV management for the fourth refinement level of the MVM. 109

5.12 PSV management for the fourth refinement level of the MVM. 109

5.13 Example of Avalla scenario for the MVM case study in PCV mode. 111

5.14 Example of the .cpp file for the MVM. 112

5.15 Example of the .a2c configuration file for the MVM. 113

5.16 Extract of the hw.cpp file containing hardware-specific functions. 113

5.17 Original scenario. 117

5.18 Check Opt. 117

5.19 Set Opt. 117

5.20 JSON file for function mapping. 119

5.21 Test concretization from an Avalla scenario fragment to a GoogleTest test case. . . . 119

5.22 ASMETA specification of ASM0, specifying the main PHD manager transitions. . . . 123

225

Andrea Bombarda

5.23 ASMETA specification of ASM1, introducing the remote operation management. . . 124

5.24 ASMETA specification of ASM4, introducing protocol and configuration management. 125

5.25 ASMETA specification of ASM4, introducing protocol and configuration management. 126

6.1 Example of a combinatorial model for the MVM case study. 133

226

References

[1] EU 2017/745 Medical devices - Regulation (EU) 2017/745 of the European Parliament and of the

Council of 5 April 2017 on medical devices, amending Directive 2001/83/EC, Regulation (EC)

No 178/2002 and Regulation (EC) No 1223/2009 and repealing Council Directives 90/385/EEC

and 93/42/EEC.

[2] A. Abba et al. The novel mechanical ventilator milano for the COVID-19 pandemic. Physics

of Fluids, 33(3):037122, mar 2021.

[3] Paolo Arcaini, Andrea Bombarda, Silvia Bonfanti, and Angelo Gargantini. Dealing with

robustness of convolutional neural networks for image classification. In 2020 IEEE International

Conference On Artificial Intelligence Testing (AITest), pages 7–14, 2020.

[4] Paolo Arcaini, Andrea Bombarda, Silvia Bonfanti, and Angelo Gargantini. Efficient computa-

tion of robustness of convolutional neural networks. In 2021 IEEE International Conference

On Artificial Intelligence Testing (AITest). IEEE, aug 2021.

[5] Paolo Arcaini, Andrea Bombarda, Silvia Bonfanti, and Angelo Gargantini. ROBY: a tool for

robustness analysis of neural network classifiers. In 2021 14th IEEE Conference on Software

Testing, Verification and Validation (ICST). IEEE, apr 2021.

[6] Paolo Arcaini, Andrea Bombarda, Silvia Bonfanti, Angelo Gargantini, Daniele Gamba, and

Rita Pedercini. Robustness assessment and improvement of a neural network for blood oxygen

pressure estimation. In 2022 IEEE Conference on Software Testing, Verification and Validation

(ICST), pages 312–322, 2022.

[7] Paolo Arcaini, Andrea Bombarda, Silvia Bonfanti, Angelo Gargantini, Elvinia Riccobene, and

Patrizia Scandurra. The ASMETA approach to safety assurance of software systems. In Logic,

Computation and Rigorous Methods, pages 215–238. Springer International Publishing, 2021.

[8] Paolo Arcaini, Silvia Bonfanti, Angelo Gargantini, Atif Mashkoor, and Elvinia Riccobene.

Integrating formal methods into medical software development: The ASM approach. Science

of Computer Programming, 158:148–167, jul 2018.

[9] Paolo Arcaini, Silvia Bonfanti, Angelo Gargantini, and Elvinia Riccobene. Visual notation and

patterns for Abstract State Machines. In Paolo Milazzo, Dániel Varró, and Manuel Wimmer,

227

Andrea Bombarda

editors, Software Technologies: Applications and Foundations, pages 163–178, Cham, 2016.

Springer International Publishing.

[10] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. AsmetaSMV: A way to link high-

level ASM models to low-level NuSMV specifications. In Proceedings of the Second Interna-

tional Conference on Abstract State Machines, Alloy, B and Z, ABZ’10, pages 61–74, Berlin,

Heidelberg, 2010. Springer-Verlag.

[11] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. Automatic review of Abstract State

Machines by meta property verification. In César Muñoz, editor, Proceedings of the Second

NASA Formal Methods Symposium (NFM 2010), NASA/CP-2010-216215, pages 4–13, Langley

Research Center, Hampton VA 23681-2199, USA, April 2010. NASA.

[12] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. SMT-based automatic proof of

ASM model refinement. In Rocco De Nicola and Eva Kühn, editors, Software Engineering

and Formal Methods: 14th International Conference, SEFM 2016, Held as Part of STAF

2016, Vienna, Austria, July 4-8, 2016, Proceedings, Lecture Notes in Computer Science, pages

253–269, Cham, 2016. Springer International Publishing.

[13] Paolo Arcaini, Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. A model-driven

process for engineering a toolset for a formal method. Software: Practice and Experience,

41:155–166, 2011.

[14] Paolo Arcaini, Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. A model-driven

process for engineering a toolset for a formal method. Software: Practice and Experience,

41:155–166, 2011.

[15] Paolo Arcaini, Elvinia Riccobene, and Patrizia Scandurra. Formal design and verification of

self-adaptive systems with decentralized control. ACM Trans. Auton. Adapt. Syst., 11(4):25:1–

25:35, January 2017.

[16] DavidG. Ashbaugh, D. Boyd Bigelow, ThomasL. Petty, and BernardE. Levine. Acute respira-

tory distress in adults. The Lancet, 290(7511):319 – 323, 1967. Originally published as Volume

2, Issue 7511.

[17] ASMETA (ASM mETAmodeling) toolset. https://asmeta.github.io/.

228

https://asmeta.github.io/

References

[18] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. The oracle

problem in software testing: A survey. IEEE Transactions on Software Engineering, 41(5):507–

525, May 2015.

[19] Sigall K. Bell, Tom Delbanco, Joann G. Elmore, Patricia S. Fitzgerald, Alan Fossa, Kendall

Harcourt, Suzanne G. Leveille, Thomas H. Payne, Rebecca A. Stametz, Jan Walker, and

Catherine M. DesRoches. Frequency and types of patient-reported errors in electronic health

record ambulatory care notes. JAMA Network Open, 3(6):e205867, June 2020.

[20] Stan Benjamens, Pranavsingh Dhunnoo, and Bertalan Meskó. The state of artificial intelligence-

based FDA-approved medical devices and algorithms: an online database. npj Digital Medicine,

3(1), sep 2020.

[21] B. Boehm and R. Turner. Balancing agility and discipline: evaluating and integrating agile and

plan-driven methods. In Proceedings. 26th International Conference on Software Engineering,

2004.

[22] Andrea Bombarda, Silvia Bonfanti, Cristiano Galbiati, Angelo Gargantini, Patrizio Pelliccione,

and Elvinia Riccobene. Lessons learned from the development of a mechanical ventilator for

COVID-19. In 32nd International Symposium on Software Reliability Engineering (ISSRE).

IEEE, aug 2021.

[23] Andrea Bombarda, Silvia Bonfanti, Cristiano Galbiati, Angelo Gargantini, Patrizio Pelliccione,

and Elvinia Riccobene. Replication package. available online at: https://se4med.github.

io/GuidelinesForCriticalSoftware/, 2022.

[24] Andrea Bombarda, Silvia Bonfanti, Cristiano Galbiati, Angelo Gargantini, Patrizio Pelliccione,

Elvinia Riccobene, and Masayuki Wada. Guidelines for the development of a critical software

under emergency. Information and Software Technology, page 107061, September 2022.

[25] Andrea Bombarda, Silvia Bonfanti, and Angelo Gargantini. Developing medical devices from

abstract state machines to embedded systems: A smart pill box case study. In Software

Technology: Methods and Tools, pages 89–103. Springer International Publishing, 2019.

[26] Andrea Bombarda, Silvia Bonfanti, and Angelo Gargantini. Automatic Test Generation with

ASMETA for the Mechanical Ventilator Milano Controller, page 65–72. Springer International

Publishing, 2022.

229

https://se4med.github.io/GuidelinesForCriticalSoftware/
https://se4med.github.io/GuidelinesForCriticalSoftware/

Andrea Bombarda

[27] Andrea Bombarda, Silvia Bonfanti, Angelo Gargantini, Yu Lei, and Feng Duan. RATE: A

model-based testing approach that combines model refinement and test execution. Software

Testing, Verification and Reliability, 33(2), December 2022.

[28] Andrea Bombarda, Silvia Bonfanti, Angelo Gargantini, Marco Radavelli, Feng Duan, and

Yu Lei. Combining model refinement and test generation for conformance testing of the IEEE

PHD protocol using abstract state machines. In Testing Software and Systems, pages 67–85.

Springer International Publishing, 2019.

[29] Andrea Bombarda, Silvia Bonfanti, Angelo Gargantini, and Elvinia Riccobene. Developing

a prototype of a mechanical ventilator controller from requirements to code with asmeta.

Electronic Proceedings in Theoretical Computer Science, 349:13–29, Nov 2021.

[30] Andrea Bombarda, Silvia Bonfanti, Angelo Gargantini, and Elvinia Riccobene. Extending

ASMETA with time features. In Rigorous State-Based Methods, pages 105–111. Springer

International Publishing, 2021.

[31] Andrea Bombarda, Edoardo Crippa, and Angelo Gargantini. An environment for benchmarking

combinatorial test suite generators. In 2021 IEEE International Conference on Software Testing,

Verification and Validation Workshops (ICSTW). IEEE, April 2021.

[32] Andrea Bombarda and Angelo Gargantini. An automata-based generation method for combi-

natorial sequence testing of finite state machines. In 2020 IEEE International Conference on

Software Testing, Verification and Validation Workshops (ICSTW). IEEE, October 2020.

[33] Andrea Bombarda and Angelo Gargantini. Parallel test generation for combinatorial models

based on multivalued decision diagrams. In 2022 IEEE International Conference on Software

Testing, Verification and Validation Workshops (ICSTW), pages 74–81, 2022.

[34] Andrea Bombarda and Angelo Gargantini. Incremental generation of combinatorial test suites

starting from existing seed tests. In 2023 IEEE International Conference on Software Testing,

Verification and Validation Workshops (ICSTW). IEEE, April 2023.

[35] Andrea Bombarda, Angelo Gargantini, and Andrea Calvagna. Multi-thread combinatorial test

generation with smt solvers. In Proceedings of the 38th ACM/SIGAPP Symposium on Applied

Computing, SAC ’23. ACM, March 2023.

[36] Silvia Bonfanti, Angelo Gargantini, and Atif Mashkoor. AsmetaA: Animator for Abstract State

Machines. In Michael Butler, Alexander Raschke, Thai Son Hoang, and Klaus Reichl, editors,

230

References

Abstract State Machines, Alloy, B, TLA, VDM, and Z, pages 369–373, Cham, 2018. Springer

International Publishing.

[37] Silvia Bonfanti, Angelo Gargantini, and Atif Mashkoor. Generation of C++ unit tests from

Abstract State Machines specifications. In 2018 IEEE International Conference on Software

Testing, Verification and Validation Workshops (ICSTW), pages 185–193, April 2018.

[38] Silvia Bonfanti, Angelo Gargantini, and Atif Mashkoor. Design and validation of a C++ code

generator from Abstract State Machines specifications. Journal of Software: Evolution and

Process, 32(2):e2205, 2020. e2205 smr.2205.

[39] Silvia Bonfanti, Elvinia Riccobene, and Patrizia Scandurra. A runtime safety enforcement

approach by monitoring and adaptation. In Software Architecture, pages 20–36. Springer

International Publishing, 2021.

[40] Cathal Boogerd and Leon Moonen. Assessing the value of coding standards: An empirical

study. In 2008 IEEE Int. Conf. on Software Maintenance, 2008.

[41] Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel. CNN-cert: An

efficient framework for certifying robustness of convolutional neural networks. Proceedings of

the AAAI Conference on Artificial Intelligence, 33:3240–3247, jul 2019.

[42] Egon Börger. The ASM refinement method. Formal Aspects of Computing, 15:237–257, 2003.

[43] Egon Börger and Alexander Raschke. Modeling Companion for Software Practitioners.

Springer, Berlin, Heidelberg, 2018.

[44] Egon Börger and Robert Stärk. Abstract State Machines: A Method for High-Level System

Design and Analysis. Springer Verlag, 2003.

[45] Cari Borrás. Overexposure of radiation therapy patients in panama: problem recognition and

follow-up measures. Revista Panamericana de Salud Pública, 20(2-3), September 2006.

[46] Michela Botta, Anissa M Tsonas, Janesh Pillay, Leonoor S Boers, Anna Geke Algera, Lieuwe

D J Bos, et al. Ventilation management and clinical outcomes in invasively ventilated patients

with covid-19 (provent-covid): a national, multicentre, observational cohort study. The Lancet

Respiratory Medicine, 2020.

[47] Breastcancer.org. U.S. breast cancer statistics. https://www.breastcancer.org/

symptoms/understand_bc/statistics, 2019.

231

https://www.breastcancer.org/symptoms/understand_bc/statistics
https://www.breastcancer.org/symptoms/understand_bc/statistics

Andrea Bombarda

[48] Laurent J. Brochard and Francois Lellouche. Chapter 8. Pressure-Support Ventilation, chapter 8.

The McGraw-Hill Companies, New York, NY, 2013.

[49] Frederick P. Brooks. The Mythical Man Month. Prentice Hall, 1995.

[50] Roy G Brower, Michael A Matthay, Alan Morris, David Schoenfeld, B Taylor Thompson,

and Arthur Wheeler. Ventilation with lower tidal volumes as compared with traditional tidal

volumes for acute lung injury and the acute respiratory distress syndrome. New England Journal

of Medicine, 342(18):1301–1308, 2000. PMID: 10793162.

[51] Marie T. Brown and Jennifer K. Bussell. Medication adherence: WHO cares? Mayo Clinic

Proceedings, 86(4):304–314, apr 2011.

[52] Dominique Brunet, Edward R. Vrscay, and Zhou Wang. On the mathematical properties of the

structural similarity index. IEEE Transactions on Image Processing, 21(4):1488–1499, 2012.

[53] Rossana Bussani, Edoardo Schneider, Lorena Zentilin, Chiara Collesi, Hashim Ali, Luca Braga,

Maria Concetta Volpe, Andrea Colliva, Fabrizio Zanconati, Giorgio Berlot, Furio Silvestri,

Serena Zacchigna, and Mauro Giacca. Persistence of viral rna, pneumocyte syncytia and

thrombosis are hallmarks of advanced covid-19 pathology. EBioMedicine, page 103104, 2020.

[54] DONALD CAMPBELL and JAMES BROWN. The electrical analogue of lung. British Journal

of Anaesthesia, 35(11):684–692, 1963.

[55] Alessandro Carioni, Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. A scenario-

based validation language for ASMs. In Proceedings of the 1st International Conference on

Abstract State Machines, B and Z, ABZ ’08, pages 71–84, Berlin, Heidelberg, 2008. Springer-

Verlag.

[56] Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural networks.

2017 IEEE Symposium on Security and Privacy (SP), pages 39–57, 2017.

[57] B. Chacko, J.V. Peter, P. Tharyan, G. John, and L. Jeyaseelan. Pressure-controlled versus

volume-controlled ventilation for acute respiratory failure due to acute lung injury (ali) or acute

respiratory distress syndrome (ards). Cochrane Database of Systematic Reviews, (1), 2015.

[58] Shailja Chatterjee. Artefacts in histopathology. Journal of Oral and Maxillofacial Pathology,

18(4):111, 2014.

232

References

[59] Michel R. V. Chaudron, Werner Heijstek, and Ariadi Nugroho. How effective is UML modeling

? Software & Systems Modeling, 11(4), 2012.

[60] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol: An interpolating SMT

solver. In Alastair Donaldson and David Parker, editors, Model Checking Software, pages

248–254, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[61] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore,

Marco Roveri, Roberto Sebastiani, and Armando Tacchella. NuSMV 2: An opensource tool for

symbolic model checking. In Proceedings of the 14th International Conference on Computer

Aided Verification, CAV ’02, pages 359–364, Berlin, Heidelberg, 2002. Springer-Verlag.

[62] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Sebastiani. The

mathsat5 smt solver. In Nir Piterman and Scott A. Smolka, editors, Tools and Algorithms for

the Construction and Analysis of Systems, pages 93–107, Berlin, Heidelberg, 2013. Springer

Berlin Heidelberg.

[63] International Electrotechnical Commission. IEC 60601-1:2005 Medical electrical equipment

- Part 1: General requirements for basic safety and essential performance. Technical report,

International Electrotechnical Commission, 2005.

[64] International Electrotechnical Commission. IEC 62304 Medical device software — Software

life cycle processes. Technical report, International Electrotechnical Commission, 2006.

[65] International Electrotechnical Commission. IEC 61508-3:2010 Functional safety of electri-

cal/electronic/programmable electronic safety-related systems - Part 3: Software requirements.

Technical report, International Electrotechnical Commission, 2010.

[66] International Electrotechnical Commission. IEC 61784 - Industrial communication networks.

Technical report, International Electrotechnical Commission, 2021.

[67] Santosh K. Das, Jan e Alam, Salvatore Plumari, and Vincenzo Greco. Transmission of airborne

virus through sneezed and coughed droplets. Physics of Fluids, 32(9):097102, September 2020.

[68] Talib Dbouk and Dimitris Drikakis. On coughing and airborne droplet transmission to humans.

Physics of Fluids, 32(5):053310, May 2020.

233

Andrea Bombarda

[69] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan

and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems,

pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[70] Amanda Dexter, Neil McNinch, Destiny Kaznoch, and Teresa A. Volsko. Validating lung

models using the ASL 5000 breathing simulator. Simulation in Healthcare: The Journal of the

Society for Simulation in Healthcare, 13(2):117–123, apr 2018.

[71] Florian Dubost, Gerda Bortsova, Hieab Adams, M. Arfan Ikram, Wiro Niessen, Meike Ver-

nooij, and Marleen de Bruijne. Hydranet: Data augmentation for regression neural networks.

In Medical Image Computing and Computer Assisted Intervention – MICCAI 2019: 22nd In-

ternational Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part IV, page

438–446, Berlin, Heidelberg, 2019. Springer-Verlag.

[72] Christian Dufour, Guillaume Dumur, Jean-Nicolas Paquin, and Jean Belanger. A pc-based

hardware-in-the-loop simulator for the integration testing of modern train and ship propulsion

systems. In 2008 IEEE Power Electr. Specialists Conf., 2008.

[73] Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors, Computer-Aided

Verification (CAV’2014), volume 8559 of Lecture Notes in Computer Science, pages 737–744.

Springer, July 2014.

[74] Paul Duvall, Steve Matyas, and Andrew Glover. Continuous Integration: Improving Software

Quality and Reducing Risk. 2007.

[75] Prashanti Eachempati, Roland Brian Büchter, Kiran Kumar KS, Sally Hanks, John Martin,

and Mona Nasser. Developing an integrated multilevel model of uncertainty in health care: a

qualitative systematic review and thematic synthesis. BMJ Global Health, 7(5), 2022.

[76] Jutta Eckstein. Architecture in large scale agile development. In Lecture Notes in Business

Information Processing. 2014.

[77] Wasim Essbai, Andrea Bombarda, Silvia Bonfanti, and Angelo Gargantini. A framework

for including uncertainty in robustness evaluation of bayesian neural network classifiers. In

2024 IEEE/ACM International Workshop on Deep Learning for Testing and Testing for Deep

Learning (DeepTest). IEEE, May 2024.

234

References

[78] Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Robustness of classi-

fiers: from adversarial to random noise. In Advances in Neural Information Processing Systems

29, pages 1632–1640. 2016.

[79] Michael Felderer and Rudolf Ramler. Risk orientation in software testing processes of small

and medium enterprises: an exploratory and comparative study. Software Quality Journal,

24(3), August 2015.

[80] Stanley Feldman. The Manley ventilator. Anaesthesia, 50(1):64–71, January 1995.

[81] Carlos Ferrando, Fernando Suarez-Sipmann, Ricard Mellado-Artigas, Marı́a Hernández, Al-

fredo Gea, Egoitz Arruti, et al. Clinical features, ventilatory management, and outcome of

ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Medicine,

46(12):2200–2211, July 2020.

[82] Gabriel Ferreira, Christian Kästner, Joshua Sunshine, Sven Apel, and William L. Scherlis.

Design dimensions for software certification: A grounded analysis. CoRR, abs/1905.09760,

2019.

[83] Food and Drug Administration. General Principles of software validation; final guidance for

industry and FDA staff, version 2.0. U.S Food and Drug Administration (FDA), Jan. 2002.

[84] Gordon Fraser, Franz Wotawa, and Paul E. Ammann. Testing with model checkers: A survey.

Softw. Test. Verif. Reliab., 19(3):215–261, September 2009.

[85] A. Gannous and A. Andrews. Integrating safety certification into model-based testing of

safety-critical systems. In 2019 IEEE 30th International Symposium on Software Reliability

Engineering (ISSRE), pages 250–260, 2019.

[86] Sergio Garcia, Daniel Struber, Davide Brugali, Thorsten Berger, and Patrizio Pelliccione. An

empirical assessment of robotics software engineering. In ACM Joint European Software Engi-

neering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE

2020), 2020.

[87] A. Gargantini and M. Radavelli. Migrating combinatorial interaction test modeling and gener-

ation to the web. In 2018 IEEE International Conference on Software Testing, Verification and

Validation Workshops (ICSTW), pages 308–317, April 2018.

235

Andrea Bombarda

[88] Angelo Gargantini and Elvinia Riccobene. ASM-based testing: Coverage criteria and automatic

test sequence. J. Univers. Comput. Sci., 7(11):1050–1067, 2001.

[89] Angelo Gargantini, Elvinia Riccobene, and Salvatore Rinzivillo. Using Spin to generate tests

from ASM specifications. In Egon Börger, Angelo Gargantini, and Elvinia Riccobene, editors,

Abstract State Machines 2003, pages 263–277, Berlin, Heidelberg, 2003. Springer Berlin

Heidelberg.

[90] Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. Ten reasons to metamodel

ASMs. In Jean-Raymond Abrial and Uwe Glässer, editors, Rigorous Methods for Software

Construction and Analysis: Essays Dedicated to Egon Börger on the Occasion of His 60th

Birthday, pages 33–49, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[91] Angelo Gargantini and Paolo Vavassori. Efficient combinatorial test generation based on

multivalued decision diagrams. In Eran Yahav, editor, Hardware and Software: Verification

and Testing, pages 220–235, Cham, 2014. Springer International Publishing.

[92] B. J. Garvin, M. B. Cohen, and M. B. Dwyer. An improved meta-heuristic search for constrained

interaction testing. In 2009 1st International Symposium on Search Based Software Engineering,

pages 13–22, 2009.

[93] Brady J. Garvin, Myra B. Cohen, and Matthew B. Dwyer. Evaluating improvements to a

meta-heuristic search for constrained interaction testing. Empirical Software Engineering,

16(1):61–102, jul 2010.

[94] L Gattinoni and A Pesenti. The concept of “baby lung”. INTENSIVE CARE MEDICINE,

31(6):776–784, JUN 2005.

[95] Domenico Luca Grieco, Filippo Bongiovanni, Lu Chen, Luca S. Menga, Salvatore Lucio

Cutuli, Gabriele Pintaudi, Simone Carelli, Teresa Michi, Flava Torrini, Gianmarco Lombardi,

Gian Marco Anzellotti, Gennaro De Pascale, Andrea Urbani, Maria Grazia Bocci, Eloisa S.

Tanzarella, Giuseppe Bello, Antonio M. Dell’Anna, Salvatore M. Maggiore, Laurent Brochard,

and Massimo Antonelli. Respiratory physiology of COVID-19-induced respiratory failure

compared to ARDS of other etiologies. Critical Care, 24(1), AUG 28 2020.

[96] Yuri Gurevich. Evolving Algebras 1993: Lipari Guide, pages 9–36. Oxford University Press,

Inc., USA, 1995.

236

References

[97] Christopher Henard, Mike Papadakis, and Yves Le Traon. Flattening or not of the combinatorial

interaction testing models? In 2015 IEEE Eighth International Conference on Software Testing,

Verification and Validation Workshops (ICSTW), pages 1–4. IEEE, apr 2015.

[98] Rob J. Hyndman and Anne B. Koehler. Another look at measures of forecast accuracy. Inter-

national Journal of Forecasting, 22(4):679–688, 2006.

[99] Claire Ingram and Steve Riddle. Cost-benefits of traceability. In Software and Systems Trace-

ability, pages 23–42. Springer London, London, 2012.

[100] ISO Central Secretary. UNI CEI EN ISO 16000-6:2011 Indoor air — Part 6: Determination

of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA

sorbent, thermal desorption and gas chromatography using MS or MS-FID. Technical report,

International Organization for Standardization, 2011.

[101] ISO Central Secretary. UNI EN ISO 9001:2015 Quality management systems - Requirements.

Technical report, International Organization for Standardization, 2015.

[102] ISO Central Secretary. ISO/IEC/IEEE international standard - health informatics – personal

health device communication - part 20601: Application profile - optimized exchange protocol.

Technical report, International Organization for Standardization, 2016.

[103] ISO Central Secretary. UNI CEI EN ISO 18562-3:2017 Biocompatibility evaluation of breath-

ing gas pathways in healthcare applications — Part 3: Tests for emissions of volatile organic

compounds (VOCs). Technical report, International Organization for Standardization, 2017.

[104] ISO Central Secretary. UNI CEI EN ISO 14971:2020 Medical devices - Application of risk

management to medical devices. Technical report, International Organization for Standardiza-

tion, 2020.

[105] ISO Central Secretary. UNI CEI EN ISO 13485:2021 Medical devices - Quality management

systems - Requirements for regulatory purposes. Technical report, International Organization

for Standardization, 2021.

[106] ISO Central Secretary. UNI EN ISO 80601 - Medical electrical equipment Particular require-

ments for basic safety and essential performance of critical care ventilators. Technical report,

International Organization for Standardization, 2022.

237

Andrea Bombarda

[107] Hao Jin and Tatsuhiro Tsuchiya. Constrained locating arrays for combinatorial interaction

testing. Journal of Systems and Software, 170:110771, dec 2020.

[108] T. Kahkonen. Agile methods for large organizations - building communities of practice. In

Agile Development Conference, pages 2–10, 2004.

[109] Marcin Karcz, Alisa Vitkus, Peter J. Papadakos, David Schwaiberger, and Burkhard Lachmann.

State-of-the-art mechanical ventilation. Journal of Cardiothoracic and Vascular Anesthesia,

26(3):486–506, jun 2012.

[110] P Kess and H Haapasalo. Knowledge creation through a project review process in software

production. International Journal of Production Economics, 80(1):49–55, 2002. Innovation of

Technology Management.

[111] Dong-Hyun Kim and Hae-Yeoun Lee. Image manipulation detection using convolutional neural

network. International Journal of Applied Engineering Research, 12(21):11640–11646, 2017.

[112] A. Kornecki and J. Zalewski. Software certification for safety-critical systems: A status report.

In 2008 International Multiconference on Computer Science and Information Technology, pages

665–672, 2008.

[113] D. RIchard Kuhn, James M. Higdon, James F. Lawrence, Raghu N. Kacker, and Yu Lei.

Combinatorial methods for event sequence testing. In 2012 IEEE Fifth International Conference

on Software Testing, Verification and Validation. IEEE, apr 2012.

[114] D. Richard Kuhn, Raghu N. Kacker, and Yu Lei. SP 800-142. Practical Combinatorial Testing.

National Institute of Standards and Technology, Gaithersburg, MD, USA, 2010.

[115] Rob J. Kusters, Youri van de Leur, Werner G. M. M. Rutten, and Jos J. M. Trienekens. When

agile meets waterfall. In 19th Int. Conf. on Enterprise Information Systems, 2017.

[116] Neelu Lalband and Kavitha Dwaram. Software engineering for smart healthcare. 8:325–331,

04 2019.

[117] Yu Lei, Raghu Kacker, D. Richard Kuhn, Vadim Okun, and James Lawrence. IPOG: A

general strategy for t-way software testing. In 14th Annual IEEE International Conference and

Workshops on the Engineering of Computer-Based Systems (ECBS'07). IEEE, 2007.

238

References

[118] Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring their

equivariance and equivalence. International Journal of Computer Vision, 127(5):456–476,

May 2019.

[119] Nancy Leveson. Are you sure your software will not kill anyone? Communications of the ACM,

63(2):25–28, January 2020.

[120] N.G. Leveson and C.S. Turner. An investigation of the therac-25 accidents. Computer, 26(7):18–

41, 1993.

[121] Yan Li, Chuan-Hoo Tan, and Hock-Hai Teo. Leadership characteristics and developers’ mo-

tivation in open source software development. Information and Management, 49(5):257–267,

July 2012.

[122] Jeffrey A Livermore. Factors that significantly impact the implementation of an agile software

development methodology. J. Softw., 3(4), 2008.

[123] Ravi Mangal, Aditya V. Nori, and Alessandro Orso. Robustness of neural networks: A proba-

bilistic and practical approach. In Proceedings of the 41st International Conference on Software

Engineering: New Ideas and Emerging Results, ICSE-NIER ’19, pages 93–96, Piscataway, NJ,

USA, 2019. IEEE Press.

[124] Roger W Manley. A new mechanical ventilator. Anaesthesia, 16(3):317–323, July 1961.

[125] Paul E. Marik and Jim Krikorian. Pressure-controlled ventilation in ARDS: A practical ap-

proach. Chest, 112(4):1102–1106, October 1997.

[126] John J. Marini and Luciano Gattinoni. Management of COVID-19 Respiratory Distress. JAMA,

323(22):2329–2330, JUN 9 2020.

[127] Tony Marks. Accelerating the project. In The Practitioner Handbook of Project Controls. 2020.

[128] Philip Mayer, Michael Kirsch, and Minh Anh Le. On multi-language software development,

cross-language links and accompanying tools: a survey of professional software developers.

Journal of Software Engineering Research and Development, 5(1), apr 2017.

[129] Martin Mc Hugh, Oisı́n Cawley, Fergal McCaffcry, Ita Richardson, and Xiaofeng Wang. An

agile v-model for medical device software development to overcome the challenges with plan-

driven software development lifecycles. In 2013 5th International Workshop on Software

Engineering in Health Care (SEHC), pages 12–19. IEEE, 2013.

239

Andrea Bombarda

[130] Jim A McCall, Paul K Richards, and Gene F Walters. Factors in software quality. volume i.

concepts and definitions of software quality. Technical report, GENERAL ELECTRIC CO

SUNNYVALE CA, 1977.

[131] Martin McHugh, Fergal McCaffery, and Valentine Casey. Barriers to adopting agile practices

when developing medical device software. In International Conference on Software Process

Improvement and Capability Determination, pages 141–147. Springer, 2012.

[132] Martin McHugh, Fergal McCaffery, and Garret Coady. An agile implementation within a

medical device software organisation. In Antanas Mitasiunas, Terry Rout, Rory V. O’Connor,

and Alec Dorling, editors, Software Process Improvement and Capability Determination, pages

190–201, Cham, 2014. Springer International Publishing.

[133] Bertrand Meyer. Agile! Springer International Publishing, 2014.

[134] Microsoft. Pict github repository. available online at: https://github.com/microsoft/

pict.

[135] Nils Brede Moe, Torgeir Dingsøyr, and Knut Rolland. To schedule or not to schedule? an

investigation of meetings as an inter-team coordination mechanism in large-scale agile software

development. International Journal of Information Systems and Project Management, 2018.

[136] Anders Møller. dk.brics.automaton – finite-state automata and regular expressions for Java,

2017. http://www.brics.dk/automaton/.

[137] Plinio P. Morita, Peter B. Weinstein, Christopher J. Flewwelling, Carleene A. Bañez, Tabitha A.

Chiu, Mario Iannuzzi, Aastha H. Patel, Ashleigh P. Shier, and Joseph A. Cafazzo. The usability

of ventilators: a comparative evaluation of use safety and user experience. Critical Care, 20(1),

aug 2016.

[138] Bacha Munir and Yong Xu. Effects of gravity and surface tension on steady microbubble

propagation in asymmetric bifurcating airways. Physics of Fluids, 32(7):072105, July 2020.

[139] Srinivas Murthy, Charles D. Gomersall, and Robert A. Fowler. Care for Critically Ill Pa-

tients With COVID-19. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION,

323(15):1499–1500, APR 21 2020.

240

https://github.com/microsoft/pict
https://github.com/microsoft/pict

References

[140] Elham Nazari, Mohammad Shahriari, Maryam Edalati, and Hamed Tabesh. Create frameworks

from software engineering to health care: A survey article info abstract. Journal of Biostatistics

and Epidemiology, 01 2019.

[141] NIST. NIST sequence covering array generator. https://csrc.nist.gov/

Projects/automated-combinatorial-testing-for-software/event-sequence-

testing/unders, 2016.

[142] Helga Nyrud and Viktoria Stray. Inter-team coordination mechanisms in large-scale agile. In

Proceedings of the XP2017 Scientific Workshops, 2017.

[143] David Lorge Parnas and Jan Madey. Functional documents for computer systems. Science of

Computer Programming, 25(1):41–61, oct 1995.

[144] Jan Peleska, Elena Vorobev, and Florian Lapschies. Automated test case generation with SMT-

solving and abstract interpretation. In Proceedings of the Third International Conference on

NASA Formal Methods, NFM’11, page 298–312, Berlin, Heidelberg, 2011. Springer-Verlag.

[145] Patrizio Pelliccione, Eric Knauss, Rogardt Heldal, S. Magnus Ågren, Piergiuseppe Mallozzi,

Anders Alminger, and Daniel Borgentun. Automotive architecture framework: The experience

of volvo cars. Journal of Systems Architecture, 77:83 – 100, 2017.

[146] Justyna Petke. Constraints: The future of combinatorial interaction testing. In 2015 IEEE/ACM

8th International Workshop on Search-Based Software Testing. IEEE, may 2015.

[147] Justyna Petke, Myra B Cohen, Mark Harman, and Shin Yoo. Practical combinatorial interaction

testing: Empirical findings on efficiency and early fault detection. IEEE Transactions on

Software Engineering, 41(9):901–924, 2015.

[148] Tài Pham, Laurent J. Brochard, and Arthur S. Slutsky. Mechanical ventilation: State of the art.

Mayo Clinic Proceedings, 92(9):1382–1400, sep 2017.

[149] Candice Quist. Benefits of blending agile and waterfall project planning methodologies. Tech-

nical report, University of Oregon, 2015.

[150] Jef Raskin. Comments are more important than code: The thorough use of internal docu-

mentation is one of the most-overlooked ways of improving software quality and speeding

implementation. Queue, 3(2):64–65, 2005.

241

https://csrc.nist.gov/Projects/automated-combinatorial-testing-for-software/event-sequence-testing
https://csrc.nist.gov/Projects/automated-combinatorial-testing-for-software/event-sequence-testing
https://csrc.nist.gov/Projects/automated-combinatorial-testing-for-software/event-sequence-testing

Andrea Bombarda

[151] Waseem Rawat and Zenghui Wang. Deep convolutional neural networks for image classification:

A comprehensive review. Neural Computation, 29(9):2352–2449, sep 2017.

[152] Vincenzo Riccio, Gunel Jahangirova, Andrea Stocco, Nargiz Humbatova, Michael Weiss, and

Paolo Tonella. Testing machine learning based systems: a systematic mapping. Empirical

Software Engineering, 25(6):5193–5254, September 2020.

[153] Elvinia Riccobene and Patrizia Scandurra. A formal framework for service modeling and

prototyping. Formal Aspects Comput., 26(6):1077–1113, 2014.

[154] Adrian Rosebrock. Breast cancer classification with keras and deep learning.

https://www.pyimagesearch.com/2019/02/18/breast-cancer-classification-

with-keras-and-deep-learning/, 2019.

[155] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study research in

software engineering. Empirical software engineering, 14(2):131, 2009.

[156] J. M. Rushby. Design and verification of secure systems. ACM SIGOPS Operating Systems

Review, 15(5), 1981.

[157] Douglas C. Schmidt. Guest editor’s introduction: Model-driven engineering. IEEE Computer,

39(2):25–31, 2006.

[158] R. A. Schrenker. Software engineering for future healthcare and clinical systems. Computer,

39(4):26–32, 2006.

[159] Jan Schroeder, Christian Berger, and Thomas Herpel. Challenges from integration testing using

interconnected hardware-in-the-loop test rigs at an automotive oem: An industrial experience

report. In Proceedings of the First International Workshop on Automotive Software Architecture,

WASA ’15. Association for Computing Machinery, 2015.

[160] Itai Segall, Rachel Tzoref-Brill, and Eitan Farchi. Using binary decision diagrams for combi-

natorial test design. In Proceedings of the 2011 International Symposium on Software Testing

and Analysis - ISSTA '11. ACM Press, 2011.

[161] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. Incremental learning of object

detectors without catastrophic forgetting. In 2017 IEEE International Conference on Computer

Vision (ICCV). IEEE, oct 2017.

242

https://www.pyimagesearch.com/2019/02/18/breast-cancer-classification-with-keras-and-deep-learning/
https://www.pyimagesearch.com/2019/02/18/breast-cancer-classification-with-keras-and-deep-learning/

References

[162] George Spanoudakis and Andrea Zisman. Software Traceability: A Roadmap. In Handbook

Of Software Engineering And Knowledge Engineering. 2005.

[163] Viktoria Stray, Nils Brede Moe, and Rashina Hoda. Autonomous agile teams: Challenges and

future directions for research. In Proceedings of the 19th International Conference on Agile

Software Development: Companion, 2018.

[164] Anusuyah Subbarao and MNR Mahrin. A systematic review of coordination approaches and

indicators in global software development projects. Journal of Advanced Research in Dynamical

and Control Systems, 11(10), 2019.

[165] Tianze Sun, Xiwang He, Xueguan Song, Liming Shu, and Zhonghai Li. The digital twin in

medicine: A key to the future of healthcare? Frontiers in Medicine, 9, July 2022.

[166] Tolga Tasdizen, Mehdi Sajjadi, Mehran Javanmardi, and Nisha Ramesh. Improving the robust-

ness of convolutional networks to appearance variability in biomedical images. In 2018 IEEE

15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, apr 2018.

[167] Rachel Tzoref-Brill and Shahar Maoz. Modify, enhance, select: Co-evolution of combinatorial

models and test plans. In Proceedings of the 2018 26th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software Engineering,

ESEC/FSE 2018, page 235–245, New York, NY, USA, 2018. Association for Computing

Machinery.

[168] Mark Utting, Bruno Legeard, Fabrice Bouquet, Elizabeta Fourneret, Fabien Peureux, and

Alexandre Vernotte. Chapter two - recent advances in model-based testing. In Atif Memon,

editor, Advances in Computers, volume 101 of Advances in Computers, pages 53–120. Elsevier,

2016.

[169] David A. van Dyk and Xiao-Li Meng. The art of data augmentation. Journal of Computational

and Graphical Statistics, 10(1):1–50, 2001.

[170] João Varajão. Software development in disruptive times: Creating a software solution with

fast decision capability, agile project management, and extreme low-code technology. Queue,

19(1), 2021.

[171] Margus Veanes, Colin Campbell, Wolfram Schulte, and Nikolai Tillmann. Online testing with

model programs. SIGSOFT Softw. Eng. Notes, 30(5):273–282, sep 2005.

243

Andrea Bombarda

[172] Ferdinand Wagner. Modeling Software with Finite State Machines. Auerbach Publications,

May 2006.

[173] Michael Wagner, K. Kleine, Dimitris Simos, R. Kuhn, and R. Kacker. Cagen: A fast com-

binatorial test generation tool with support for constraints and higher-index. In International

Workshop on Combinatorial Testing (IWCT 2020), 3 2020.

[174] James M. Walter, Thomas C. Corbridge, and Benjamin D. Singer. Invasive mechanical venti-

lation. Southern Medical Journal, 111(12):746–753, dec 2018.

[175] Beilun Wang, Ji Gao, and Yanjun Qi. A theoretical framework for robustness of (deep) classifiers

against adversarial samples. In 5th International Conference on Learning Representations, ICLR

2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings, 2017.

[176] J. H. Weber-Jahnke, M. Price, and J. Williams. Software engineering in health care: Is it

really different? and how to gain impact. In 2013 5th International Workshop on Software

Engineering in Health Care (SEHC), pages 1–4, 2013.

[177] Cort J. Willmott and Kenji Matsuura. Advantages of the mean absolute error (MAE) over the

root mean square error (RMSE) in assessing average model performance. Climate Research,

30(1):79–82, 2005.

[178] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and Anders

Wesslén. Experimentation in Software Engineering. Springer Berlin Heidelberg, 2012.

[179] R. Wohlrab, U. Eliasson, P. Pelliccione, and R. Heldal. Improving the consistency and usefulness

of architecture descriptions: Guidelines for architects. In 2019 IEEE International Conference

on Software Architecture (ICSA), pages 151–160, 2019.

[180] Rebekka Wohlrab, Patrizio Pelliccione, Eric Knauss, and Mats Larsson. Boundary objects and

their use in agile systems engineering. Journal of Software: Evolution and Process, 31(5),

2019.

[181] L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn. Acts: A combinatorial test generation tool. In

2013 IEEE Sixth International Conference on Software Testing, Verification and Validation,

pages 370–375, 2013.

[182] Linbin Yu, Yu Lei, Raghu N. Kacker, D. Richard Kuhn, Ram D. Sriram, and Kevin Brady.

A general conformance testing framework for ieee 11073 phd’s communication model. In

244

References

Proceedings of the 6th International Conference on PErvasive Technologies Related to Assistive

Environments, PETRA ’13, New York, NY, USA, 2013. Association for Computing Machinery.

[183] Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. Machine learning testing: Survey,

landscapes and horizons, 2019.

[184] David R. Ziehr, Jehan Alladina, Camille R. Petri, Jason H. Maley, Ari Moskowitz, Benjamin D.

Medoff, Kathryn A. Hibbert, B. Taylor Thompson, and C. Corey Hardin. Respiratory pathophys-

iology of mechanically ventilated patients with covid-19: A cohort study. American Journal of

Respiratory and Critical Care Medicine, 201(12):1560–1564, 2020. PMID: 32348678.

245

	Introduction
	State of the art
	Quality of software
	Examples of non-quality accidents in medical systems

	Standards and regulations for the certification of medical software
	IEC 62304: Medical Software Development Life Cycle
	FDA Guidelines: General Principles of Software Validation

	The definition of ``medical device''
	Legal aspects of the liability for non-quality medical systems
	Conclusion

	MVM: A mechanical ventilator for ICUs
	The MVM case study
	Introduction
	Medical considerations on COVID-19 patients
	Design of the MVM
	MVM operating modes
	Pressure-Controlled Ventilation Mode
	Pressure-Support Ventilation Mode

	MVM electronics and software
	Hardware
	Software

	Device testing
	Software testing
	Tests in PCV mode
	Tests in PSV mode
	Single-fault test condition based on ISO protocols
	Long-term durability tests
	Response of the MVM to an increased oxygen concentration
	Evaluation of bio-compatibility

	Conclusion

	The software certification process: lessons learned and guidelines
	Introduction
	Research methodology
	Data collection and analysis
	Validation methodology for the lessons learned
	Validation methodology for the guidelines

	Lessons learned
	Development process
	Development phases
	Validation of the lessons learned

	Guidelines
	Development process
	Development phases
	Validation of the guidelines

	Conclusions

	Model-based systems engineering for PEMS
	Abstract State Machines for MBSE
	Introduction
	The ASMETA framework
	Background concepts for Abstract State Machines
	ASMETA toolset

	ASMETA @ design-time
	Modeling
	Validation and verification

	ASMETA @ development-time
	Model-based test generation
	Model-based code generation
	Unit test generation

	ASMETA @ operation-time
	Conclusion

	Applying the ASMETA rigorous process to medical case studies
	Introduction
	Case studies
	The e-Pix case study
	The IEEE 11073 PHD protocol case study

	From ASMETA specifications to embedded code
	The e-Pix case study
	The MVM case study

	Model-based Testing with ASMETA
	Applying MBT to the MVM case study
	Applying MBT to the PHD protocol case study

	Conclusion

	Combinatorial testing for complex PEMS
	Introduction
	Combinatorial sequence testing
	Finite State Machines
	Combinatorial sequence testing of FSMs
	Algorithm for CST
	Method evaluation

	Comparing combinatorial test generators
	Model complexity measures
	Computing the cost of test generators
	A benchmarking environment for CIT tools

	Parallelizing combinatorial test generation
	pMEDICI: exploiting MDDs for combinatorial test generation
	KALI: exploiting SMT solvers for combinatorial test generation

	Conclusion

	Robustness for AI-based medical software
	Neural network robustness
	State of the art on neural network robustness
	Background concepts
	Types of neural networks typically used in PEMS
	Accuracy and errors
	Alterations

	The general concept of NN robustness
	Robustness for classifiers
	Robustness for estimators
	Properties of the robustness measure

	Tools and algorithms for robustness estimation of NN classifiers
	ROBY
	The ASAP algorithm

	How to improve the robustness of a NN
	Data augmentation
	Incremental learning

	Robustness in medical devices
	Conclusion

	Applying robustness computation and improvement to PEMS
	The breast cancer case study
	Case study description
	Robustness evaluation
	Robustness improvement
	Final considerations

	The PO2 estimation case study
	Case study description
	Robustness evaluation
	Robustness improvement
	Final considerations

	Conclusion

	Conclusions
	List of Figures
	List of Tables
	List of Listings
	References

